文档库 最新最全的文档下载
当前位置:文档库 › 苯分子在Y沸石中跳跃扩散机制的动力学MonteCarlo模拟

苯分子在Y沸石中跳跃扩散机制的动力学MonteCarlo模拟

苯分子在Y沸石中跳跃扩散机制的动力学MonteCarlo模拟
苯分子在Y沸石中跳跃扩散机制的动力学MonteCarlo模拟

分子动力学的模拟过程

分子动力学的模拟过程 分子动力学模拟作为一种应用广泛的模拟计算方法有其自身特定的模拟步骤,程序流程也相对固定。本节主要就分子动力学的模拟步骤和计算程序流程做一些简单介绍。 1. 分子动力学模拟步驟 分子动力学模拟是一种在微观尺度上进行的数值模拟方法。这种方法既可以得到一些使用传统方法,热力学分析法等无法获得的微观信息,又能够将实际实验研究中遇到的不利影响因素回避掉,从而达到实验研宄难以实现的控制条件。 分子动力学模拟的步骤为: (1)选取所要研究的系统并建立适当的模拟模型。 (2)设定模拟区域的边界条件,选取粒子间作用势模型。 (3)设定系统所有粒子的初始位置和初始速度。 (4)计算粒子间的相互作用力和势能,以及各个粒子的位置和速度。 (5)待体系达到平衡,统计获得体系的宏观特性。 分子动力学模拟的主要对象就是将实际物理模型抽象后的物理系统模型。因此,物理建模也是分子动力学模拟的一个重要的环节。而对于分子动力学模拟,主要还是势函数的选取,势函数是分子动力学模拟计算的核心。这是因为分子动力学模拟主要是计算分子间作用力,计算粒子的势能、位置及速度都离不开势函数的作用。系统中粒子初始位置的设定最好与实际模拟模型相符,这样可以使系统尽快达到平衡。另外,粒子的初始速度也最好与实际系统中分子的速度相当,这样可以减少计算机的模拟时间。 要想求解粒子的运动状态就必须把运动方程离散化,离散化的方法有经典Verlet算法、蛙跳算法(Leap-frog)、速度Veriet算法、Gear预估-校正法等。这些算法有其各自的优势,选取时可按照计算要求选择最合适的算法。 统计系统各物理量时,便又涉及到系统是选取了什么系综。只有知道了模拟系统采用的系综才能釆用相对应的统计方法更加准确,有效地进行统计计算,减少信息损失。 2. 分子动力学模拟程序流程 具体到分子动力学模拟程序的具体流程,主要包括: (1)设定和模拟相关的参数。 (2)模拟体系初始化。 (3)计算粒子间的作用力。 (4)求解运动方程。 (5)循环计算,待稳定后输出结果。 分子动力学模拟程序流程图如2.3所示。

高分子链构象的计算机模拟

化工与材料工程学院 综合与设计性化学实验实验类型:设计性 实验题目:高分子链构象的计算机模拟 班级:化工0701 学号:07110105 姓名:王洪伟实验日期:2009-10-6

一、实验目的 1、对高分子链构象有直观、形象的了解。 2、了解Monte Carlo方法的原理。 二、实验原理 1、高分子的链构象 链构象就是分子链在空间中的形状和尺寸,高分子溶液和本体的许多性质,诸如热力学、光学、电学、声学、流体动力学和力学等性质,都与链构象有关。而链的柔性,使构象具有统计性。可以说,链构象理论是研究高分子的基础,我们在《高分子物理》课程中曾学到,高分子链构象可以分成两类,即理想链和真实链。 理想链即无干扰状态下的高分子链,它可以用无规行走来描述,故又称无规链,其均方末端距(h2)可以表示为 (h2)=NL2–----------------------------------- (1) 式中N是链节数;L是链节长度。 又M =M0N -------------------------------------- (2) 式中M为高分子链的分子量;M0为链节分子量。这样,由(1)、(2)两式,我们就可以得到均方末端距同链分子量M的关系。 真实链即有排除体积效应的高分子链。由于原子之间相互作用的存在。两个原子不能在空间占据同一位置。换言之,在分子链中,组成链的原子相互被排除于同一体积。这种效应即称为排除体积效应。在链构象的统计理论和数学模拟中又称自回避链。排除体积效应引起分子链扩张,即分子链有较大的均方末端距,表示为: (h2)= NvL2, v ≈6/5 一般来讲,高分子链是真实链,但高分子链若处于θ状态(在θ温度、θ溶剂中)则成为理想链。这时,从无规行走的角度来看,无规行走的迹线可以前后重叠。本实验的主要目的就是直观地从计算机上“看到”这两种链、同时,通过观察高分子的链构象,找出高分子线团尺寸与分子链节数的关系,亦即均方末端距与分子量的关系。 2、链构象的模拟 从高分子链的二次结构上看。链分子是由链节依照一定的键角和旋转角,一个一个地连接而成的。一个具有N个链节数的高分子链,从计算机模拟的角度来看,相当于一步一步走N步而成的。不同的链构象是不同行走方式的必然结果。高分子链在某一时刻为何种构象完全是随机的,这就要求行走方式的选择必须是随机的。计算机对这种随机过程的描述,是采用Monte Carlo方法。 Monte Carlo方法又称计算机随机模拟方法,统计试验方法。简单地说,当我们欲计算某物理量时,先建立某种合适的物理模型,然后大量地随机取样,(通过某种随机过程获得样本,该样本同此物理量有直接关系,且可以得到此物理量的一个数值结果)将这些样本的结果做统计平均。这个统计平均值就是我们欲求的物理量。当然,样本数越多,这个平均值越接近真实值。一般地,我们要选取成千上万个样,才能获得较好的模拟结果。所以Monte Carlo方法是离不开计算机的,其详细的原理可见附录。 在本实验中,所模拟的对象是柔性高分子链。其构象可以用高分子线团来描述。我们利用无规飞行模型和晶格模型两种物理模型,来模拟理想链和自回避链的构象。 (1)无规飞行模型 为便于观察,我们选取二维平面的无规飞行模型。在这个模型中,高分子链可以朝任何方向行走,飞行迹线可以重叠。形象地说,这种飞行迹线就是布朗粒子的行走迹线。

分子动力学方法模拟基本步骤

分子动力学方法模拟基本步骤 1.第一步 即模型的设定,也就是势函数的选取。势函数的研究和物理系统上对物质的描述研究息息相关。最早是硬球势,即小于临界值时无穷大,大于等于临界值时为零。常用的是LJ势函数,还有EAM势函数,不同的物质状态描述用不同的势函数。 模型势函数一旦确定,就可以根据物理学规律求得模拟中的守恒量。 2 第二步 给定初始条件。运动方程的求解需要知道粒子的初始位置和速度,不同的算法要求不同的初始条件。如:verlet算法需要两组坐标来启动计算,一组零时刻的坐标,一组是前进一个时间步的坐标或者一组零时刻的速度值。 一般意思上讲系统的初始条件不可能知道,实际上也不需要精确选择代求系统的初始条件,因为模拟实践足够长时,系统就会忘掉初始条件。当然,合理的初始条件可以加快系统趋于平衡的时间和步伐,获得好的精度。 常用的初始条件可以选择为:令初始位置在差分划分网格的格子上,初始速度则从玻尔兹曼分布随机抽样得到;令初始位置随机的偏离差分划分网格的格子上,初始速度为零;令初始位置随机的偏离差分划分网格的格子上,初始速度也是从玻尔兹曼分布随机抽样得到。 第三步 趋于平衡计算。在边界条件和初始条件给定后就可以解运动方程,进行分子动力学模拟。但这样计算出的系统是不会具有所要求的系统的能量,并且这个状态本身也还不是一个平衡态。 为使得系统平衡,模拟中设计一个趋衡过程,即在这个过程中,我们增加或者从系统中移出能量,直到持续给出确定的能量值。我们称这时的系统已经达到平衡。这段达到平衡的时间成为驰豫时间。 分子动力学中,时间步长的大小选择十分重要,决定了模拟所需要的时间。为了减小误差,步长要小,但小了系统模拟的驰豫时间就长了。因此根据经验选择适当的步长。如,对一个具有几百个氩气Ar分子的体系,lj势函数,发现取h为0.01量级,可以得到很好的相图。这里选择的h是没有量纲的,实际上这样选择的h对应的时间在10-14s的量级呢。如果模拟1000步,系统达到平衡,驰豫时间只有10-11s。 第四步 宏观物理量的计算。实际计算宏观的物理量往往是在模拟的最后揭短进行的。它是沿相空间轨迹求平均来计算得到的(时间平均代替系综平均)

分子动力学模拟方法概述(精)

《装备制造技术》 2007年第 10期 收稿日期 :2007-08-21 作者简介 :申海兰 , 24岁 , 女 , 河北人 , 在读研究生 , 研究方向为微机电系统。 分子动力学模拟方法概述 申海兰 , 赵靖松 (西安电子科技大学机电工程学院 , 陕西西安 710071 摘要 :介绍了分子动力学模拟的基本原理及常用的原子间相互作用势 , 如Lennard-Jones 势 ; 论述了几种常用的有限差分算法 , 如 Verlet 算法 ; 说明了分子动力学模拟的几种系综及感兴趣的宏观统计量的提取。关键词 :分子动力学模拟 ; 原子间相互作用势 ; 有限差分算法 ; 系综中图分类号 :O3 文献标识码 :A 文章编号 :1672-545X(200710-0029-02 从统计物理学中衍生出来的分子动力学模拟方法 (molec- ular dynamics simulation , M DS , 实践证明是一种描述纳米科技 研究对象的有效方法 , 得到越来越广泛的重视。所谓分子动力学模拟 , 是指对于原子核和电子所构成的多体系统 , 用计算机模拟原子核的运动过程 , 从而计算系统的结构和性质 , 其中每一个原子核被视为在全部其他原子核和电子所提供的经验势场作用下按牛顿定律运动 [1]。它被认为是本世纪以来除理论分析和实验观察之外的第三种科学研究手段 , 称之为“计算机实验” 手段 [2], 在物理学、化学、生物学和材料科学等许多领域中得到广泛地应用。

根据模拟对象的不同 , 将它分为平衡态分子动力学模拟 (EM DS (和非平衡态分子动力学模拟 (NEM DS 。其中 , EM DS 是分子动力学模拟的基础 ; NEM DS 适用于非线性响应系统的模拟 [3]。下面主要介绍 EM DS 。 1分子动力学方法的基本原理 计算中根据以下基本假设 [4]: (1 所有粒子的运动都遵循经典牛顿力学规律。 (2 粒子之间的相互作用满足叠加原理。 显然这两条忽略了量子效应和多体作用 , 与真实物理系统存在一定差别 , 仍然属于近似计算。 假设 N 为模拟系统的原子数 , 第 i 个原子的质量为 m i , 位置坐标向量为 r i , 速度为 v i =r ? i , 加速度为 a i =r ?? i , 受到的作用力为 F i , 原子 i 与原子 j 之间距离为 r ij =r i -r j , 原子 j 对原子 i 的作用力为 f ij , 原子 i 和原子 j 相互作用势能为 ! (r ij , 系统总的势能为 U (r 1, r 2, K r N = N i =1! j ≠ i ! " (r ij , 所有的物理量都是随时 间变化的 , 即 A=A (t , 控制方程如下 : m i r ?? i =F i =j ≠ i

高分子材料加工计算机模拟计算机模拟思考题答案

1.Ansys 中主要有哪四个分析模块?结构分析,热分析,流体分析包括CFD(计算流体动力学),电 / 静电场分析,电磁场分析 2.在 ANSYS 产品中,求解结构问题有两种方法,它们各用于什么场合?在 ANSYS 产品中,求解结构问题有两种方法:h-方法和p-方法。h-方法可用于任何类型的结构分析,而p-方法只能用于线性结构静力分析。根据所求的问题,h-方法通常需要比p-方法更密的网格。p-方法在应用较粗糙的网格时,提供了求得适当精度的一种很好的途径。 3.ANSYS分析过程中三个主要的步骤. 每个分析包含三个主要步骤:前处理:创建或输入几何模型,对几何模型划分网格。求解:施加载荷求解。后处理:结果评价,检查结果的正确性 4.ANSYS文件中包括四种文件,分别是哪四种?在任何ANSYS分析之后,您应保存以下的文件:日志文件( .log)数据库文件 ( .db)结果文件(.rst, .rth, …)荷载步文件, 如有多步 (.s01, .s02, ...)物理文件 (.ph1, .ph2, ...) 5.Ansys中四类实体模型图元, 以及它们之间的层次关系。典型的实体模型是由体、面、线和关键点组成的。在实体模型间有一个内在层次关系,关键点是实体的基础,线由点生成,面由线生成,体由面生成。 6. 模型生成方法与建模步骤 7. ANSYS坐标系有哪六种?总体坐标系,局部坐标系,节点坐标系,单元坐标系,显示坐标系,结果坐标系 8.体素定义 9.单元属性定义。单元属性是网格划分前必须建立的有限单元模型属性。它们包括:单元类型,实常数,材料性质 10.ANSYS网格划分主要包括以下四个步骤:定义单元属性,指定网格的控制参数,生成网格11.ANSYS 有哪两个两个后处理器,他们如何定义的?后处理:结果评价,检查结果的正确性 12. Ansys中的载荷有哪些?自由度约束,集中载荷,面载荷,体载荷,惯性载荷 13 自由度约束的定义。自由度约束就是给某个自由度(DOF)指定一已知数值 (值不一定是零)。 14. 面载荷的定义。面载荷就是作用在单元表面上的分布载荷。 15. 静力分析结果后处理的步骤主要包括有哪些? 16. 聚合物加工过程数值分析及计算机模拟一般方法。其一般方法可概述如下:(1)明确对象,定义问题,构造成型加工过程中的物理模型。建立的物理模型既要使问题简化到可以进行数学模拟和便于求解,又要尽可能完整地描述实际过程,尽可能真实地反映成型加工过程的实质和特征。(2)基于物理模型,选用守恒定律、本构方程和各种物性定律,建立问题的数学模型。建立的数学模型应尽量简洁明确,既要包含主要影响因素,又要避免数学运算过于繁杂,初始和边界条件要根据具体情况慎重选择,因为它们在很大程度上决定了最终的计算结果。(3)用解析或数值方法求解建立的数学模型,编写图形应用程序或采用绘软件输出模拟结果。通常选择何种数值方法需根据问题的复杂程度决定,如求解域形状规则的线性问题,选用有限差分法简便快捷;求解形状复杂的模型方程选用边界元法可以减少网格剖分的工作量;求解非线性问题采用有限元法可以在短时间快速收敛,得到数值解。 4)验证结果聚合物成型加工过程是复杂的,

分子动力学模拟

分子动力学模拟 分子动力学就是一门结合物理,数学与化学的综合技术。分子动力学就是一套分子模拟方法,该方法主要就是依靠牛顿力学来模拟分子体系的运动,以在由分子体系的不同状态构成的系统中抽取样本,从而计算体系的构型积分,并以构型积分的结果为基础进一步计算体系的热力学量与其她宏观性质。 这门技术的发展进程就是: 1980年:恒压条件下的动力学方法(Andersenの方法、Parrinello-Rahman法) 1983年:非平衡态动力学方法(Gillan and Dixon) 1984年:恒温条件下的动力学方法(能势‐フーバーの方法) 1985年:第一原理分子动力学法(→カー?パリネロ法) 1991年:巨正则系综的分子动力学方法(Cagin and Pettit)、 最新的巨正则系综,即为组成系综的系统与一温度为T、化学势为μ的很大的热源、粒子源相接触,此时系统不仅同热源有能量交换,而且可以同粒子源有粒子的交换,最后达到平衡,这种系综称巨正则系综。 进行分子动力学模拟的第一步就是确定起始构型,一个能量较低的起始构型就是进行分子模拟的基础,一般分子的其实构型主要就是来自实验数据或量子化学计算。在确定起始构型之后要赋予构成分子的各个原子速度,这一速度就是根据玻尔兹曼分布随机生成,由于速度的分布符合玻尔兹曼统计,因此在这个阶段,体系的温度就是恒定的。另外,在随机生成各个原子的运动速度之后须进行调整,使得体系总体在各个方向上的动量之与为零,即保证体系没有平动位移。 由上一步确定的分子组建平衡相,在构建平衡相的时候会对构型、温度等参数加以监控。 进入生产相之后体系中的分子与分子中的原子开始根据初始速度运动,可以想象其间会发生吸引、排斥乃至碰撞,这时就根据牛顿力学与预先给定的粒子间相互作用势来对各个例子的运动轨迹进行计算,在这个过程中,体系总能量不变,但分子内部势能与动能不断相互转化,从而体系的温度也不断变化,在整个过程中,体系会遍历势能面上的各个点,计算的样本正就是在这个过程中抽取的。 用抽样所得体系的各个状态计算当时体系的势能,进而计算构型积分。 作用势的选择与动力学计算的关系极为密切,选择不同的作用势,体系的势能面会有不同的形状,动力学计算所得的分子运动与分子内部运动的轨迹也会不同,进而影响到抽样的结果与抽样结果的势能计算,在计算宏观体积与微观成分关系的时候主要采用刚球模型的二体势,计算系统能量,熵等关系时早期多采用Lennard-Jones、morse势等双体势模型,对于金属计算,主要采用morse势,但就是由于通过实验拟合的对势容易导致柯西关系,与实验不符,因此在后来的模拟中有人提出采用EAM等多体势模型,或者采用第一性原理计算结果通过一定的物理方法来拟合二体势函数。但就是对于二体势模型,多体势往往缺乏明确的表达式,参量很多,模拟收敛速度很慢,给应用带来很大困难,因此在一般应用中,通过第一性原理计算结果拟合势函数的L-J,morse等势模型的应用仍非常广泛。 分子动力学计算的基本思想就是赋予分子体系初始运动状态之后,利用分子的自然运动在相空间中抽取样本进行统计计算,时间步长就就是抽样的间隔,因而时间步长的选取对动力学模拟非常重要。太长的时间步长会造成分子间的激烈碰撞,体系数据溢出;太短的时间步长会降低模拟过程搜索相空间的能力,因此一般选取的时间步长为体系各个自由度中最短运动周期的十分之一。但就是通常情况下,体系各自由度中运动周期最短的就是各个化学键的振动,而这种运动对计算某些宏观性质并不产生影响,因此就产生了屏蔽分子内部振动或其她无关运动的约束动力学,约束动力学可以有效地增长分子动力学模拟时间步长,提高搜索相空间的能

MS分子动力学模拟具体实施步骤

第3章 铁基块体非晶合金‐纳米晶转变的动力学模拟过程 3.1 Discover模块 3.1.1 原子力场的分配 在使用Discover模块建立基于力场的计算中,涉及几个步骤。主要有:选择力场、指定原子类型、计算或指定电荷、选择non‐bond cutoffs。 在这些步骤中,指定原子类型和计算电荷一般是自动执行的。然而,在某些情形下需要手动指定原子类型。原子定型使用预定义的规则对结构中的每个原子指定原子类型。在为特定的系统确定能量和力时,定型原子使工作者能使用正确的力场参数。通常,原子定型由Discover使用定型引擎的基本规则来自动执行,所以不需要手动原子定型。然而,在特殊情形下,人们不得不手动的定型原子,以确保它们被正确地设置。 图 3-1 1)计算并显示原子类型:点击Edit→Atom Selection,如图3‐1所示 图3-2 弹出对话框,如图3‐2所示 从右边的…的元素周期表中选择Fe,再点Select,此时所建晶胞中所有Fe

原子都将被选中,原子被红色线圈住即表示原子被选中。再编辑集合,点击Edit →Edit Sets,如图3‐3、3‐4所示。 图3-3 图3-4 弹出对话框见图3‐4,点击New...,给原子集合设定一个名字。这里设置为Fe,则3D视图中会显示“Fe”字样,再分配力场:在工具栏上点击Discover按 钮,从下拉列表中选择Setup,显示Discover Setup对话框,选择Typing选项卡,见图3‐5。 图3-5 在Forcefield types里选择相应原子力场,再点Assign(分配)按钮进行原子力场分配。注意原子力场中的价态要与Properties Project里的原子价态(Formalcharge)一致。

二维高分子链形态的计算机模拟-高分子物理-实验3-03

实验三 二维高分子链形态的计算机模拟 在“高聚物的结构与性能” (一些学校称为”高分子物理”) 课程教学中,高分子链的形态是教学的重点和难点。由于单键的内旋转,使得线形大分子这一瞬间的构象与另一瞬间不同,链构象数很大,链的形态不断改变,尺寸也随之发生变化。决定形态的重要因素是大分子链的化学结构和链单元间的相互作用,在溶液中的高分子链形态还受溶剂和温度的影响。不同条件下高分子链的形态差别较大,需用不同的模型来描述,如:无规行走(简称RW )和自回避行走(简称SAW )[1,2]。计算机模拟无疑是事半功倍的:在屏幕上构造SAW 、RW 链,直观展示高分子链的内旋转以及链的形态和尺寸变化,计算链的平均尺寸,验证平均尺寸与聚合度的标度关系,具有实体分子模型和课堂教学所达不到的效果。 本实验应用自编的改进型四位置模型,模拟二维空间中的SAW 、RW 链。 一、实验目的 1.了解SAW 链与RW 链的差别,并理解排除体积效应对高分子链形态及尺寸的影响; 2.初步了解改进型四位置模型; 3.学会用改进型四位置模型模拟二维空间中的SAW 链和RW 链; 4.计算均方末端距、均方回转半径与聚合度的标度关系,并与诺贝尔物理奖获得者De Gennes 的理论值相比较。 二、实验原理 1.RW 链和SAW 链 RW 是假定在走完前一步后,下一步走向任何方向都是等几率的,RW 链的均方末端距2h 和均方回转半径2R 与步数(相当于高分子的聚合度)成一次方的关系,N N h ∝2,N R ∝2。与RW 不同,SAW 是在走完前一步后,下一步走向任何方向虽然是等几率的,但是必须回避以前已经走过的地方,对于SAW 链,任何两个链单元不可能占据同一个位置。显然SAW 链的尺寸比RW 链扩张了,2h 和2R 与应具有大于一次方的关系,N ν22N h ∝,ν22N R ∝,这里21>ν。 实际高分子链的链单元都占有一定的体积,链单元间还有斥力,存在排除体积效应。另外,良溶剂中高分子链单元间也会由于溶剂分子-高分子链单元间的作用所产生的溶胀作用而呈现斥力,因此SAW 模型更符合实际情况。只有在θ溶剂中,链单元间的斥力刚好与链单元间的Van der Walls 引力相互抵销,高分子链的形态才可用RW 模型描述。一个不存在

分子动力学模拟讲解

分子动力学模拟 一,软件: NAMD:https://www.wendangku.net/doc/c818423801.html,/Research/namd/免费注册之后进行免费下载, 只需要下载解压不需要安装 VMD:https://www.wendangku.net/doc/c818423801.html,/Research/vmd/免费,分子可视化和辅助分析软 件 二,分子动力学模拟需要的数据文件包括: (1)蛋白质的PDB文件,此文件只记录原子空间位置,能够从RCSB管理的PDB数据库(https://www.wendangku.net/doc/c818423801.html,/pdb/)下载。 (2)PSF文件,此文件负责储存蛋白质的结构信息,记录蛋白质原子之间的成键情况。用户需要根据自己要求生成该文件。 (3)力场参数文件。此文件是分子动力学模拟的核心。CHAYMM,X-PLOR,AMBER和GROMACS 是经常用到的四种力场。NAMD能够利用上述每一种力场执行分子动力学模拟。 (4)配置文件(configuration file)。此文件作用是告知NAMD分子动力学模拟的各种参数,例如PDB和PSF两个文件保存的位置,模拟结果储存在哪里,体系的温度是多少等等。此文件也是要用户根据需求自己生成。同一配置的电脑,蛋白质分子大小不同,模拟运行的时间也不同,通常大蛋白质需要较长的时间。 三.以蛋白质1L63为例给出操作说明。 在PDB数据库下载蛋白质1L63. 建立文件夹1L63,其中包括以下几个文件,其中.conf文件需要修改,下面第4步会讲到。 以下生成PSF文件: 1.单击VMD,file-New Molecule-打开Molecule File Browser对话框,单击Browse按钮,在文件浏览器中找到文件夹1L63,在此文件夹中选择1L63.pdb,单击Load按钮载入1L63.pdb 2.除去pdb文件中带有的水分子 单击Extension-TK Console,弹出VMD Tk Console窗口。 首先用cd命令改变当前目录到1L63文件夹下,然后输入下列命令: set L63[atomselect top protein] $L63writepdb L63p.pdb 这样,1L63文件夹下就生成了文件L63P.pdb。这一PDB文件仅包含蛋白质,不包含水分子。 3.生成psf文件。 注意,这里仅讲全自动的psf文件生成器,描述如下: 选择Extensions-Modeling-Automatic PSF Builder菜单项,点击左上角的Options,选择Add solvation box,和Add neutralizing ions,点击右下角的I’m feeling lucky按钮,

高分子与计算机模拟

高分子与计算机模拟 随着以计算机、网络技术、通讯技术为代表的信息技术的迅猛发展,计算机和互联网在化学等各领域得到了广泛的应用。由于高分子材料专业所研究的主要对象———聚合物的种类繁多,唯有通过计算机才有可能对浩如烟海的化学知识进行有效的处理。聚合物加工过程中预测聚合物结构或对预期的聚合物结构进行开发,并通过可视化、在线检测、计算机模拟等对加工过程进行定量分析和优化是当今聚合物加工领域发展的新趋势。然而这些工作都离不开计算机,当今,计算机技术已深入到高分子材料领域的各个方面,成为高分子专业科技工作者必不可少的工具。计算机模拟既不是实验方法也不是理论方法,它是在实验基础上,通过基本原理,构筑起一套模型与算法,从而计算出合理的分子结构与分子行为。运用分子模拟技术,人们能够对材料原子及分子层次的机理有更全面的了解。 1.分子模拟的方法 1. 1 量子力学方法 量子力学方法借助计算分子结构中各微观参数, 如电荷密度、键序、轨道、能级等与性质的关系, 设计出具有特定动能的新分子。该法所描述的是简单的非真实体系, 计算的是绝对温度零度下真空中的单个小分子。其中从头算量子力学计算广泛用于计算平衡几何形状、扭转势以及小分子的电子激发能。随着计算机硬件和算法的发展, 已将此技术用到大分子, 包括聚合物的低聚物在内的模型, 并有较好的效果。 1. 2 分子力学 分子力学法又称Force Field方法, 是在分子水平上解决问题的非量子力学技术。其原理是, 分子内部应力在一定程度上反映被计算分子结构的相对位能大小。分子力学法是依据经典力学的计算方法, 即依据Bom-oppenheimer原理, 计算中将电子的运动忽略, 而将系统的能量视为原子核种类和位置的函数, 这些 势能函数被称为力场。分子的力场含有许多参数, 这些参数可由量子力学计算或实验方法得到。该法可用来确定分子结构的相对稳定性, 广泛地用于计算各类化合物的分子构象、热力学参数和谱学参数。 1. 3分子动力学模拟 分子动力学模拟是一种用来计算一个经典多体系的平衡和传递性质的方法。它对于许多材料来说是一个很好的近似, 在许多方面, 分子动力学模拟与真实 实验相似。它以特定粒子( 如原子、分子或者离子等) 为基本研究对象, 将系统看作具有一定特征的粒子集合, 运用经典力学方法研究微观分子的运动规律, 得到体系的宏观特性和基本规律。由于分子力学所描述的是静态分子的势能, 而真实分子的构象除了受势能影响外, 还受到外部因素如温度、压力等条件的影响, 在这种情况下, 分子动力学方法应当是更合实际、更符合真实状态的计算方法。分子动力学模拟已应用于模拟原子的扩散、相变、薄膜生长、表面缺陷等过程, 可得到原子结构因子、状态方程、弹性模量、热膨胀系数、热容和焓等物理量。 晶体的力学性能是各向异性的。在高分子晶体中这一点更加显著。一般的正交晶系的晶体有9 个弹性常数, 三斜晶系的有21 个。这些数据包括拉伸模量、剪切模量与泊松比, 是高分子材料设计的重要基础。然而, 很久以来, 从实验与理论上一直就没有得到任何高分子的一套完整的各向异性弹性常数。首先, 高分子的晶体结构的确定是很困难的。这是因为, 晶体的三维结构信息能够完整的获

分子动力学模拟教学教材

分子动力学模拟

分子动力学模拟 分子动力学是一门结合物理,数学和化学的综合技术。分子动力学是一套分子模拟方法,该方法主要是依靠牛顿力学来模拟分子体系的运动,以在由分子体系的不同状态构成的系统中抽取样本,从而计算体系的构型积分,并以构型积分的结果为基础进一步计算体系的热力学量和其他宏观性质。 这门技术的发展进程是: 1980年:恒压条件下的动力学方法(Andersenの方法、Parrinello-Rahman法)1983年:非平衡态动力学方法(Gillan and Dixon) 1984年:恒温条件下的动力学方法(能势‐フーバーの方法) 1985年:第一原理分子动力学法(→カー?パリネロ法) 1991年:巨正则系综的分子动力学方法(Cagin and Pettit). 最新的巨正则系综,即为组成系综的系统与一温度为T、化学势为μ的很大的热源、粒子源相接触,此时系统不仅同热源有能量交换,而且可以同粒子源有粒子的交换,最后达到平衡,这种系综称巨正则系综。 进行分子动力学模拟的第一步是确定起始构型,一个能量较低的起始构型是进行分子模拟的基础,一般分子的其实构型主要是来自实验数据或量子化学计算。在确定起始构型之后要赋予构成分子的各个原子速度,这一速度是根据玻尔兹曼分布随机生成,由于速度的分布符合玻尔兹曼统计,因此在这个阶段,体系的温度是恒定的。另外,在随机生成各个原子的运动速度之后须进行调整,使得体系总体在各个方向上的动量之和为零,即保证体系没有平动位移。由上一步确定的分子组建平衡相,在构建平衡相的时候会对构型、温度等参数加以监控。

进入生产相之后体系中的分子和分子中的原子开始根据初始速度运动,可以想象其间会发生吸引、排斥乃至碰撞,这时就根据牛顿力学和预先给定的粒子间相互作用势来对各个例子的运动轨迹进行计算,在这个过程中,体系总能量不变,但分子内部势能和动能不断相互转化,从而体系的温度也不断变化,在整个过程中,体系会遍历势能面上的各个点,计算的样本正是在这个过程中抽取的。 用抽样所得体系的各个状态计算当时体系的势能,进而计算构型积分。 作用势的选择与动力学计算的关系极为密切,选择不同的作用势,体系的势能面会有不同的形状,动力学计算所得的分子运动和分子内部运动的轨迹也会不同,进而影响到抽样的结果和抽样结果的势能计算,在计算宏观体积和微观成分关系的时候主要采用刚球模型的二体势,计算系统能量,熵等关系时早期多采用Lennard-Jones、morse势等双体势模型,对于金属计算,主要采用morse 势,但是由于通过实验拟合的对势容易导致柯西关系,与实验不符,因此在后来的模拟中有人提出采用EAM等多体势模型,或者采用第一性原理计算结果通过一定的物理方法来拟合二体势函数。但是对于二体势模型,多体势往往缺乏明确的表达式,参量很多,模拟收敛速度很慢,给应用带来很大困难,因此在一般应用中,通过第一性原理计算结果拟合势函数的L-J,morse等势模型的应用仍非常广泛。 分子动力学计算的基本思想是赋予分子体系初始运动状态之后,利用分子的自然运动在相空间中抽取样本进行统计计算,时间步长就是抽样的间隔,因而时间步长的选取对动力学模拟非常重要。太长的时间步长会造成分子间的激烈碰撞,体系数据溢出;太短的时间步长会降低模拟过程搜索相空间的能力,因此

计算机模拟进行分子对接

计算机模拟进行分子对接 北京市陈经纶中学王子巍、王喆学科:信息学化学 【内容摘要】 所谓分子对接就是受体和底物之间通过能量匹配和几何匹配而互相识别的过程。分子对接在超分子建筑学和药物设计中都具有非常重要的意义,运用分子对接我们可以揭示超分子体系的结构和形成过程。分子对接主要研究分子间(即配体和受体)相互作用,并且预测并计算结合模式和亲和力的一种理论模拟方法。 近年来,分子对接方法已成为计算机辅助药物研究领域的一项重要技术,在数据库搜索,组合库设计及蛋白作用研究方面得到广泛发展 因此分子对接具有极强的相士意义和发展前景 【关键词】分子对接 Docking Autodock 1、前言: 1.1历史 分子对接这一想法的历史可以追溯到19世纪提出的受体学说,Fisher提出的受体学说认为,药物与体内的蛋白质大分子即受体会发生类似钥匙与锁的识别关系,这种识别关系主要依赖两者的空间匹配。随着受体学说的发展,人们对生理活性分子与生物分子的相互作用有了更加深刻的认识,从基于空间匹配的刚性模型逐渐发展成为基于空间匹配和能量匹配的柔性模型。模型的优化使通过计算模拟分子间相互作用的设想更容易实现。另一方面,计算机和计算科学的迅速发展又使得人们能够处理大量数据,这两方面的因素共同促成了分子对接方法的出现。 早期的分子对接方法用分子力学方法或者量子化学方法计算小分子之间分子识别,在一些分子模拟软件包中也含有分子对接的模块。但是由于算法和计算机处理能力的限制,早期的对接方法较难处理含有大分子的分子对接过程。 1995年由Accelrys公司开发的计算化学软件Affinity上市,这是第一个可以进行有大分子参与的商业化分子对接软件,此后,商业化和免费的分子对接软件层出不穷。现在应用中的分子对接软件涵盖了刚性对接、半柔性对接、柔性对接等各种对接方法,在能量优化方面则使用了人工神经网络、遗传算法、模拟退火、禁忌搜索、局部搜索等各种方法,目前的分子对接方法是研究小分子与大分子相互作用模式、生物大分子间识别、分子自组装、超分子结构等课题的常用方法之一。 1.2原理与方法 分子对接方法的两大课题是分子之间的空间识别和能量识别。空间匹配是分子间发生相互作用的基础,能量匹配是分子间保持稳定结合的基础。对于几何匹

分子动力学模拟基础知识

分子动力学模拟基础知识 ? Molecular Dynamics Simulation o MD: Theoretical Background Newtonian Mechanics and Numerical Integration The Liouville Operator Formalism to Generating MD Integration Schemes o Case Study 1: An MD Code for the Lennard-Jones Fluid Introduction The Code, mdlj.c o Case Study 2: Static Properties of the Lennard-Jones Fluid (Case Study 4 in F&S) o Case Study 3: Dynamical Properties: The Self-Diffusion Coefficient ? Ensembles o Molecular Dynamics at Constant Temperature Velocity Scaling: Isokinetics and the Berendsen Thermostat Stochastic NVT Thermostats: Andersen, Langevin, and Dissipative Particle Dynamics The Nosé-Hoover Chain Molecular Dynamics at Constant Pressure: The Berendsen Barostat Molecular Dynamics Simulation We saw that the Metropolis Monte Carlo simulation technique generates a sequence of states with appropriate probabilities for computing ensemble averages (Eq. 1). Generating states probabilitistically is not the only way to explore phase space. The idea behind the Molecular Dynamics (MD) technique is that we can observe our dynamical system explore phase space by solving all particle equations of motion . We treat the particles as classical objects that, at least at this stage of the course, obey Newtonian mechanics. Not only does this in principle provide us with a properly weighted sequence of states over which we can compute ensemble averages, it additionally gives us time-resolved information, something that Metropolis Monte Carlo cannot provide. The ``ensemble averages'' computed in traditional MD simulations are in practice time averages : (99) The ergodic hypothesis partially requires that the measurement time, , i , in the system. The price we pay for this extra information is that we must at least access if not store particle velocities in addition to positions, and we must compute interparticle forces in addition to potential energy. We will introduce and explore MD in this section.

分子动力学模拟I

Gromacs中文教程 淮海一粟 分子动力学(MD)模拟分为三步:首先,要准备好模拟系统;然后,对准备好的系统进行模拟;最后,对模拟结果进行分析。虽然第二步是最耗费计算资源的,有时候需要计算几个月,但是最耗费体力的步骤在于模拟系统准备和结果分析。本教程涉及模拟系统准备、模拟和结果分析。 一、数据格式处理 准备好模拟系统是MD最重要的步骤之一。MD模拟原子尺度的动力学过程,可用于理解实验现象、验证理论假说,或者为一个待验证的新假说提供基础。然而,对于上述各种情形,都需要根据实际情况对模拟过程进行设计;这意味着模拟的时候必须十分小心。 丢失的残基、原子和非标准基团 本教程模拟的是蛋白质。首先需要找到蛋白质序列并选择其起始结构,见前述;然后就要检查这个结构是否包含所有的残基和原子,这些残基和原子有时候也是模拟所必需的。本教程假定不存在缺失,故略去。 另一个需要注意的问题是结构文件中可能包含非标准残基,被修饰过的残基或者配体,这些基团还没有力场参数。如果有这些基团,要么被除去,要么就需要补充力场参数,这牵涉到MD的高级技巧。本教程假定所有的蛋白质不含这类残基。 结构质量 对结构文件进行检查以了解结构文件的质量是一个很好的练习。例如,晶体结构解析过程中,对于谷氨酰胺和天冬酰胺有可能产生不正确的构象;对于组氨酸的质子化状态和侧链构象的解析也可能有问题。为了得到正确的结构,可以利用一些程序和服务器(如 WHATIF)。本教程假定所用的结构没有问题,我们只进行数据格式处理。 二、结构转换和拓扑化 一个分子可以由各个原子的坐标、键接情况与非键相互作用来确定。由于.pdb 结构文件只含有原子坐标,我们首先必须建立拓扑文件,该文件描述了原子类型、电荷、成键情况等信息。拓扑文件对应着一种力场,选择何种力场对于拓扑文件的建立是一个值得仔细考虑的问题。这里我们用的是GROMOS96 53a6连接原子力场,该力场对于氨基酸侧链的自由能预测较好,并且与NMR试验结果较吻合。

分子动力学模拟

分子动力学模拟 The Standardization Office was revised on the afternoon of December 13, 2020

分子动力学模拟 分子动力学是一门结合物理,数学和化学的综合技术。分子动力学是一套分子模拟方法,该方法主要是依靠牛顿力学来模拟分子体系的运动,以在由分子体系的不同状态构成的系统中抽取样本,从而计算体系的构型积分,并以构型积分的结果为基础进一步计算体系的热力学量和其他宏观性质。 这门技术的发展进程是: 1980年:恒压条件下的动力学方法(Andersenの方法、Parrinello-Rahman法)1983年:非平衡态动力学方法(Gillan and Dixon) 1984年:恒温条件下的动力学方法(能势‐フーバーの方法) 1985年:第一原理分子动力学法(→カー?パリネロ法) 1991年:巨正则系综的分子动力学方法(Cagin and Pettit). 最新的巨正则系综,即为组成系综的系统与一温度为T、化学势为μ的很大的热源、粒子源相接触,此时系统不仅同热源有能量交换,而且可以同粒子源有粒子的交换,最后达到平衡,这种系综称巨正则系综。 进行分子动力学模拟的第一步是确定起始构型,一个能量较低的起始构型是进行分子模拟的基础,一般分子的其实构型主要是来自实验数据或量子化学计算。在确定起始构型之后要赋予构成分子的各个原子速度,这一速度是根据玻尔兹曼分布随机生成,由于速度的分布符合玻尔兹曼统计,因此在这个阶段,体系的温度是恒定的。另外,在随机生成各个原子的运动速度之后须进行调整,使得体系总体在各个方向上的动量之和为零,即保证体系没有平动位移。由上一步确定的分子组建平衡相,在构建平衡相的时候会对构型、温度等参数加以监控。

高分子计算机模拟

高分子模拟技术(Polymer Simulation) 当前从事高分子研究通常有三种手段,第一,是实验手段,这是高分子界学者所共知的。第二,是理论手段,国内仅有极少部分学者从事这种工作。第三,是“计算机实验”手段(即“计算机模拟”研究),国内已有部分学者从事这方面的研究工作。“计算机实验”(“计算机模拟”)是利用计算机软、硬件来将高分子实验研究和理论研究相结合起来的一种新研究方法,它可以用计算机给出被研究体系的实验可测的物理量及现有实验无法测量的物理量。对计算机给出的实验可测物理量,我们可通过用实验实测数据来进行比较,从而判定模拟方法的正确与否及由此推断在真正实验中无法看到的实验系统的动态演变过程;计算机给出的现有实验无法测量的物理量,可以给我们提供在实验研究中无法得到的各种额外“数据”,从而弥补了现实研究手段的不足。 (1)蒙特卡洛模拟方法(Monte Carlo 模拟方法) 蒙特卡洛方法建立在统计数学的基础上,因此在数学上称为“随即模拟”(或“统计试验方法”),它在对高分子问题的研究中,使用真实分子模型,用真实分子的键长、键角,根据实验的各种外部、内部条件,以及化学反应、物质变化的各种物理-化学定律,来考察、计算模型体系的各种统计性质的变化及对所研究的问题给出统计参数。 蒙特卡洛模拟适用于研究复杂体系。研究具有多得数不清的结构、状态的体系,对此我们可以采用蒙特卡洛模拟,以统计的方法寻找出现几率最高的结构、状态,或相应的有关数据。 蒙特卡洛模拟方法,可用于模拟研究高分子链的结构、状态统计;高分子链形成的凝聚态的统计;高分子各种静态结构和非平衡态结构的动态演变的统计;高分子随加工条件的变化在高分子材料中形成的多相、多组分体系结构、形态的演变过程等领域的基础性课题。蒙特卡洛模拟方法,根据所研究的各种不同问题,编有不同的计算机软件。 (2)分子动力学模拟方法 分子动力学模拟方法建立在经典力学的基础上,把分子看成是用弹簧将不同原子相连接而构成的复杂体系,在这种体系中各原子处在不同的势能场中,同时因受外部因素如温度、压力、电场等条件的影响,分子中各原子还受到不同动能场的影响。根据这样的物理模型,计算各种分子体系在不同外界条件下,分子所呈现的各种状态时的能量的分布,由此可推算分子在真实实验体系中出现的最大几率状态(最低能量的状态)和可能出现的状态或过渡态(能量高于最低能量态时的状态)。 分子动力学模拟方法更适合于研究实验体系在短时间尺度中的动力学过程。而恰恰是对短时间尺度中的动力学过程,我们难以在实验中测得有用的数据。 分子动力学模拟方法,可用于模拟研究高分子链构象,高分子链的结晶行为,高分子材料中高分子的受力状态,高分子热力学研究等领域的学术问题。 分子动力学模拟方法,针对不同的研究领域,已有专门的计算软件。 个人认为,模拟有时候不可取。假设太多、太理想化,有些模型没有什么物理内涵。只有在 物理图像的基础上进行的计算或模拟才能有意义。 但是不的不承认,在某些问题上,由于实验条件的显示,很多细节的东西都是从结果去推断时间过程,而不是原位观测。 模拟有它自身的缺陷,假设太多,太理想过,但是有时候我们也可以借助这种方法去研究一些体系,和实验相辅相成,不是更好么。 实验是理解世界的唯一方式,但是有时候他就象个黑箱子,我们知道怎么进去,怎么出来,但是中间怎么走的,还真不清楚,因此需要做很多假设和理想话的东西。 模拟作为辅助手段,首先是模型问题,模型简单,出来起来容易,但是不能真实反映世界;模型复杂,能反映世界真实,但是计算量是很大的。因此取舍间要看你的目的了。

相关文档