文档库 最新最全的文档下载
当前位置:文档库 › Ansys建模的经验技巧总结

Ansys建模的经验技巧总结

Ansys建模的经验技巧总结
Ansys建模的经验技巧总结

Ansys建模的经验技巧总结

1、始终注意保持使用一致的单位制;

2、求解前运行allsel命令,要不然,某些已经划分网格的实体而没有被选择,那么加在实体模型上加的荷载可能会没有传到nodes or elements上去;

3、网格划分问题

?牢记《建模与分网指南》上有关建模的忠告。网格划分影响模

型是否可用,网格划分影响计算结果的可接受程度;

?自适应网格划分(ADAPT)前必须查自适应网格划分可用单元,

在ansys中能够自适应网格划分的单元是有限的。

?网格划分完成后,必须检查网格质量!权衡计算时间和计算精

度的可接受程度,必要时应该refine网格

4 实体建模布尔运算

应用实体建模以及布尔运算(加、减、贴、交)的优势解决建立复杂模型时的困难;但是,没有把握时布尔运算将难以保证成功!

5 计算结果的可信度

一般来说,复杂有限元计算必须通过多人,多次,多种通用有限元软件计算核对,互相检验,相互一致时才有比较可靠的计算结果。协同工作时必须对自己输入数据高度负责,并且小组成员之间保持良好的沟通;有限元分析不是搞什么“英雄主义”,而需要多方面的质量保证措施。

6了解最终所需要的成果

建立模型之前,应该充分了解最终要求提交什么样式的成果,这样能形成良好的网格,早期良好的建模规划对于后期成果整理有很大的帮助;

7 撰写分析文档

文档与分析过程力求保持同步,有利于小组成员之间的沟通和模型的检验和查证;

8 熟悉命令

对没有把握的命令应该先用简单模型熟悉之,千万不能抱有“撞大运”的想法;

9 多种单元共节点

●不同单元使用共同节点时注意不同单元节点自由度匹配问题

导致计算结果的正确与否(《建模与分网指南》P 8 )

●三维梁单元和壳单元的节点自由度数一致,但是应该注意到三

维梁单元的转动自由度和壳单元的转动自由度的含义不一

样。壳的ROTZ不是真实的自由度,它与平面内旋转刚度相联

系,在局部坐标中壳的单元刚度矩阵ROTZ对应的项为零,对

此不能将梁与壳单元仅仅有一个节点相连,例外的是当

shell43 or shell63(两者都有keyopt(3)=2)的Allman旋转

刚度被激活时。

●Solid65 单元和 shell63 单元相连,相应平动自由度的节点

力会传到实体块单元上,但是shell63单元的转动自由度的

节点唯一则不会传到相连的 solid65单元上。

10 查找文献资料确定混凝土的材料参数输入( Tb, concr, , , )

11 预测内存和磁盘空间

大型复杂模型(例如10万个节点,非线性问题,多工况问题,1000步以上的瞬态分析等等)求解之前预测求解所需要的求解时间、内存和磁盘空间,使分析尽在掌握之中;

12 收敛问题

◆影响收敛(不收敛,或者收敛缓慢)的原因很多,《非线性分析

指南》一书上有很多关于避免发生收敛问题的建议;

◆对于以下参数,可以试一试这些参数对收敛速度以及结果精度

的影响

◆n eqit = 6~25?

◆加载荷载步大小 = ?

◆接触单元的实常数 = ? 例如接触刚度的大小取值必须权衡计

算结果精度(穿透大小)和收敛问题( 收敛时间 )两者的可接

受程度,需要经验值或者试算;

13 启动重分析

14 两个相贯的薄壁圆筒建模,壳单元没有公共节点

?Element Connectivity Error, 8-Node Curved Shell Elements

?In this image, the red stiffener was intended to be welded

to the purple pipe. Note that the elements of the red

stiffener do not match up with those on the pipe. There

is no connection, and the meshing was done independently.

This is due to a geometric modeling error by the user (me). There are superimposed curved lines where the interface is located. There should have been a shared line for the connection to have worked. I found this only because of careful examination of the model -- I had already run a stress analysis.

What to do about these error concerns? Read and think.

Share and listen to ideas and concerns with others.

Review your own work, and the work of your co-workers.

(Recently an experienced co-worker who does not even do FEA work asked me if I had eliminated the added mass of water in pipes when evaluating shipping loads on a product. I hadn't. Eliminating the added mass got rid of a high-stress problem. These errors are very easy to make.) Be friendly. Communicate with other departments.

Have a check list and design reviews. Never use FEA blindly, or believe the results of an analysis without some critical review. Accept a critical review without taking it personally. Develop a good understanding of the intent of the design codes that regulate your work.

Consult an expert when it is appropriate. Pay attention to the ethics and standards of your professional

association. Choose your employer wisely. (Some of

these things you were supposed to have learned in

Kindergarten, but life isn't always that simple.)

?解决方法:通过volumn建模形成相贯线,该方法建模使面相

交处共线,xmesh后有公共nodes

15 选择集的应用

为了利用选择集cm / xsel的强大功能,可以合理定义线,面的实常数real属性,为了选择操作方便而赋予更多的单元实常数号,材料号

18 UPGEOM 和 MPCHG 的应用

●! UPGEOM更新几何形状

●!a.rst为计算结果文件名,最后一个为目录

●!这两个参数应根据你的计算情况定

●UPGEOM,1,LAST,LAST,NEW,rst,F:/729/

●! MPCHG弹性模量恢复为真值

●esel,s,mat,,3

●mpchg,4,all

●You might be tempted to try to deactivate or reactivate

elements by changing their material properties [ MPCHG ]

( Main Menu>Preprocessor>Material Props>Change Mat

Num ).

●However, you must proceed cautiously if you attempt such

a procedure. The safeguards and restrictions that

affect "killed" elements will not apply to elements that

have their material properties changed in SOLUTION.

(Element forces will not be automatically zeroed

out;nor will strains, mass, specific heat, etc.) Many

problems could result from careless use of MPCHG . For

instance, if you reduce an element's stiffness to almost

zero, but retain its mass, it could result in a

singularity if subjected to acceleration or inertial

effects.

●One application of MPCHG would be in modeling

construction sequences in which the strain history of

a "born" element is maintained. Using MPCHG in such

cases will enable you to capture the initial strain

experienced by elements as they are fitted into the

displaced nodal configuration

19 Ansys 中的坐标系统,使用各种坐标系时应该明白在各处理器中输入输出会受到那些坐标系的影响

?整体和局部坐标系CSYS---用于定位几何形状参数的空间位置

?显示坐标系DSYS---用于几何形状参数的列表和显示

?节点坐标系---定义节点自由度方向和节点结果数据的方法。

输入数据时受到节点坐标系影响的有:约束自由度(方程),

力,主(从)自由度;在/POST26中在节点坐标系下输出文件和

显示的数据结果有:自由度解,节点荷载,反作用荷载;

?Forces are defined in the nodal coordinate system. The

positive directions of structural forces and moments

are along and about the positive nodal axis directions.

The node and the degree of freedom label corresponding

to the force must be selected [ NSEL , DOFSEL ].

?单元坐标系---每个单元都有自己的坐标系,单元坐标系用于

确定材料特性主轴,加面压力和和单元结果数据(如应力和应

变)的输出方向;ANSYS规定了单元坐标系的缺省方向;许多单

元都有keyopts可用于修改单元坐标系的缺省方向;对于面

和体单元而言,可以用ESYS命令将单元坐标系的方向调整到

已定义的局部坐标系;

?结果坐标系RSYS---用来列表、显示或者在/POST1中将节点和

单元结果转换到特定的坐标系中。在/POST1中结果数据换算

到结果坐标系(RSYS)下记录。定义路径时,可以用系列命令

*GET, ACTSYS, ACTIVE,CSYS $ RSYS, ACTSYS使结果坐标系

与激活的坐标系(用于定义路径)相匹配

?求解坐标系---大多数模型叠加技术(PSD,CQC,SRSS)是在求解

坐标系中进行的,使用RSYS,SOLU命令来避免在结果坐标系

中发生变换,使结果数据保持在求解坐标系中。

20 Ansys 5.7通过函数定义边界条件

●利用函数可以很简单方便地定义复杂边界条件和载荷(将边界

条件当作函数处理(即方程))。该特性

●5.6 中介绍的表格化边界条件的扩展功能。用户可以创建大量

函数并存储起来,以便于将来使用。

●5.6的表格化边界条件(Tabular boundary conditions)

●Tabular boundary conditions ( VALUE = % tabname %) are

available only for structural (UX, UY, UZ, ROTX, ROTY,

ROTZ) and temperature degree of freedom (TEMP) labels

and are valid only in static ( ANTYPE ,STATIC) and full

transient ( ANTYPE ,TRANS) analyses.

●滞回曲线——位移加载

*DIM,dis,TABLE,9,1,,TIME, ,

DIS(1,0) = 0,1,2,3,4,5,6,7,8

DIS(1,1) = 0,3,0,-3,0,4,0,-4,0

D,22, , %DIS% , , , ,UZ, , , , ,

ansys 5.6 help files------- 2.6.3. Applying Loads Using TABLE Type Array Parameters

?优点:

?? 将复杂载荷和边界条件定义成基本变量和因变量的连续或非连续方程。

?? 提供创建和运用函数的极易操作的GUI 界面。

?应用:

?? 该特性适用于所有ANSYS家族产品。

?? 该特性适用于ANSYS程序的所有过程,支持TIME, TEMP, X, Y, Z, VELOCITY和PRESSURE等基本变量。

21 automatic time stepping

For nonlinear problems, automatic time stepping determines the amount of load increment between substeps

说明:本信息

始终注意保持使用一致的单位制;

2求解前运行allsel命令

求解前运行allsel命令。要不然,某些已经划分网格的实体而没有被选择,那么加在实体模型上加的荷载可能会没有传到nodes or elements上去;

ansys使用技巧(后处理)

2009-04-28 14:26 ANSYS中查看截面结果的方法 一般情况下,对计算结果后处理时,显示得到的云图为结构的外表面信息。有时候,需要查看结构内部的某些截面云图,这就需要通过各种后处理技巧来获得截面的结果云图。另外,有时候需要获得截面的结果数据,也需要用到后处理的技巧。 下面对常用的查看截面结果的方法做一个介绍: 1. 通过工作平面切片查看截面云图工作平面实现。 这是比较常用的一种方法。 首先确保已经求解了问题,并得到了求解结果。 调整工作平面到需要观察的截面,可通过移动或者旋转工作平面实现。调整时注意保证工作平面与需要观察的截面平行。 在PlotCtrls菜单中设置观察类型为Section,切片平面为Working Plane。也可以通过等效的/type以及/cplane命令设置。 在通用后处理器中显示云图,得到需要查看的云图。 更简单地说,我们只需在显示云图命令前加上下面两条命令就可以了: /CPLANE,1 ! 指定截面为WP /TYPE,1,5 ! 结果显示方式选项 2. 通过定义截面查看截面云图 这种方法也需要用到工作平面与切片,步骤如下: 首先确保已经得到了求解结果。 调整工作平面到需要观察的截面。 在PlotCtrls菜单中设置观察类型为Working Plane,或者使用命令/cplane,1。通过sucr命令定义截面,选择(cplane)。 通过sumap命令定义需要查看的物理量。 通过supl命令显示结果。 3. 通过定义路径查看云图与保存数据 首先确保已经得到了求解结果。 通过path与ppath命令定义截面路径。 通过pdef命令映射路径。 通过plpath、prpath与plpagm命令显示及输出结果。

ANSYS中重要的后处理

ANSYS后处理 1.ANSYS后处理时如何按灰度输出云图? 1)你可以到utilitymenu-plotctrls-style-colors-window colors试试2)直接utilitymenu-plotctrls-redirect plots 2 将云图输出为JPG 菜单->PlotCtrls->Redirect Plots->To JPEG Files 3.怎么在计算结果实体云图中切面? 命令流 /cplane /type 图形界面操作 <1.设置工作面为切面 <2.PlotCtrls-->Style-->Hidden line Options 将[/TYPE]选项选为section 将[/CPLANE]选项选为working plane 4.非线性计算过程中收敛曲线实时显示 solution>load step opts>output ctrls>grph solu track>on 5.运用命令流进行计算时,一个良好的习惯是: 使用SELECT COMMEND后.........其后再加上ALLSEL......... 6.应力图中左侧的文字中,SMX与SMN分别代表最大值和最小值 如你plnsolv,s,eqv 则 SMX与SMN分别代表最大值等效应力和最小值等效应力

如你要看的是plnsolv,u 则SMX与SMN分别代表位移最大值和位移最小值 不要被S迷惑 mx(max) mn(min) 7.在非线性分析中,如何根据ansys的跟踪显示来判断收敛? 在ansys output windows 有 force convergence value值和 criterion 值当前者小于后者时,就完成一次收敛你自己可以查看两条线的意思分别是: FL2:不平衡力的2范数 FCRIT:不平衡力的收敛容差, 如果前者大于后者说明没有收敛,要继续计算,当然如果你以弯矩M为收敛准则那么就对应 M L2 和 M CRIT 希望你现在能明白 8.两个单元建成公共节点,就成了刚性连接,不是接触问题了。做为接触问题,两个互相接触的单元的节点必须是不同的。 9.接触单元主要分为有厚度和无厚度的,有厚度主要以desai 为代表,无厚度的则以goodman 为代表。尽管古得曼也提出了相应的本构关系,但是如今goodman 单元成了无厚度接触单元的代名词,相应的本构关系现在也作了 较大的改进。Ansys中接触单元并不是goodman 单元,类似于goodman单元 ansys 里面的接触单元是是通用的,而goodman是一种专业的单元。goodman单元假定两片长为L的接触面以无数微小的切向和法向弹簧所连接,接触面单元与 相邻接触面两边的单元只在结点处有力的联系。单元厚度为零,受力前两接触面完全吻合. 10.怎样检查接触单元的normal direction?是不是打开 plotctrls/symbols/esys on?

ansys前后处理的一些技巧

收集的一些ansys前后处理技巧 1.ANSYS后处理时如何按灰度输出云图? 1)你可以到utilitymenu-plotctrls-style-colors-window colors试试 2)直接utilitymenu-plotctrls-redirect plots 2 将云图输出为JPG 菜单->PlotCtrls->Redirect Plots->To JPEG Files 3.怎么在计算结果实体云图中切面? 命令流 /cplane /type 图形界面操作 <1.设置工作面为切面 <2.PlotCtrls-->Style-->Hidden line Options 将[/TYPE]选项选为section 将[/CPLANE]选项选为working plane 4.非线性计算过程中收敛曲线实时显示 solution>load step opts>output ctrls>grph solu track>on 5.运用命令流进行计算时,一个良好的习惯是: 使用SELECT COMMEND后.........其后再加上ALLSEL......... 6.应力图中左侧的文字中,SMX与SMN分别代表最大值和最小值 如你plnsolv,s,eqv 则 SMX与SMN分别代表最大值等效应力和最小值等效应力 如你要看的是plnsolv,u 则SMX与SMN分别代表位移最大值和位移最小值 不要被S迷惑 mx(max) mn(min) 7.在非线性分析中,如何根据ansys的跟踪显示来判断收敛? 在ansys output windows 有 force convergenge valu 值和 criterion 值当前者小于后者时,就完成一次收敛 你自己可以查看 两条线的意思分别是: F L2:不平衡力的2范数 F CRIT:不平衡力的收敛容差, 如果前者大于后者说明没有收敛,要继续计算 当然如果你以弯矩M为收敛准则那么就对应 M L2 和 M CRIT 希望你现在能明白 8.两个单元建成公共节点,就成了刚性连接,不是接触问题了。做为接触问题,两个互相接触的单元的节点必须是不同的。 9.接触单元 主要分为有厚度和无厚度的,有厚度主要以desai 为代表,无厚度的则以goodman 为代表。尽管古得曼也提出了相应的本构关系,但是如今goodman 单元成了无厚度接触单元的代名词,相应的本构关系现在也作了较大的改进。

ansys命令流----前后处理和求解常用命令之求解与后处理

ansys命令流----前后处理和求解常用命令之求解与后处理.txt都是一个山的狐狸,你跟我讲什么聊斋,站在离你最近的地方,眺望你对别人的微笑,即使心是百般的疼痛只为把你的一举一动尽收眼底.刺眼的白色,让我明白什么是纯粹的伤害。3 /solu u /solu 进入求解器 3.1 加边界条件 u D, node, lab, value, value2, nend, ninc, lab2, lab3, ……lab6 定义节点位移约束Node : 预加位移约束的节点号,如果为all,则所有选中节点全加约束,此时忽略nend和ninc. Lab: ux,uy,uz,rotx,roty,rotz,all Value,value2: 自由度的数值(缺省为0) Nend, ninc: 节点范围为:node-nend,编号间隔为ninc Lab2-lab6: 将lab2-lab6以同样数值施加给所选节点。 注意:在节点坐标系中讨论 3.2 设置求解选项 u antype, status, ldstep, substep, action antype: static or 1 静力分析 buckle or 2 屈曲分析 modal or 3 模态分析 trans or 4 瞬态分析 status: new 重新分析(缺省),以后各项将忽略 rest 再分析,仅对static,full transion 有效 ldstep: 指定从哪个荷载步开始继续分析,缺省为最大的,runn数(指分析点的最后一步)substep: 指定从哪个子步开始继续分析。缺省为本目录中,runn文件中最高的子步数action, continue: 继续分析指定的ldstep,substep 说明:继续以前的分析(因某种原因中断)有两种类型 singleframe restart: 从停止点继续 需要文件:jobname.db 必须在初始求解后马上存盘 jobname.emat 单元矩阵 jobname.esav 或 .osav : 如果.esav坏了,将.osav改为.esav results file: 不必要,但如果有,后继分析的结果也将很好地附加到它后面 注意:如果初始分析生成了.rdb, .ldhi, 或rnnn 文件。必须删除再做后继分析 步骤:(1)进入anasys 以同样工作名 (2)进入求解器,并恢复数据库 (3)antype, rest (4)指定附加的荷载 (5)指定是否使用现有的矩阵(jobname.trl)(缺省重新生成) kuse: 1 用现有矩阵 (6)求解 multiframe restart:从以有结果的任一步继续(用不着) u pred,sskey, --,lskey….. 在非线性分析中是否打开预测器 sskey: off 不作预测(当有旋转自由度时或使用solid65时缺省为off) on 第一个子步后作预测(除非有旋转自由度时或使用solid65时缺省为on) -- :未使用变量区

ANSYS技巧4~24

利用ANSYS随机振动分析功能实现随机疲劳分析 ANSYS随机振动分析功能可以获得结构随机振动响应过程的各种统计参数(如:均值、均方根和平均频率等),根据各种随机疲劳寿命预测理论就可以成功地预测结构的随机疲劳寿命。本文介绍了ANSYS随机振动分析功能,以及利用该功能,按照Steinberg提出的基于高斯分布和Miner线性累计损伤定律的三区间法进行ANSYS随机疲劳计算的具体过程。 1.随机疲劳现象普遍存在 在工程应用中,汽车、飞行器、船舶以及其它各种机械或零部件,大多是在随机载荷作用下工作,当它们承受的应力水平较高,工作达到一定时间后,经常会突然发生随机疲劳破坏,往往造成灾难性的后果。因此,预测结构或零部件的随机疲劳寿命是非常有必要的。 2.ANSYS随机振动分析功能介绍 ANSYS随机振动分析功能十分强大,主要表现在以下方面: 1.具有位移、速度、加速度、力和压力等PSD类型; 2.能够考虑a阻尼、β阻尼、恒定阻尼比和频率相关阻尼比; 3.能够定义基础和节点PSD激励; 4.能够考虑多个PSD激励之间的相关程度:共谱值、二次谱值、空间关系和波传 播关系等; 5.能够得到位移、应力、应变和力的三种结果数据: 1σ位移解,1σ速度解和 1σ加速度解; 3.利用ANSYS随机振动分析功能进行疲劳分析的一般原理在工程界,疲劳计算广泛采用名义应力法,即以S-N曲线为依据进行寿命估算的方法,可以直接得到总寿命。下面围绕该方法举例说明ANSYS随机疲劳分析的一般原理。 当应力历程是随机过程时,疲劳计算相对比较复杂。但已经有许多种分析方法,这

里仅介绍一种比较简单的方法,即Steinberg 提出的基于高斯分布和Miner 线性累计 损伤定律的三区间法(应力区间如图1所示): 应力区间 发生的时间 -1σ ~+1σ 68.3%的时间 -2σ ~+2σ 27.1%的时间 -3σ ~+3σ 4.33%的时间 99.73% 大于3σ的应力仅仅发生在0.27%的时间内,假定其不造成任何损伤。在利用Miner 定律进行疲劳计算时,将应力处理成上述3个水平,总体损伤的计算公式就可以写成: 其中: :等于或低于1σ水平的实际循环数目(0.6831 ); :等于或低于2σ水平的实际循环数目(0.271 ); :等于或低于3σ水平的实际循环数目(0.0433 ); , , :根据疲劳曲线查得的1σ、2σ和3σ应力水平分别对应许可循环的次数。 综上所述,针对Steinberg 提出的基于高斯分布和Miner 线性累计损伤定律的三 区间法的ANSYS 随机疲劳分析的一般过程是: (1) 计算感兴趣的应力分量的统计平均频率(应力速度/应力); (2) 基于期望(工作)寿命和统计平均频率,计算1 ,2 和3 水平下的循环 次数 、 和 ; (3) 基于S-N 曲线查表得到 、 和 ; (4) 计算疲劳寿命使用系数。 显然,根据其他随机疲劳分析方法和ANSYS 随机振动分析结果,我们还可以进行 许多类似的疲劳分析计算。

ansys实用的后处理

1.ANSYS后处理时如何按灰度输出云图? 1)你可以到utilitymenu-plotctrls-style-colors-window colors试试 2)直接utilitymenu-plotctrls-redirect plots 2 将云图输出为JPG 菜单->PlotCtrls->Redirect Plots->To JPEG Files 3.怎么在计算结果实体云图中切面? 命令流 /cplane /type 图形界面操作 <1.设置工作面为切面 <2.PlotCtrls-->Style-->Hidden line Options 将[/TYPE]选项选为section 将[/CPLANE]选项选为working plane 4.非线性计算过程中收敛曲线实时显示 solution>load step opts>output ctrls>grph solu track>on 5.运用命令流进行计算时,一个良好的习惯是: 使用SELECT COMMEND后.........其后再加上ALLSEL......... 6.应力图中左侧的文字中,SMX与SMN分别代表最大值和最小值 如你plnsolv,s,eqv 则SMX与SMN分别代表最大值等效应力和最小值等效应力 如你要看的是plnsolv,u 则SMX与SMN分别代表位移最大值和位移最小值 不要被S迷惑 mx(max) mn(min) 7.在非线性分析中,如何根据ansys的跟踪显示来判断收敛? 在ansys output windows 有force convergenge valu 值和criterion 值当前者小于后者时,就完成一次收敛

ANSYS使用技巧

ANSYS 查询函数(Inquiry Function) 在ANSYS操作过程或条件语句中,常常需要知道有关模型的许多参数值,如选择集中的单元数、节点数,最大节点号等。此时,一般可通过*GET命令来获得这些参数。现在,对于此类问题,我们有了一个更为方便的选择,那就是查询函数— Inquiry Function。 Inquiry Function类似于ANSYS的 *GET 命令,它访问ANSYS数据库并返回要查询的数值,方便后续使用。ANSYS每执行一次查询函数,便查询一次数据库,并用查询值替代该查询函数。 假如你想获得当前所选择的单元数,并把它作为*DO循环的上界。传统的方法是使用*GET命令来获得所选择的单元数并把它赋给一个变量,则此变量可以作为*DO循环的上界来确定循环的次数 *get, ELMAX,elem,,count *do, I, 1, ELMAX … … *enddo 现在你可以使用查询函数来完成这件事,把查询函数直接放在*DO循环内,它就可以提供所选择的单元数*do, I, ELMIQR(0,13) … … *enddo 这里的ELMIQR并不是一个数组,而是一个查询函数,它返回的是现在所选择的单元数。括弧内的数是用来确定查询函数的返回值的。第一个数是用来标识你所想查询的特定实体(如单元、节点、线、面号等等),括弧内的第二个数是用来确定查询函数返回值的类型的(如选择状态、实体数量等)。 同本例一样,通常查询函数有两个变量,但也有一些查询函数只有一个变量,而有的却有三个变量。 查询函数的种类和数量很多,下面是一些常用、方便而快速快捷的查询函数 1 AREA—arinqr(areaid,key) areaid—查询的面,对于key=12,13,14可取为0; key—标识关于areaidr的返回信息 =1,选择状态 =12,定义的数目 =13,选择的数目 =14,定义的最大数 =-1,材料号 =-2,单元类型 =-3,实常数 =-4,节点数 =-6,单元数 … arinqr(areaid,key)的返回值 对于key=1 =0, areaid未定义 =-1,areaid未被选择 =1, areaid被选择 … 2 KEYPOINTS—kpinqr(kpid,key)

ansys后处理结果图形的处理

a n s y s后处理结果图形 的处理 标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

ansys后处理结果图形的处理 对体和面来说,ANSYS默认的结果输出格式是云图格式,而这种彩色云图打印为黑白图像时对比很不明显,无法表达清楚,这对于发表文章来说是非常不便的。发文章所用的结果图最好是等值线图,并且最好是黑白的等值线图。笔者原来进行这项工作时一般借用photoshop等第三方软件,很麻烦,并且效果不好。现通过摸索,发现通过灵活运用ansys本身也能实现这项功能。现将步骤写给大家,感谢simwe对我的帮助。 (1)将要输出的结果调出,这时为彩色云图; (2)将云图转换为等值线图的形式 GUI:plotCtrls—>Device Options—>[/DEVI]中的vector mode 选为on 命令:/DEVICE,VECTOR,1 这时结果为彩色等值线,若直接输出,打印为黑白图像时仍然不清晰,为此需进行以下几步将图像转换为黑白形式; (3)将背景变为白色 命令:jpgprf,500,100,1 /rep (4)对等值线中的等值线符号(图中为A,B,C等)的疏密进行调整 GUI:plotCtrls—>Style—>Contours—> Contours Labeling 在Key Vector mode contour label 中选中on every Nth elem,然后在N= 输入框中输入合适的数值,例如5,多试几次,直到疏密合适 命令:/clabel,1,5 (5)将彩色等值线变为黑色

GUI:plotCtrls—>Style—>Colors—>Contours Colors 将Items Numbered 1,Items Numbered 2等复选框中的颜色均选为黑色,图像即可变为黑白等值线图像命令:/color,cntr,whit,1 等等 (6)最后一步:出图 GUI:plotCtrls—>Capture Image 希望对大家能有所帮助。 一个使生成的图片在word里面比较好看的方法: 1、Plotctrls>Redirect Plots>To png file 2、选“Force White BG and Black FG",然后把Pixle resolution 换到1200!

学习有限元ANSYS总结

学习ANSYS经验总结 一学习ANSYS需要认识到的几点 相对于其他应用型软件而言,ANSYS作为大型权威性的有限元分析软件,对提高解决问题的能力是一个全面的锻炼过程,是一门相当难学的软件,因而,要学好ANSYS,对学习者就提出了很高的要求,一方面,需要学习者有比较扎实的力学理论基础,对ANSYS分析结果能有个比较准确的预测和判断,可以说,理论水平的高低在很大程度上决定了ANSYS使用水平;另一方面,需要学习者不断摸索出软件的使用经验不断总结以提高解决问题的效率。在学习ANSYS的方法上,为了让初学者有一个比较好的把握,特提出以下五点建议: (1)将ANSYS的学习紧密与工程力学专业结合起来 毫无疑问,刚开始接触ANSYS时,如果对有限元,单元,节点,形函数等《有限元单元法及程序设计》中的基本概念没有清楚的了解话,那么学ANSYS 很长一段时间都会感觉还没入门,只是在僵硬的模仿,即使已经了解了,在学ANSYS之前,也非常有必要先反复看几遍书,加深对有限元单元法及其基本概念的理解。 作为工程力学专业的学生,虽然力学理论知识学了很多,但对许多基本概念的理解许多人基本上是只停留于一个符号的认识上,理论认识不够,更没有太多的感性认识,比如一开始学ANSYS时可能很多人都不知道钢材应输入一个多大的弹性模量是合适的。而在进行有限元数值计算时,需要对相关参数的数值有很清楚的了解,比如材料常数,直接关系到结果的正确性,一定要准确。实际上在学ANSYS时,以前学的很多基本概念和力学理论知识都忘得差不多了,因而遇到有一定理论难度的问题可能很难下手,特别是对结果的分析,需要用到《材料力学》,《弹性力学》和《塑性力学》里面的知识进行理论上的判断,所以在这种情况下,复习一下《材料力学》,《弹性力学》和《塑性力学》是非常有必要的,加深对基本概念的理解,实际上,适当的复习并不要花很多时间,效果却很明显,不仅能勾起遥远的回忆,加深理解,又能使遇到的问题得到顺利的解决。 在涉及到复杂的非线性问题时(比如接触问题),一方面,不同的问题对应着不同的数值计算方法,求解器的选择直接关系到程序的计算代价和问题是否能顺利解决;另一方面,需要对非线性的求解过程有比较清楚的了解,知道程序的求解是如何实现的。只有这样,才能在程序的求解过程中,对计算的情况做出正确的判断。因此,要能对具体的问题选择什么计算方法做出正确判断以及对计算过程进行适当控制,对《计算方法》里面的知识必须要相当熟悉,将其理解运用到ANSYS的计算过程中来,彼此相互加强理解。要知道ANSYS是基于有限元单元法与现代数值计算方法的发展而逐步发展起来的。因此,在解决非线性问题时,千万别忘了复习一下《计算方法》。此外,对《计算固体力学》也要有所了解(一门非常难学的课),ANSYS对非线性问题处理的理论基础就是基于《计算固体力学》里面所讲到的复杂理论。 作为学工程力学的学生,提高建模能力是非常急需加强的一个方面。在做偏向于理论的分析时,可能对建模能力要求不是很高,但对于实际的工程问题,有限元模型的建立可以说是一个最重要的问题,而后面的工作变得相对简单。建模能力的提高,需要掌握好的建模思想和技巧,但这只能治标不能治本,最重要的

Ansys分析常用技巧

Ansys分析常用技巧 一、前处理 1. 实体显示*.sat、*.x_t等外部导入模型 /facet,fine /replot Gui: Utility Menu>PlotCtrls>Style>Solid Model Facets 2. 修改ansys背景用命令jpgprf,500,100,1 /replot将背景变为白色 3. 隐藏坐标系的显示 /triad,off /replot Gui: Utility Menu>PlotCtrls>Window Controls>Reset Window Options Utility Menu>PlotCtrls>Window Controls>Window Options 4. 设置参考温度 TREF, TREF Gui:Main Menu>Solution>Define Loads>Settings>Reference Temp 5. 显示单元实际形状 /eshape,1.0 Gui: Utility Menu>PlotCtrls>Style>Size and Shape 6. 透明显示单元、体、面 /TRLCY, Lab, TLEVEL, N1, N2, NINC Gui: Utility Menu>PlotCtrls>Style>Translucency 7. 显示编号 /PNUM, Label, KEY Gui: Utility Menu>PlotCtrls>Numbering 8. 导入hypermesh有限元模型 /input,filename,prp Gui: Utility Menu>File>Read Input from 9. 导入abaqus格式的有限元模型 /input,filename,inp Gui:Gui: Utility Menu>File>Read Input from 10. ansys作为fluent前处理输出 cdwrite,db,filename,cdb gui: Main Menu>Preprocessor>Archive Model>Write 11. 不显示单元轮廓线 /gline,1,-1 Gui: Utility Menu>PlotCtrls>Style>Edge Options 12. 显示施加到几何元素上的约束 dtran /replot Gui:Main Menu>Preprocessor>Loads>Define Loads>Operate>Transfer to FE>Constraints 13. 显示施加到几何元素上的面载荷 sftran /replot Gui: Main Menu>Preprocessor>Loads>Define Loads>Operate>Transfer to FE>Surface Loads 14. 显示载荷标记及数值 /pbc,f,,2 Gui: Utility Menu>PlotCtrls>Symbols

ansys后处理常用命令

结合自身经验,谈ANSYS中的APDL命令(一) 发表时间:2009-4-7 作者: 倪欣来源: e-works 关键字: ansys APDL 命令流 在ANSYS中,命令流是由一条条ANSYS的命令组成的一个命令组合,这些命令按照一定顺序排布,能够完成一定的ANSYS功能,本文是作者结合自身经验所总结的一些命令。 在ANSYS中,命令流是由一条条ANSYS的命令组成的一个命令组合,这些命令按照一定顺序排布,能够完成一定的ANSYS功能,这些功能一般来说通过菜单操作也能够实现(而那些命令流能够实现,菜单操作实现不了的单个命令比较少见)。 以下命令是结合我自身经验,和前辈们的一些经验而总结出来的,希望对大家有帮助。 (1).Lsel, type, item, comp, vmin, vmax, vinc, kswp 选择线 type: s 从全部线中选一组线 r 从当前选中线中选一组线 a 再选一部线附加给当前选中组 au none u(unselect) inve: 反向选择 item: line 线号 loc 坐标 length 线长 comp: x,y,z kswp: 0 只选线 1 选择线及相关关键点、节点和单元 (2).Nsel, type, item, comp, vmin, vmax, vinc, kabs 选择一组节点 type: S: 选择一组新节点(缺省) R: 在当前组中再选择 A: 再选一组附加于当前组 U: 在当前组中不选一部分 All: 恢复为选中所有 None: 全不选 Inve: 反向选择 Stat: 显示当前选择状态 Item: loc: 坐标 node: 节点号 Comp: 分量 Vmin,vmax,vinc: ITEM范围 Kabs: “0”使用正负号 “1”仅用绝对值 (3).Esel, type, item, comp, vmin, vmax, vinc, kabs 选择一组单元 type: S: 选择一组单元(缺省)

ANSYS小技巧

一、ANSYS 查询函数(Inquiry Function) 在ANSYS操作过程或条件语句中,常常需要知道有关模型的许多参数值,如选择集中的单元数、节点数,最大节点号等。此时,一般可通过*GET命令来获得这些参数。现在,对于此类问题,我们有了一个更为方便的选择,那就是查询函数— Inquiry Function。 Inquiry Function类似于ANSYS的 *GET 命令,它访问ANSYS数据库并返回要查询的数值,方便后续使用。ANSYS每执行一次查询函数,便查询一次数据库,并用查询值替代该查询函数。 假如你想获得当前所选择的单元数,并把它作为*DO循环的上界。传统的方法是使用*GET命令来获得所选择的单元数并把它赋给一个变量,则此变量可以作为*DO循环的上界来确定循环的次 数 *get, ELMAX,elem,,count *do, I, 1, ELMAX … … *enddo 现在你可以使用查询函数来完成这件事,把查询函数直接放在*DO循环内,它就可以提供所选择的 单元数 *do, I, ELMIQR(0,13) … … *enddo 这里的ELMIQR并不是一个数组,而是一个查询函数,它返回的是现在所选择的单元数。括弧内的数是用来确定查询函数的返回值的。第一个数是用来标识你所想查询的特定实体(如单元、节点、线、面号等等),括弧内的第二个数是用来确定查询函数返回值的类型的(如选择状态、实体数量等)。 同本例一样,通常查询函数有两个变量,但也有一些查询函数只有一个变量,而有的却有三个变量。 查询函数的种类和数量很多,下面是一些常用、方便而快速快捷的查询函数 1 AREA—arinqr(areaid,key) areaid—查询的面,对于key=12,13,14可取为0; key—标识关于areaidr的返回信息 =1,选择状态 =12,定义的数目 =13,选择的数目 =14,定义的最大数 =-1,材料号 =-2,单元类型 =-3,实常数 =-4,节点数 =-6,单元数 … arinqr(areaid,key)的返回值 对于key=1 =0, areaid未定义 =-1,areaid未被选择 =1, areaid被选择 …

ansys后处理各种应力解释

ANSYS后处理中应力 查看总结 ------------------------------------------------------------------------------------------------------- SX:X-Component of stress;SY: Y-Component of stress;SZ:Z-Component of stress,X,Y,Z轴方向应力 SXY:XY Shear stress;SYZ:YZ Shear stress;,SXZ:XZ Shear stress,X,Y,Z三个方向的剪应力。 S1:1st Principal stress;S2: 2st Principal stress;,S3:3st Principal stress 第一、二、三主应力。区分:首先把一个微元看成是一个正方体,那么假设三个主应力分别是F1 F2 F3,那么如果三个力中哪个力最大,就是F1,也是最大主

应力,也叫第一主应力,第二大的叫第二主应力,最小的叫第三主应力,因此,是根据大小来定的。 SINT:stress intensity(应力强度),是由第三强度理论得到的当量应力,其值为第一主应力减去第三主应力。 SEVQ:Von Mises是一种屈服准则,屈服准则的值我们通常叫等效应力。Ansys后处理中 'Von Mises Stress'我们习惯称Mises等效应力,它遵循材料力学第四强度理论(形状改变比能理论)。 我们分析后查看应力,目的就是在于确定该结构的承载能力是否足够。那么承载能力是如何定义的呢?比如混凝土、钢材,应该就是用万能压力机进行的单轴破坏试验吧。也就是说,我们在ANSYS计算中得到的应力,总是要和单轴破坏试验得到的结果进行比对的。所以,当有限元模型本身是一维或二维结构时,通过查看某一个方向,如plnsol,s,x等,是有意义的。但三维实体结构中,应力分布要复杂得多,不能仅用单一方向上的应力来代表结构此处的确切应力值——于是就出现了强度理论学说。

ansys使用小技巧

ansys使用小技巧 1、截图命令 /image,save,filename,bmp.其中filename是图片文件名,bmp为图片格式,也可以是jpg格式 2、修改背景色 /RGB,INDEX,100,100,100, 0 /RGB,INDEX, 80, 80, 80,13 /RGB,INDEX, 60, 60, 60,14 /RGB,INDEX, 0, 0, 0,15 /REPLOT /RGB,INDEX,0,0,0, 0 /RGB,INDEX, 80, 80, 80,13 /RGB,INDEX, 60, 60, 60,14 /RGB,INDEX, 100, 100, 100,15 15:对应的是边框和文字颜色 0:对应的是背景的颜色 6:对应的是实体的颜色 自动保存图片命令: /SHOW,JPEG JPEG,DEFAULT /GFILE, /RGB,INDEX,100,100,100, 0 /RGB,INDEX, 80, 80, 80,13 /RGB,INDEX, 60, 60, 60,14 /RGB,INDEX, 0, 0, 0,15 /REPLOT /SHOW,CLOSE /DEVICE,VECTOR,0 简单点可以用如下的命令流 /UI,COPY,SAVE,bmp,GRAPH,MONO,REVERSE,LANDSCAPE,no,100 3、/windows定义窗口在屏幕上的大小 /windows,wn,xmin,xmia,ymin,ymax,ncopy 屏幕坐标正规化为-1.0~1.67,其原点在屏幕的中点,如(-1,1.67,-1,1是一个全屏) 4、/dscale命令在显示时设置缩放比例值 /DSCALE,WN,DMULT WN指窗口的编号 DMULT的值:0或auto:自动缩放位移 1:不对位移进行缩放 FACTOR:通过FACTOR输入的数值进行缩放 OFF:删除位移的缩放乘数,没有变形 USER:设置DMULT值用于下次显示

ansys后处理结果图形的处理

a n s y s后处理结果图形的 处理 Revised final draft November 26, 2020

对体和面来说,ANSYS默认的结果输出格式是云图格式,而这种彩色云图打印为黑白图像时 对比很不明显,无法表达清楚,这对于发表文章来说是非常不便的。发文章所用的结果图最好是等值线图,并且最好是黑白的等值线图。笔者原来进行这项工作时一般借用photoshop等第三方软件,很麻烦,并且效果不好。现通过摸索,发现通过灵活运用ansys本身也能实现这项功能。 现将步骤写给大家,感谢simwe对我的帮助。 (1)将要输出的结果调出,这时为彩色云图; (2)将云图转换为等值线图的形式 GUI:plotCtrls—>DeviceOptions—>[/DEVI]中的vectormode选为on 命令:/DEVICE,VECTOR,1 这时结果为彩色等值线,若直接输出,打印为黑白图像时仍然不清晰,为此需进行以下几步 将图像转换为黑白形式; (3)将背景变为白色 命令:jpgprf,500,100,1/rep (4)对等值线中的等值线符号(图中为A,B,C等)的疏密进行调整 GUI:plotCtrls—>Style—>Contours—>ContoursLabeling在KeyVectormodecontourlabel 中选中oneveryNthelem,然后在N=输入框中输入合适的数值,例如5,多试几次,直到疏密合适命令:/clabel,1,5 (5)将彩色等值线变为黑色 GUI:plotCtrls—>Style—>Colors—>ContoursColors将ItemsNumbered1,ItemsNumbered2等复选框中的颜色均选为黑色,图像即可变为黑白等值线图像 命令:/color,cntr,whit,1等等 (6)最后一步:出图 GUI:plotCtrls—>CaptureImage 希望对大家能有所帮助。 一个使生成的图片在word里面比较好看的方法: 1、Plotctrls>RedirectPlots>Topngfile 2、选“ForceWhiteBGandBlackFG",然后把Pixleresolution换到1200!

最新ANSYS常见问题及应用技巧汇总

A N S Y S常见问题及应 用技巧

ANSYS常见问题及应用技巧(一)(二) 发表时间:2010-3-6 作者: 刘军涛来源: e-works关键字: ANSYS使用技巧问题解 本篇开始讲述ANSYS在使用过程中常见的问题和在使用时一些常用的使用技巧,对与初学者来说,理解和弄清楚这些问题的根源和掌握这些使用技巧,能够更好的理解ANSYS这个软件本身。 1.ANSYS中的等效应力是什么物理含义? 1)ANSYS中等效应力最大应力s1有什么区别,平常讨论应力分布,应该用等效应力还是最大应力s1呢? 2)计算等效应力时是否需要输入等效泊松比呢? 3)在实际的应用中,例如在讨论平板上的圆孔应力集中的应力分布问题时,应该用等效应力来描述应力集中的现象,还是采用主应力s1来反应集中的程度呢?还是采用一个单方向的sx来说明问题呢? 答:1)这个等效应力应该就是弹塑性力学里的VonMises应力,他主要考察的是材料在各个方向上的应力差值,因为在实验室里获得材料强度都是单向载荷作用下的强度(当然现在也有三轴应力实验仪),所以有时候材料所受的单向载荷可能很大,但并没有造成破坏,这是就是看他的等效应力,具体计算公式是: σ等效=sqrt{0.5[(σ1-σ2)^2+(σ2-σ3)^2+(σ3-σ1)^2]} 2)等效应力是三项主应力的组合 如s,int即为max(si-sj),si,sj为三项主向应力。i,j=1,2,3 i≠j即tresca 型 s,eqv为sqrt(0.5*∑(si-sj)**2),i,j=1,2,3 i≠j即mises型 3)个人认为应该采用等小应力来描述应力集中的现象,因为在实际中很难找到真正的单轴拉压的情况,一般结构的受力都没有这么简单,所以在分析的时候需要用等效应力来将 各主应力进行转化,因此应该用等效应力来描述应力集中的现象。 4)等效泊松比就是泊松比,等效应力计算时不会用到泊松比,不过在计算mises等效应变时会用到。对于泊松比的取值原则应遵循以下两条: a:对于elastic & thermal strains 泊松比取为材料的泊松比; b:对于plastic creep hyperelastic strains 泊松比取为0.5。 2.ANSYS后处理中负值的应力是压应力还是拉应力?

ANSYS学习方法与技巧

ANSYS功能强大,也很吸引人,但真正是使其成为手中一把利剑的人少之又少。也许文章比较长,感谢你们有耐心把它读完。 ANSYS,公认的难学、难用,但并非如我们想象的那样难于上手,就像学习一门语言,与门之后在兴趣的驱使下,还是能够征服它的。 研究生阶段,使用ANSYS完成了863项目子课题-尿素合成塔数值模拟系统的开发工作(开发平台-ANSYS),有了这种经历,自己也有胆出来把经验分享出来了。 一:如何入门? ANSYS难学,是因为入门难,目前国内有大量的ANSYS书籍,而且都有一个很挺的名字,但一个又一个的初学者发现,在学完这些拥有靓丽名字的ANSYS书籍之后,碰到问题依然是一头雾水,不知道如何下手,心里上首先产生了一种畏惧心理,以为是ANSYS软件本身难学的原因,其实这本身并非是软件的问题,也不是个人的不努力,而是努力的方向不对。 想要会用而不是学好ANSYS,首先,要加深对ANSYS的理解,也就是它是怎么工作的,明白了这些再拿到问题就不会无从下手,而ANSYS是如何工作从国内这些大多数书籍上(很多是直接翻译ANSYS英文帮助,这是一种误人子弟和不负责任的做法)是学不到的。ANSYS这款软件包括前处理、求解和后处理三部分,前处理主要是建立模型什么的并不难理解,后处理是等计算完毕用来处理计算结果的,关键是在求解这一部分,把这一部分理解好了就会拨开迷雾见到阳光了。 ANSYS工作过程是这样的: (1)我们在前处理模块建立模型也就是我们看到的工程系统的外形(称为有限元实体模型); (2)建立出来模型之后,我们要将其转化为有限元模型,在这部分我们需要选择单元类型,输入材料参数和匹配单元与模型相应部位的对应关系。ANSYS计算出来的都是变位(也就是模型的位移),然后通过位移导出应变,再使用应变值导出应力值(输入材料参数就是为了使用应变算出应力值),当然这些都是在程序内部完成的,这里我们遇到一个新的问题就是单元如何选取得问题,究竟选择什么样的单元合适,对初学者来说去详细的了解单元的详细属性还不太现实,所以建议查阅资料看看别人用的单元类型,因为我们现在还只是处在入门阶段,想要真正做到熟练应用各种单元进行不同问题的分析,我推测国内真正做到的人还没有出现,除非他是在扯淡,因为ANSYS单元库本身也只有100多种单元,不可能适用于所有单元。等我们选择了某种单元,输入了相应的材质参数(这个比较确定,各种材料有其固定的参数,比如E)之后,我们可以我们的模型进行网格划分,这是把实体模型转化为有限元模型的过程,任何一本ANSYS书籍上都有如何划分网格的详细介绍,不详述。 (3)划分完网格后的模型,其实已经确定了内部各个单元应力是如何传递的,求解过程其实就是一个解方程组得过程,解前面通过单元网格划分得出的大量方程组,计算机去完成好了。 所以,再拿到一个问题后,我们要进行分析可以按以下步骤完成: (1)建立实体模型;(2)选择单元类型,划分网格;(3)求解;

ANSYS后处理(结果查看)

一、显示某个时间点的温度云图 1、General Postproc →Read Result →By Time/Freq 2、在跳出的窗口中输入时间点,点击OK按钮 3、然后点Plot Results按下图操作

3、然后点击plot →Replot即可显示该时刻的云图 二、提取某个节点的数值 1、首先通过下列命令,选择部分单元 nsel,s,loc,x,0, esln,all 然后读取所需节点的编号。 2、点击时间历程后处理器TimeHist postproc弹出如箭头所指对话框。 点击图对话框左上角的绿色增加按钮

弹出对话框 点击ok按钮,在弹出的对话框中输入节点编号,或者鼠标点击选择节点即可将新的数据读入对话框中如下图所示 然后即可通过窗口上的按钮对数据进行操作处理。

/POST1 set,last !定义数据集从结果文件中读出,last表示读取最后的数据集plnsol,s,eqv !以连续的轮廓线形式显示结果,S表示应力,EQV表示等效应力 查看某个截面的云图 !-----------------选取节点结果 /post1 !seltol, set,,,,, !nsel,s,loc,y,, nsel,s,loc,x, /page,99999,132,99999,240 !-------------------显示某个截面 wprota,,,90 wpoffs,,, /CPLANE,1 !指定截面为WP /TYPE,1,5 !结果显示方式选项 工作平面移回全局坐标原点 WPCSYS,-1 nsel,s,loc,x,0, esln,,1,ACTIVE

相关文档