文档库 最新最全的文档下载
当前位置:文档库 › 铁素体球墨铸铁的生产应用实践

铁素体球墨铸铁的生产应用实践

铁素体球墨铸铁的生产应用实践
铁素体球墨铸铁的生产应用实践

【工程技术研究与

应用】

主持:李艳铁素体球墨铸铁的生产应用实践

徐俊洪①

(东方汽轮机厂,四川德阳618201)

[摘 要] 对影响铁素体球墨铸铁的化学成份、球化、孕育处理等因素进行分析。合理选择熔炼工艺,

调整铁水化学成分,严格控制球化处理和孕育处理过程,使QT400-18AL 材料铸件的力学性能达到了

标准要求。[关键词] 铁素体球墨铸铁;大断面球铁;QT400-18AL 中图分类号:TG143.5 文献标识码:B 文章编号:CK N 字07-005(2008)03-0066-03

随着风电市场的迅速发展,风电用球墨铸铁件需量增

加。由于机组安装在高山、荒野、海滩、海岛等风口处,受无规律的变向变负荷的风力作用以及强阵风的冲击,常年经受酷暑严寒和极端温差的影响,故对风机铸件的可靠性和使用寿命比一般铸件要求高许多。除了常规状态下机械性能外,还应该具有低温状态下抗冷脆性等特性,铸件须满足

G B /T1348-1998标准中QT400-18AL 材料性能要求。我

公司于05年未对风机齿轮箱、扭力臂等铸件进行了试制研究工作,发现此类铸件断面尺寸均较大,冷却缓慢,易导致石墨形状变坏、球数减少,各种元素偏析严重,铸件性能不易达到QT400-18AL 材料要求,特别是-20℃冲击韧度极低,虽可通过热处理方式降低一定的脆性转变温度,但延长了铸件生产周期。经多次试验,在铁素体球墨铸铁的生产工艺上取得很大进步,为今后批量化生产类似的球墨铸铁件奠定了基础。

1 铸件质量要求及生产难点

1.1 质量要求

风机铸件不允许焊补修理,性能必须由附铸试块测得:

抗拉强度σb ≥370N /mm 2、屈服强度σ0.2≥240N /mm 2、断后伸长率δ5≥12%;-20±

2℃条件下的最小冲击值akv (三个试样平均值)≥10J /c m 2,个别值akv ≥7J /c m 2;

1.2 生产难点

铸件平均壁厚>70mm,属厚大断面型铸件。铸件冷却缓慢,金属液体凝固时间长,易产生缩松,铸件致密性较差,影响铸件机械性能。通过对化学成分的调整、瞬时孕育等工艺措施,使铸态下获得较理想的低温冲击韧度的同时有较高的强度和延伸率。生产这种材料的难点主要是:解决铁水增碳难问题、如何达到铸件的低温冲击韧度、控制适量

的镁和稀土含量、球化孕育衰退的防止措施等。

2 生产条件

采用1t 、12t 中频感应炉熔炼,炉前采用直读光谱仪分

析调整铁水化学成分。

3 化学成份的选择

3.1 碳当量、碳、硅

碳当量应选择在共晶成分附近,此时铁液的流动性能最好,铸件组织的致密度高。根据铸件壁厚情况,碳当量选择4.1~4.4%。当促进碳化物形成元素(Mn 、Cr 等)较高或孕育量小时碳当量取上限,若采用纯净的低锰炉料时碳当量取下限。根据选定的碳当量按高碳低硅强化孕育的原则确定碳、硅含量。若含碳量较低则易产生游离渗碳体,理应保证C ≥3.5%,以改善铸造性能,增加铸件致密性。根据所选炉料的差异,控制碳在3.5~3.9%较为合理;硅含量主要是通过孕育措施加入的,其直接影响基体组织中的铁素体数量,但硅提高脆性转变温度。

虽可通过热处理方

图1 硅对抗冲击韧性的影响

6

62008年第3期

四川工程职业技术学院学报JOURNAL OF SI CHUAN E NGI N EER I N G TECHN I CAL COLLEGE

2008年5月

May 2008①[收稿时间]2007-10-08

[作者简介]徐俊洪(1981-),男,东方汽轮机厂助理工程师;研究方向:铸造合金熔炼工艺设计。

式消除其影响,但增加生产工序,因此在保证有足够的孕育硅量的同时降低铸件中硅含量。如资料图1所示硅量最佳选择值为1.8%左右。

3.2 锰

锰是形成碳化物能力比较强的元素,在厚大铸件中其偏析严重,降低韧性和塑性。同时锰显著提高脆性转变温度,据资料,铁素体球墨铸铁中锰增加0.1%,脆性转变温度大约提高10~12℃[3]。因此,球墨铸铁都希望锰越低越好。结合原材料情况,锰控制在0.30%以下。[1][2]

3.3 磷

磷对石墨化的影响不大,当P>0.05%时易偏析于共晶团边界形成磷共晶,因此加剧白口化的因素都会加剧磷的有害作用;磷强烈降低低温韧性,磷量每增加0.01%,脆性转变温度上升4~4.5℃[3],同时较高的磷使铸铁的缩孔、缩松以及开裂倾向增加。故将磷控制在0.040%以下。

3.4 硫

硫极为有害,控制硫是稳定球化,提高质量的关健。硫低时减缓球化衰退且减少镁渣,一般铁液中硫的残留量低于0.025%,球化处理后铁液中硫一般低于0.01%。但当原铁水中的S<0.01%时进行球化处理,反而使球墨数变少。实际生产过程中原铁液硫控制在0.020%以下。

3.5 镁和稀土

镁的球化能力最强,获得的石墨球圆整,是主要的球化元素,但其抗干扰能力较差,易衰退,对铁水纯净度要求较高,因此常利用稀土的净化作用提高球铁的抗衰退能力并强化其机械性能。同时,镁和稀土都有白口化倾向,稀土影响更大,使铸态球铁韧性下降,脆性转变温度提高,在保证球化的前提下尽量降低镁和稀土的含量。基于镁和稀土在铁素体球铁中所起的作用,镁含量应超过稀土含量,根据铸件壁厚情况,控制镁0.04~0.06%,稀土0.02~0.04%。

4 生产过程控制

4.1 原材料的选择

大量的研究资料表明,用含M n、P、S及其它杂质元素都较低的纯净生铁在相同条件下生产的铸态球墨铸铁有较高的综合机械性能,因此,严格控制炉料的纯净度是获得优质铸件的必要条件,经多方了解,选定某厂Q10生铁,并对Mn、P、S含量提出了更高的要求,在用含稀土的球化剂处理时,钛低于0.16%时反球化作用影响较小,不予考虑。为减缓球化孕育衰退以及避免铁液在铸型的厚大断面处石墨形状变坏,选用含适量Mn的长效孕育剂,利用Mn阻碍石墨化的特点,抑制石墨球长大,从而推迟了孕育衰退时间,同时Mn降低孕育剂的熔点更有利于瞬时孕育的进行。

4.2 炉料配比

炉料的适宜配比是保证铁水化学成分合乎要求的首要环节。根据铁水化学成分及铸件机械性能的要求,并考虑在熔炼过程中元素的变化和炉料的实际情况,确定金属炉料的配比。

4.3 熔炼过程控制

温度、化学成分、纯净度是铁液质量的主要指标,在一定温度范围内提高铁液温度有利于力学性能的改善,但是铁水温度过高或在高温下保温时间过长时,容易产生反白口或内部缩松;在炉内采用特有的工艺方法进行增碳试验,取得了良好的增碳效果。根据原铁水情况、球化处理温度、铁水处理量等因素控制出炉温度在1440~1480℃之间。

4.4 球化处理

4.4.1 球化处理方法:采用覆盖球化剂冲入法。

4.4.2 球化剂加入量:应根据铁液成分、铸件壁厚、球化剂成分和球化元素的吸收率等因素确定,若球化剂放置时间较长,则应适量多加。

4.4.3 球化处理温度:球化反应控制的关健是镁的吸收率。温度高,反应激烈,时间短,镁烧损多,球化效果差;温度低,反应平稳,时间长,镁吸收率高,球化效果好。因此,在保证足够浇注温度的前提下,不宜过分提高球化处理温度,过高的温度会加剧球化衰退,一般控制在1440~1480℃。

4.4.4 减缓球化衰退的措施:球化衰退是因球化元素M g和RE的逃逸引起的,减少球化元素逃逸的措施都有助于减缓球化衰退。如选用较深的球化处理包、适当的铁水温度、缩短铁液球化后的停留时间、铁液的覆盖情况等。

4.5 孕育处理

孕育处理是球墨铸铁生产过程中的关健环节。它不仅促进石墨化,防止自由渗碳体和白口出现,而且决定了石墨球大小、石墨球数和石墨球的圆整度,增强厚大铸件断面组织、性能的一致性。

4.5.1 孕育剂粒度:孕育剂粒度对孕育效果也有一定的影响,小颗粒的孕育剂能迅速溶解在铁液中并发生孕育作用,但其作用也会很快消失,而大颗粒孕育剂则能在铁液中维持较长时间的孕育作用,根据铁液对孕育剂的熔化能力(铁液温度、铁液量)选择孕育剂粒度5~25mm,瞬时孕育时粒度0.5~3mm。

4.5.2 孕育方法:采用多次孕育处理方法,但主要在球化反应基本平息后,孕育剂从铁水槽缓慢加入的方式进行。

4.5.3 减缓孕育衰退的措施:并非孕育过程中形成的所有晶核都能长成石墨,只有大于临界尺寸的石墨晶核才是稳定的。温度越高,过冷度越小,临界晶核尺寸越大,小于临界尺寸的晶核会重新熔入铁水而消失,溶解的晶核也越多,因此包内加入孕育剂再兑入高温铁水将大大削弱孕育作用。孕育处理后的铁液尽快浇注、采用长效孕育剂以及多次孕育等措施才能减缓孕育衰退。

4.6 球化效果炉前检验

炉前检验孕育、球化效果好坏,采用三角试样。浇注的三角试样,冷至暗红色,淬水冷却,砸断后观察断口。断口银白色,尖端白口,中心有疏松,两侧凹缩,同时砸断时有电石气味,敲击声和钢相似,则球化良好,否则球化不良。

5 结论

5.1 通过对影响铁素体球墨铸铁的各个因素进行分析,并对其过程进行控制,铸件力学性能符合要求。图2为附铸试块的金相图。

76

图2 附铸试块金相图

5.2 从生产过程和结果表明:球化、孕育处理过程还需进一步加强,如控制球化反应开始时间,炉前孕育等;加强浇注时的挡渣措施,减少铸件夹渣情况的发生,进一步提高球墨铸铁件的质量,将是下一步生产过程中重要的控制点。

[参考文献]

[1]陶令桓.铸铁G//铸造手册(第一卷).北京:机械工业出版

社,1993.

[2]赵金锋,穆富超.QT400-18高韧性球墨铸铁的生产[J].现代

铸铁,2005(3):40-42.

[3]张博、明智清明等.球墨铸铁[M].北京:机械工业出版

社,1988.

Appli ca ti on of Ferr ite D uctile I ron i n Producti on

XU Jun-hong

(Dong Fang stea m Turbine works,Deyang sichuan618201)

Abstract:Based on analysis of the che m ical compositi on,nodular p r ocess and treated p r ocess influencing ferrite ductile ir on are analyzed.I n order t o bring the mechanical p r operties of QT400-18AL t o reach the standard,the right melt p r ocess must be chosen,the che m ical compositi on must be adjusted and the treated p r ocess must be con2 tr olled rigidly.

Key words:ferrite ductile ir on;heavy secti on ductile ir on;QT400-18AL

(上接第65页)

[参考文献]

[1]林清安.Pr o/ENGI N EER2001零件设计基础篇[M].北京:清华

大学出版社.[2]林清安.Pr o/ENGI N EER2001零件设计高级篇[M].北京:清华

大学出版社.

[3]林清安.Pr o/ENGI N EER2001零件装配与产品设计[M].北京:

清华大学出版社.

D esi gn of Fork-shaped Bl ade Root Cutters

w ith I ndexable I n serts Ba sed On PR O/E

WU bo

(Dong Fang stea m Turbine works,Deyang sichuan618201)

Abstract:Taking fork-shaped blade r oot cutter as an examp le,the article intr oduces the3D modeling p r ocess and methods t o carry out comp lex design of cutters with indexable inserts in Pr o/E NGI N EER2001.

Key words:Pr o/E NGI N EER;fork-shaped blade r oot cutter;variable-positi on cutter;design

86

基体为铁素体的球墨铸铁五大元素的影响

基体为铁素体的球墨铸铁(简称球铁),具有一定强度、良好的冲击韧性和塑性,可由铸态或经退火获得。 金相组织石墨的形态和金属基体组织对其韧性有很大的影响。(1)石墨形态的影响。在金属基体组织合格条件下,石墨形状对伸长率和冲击值影响极大:片状石墨严重割裂了金属基体,其尖角处应力集中,因此片状石墨铸铁呈脆性,冲击值很低,强度被大大削弱;而球铁则不同,只要基体组织合格,球化率愈高韧性愈好。(2)基体组织的影响。铁素体球铁的基体组织以铁素体为主,余为珠光体。渗碳体和磷共晶是有害组织,一般分别控制在3%和1%以下。铁素体含量愈高则韧性愈好。珠光体数量增加,则冲击值和伸长率下降。珠光体一般应在10%以下,且为分散存在,这样对韧性影响不大。 化学成分在适当的孕育工艺条件下,提高碳当量将增加铁素体的含量,因而冲击值、伸长率随之上升,但碳当量过高,易引起石墨漂浮。石墨漂浮还和铸件厚度与冷却速度有关,砂型浇注中等厚度(10~40mm)的铸件,铸态铁素体球铁碳当量取4.4%~4.9%为宜,退火铁素体球铁的碳当量可取4.2%~4.8%,厚大件降低碳当量,薄小件提高碳当量。采用强化孕育工艺也宜降低碳当量。 各元素影响为: (1)碳。有利于石墨化和球化,提高碳量有利于发挥材料的韧性。 (2)硅。是强烈促进石墨化的元素,有利于提高韧性,硅的孕育作用能细化共晶团和使磷共晶分散。韧性铁素体球铁的终硅含量一般控制在2.7%以下,如果生铁含锰量≤0.5%、磷≤0.7%,则终硅量可放宽至3.O%左右。 (3)锰。阻碍渗碳体和珠光体的分解。球铁的激冷倾向本已相当高,故对铁素体球铁应控制锰含量,一般应低于0.4%。对用退火生产的韧性铁素体球铁,其含锰量允许在0.6%。 (4)磷。在铸铁中会形成脆相,特别是三元磷共晶或复合磷共晶对韧性危害极大,常采用如下措施以削弱磷的有害作用:提高碳量,采取高碳低硅的成分方案,以阻碍三元磷共晶的析出;强化孕育以细化共晶团,使磷共晶分散;920~980C退火,使三元磷共晶或复合磷共晶转变成二元磷共晶,减少磷共晶的数量,改善球墨形状。采用金属型浇注成麻口,即球墨和莱氏体及渗碳体组织,再经高温退火则可避免产生磷共晶。 (5)硫。其含量过高会使球化不稳定,而且会产生过多的硫化物夹杂,严重影响韧性,故要求原铁水硫量尽可能低,最好铁水采取脱硫措施(见铸铁碳当量和铸铁石墨漂浮)。 热处理欲保证球铁高韧性,需采用硅、锰、磷和杂质甚少的原生铁,许多国家采用高纯生铁效果很好。中国生铁来源很广,杂质含量较高,铸态韧性不稳定,铁lie所以对性能要求较高的铸件可采用退火的方法生产韧性球铁。

球墨铸铁管生产工艺

铁水制备 优质原料 球墨铸铁管铁管的质量同原材料—生铁的质量密切相关,安钢永通球墨铸铁管有限责任公司采用安钢集团永冶钢铁公司的优质球墨铸造用生铁为原材料,水冶钢铁公司的铸造铁为我国的人参铁,具有低P、低S、低Ti等特点,产品远销美国、日本、欧洲等多个国家和地区,在国内被许多大型精密铸造企业普遍采用。 铁水调制及球化 根据所生产管径的规格,加入相应的原材料,由美国应达公司的6台10吨中频电炉将铁水调制、升温,达到工艺要求,加入球化剂进行球化处理。 铁水质量控制 在铁水制备过程中每一个环节都要结质量和温度进行严格的控制。每一炉、每一包都要经过日本岛进公司PDAII—50型直读关谱仪的成分分析,使铁水完全符合浇铸的要求。 离心浇铸 离心浇铸 永通球墨铸铁管有限责任公司采用水冷金属型离心机进行浇铸,高温铁水被连续浇进高速旋转的管模中,并通过水冷却使铁水凝固形成球墨铸铁管。浇铸好的球墨铸铁管立刻进行铸造成缺陷表面检查及称重,确保每根管子的质量。 退火处理 铁水制备 优质原料 球墨铸铁管铁管的质量同原材料—生铁的质量密切相关,安钢永通球墨铸铁管有限责任公司采用安钢集团永冶钢铁公司的优质球墨铸造用生铁为原材料,水冶钢铁公司的铸造铁为我国的人参铁,具有低P、低S、低Ti等特点,产品远销美国、日本、欧洲等多个国家和地区,在国内被许多大型精密铸造企业普遍采用。 铁水调制及球化 根据所生产管径的规格,加入相应的原材料,由美国应达公司的6台10吨中频电炉将铁水调制、升温,达到工艺要求,加入球化剂进行球化处理。 铁水质量控制 在铁水制备过程中每一个环节都要结质量和温度进行严格的控制。每一炉、每一包都要经过日本岛进公司PDAII—50型直读关谱仪的成分分析,使铁水完全符合浇铸的要求。 离心浇铸 离心浇铸 永通球墨铸铁管有限责任公司采用水冷金属型离心机进行浇铸 球墨铸铁管浇铸好的铸铁管随后进入退火炉,永通公司的退火炉长度为60m,其独特的现金蓄热技术更是当今世界第一,可保证铸铁管的充分退火,以获得球墨铸铁管所需要的金相组织结构。

球墨铸铁化学成分完整版

球墨铸铁化学成分集团标准化办公室:[VV986T-J682P28-JP266L8-68PNN]

球墨铸铁化学成分主要包括碳、硅、锰、硫、磷五大常见元素。对于一些对组织及性能有特殊要求的铸件,还包括少量的合金元素。同普通灰铸铁不同的是,为保证石墨球化,球墨铸铁中还须含有微量的残留球化元素。 1、碳及碳当量的选择原则: 碳是球墨铸铁的基本元素,碳高有助于石墨化。由于石墨呈球状后石墨对机械性能的影响已减小到最低程度,球墨铸铁的含碳量一般较高,在3.5~3.9%之间,碳当量在4.1~4.7%之间。铸件壁薄、球化元素残留量大或孕育不充分时取上限;反之,取下限。将碳当量选择在共晶点附近不仅可以改善铁液的流动性,对于球墨铸铁而言,碳当量的提高还会由于提高了铸铁凝固时的石墨化膨胀提高铁液的自补缩能力。但是,碳含量过高,会引起石墨漂浮。因此,球墨铸铁中碳当量的上限以不出现石墨漂浮为原则。 2、硅的选择原则: 硅是强石墨化元素。在球墨铸铁中,硅不仅可以有效地减小白口倾向,增加铁素体量,而且具有细化共晶团,提高石墨球圆整度的作用。但是,硅提高铸铁的韧脆性转变温度(图1),降低冲击韧性,因此硅含量不宜过高,尤其是当铸铁中锰和磷含量较高时,更需要严格控制硅的含量。球墨铸铁中终硅量一般在1.4—3.0%。选定碳当量后,一般采取高碳低硅强化孕育的原则。硅的下限以不出现自由渗碳体为原则。 球墨铸铁中碳硅含量确定以后,可用图2进行检验。如果碳硅含量在图中的阴影区,则成分设计基本合适。如果高于最佳区域,则容易出现石墨漂浮现象。如果低于最佳区域,则容易出现缩松缺陷和自由碳化物。 3、锰的选择原则: 由于球墨铸铁中硫的含量已经很低,不需要过多的锰来中和硫,球墨铸铁中锰的作用就主要表现在增加珠光体的稳定性,促进形成(Fe、Mn)3C。这些碳化物偏析于晶界,对球墨铸铁的韧性影响很大。锰也会提高铁素体球墨铸铁的韧脆性转变温度,锰含量每增加0.1%,脆性转变温度提高10~12℃。因此,球墨铸铁中锰含量一般是愈低愈好,即使珠光体球墨铸铁,锰含量也不宜超过0.4~0.6%。只有以提高耐磨性为目的的中锰球铁和贝氏体球铁例外。 4、磷的选择原则: 磷是一种有害元素。它在铸铁中溶解度极低,当其含量小于0.05%时,固溶于基体中,对力学性能几乎没有影响。当含量大于0.05%时,磷极易偏析于共晶团边界,形成二元、三元或复合磷共晶,降低铸铁的韧性。磷提高铸铁的韧脆性转变温度,含磷量每增加0.01%,韧脆性转变温度提高4~4.5℃。因此,球墨铸铁中磷的含量愈低愈好,一般情况下应低于0.08%。对于比较重要的铸件,磷含量应低于0.05%。球墨铸铁中碳硅含量确定以后,可用图2进行检验。如果碳硅含量在图中的阴影区,则成分设计基本合适。如果高于最佳区域,则容易出现石墨漂浮现象。如果低于最佳区域,则容易出现缩松缺陷和自由碳化物。 5、硫的选择原则: 硫是一种反球化元素,它与镁、稀土等球化元素有很强的亲合力,硫的存在会大量消耗铁液中的球化元素,形成镁和稀土的硫化物,引起夹渣、气孔等铸造缺陷。球墨铸铁中硫的含量一般要求小于0.06%。

球铁生产工艺

讲座球墨铸铁的生产 球墨铸铁的生产过程包含以下几个环节:熔炼合格的铁液,球化处理,孕育处理,炉前检查,浇注铸件,清理及热处理,铸件质量检查。 在上述各个环节中,熔炼优质铁液和进行有效的球化—孕育处理是生产的关键。 1 化学成分的选定 选择适当化学成分是保证铸铁获得良好的组织状态和高性能的基本条件,化学成分的选择既要有利于石墨的球化和获得满意的基体,以期获得所要求的性能,又要使铸铁有较好的铸造性能。 1.1基本元素 (1) 碳和硅 由于球状石墨对基体的削弱作用很小,故球墨铸铁中石墨数量多少,对力学性能的影响不显著,当含碳量在 3.2%~3.8%范围内变化时,实际上对球墨铸铁的力学性能无明显影响。确定球墨铸铁的含碳量时,主要从保证铸造性能考虑,为此将碳当量选择在共晶成分左右。由于球化元素使相图上共晶点的位置右移,因而使共晶碳当量移至 4.6%~4.7%左右,具有共晶成分的铁液流动性最好,形成集中缩孔倾向大,铸铁的组织致密度高。当碳当量过低时,铸件易产生缩松和裂纹。碳当量过高时,易产生石墨漂浮现象,其结果是使铸铁中夹杂物数量增多,降低铸铁性能,而且污染工作环境。 用镁和铈处理的铁液有较大的结晶过冷和形成白口的倾向,硅能减小这种倾向。此外,硅还能细化石墨,提高石墨球的圆整度。但硅又降低铸铁的韧性,并使韧性—脆性转变温度升高。因此在选择碳硅含量时,应按照高碳低硅的原则,一般认为Si>2.8%时,会使球墨铸铁的韧性降低,故当要求高韧性时,应以此值为限,如铸件是在寒冷地区使用,则含硅量应适当降低。 对铁素体球墨铸铁,一般控制碳硅含量为C3.6%~4.0%,Si2.4%~2.8%; 对珠光体球墨铸铁,一般控制碳硅含量为C3.4%~3.8%,Si2.2%~2.6%。 (2) 锰 球墨铸铁中锰所起的作用与其在灰铸铁中所起的作用有不同之处。在灰铸

铸态铁素体球墨铸铁金相试样制备体会

铸态铁素体球墨铸铁金相试样制备体会 莱钢集团机械制造有限公司(山东27l004) 李建彩马利永秦英超 我公司相当一部分铸件是以本公司自行研制的QT400-20为材质,其基体组织主要为铁素体。在生产中,我们对每一件产品都制作了附铸试样并对其进行力学性能及金相检验。值得注意的是,在金相试样制备过程中,由于材料软硬程度、磨光程度及抛光程度的差异,试样会或多或少地出现变形损伤层。经抛光后.若变形损伤层未消除或又出现了新的变形损伤层,经侵蚀后,基体组织就会出现假象,影响测定结果,尤其是硬度较低的材料,此种现象较为严重。而我公司生产的OT400-20产品,其硬度在150HB左右,属低硬度材料,所以在磨光、抛光及侵蚀过程中,稍有不慎,就会产生扰乱缺陷,影响对基体组织的正确判断。 我们结合近期工作中积累的经验,将球墨铸铁金相试样制作过程中的心得体会与大家共享。 1.球墨铸铁金相试样的制备 (1) 磨光过程控制铸态球墨铸铁含碳量相对较高,碳又呈现石墨状,有一定润滑作用,加之硬度较低,因此当该种试样在磨床上粗磨之后,只要先后用400#和600#金相砂纸干磨即可。若经多重砂纸磨制、磨制时间过长以及磨制用力过大或用力不均,都会出现变形损伤层,且在下一个工艺环节也难以消除。压力过大时,甚至会使试样表面升温而引起基体组织变化。 根据实践经验,球墨铸铁试样经磨床粗磨后,一般用400#和600#两种砂纸分别经3~4min 和2~3min的磨削即可。磨削时用力均匀得当,600#砂纸比400#砂纸用力稍轻一些。 (2) 抛光过程控制抛光时,首先要注意Cr2O3抛光液的加入量,抛光液加入不足会降低抛光能力,延长抛光时间,甚至会使石墨或夹杂物拽出,影响石墨大小的判断;抛光液加入过多,硬的Cr2O3,颗粒会划伤观察面,影响试验效果。理想的加入量应是在试样离开抛光盘后,其抛光面上水雾在l~5s内蒸发掉。在这种理想情况下,用力均匀地抛光3~5min即可。若抛光不彻底,则基体组织会不清晰或不出观,甚至出现假象影响观察结果。对于铁索体球墨铸铁(QT400-20)来说,若抛光程度不够就经腐蚀,则有时会出现类似于粒状珠光体的组织,造成假象,易误认为是珠光体过多,此种情况下对试样施加很小的力甚至利用其自重在抛光盘中心抛光1min左右,该现象即可消除。抛光过程中,若抛光面出现划痕,可采用以下措施去除:①在抛光片中心部位减轻抛光压力。②清洁或更换抛光布。③配置新的抛光液。 (3) 侵蚀过程控制一般以3%硝酸酒精溶液作为侵蚀剂,侵蚀时间以1~2min为宜。若侵蚀时间过长,则在观察面上容易出现黑白晶粒相间甚至铁素体发黄现象,影响观察效果;若侵蚀时间过短,铁素体晶界可能不明显。 2.结语 通过上述方式,可以快速便捷地制作出铁素体球墨铸铁金相试样,为准确可靠的金相判定提供有力的保障。

球墨铸铁化学成分

球墨铸铁化学成分主要包括碳、硅、锰、硫、磷五大常见元素。对于一些对组织及性能有特殊要求的铸件,还包括少量的合金元素。同普通灰铸铁不同的是,为保证石墨球化,球墨铸铁中还须含有微量的残留球化元素。 1、碳及碳当量的选择原则: 碳是球墨铸铁的基本元素,碳高有助于石墨化。由于石墨呈球状后石墨对机械性能的影响已减小到最低程度,球墨铸铁的含碳量一般较高,在3.5~3.9%之间,碳当量在4.1~4.7%之间。铸件壁薄、球化元素残留量大或孕育不充分时取上限;反之,取下限。将碳当量选择在共晶点附近不仅可以改善铁液的流动性,对于球墨铸铁而言,碳当量的提高还会由于提高了铸铁凝固时的石墨化膨胀提高铁液的自补缩能力。但是,碳含量过高,会引起石墨漂浮。因此,球墨铸铁中碳当量的上限以不出现石墨漂浮为原则。 2、硅的选择原则: 硅是强石墨化元素。在球墨铸铁中,硅不仅可以有效地减小白口倾向,增加铁素体量,而且具有细化共晶团,提高石墨球圆整度的作用。但是,硅提高铸铁的韧脆性转变温度(图1),降低冲击韧性,因此硅含量不宜过高,尤其是当铸铁中锰和磷含量较高时,更需要严格控制硅的含量。球墨铸铁中终硅量一般在1.4—3.0%。选定碳当量后,一般采取高碳低硅强化孕育的原则。硅的下限以不出现自由渗碳体为原则。 球墨铸铁中碳硅含量确定以后,可用图2进行检验。如果碳硅含量在图中的阴影区,则成分设计基本合适。如果高于最佳区域,则容易出现石墨漂浮现象。如果低于最佳区域,则容易出现缩松缺陷和自由碳化物。 3、锰的选择原则: 由于球墨铸铁中硫的含量已经很低,不需要过多的锰来中和硫,球墨铸铁中锰的作用就主要表现在增加珠光体的稳定性,促进形成(Fe、Mn)3C。这些碳化物偏析于晶界,对球墨铸铁的韧性影响很大。锰也会提高铁素体球墨铸铁的韧脆性转变温度,锰含量每增加0.1%,脆性转变温度提高10~12℃。因此,球墨铸铁中锰含量一般是愈低愈好,即使珠光体球墨铸铁,锰含量也不宜超过0.4~0.6%。只有以提高耐磨性为目的的中锰球铁和贝氏体球铁例外。 4、磷的选择原则: 磷是一种有害元素。它在铸铁中溶解度极低,当其含量小于0.05%时,固溶于基体中,对力学性能几乎没有影响。当含量大于0.05%时,磷极易偏析于共晶团边界,形成二元、三元或复合磷共晶,降低铸铁的韧性。磷提高铸铁的韧脆性转变温度,含磷量每增加0.01%,韧脆性转变温度提高4~4.5℃。因此,球墨铸铁中磷的含量愈低愈好,一般情况下应低于0.08%。对于比较重要的铸件,磷含量应低于0.05%。球墨铸铁中碳硅含量确定以后,可用图2进行检验。如果碳硅含量在图中的阴影区,则成分设计基本合适。如果高于最佳区域,则容易出现石墨漂浮现象。如果低于最佳区域,则容易出现缩松缺陷和自由碳化物。 5、硫的选择原则: 硫是一种反球化元素,它与镁、稀土等球化元素有很强的亲合力,硫的存在会大量消耗铁液中的球化元素,形成镁和稀土的硫化物,引起夹渣、气孔等铸造缺陷。球墨铸铁中硫的含量一般要求小于0.06%。

球墨铸铁热处理方法之探讨

球墨铸铁热处理方法之探讨 陆卫倩:(上海电机学院机械工程学院,上海200240)中国铸造装备与技术4/2010 高级工程师,原任上海机床厂有限公司磨床研究所高级工程师,现任上海电机学院副教授,主要从事零件失效分析和金属材料热处理 本文详细介绍了球墨铸铁件的各种热处理工艺,并简单介绍了纳米技术在球墨铸铁件表面处理中的应用。从文献资料来看,经纳米技术表面处理后的球墨铸铁件具有良好的自润性、良好的耐磨性、良好的耐蚀性,因此是一种非常有前途的表面处理。 众所周知:热处理是一项改进金属材料品质的方法,借助热处理可以改变或影响铸铁的组织及性质,同时还可获得更高的强度、硬度和耐磨性等。铸铁热处理的种类繁多,但基本上可分成两大类:第一类是组织构造不会由热处理而发生变化或者也不应该发生改变的,第二类则是基本的组织结构发生变化者。第一种热处理主要是用于消除内应力,热处理后组织、强度及其它力学性质等没有因热处理而发生明显变化。第二种热处理能使基体组织发生明显的变化,这种热处理大致分为五类:①退火:其目的主要在于分解碳化物,降低铸铁的硬度,提高加工性能;②正火:其目的主要用于改进铸铁组织、获得均匀分布的力学性能;③淬火:其目的主要是为了获得比较高的硬度和表面耐磨性;④表面硬化处理:其目的主要是获得表面硬化层,同时得到较高的表面耐磨性;⑤析出硬化处理:其目的主要是为获得更高强度。 铸铁种类繁多,有灰口铸铁、白口铸铁、蠕墨铸铁、球墨铸铁等等,它们的组织结构也各不相同。一般根据凝固过程中的析出物———共晶石墨或共晶碳化物来分类:基体内主要含片状石墨者称之为灰铸铁,主要含碳化物者称之为白口铸铁。事实上白口铸铁由于具有很高的硬度与脆性用途较少;而灰铸铁的性质主要是由共晶石墨的形状与大小而定,这些析出的石墨无法经由热处理予以改进,因此具有非常低的强度及硬度。但若铁液添加镁及稀土金属能使石墨在凝固过程中以球状析出成为球墨铸铁,那么情况就有所不同。由于球墨铸铁其性质与基体相同的钢接近,故通过热处理可使强度、硬度明显提高,弹性模数、伸长率也有不同程度的提高。但是不同的热处理对球墨铸铁的作用完全不同,在工程上用的比较多的是退火、正火和析出硬化处理;事实上球墨铸铁同样可以通过调质、等温淬火处理以及渗氮、渗硼和低温气体碳氮共渗来改善其力学性能。下面就球墨铸铁的热处理方法予以探讨。 【1】球墨铸铁的常规热处理 1.1退火处理 若要提高球墨铸铁的韧性可采用退火处理。球墨铸铁在铸造过程中比普通灰口铸铁的白口倾向大,内应力也较大,球墨铸铁件很难得到纯粹的铁素体或珠光体基体。为提高球墨铸铁件的延性或韧性,可将球墨铸铁件重新加热到900~950℃并保温足够时间进行高温退火,再炉冷到600℃出炉变冷。在此过程中基体中的渗碳体会分解出石墨,奥氏体中会析出石墨,这些石墨集聚于原球状石墨周围,基体则全转换为铁素体,从而提高球墨铸铁的韧性。若铸态组织由(铁素体+珠光体)为基体+球状石墨组成,那么只需将球墨铸铁件重新加热到700~760℃的共析温度上下经保温后炉冷至600℃出炉变冷,就能将珠光体中渗碳体分解转换为铁素体及球状石墨来提高其韧性。 1.2正火处理

球墨铸铁管生产工艺操作规程大全

管模焊接工艺操作规程 1.焊接前将焊剂在250℃左右烘焙2小时。 2.焊接前必须清除管模内壁的铁屑、模粉等杂质,保证待焊接 表面不得有油污、铁锈和水份。 3.根据管模的公称直径将支承滚轮调整到预定的间距。 4.将要焊接的管模吊放在支承滚轮上。 5.启动管模旋转电机,调节变速器,使之符合焊接规范的要求。 焊接电流焊接 电压 焊接速度 400A 34V 0.7cm/s~0.85 cm/s 6.将管模欲焊接部位均匀加热到200~300℃。 7.用砂布或铁刷清除管模外表面与碳块接触部位的铁锈。 8.接通电源焊接开关,启动ZXG-1000R硅整流焊机,并初调好 焊接电流和焊接电压。 9.接通控制器上的旋转开关。 10. 焊枪移送到管模欲焊接的起始位置,调整焊咀位置,使焊咀 中心向右偏离管模中心线10~15mm。 11. 通过控制盒上的“焊丝向上”或“焊丝向下”按钮使焊丝与 管模待焊接表面接触良好。 12. 在最先开始焊接的圆周位置划上记号,管模每转一周,焊枪 手柄移动1~1.25周(6~7.5mm)。 13. 焊接过程中,必须随时将焊剂充填到焊咀周围,并随时将熔 渣用钩子清理掉。 14. 在焊接过程中,要保证工作电流与工作电压的稳定。 15. 焊接后要保证焊接轮廊光滑,不得有严重焊接凹陷,焊接高

度比管模内表面高出3~4mm。 16. 保持焊剂的清洁,没有熔化的焊剂必须经过筛选后方可继续 使用。 17. 焊接后直观检查,若有缺陷,可进行手工补焊。 18. 焊接完后,将管模的受热影响区均匀加热到370~430℃, 并使管模匀速旋转2小时。 19. 将管模缓慢冷却到95~120℃。

ASTM_A536_球墨铸铁(2004中文)

名称:A536-84(2004年重新认可)球墨铸铁件标准规范 1. 应用范围 1.1 本规范适用于球墨铸铁件。球墨铸铁为含有完全球状、而不含其他形状石墨的铸铁,见ASTM A644术语定义。 1.2 以英寸和磅为标准单位。 1.3 在同一铸件的不同位置、同一铁液浇铸的铸件和测试试样的性能之间没有精确的数量关系(见附录X1)。 2. 参考文件 2.1 ASTM标准 A370 钢制品机械性能测试的试验方法和定义 A644 铸铁件相关术语 A732/A732M 一般应用碳素和低合金钢、高温高强度钴合金熔模铸件技术规范 E8 金属材料拉伸测试试验方法 2.2 军用标准 MIL-STD-129 发货和储存标记方法 3. 定购信息 3.1 根据本规范定购材料应该包括下列信息: 3.1.1 ASTM名称, 3.1.2 所需的球墨铸铁牌号(见表1和第4节、第9节), 3.1.3 如果需要,其他特殊性能(见第7节), 3.1.4 是否需要不同数目的试样(见第10节), 3.1.5 如果需要,需提供保证书(见第14节)和 3.1.6 如果需要,其他的交付物(见第15节)。 4. 拉伸性能要求 4.1 测试试样所代表的铸铁应该符合表1和2中的拉伸性能要求。表1中为一般用途的铸铁,而表2中的铸铁用于特殊应用(例如管子、接头配件等)。 4.2 屈服强度应该在0.2%偏移量时确定(见测试方法E8)。其他的方法可以在生产商和购买方相互达成一致后使用。 5. 热处理 5.1 牌号60-40-18通常需要完全铁素体化退火。牌号120-90-02和100-70-03一般需要淬火回火或正火回火或等温热处理。其他牌号可以铸态或热处理状态交付。经过淬火到马氏体再回火热处理的球墨铸铁比相同硬度的铸态材料有低得多的疲劳强度。 6. 测试试样 6.1 用来机加工成拉伸测试试样的单铸测试试块应该铸造成图1和图2指定的尺寸和形状。由图3所示的模具铸造的改良龙骨型铸锭可以替代1英寸的Y型铸锭或1英寸的龙骨型铸锭。测试试样应该在由适合的型砂制成的敞口铸模中铸造,并且对于0.5英寸(12.5mm)和1英寸(25mm)尺寸的试样应该具有最小1.5英寸(38mm)的铸模壁厚,对于3英寸尺寸的试样应该具有最小3英寸(75mm)的铸模壁厚。试样应该在铸模中冷却至呈现黑色(接近482℃或更低)。代表铸件的试样铸锭的尺寸应该由购买方选择。如果购买方没有选择,则由生产商选择。 6.2 当根据本规范进行熔模铸造时,生产商可以用铸件的熔液在铸模中浇铸测试试样,或在与生产铸件相同的热环境下用同样类型的铸模单独浇铸。测试试样应该符合A732/A732M规范图1或A370测试方法和定义图5和图6所示的尺寸。 6.3 当根据本规范制造的铸件在铸模中球墨化或孕育时,生产商可以使用单独铸造的测试试块或从铸件上切取的测试试样。单独铸造的测试试块应该具有可以代表铸桶浇铸的铸件的化学成分和与用图1和图2,图4-6,或是附录X2中所示的测试模具获得的相同的冷却速率。被选作代表铸件的测试试块的尺寸(冷却速率)应该由购买方决定。如果没有指定,则由生产商决定。如果从铸件上切取测试试棒,测试试棒的位置应该由购买方和生产商共同商定且在铸件图纸上指明。生产商应该保持充分的控制和控制文件以向购买方保证由测试试块或测试试棒得到的性能可以代表出货的铸件。 6.4 测试试块应该由其代表的铸件同一个铸桶或熔炉中浇铸。 6.5测试试块应该与其代表的铸件有相同的热处理条件。

球墨铸铁管安装工艺标准

球墨铸铁管安装工艺标准

————————————————————————————————作者:————————————————————————————————日期:

19 球墨铸铁管施工工艺标准 19.1 适用范围 本标准规定了球墨铸铁管的施工工艺要求、方法和质量控制标准。 本标准适用于建筑群(小区),工作压力不大于1.0MPa,室外给水管网的给水铸铁管(球墨铸铁管)。 19.2规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版不适用于本标准。凡是不注日期的引用文件,其最新版本适用于本标准。 GB5033-2013 建筑工程施工质量验收统一标准 GB50242-2002 建筑给排水及采暖工程施工质量验收规范 GB50268-1997给排水管道施工及验收规范 GB50015-2003 建筑给排水设计规范 GB13295-2003 –T水及燃气管道用球墨铸铁管、管件和附件 CJJ101-2004 埋地给水管道工程技术规程 19.3 术语 《建筑工程施工质量验收统一标准》与《建筑给排水及采暖工程施工质量验收规范》中的术语适用于本标准。 1、室外给水管网 通过管道及辅助设备,按照建筑物和用户的生产、生活和消防的需要,有组织的输送到用户地点的网络。 2、管道配件 管道与管道或管道与设备连接用的各种零、配件的统称。 19.4 施工准备 Ⅰ技术准备 19.4.1技术准备 1、熟悉施工图纸及相关技术文件并组织图纸会审。 2、根据图纸要求准备相应的施工图集和质量记录表格。 3、根据球墨铸铁管安装现场编制相应的施工方案,并报上级主管部门和监理单位审核批准。施工方案应包含环境保护和职业安全等因素。 4、编制技术交底与安全交底并向作业班组进行书面交底。使作业人员熟悉施工图纸、规范及工艺标准,以达到工期、质量、安全等目标。

球墨铸铁生产工艺的应用

球墨铸铁生产工艺的应用 发表时间:2016-05-20T16:02:51.440Z 来源:《基层建设》2016年1期作者:陈佳辉 [导读] 广东铸德实业有限公司本文主要针对废钢增碳、增硅生产球墨铸铁工艺的应用展开了探讨,详细阐述了化学元素的影响及选择。广东铸德实业有限公司广东江门 529000 摘要:本文主要针对废钢增碳、增硅生产球墨铸铁工艺的应用展开了探讨,详细阐述了化学元素的影响及选择,并对球墨铸铁的生产工艺作了系统的分析研究,以期能为有关方面的需要提供有益的参考和借鉴。 关键词:球墨铸铁;生产工艺;应用 0 引言 所谓的球墨铸铁,是指通过球化和孕育处理得到球状石墨,其可以有效地提高了铸铁的机械性能,特别是提高了塑性和韧性,从而得到比碳钢还高的强度,并在如今的工业生产中有着广泛的应用。因此,我们需要保证球墨铸铁的生产质量,以为相关的工业生产打下坚实的基础。基于此,本文就废钢增碳、增硅生产球墨铸铁工艺的应用进行了探讨,相信对有关方面的需要能有一定的帮助。 1 化学元素的影响及选择 化学成分对球墨铸铁的性能有较大影响。合理的化学成分是铸件力学性能和金相组织合格的前提。对高韧性球墨铸铁来说,在高碳当量的前提下,应满足高碳、低锰、低磷、低硫的原则。 1.1 碳 碳是强石墨形成元素,促进石墨化。一般来说含碳量高,易保证球化,获得球形石墨,且增加石墨数量。若石墨球形态好,数量多,直径小,则对基体的断裂就越小,力学性能也就越高。因此,应选择较高的碳量,碳含量不够的话可以采用增碳的方法实现。但含碳量也不能过高,否则容易产生石墨漂浮、石墨破碎等缺陷。一般碳的含量为:3.5%~3.8%。 1.2 硅 硅是强促进石墨化元素,硅若以孕育方式加入其作用更显著。硅含量不够的话可以采用增硅的方实现。含硅量增加,白口倾向减少,细化石墨,提高石墨球的圆整度。但硅量过高,会提高韧性-脆性转变温度,引发铸件脆性。含硅量控制在2.3%~2.6%之间。 1.3 锰 锰是阻碍石墨化元素,具有稳定渗碳体,提高强度,降低塑性和韧性,所以尽量降低锰量,尤其是高韧性球墨铸铁。 1.4 磷 磷是有害元素,极易偏析,含量较高会形成硬而脆的磷共晶,降低塑性和韧性。应尽可能降低磷元素的含量,控制在0.04%以下。 1.5 硫 硫也是有害元素,硫与稀土的亲和力很强,消耗球化剂,对球化效果和韧性、冲击性能影响较大,因此将硫控制在0.03%以下。 1.6 镍 镍是一种石墨化元素,加入镍合金化处理能提高球墨铸铁的低温冲击韧性。加入量0.2%~0.4%。 2 高韧性球墨铸铁的熔炼工艺 2.1 原、辅材料选择 熔炼高韧性球墨铸铁的主要材料是废钢、增碳剂、硅铁、回炉料、球化剂、孕育剂,镍铁等。原材料应无油、无锈、成分明确,对原、辅材料的要求见表1、表2。 2.2 配料 高韧性球墨铸铁的熔炼配料单见表3。 2.3 熔炼操作 按比例称料,然后按顺序向中频炉内加料,加料顺序为:回炉料→废钢→增碳剂→硅铁→回炉料→废钢。送电开始熔炼。全部炉料添

球墨铸铁

球墨铸铁 球墨铸铁是指铁液经球化处理后,使石墨大部或全部呈球状形态的铸铁。 与灰铸铁比较,球墨铸铁的力学性能有显著提高。因为它的石石墨呈球状,对基体的切割作用最小,可有效地利用基体强度的70%~80%灰铸铁—般只能利用基体强度的30%。球墨铸铁还可以通过合金化和热处理,进一步提高强韧性、耐磨性、耐热性和耐蚀性等各项性能。球墨铸铁自1947年问世以来,就获得铸造工作者的青睐,很快地投入了工业性生产。而且,各个时期都有代表性的产品或技术。20世纪50年代的代表产品是发动机的球墨铸铁曲轴,20世纪60年代是球墨铸铁铸管和铸态球墨铸铁,20世纪70年代是奥氏体-贝氏体球墨铸铁,20世纪80年代以来是厚大断面球墨铸铁和薄小断面轻量化、近终型球墨铸铁。 如今,球墨铸铁已在汽车、铸管、机床、矿山和核工业等领域获得广泛的应用。据统计,2000年世界的球墨铸铁产量已超过1500万吨o 球墨铸铁的牌号是按力学性能指标划分的,国标GB/T 1348-1988《球墨铸铁件》中单铸试块球墨铸铁牌号,见表1。 表1xx试块球墨铸铁牌号 牌号 QT400-18 QT400-15 QT450-10 QT500-7 QT600-3 QT700-2 QT800-2抗拉强度Rm

MPa 400 400 450 500 600 700 800断后伸长率A%18 15 107322布氏硬度 HBW 130~180 130~180 160~210 170~230 190~270 225~305 245~335主要金相组织 铁素体铁素体+珠光体+铁素体珠光体或回火组织贝氏体或回火组织QT900-~360

球墨铸铁管生产工艺 球墨铸铁管生产所需的设备

球墨铸铁管产品功能、 性能特征及技术参数说明 一、球墨铸铁管质量标准和技术要求 铸造方式:离心铸造工艺。 口径范围:DN100-1000mm。 重量及其允许偏差范围:壁厚按GB/T13295-2008标准K10、K9执行,重量最大偏差为-5%。 尺寸:符合GB/T13295-2008标准的要求; 接口形式:滑入式T型胶圈接口。胶圈的型式、尺寸及允许偏差符合GB/T 13295-2008标准附录C1.1的规定。橡胶圈材质:三元乙丙橡胶,物理性能符合ISO 4633的要求。 材质:管道的材质为铁素体基体的球墨铸铁,在组织中有一定数量的球状石墨,组织致密,易于切削、钻孔,符合GB/T13295-2008的要求。 化学成份:球墨铸铁管的P含量≤0.05%,S含量≤0.015%。 机械性能:抗拉强度≥420Mpa,屈服强度≥300Mpa,延伸率≥10%,硬度≤230HBS。 密封性:球墨铸铁管出厂前水压试验压力5MPa,并保证无渗漏冒汗或其他损坏。

表面质量:内外表面光洁,光滑平整,轮廓清晰,无裂缝,冷隔、错箱等妨碍使用的明显缺陷,凡使壁厚减薄的局部缺陷允许存在,但其深度不得超过(2+0.05T)mm其中T为管体壁厚。 外形:当球墨铸铁管在间距约为管长L 2/3的两个台架上滚动校验时,球铁管的直线度最大偏差fm(mm)不应大于管有效长度L(m)的1.25倍,即fm(mm)≤1.25L。 有效长度:球墨铸铁管的有效长度为6000mm。 涂前,管件表面光洁、无铁锈、铁片及杂物,涂后,涂层表面光洁、均匀、粘附牢固,不因气温变化而发生异常。 内衬:采用水泥砂浆内衬,涂覆后附着力强,渗水率小,化学稳定性好,施工方便。水泥内衬符合GB/T 17457-1998标准和GB/T 17219-1998标准的要求,水泥砂浆内衬材料全部由国家法定单位检验,放射性物质含量符合国家标准GB6566-2001的要求,确保需方输水管网水质达到国家相关标准要求。 外防腐:先采用热喷锌,热喷锌质量符合GB/T17456标准技术要求;再采用热喷涂沥青漆防腐处理,热喷涂沥青漆质量符合GB/T 17459标准技术要求。 柔性接口管道承插口防腐处理:在管道承口及插口的工作面上,涂覆前清理干净,彻底除锈后,涂刷富锌涂料后再涂刷环氧树脂漆。 二、消失模铸造球墨铸铁管件质量标准和技术要求 铸造方式:消失模铸造工艺。

利用垂直分型技术生产高品质球墨铸铁件[1]

2010年第4期Aug.2010№4铸造设备与工艺近年来我国铸造业发展迅速,产量已稳居世界第一,而且随着自动线的不断引进,我国铸造技术和水平也达到了前所未有的进步。然而我国铸造业发展却极不平衡,大型、合资及少数民营企业由于其资金优势,多采用自动化方式生产;而大多数中小企业仍采用半自动和手工方式生产,生产方式和技术落后、单一,铸件质量水平总体不高。尤其对大平面和不易补缩铸件缺少可靠的方法,有些厂家也简单采用了横浇竖冷的工艺方法,但效果不明显,究其原因主要是对垂直分型工艺不了解。此外横浇竖冷的工艺方法不适合批量生产铸件,对厚大件而言也存在安全隐患。 1水平分型工艺和垂直分型工艺的特点1.1 水平分型工艺的特点 水平分型是传统的工艺方法,具有适应性强的 特点。浇注系统常用的分类方法有两种:一是根据各组元断面比例关系的不同,即阻流断面位置的不同,可分为封闭式和开放式浇注系统;另一是按内浇道在铸件上的相对位置不同,将浇注系统分成顶注式、中间注入式、底注式和阶梯式等几种类型。 封闭式浇注系统是指从浇口杯底孔到内浇道的断面积逐渐缩小、其阻流断面正好是内浇道的浇注系统。这种浇注系统在浇注开始不久各组元能迅速被金属液充满,故又称充满式浇注系统。特点是有较好的挡渣能力,但产生金属飞溅而使金属液氧化加剧。主要用于中小型铸铁件。 开放式浇注系统是指浇口杯底孔到内浇道的断面积逐渐加大、其阻流断面在直浇道上口的浇注系统。其特点是充型平稳,但挡渣能力差,消耗的金属液也较多。主要用于有色金属件、球墨铸铁件及漏包浇注的铸钢件。 半封闭式和封闭—开放式浇注系统兼顾了前两种的优点应用广泛。 1.2垂直分型工艺的特点 垂直分型浇注系统中,金属液的充型静压头在 铸型底部和顶部可相差几倍,如果在短时间内要求各层内浇道逐层接替地充满所有型腔(即像阶梯式浇注系统那样),势必造成每个型腔的充型速度太快,以及上下部位受热条件不一样,而使冲砂、气孔、粘砂(底部铸件)、浇不足(顶部铸件)等缺陷太多,因而要求在浇注过程中,所有型腔都能始终保持恒定的金属静压头(即各层内浇道的压头虽不同,但浇注的整个过程中不变化),达到各内浇道的流量相等,同时充满,以获得质量基本一致的合格铸件。这样设计的浇注系统称为恒压等流量浇注系统。 设计时需注意以下几点: 1)只有浇注过程中始终保持充满状态,整个浇 注系统内金属的静压头才能稳定不变。所以应采用封闭式,而不能采用开放式浇注系统。 2)不同高度的内浇道应有不同的断面积,以控 制相同的浇注重量速度,让上下各层型腔几乎同时充型和同时充满,使铸型的受热条件和铸件的冷却条件都基本相同。这样就可获得质量一致的铸件。浇注时间应严加控制。据经验,浇注时间的变化如果大于1s ,废品率大幅度地增加。 利用垂直分型技术生产高品质球墨铸铁件 裴 兵 (安徽神剑科技股分有限公司,安徽合肥 230022) 摘要:作者根据多年的生产实践,分析了垂直分型工艺和水平分型工艺各自的特点,研究了垂分型工艺浇注系统和冒口的计算,重点讨论了垂直分型技术在实际生产中的应用,尤其是大平面和不易补缩铸件可利用垂直分型技术来弥补水平分型的缺憾,从而生产出高品质铸件。 关键词:垂直分型;生产;高品质;铸铁件中图分类号:TG255 文献标识码:B 文章编号:1674-6694(2010)04-0030-02 收稿日期:2010-06-11 作者简介:裴兵(1967-),男,硕士,高级工程师,从事铸造技术开发应 用和管理工作。 ·铸造工艺· 铸造设备与工艺 FOUNDRY EQUIPMENT AND TECHNOLOGY 2010年第4期 Aug.2010№4 2010年8 月30··

铁素体球墨铸铁生产工艺研究要点

沈阳航空航天大学 材料科学与工程学院本科生(综合实验研究)任务书

铁素体球墨铸铁生产工艺研究 1.摘要:铁素体球墨铸铁是基体为铁素体的球墨铸铁,具有一定强度、良好的冲击韧性和塑性,可由铸态或经退火获得。本次实验内容由Q10生铁、硅铁、45#钢、稀土镁合金配料生产Q400-18牌号的铁素体球墨铸铁。使用中频感应电炉熔炼,使用稀土镁合金为球化剂进行了球化处理,使用75%硅铁为孕育剂进行了孕育处理,浇注了试件且进行了热处理,磨制金相。观察并分析铸态金相组织和热处理后的金相组织。研究结果:热处理对球墨铸铁组织影响很大,高温退火消除渗碳体,低温石墨化退转化珠光体为铁素体,使试件基体全部转变为铁素体。保证了铸件的质量。关键词:球墨铸铁,孕育处理,球化处理,感应熔炼炉 Research on Production Technology of Ferrite Nodular Iron Abstract: Ferrite nodular cast iron is a substrate for ductile iron ferrite, has certain strength, good impact toughness and plasticity, can be obtained by casting orby annealing. The contents of this experiment by Q10 pig iron, ferrosilicon,45# steel, rare earth magnesium alloy ingredient production Q400-18 brand of ferritic nodular cast iron. Smelting in medium frequency induction furnace, the use of rare earth magnesium alloy as the nodulizer of spheroidizing treatment,using 75% ferrosilicon as inoculant was inoculated cast specimens, and theheattreatment, grinding metallographic. Observation an d metallographicanalysis of cast and heat treatment State Microstructure after. Results: theheat treatment has great influence on the microstructure of spheroidal graphite cast iron, high temperature annealing to eliminate low temperature graphitization of cementite, pearlite to ferrite back transformation, so that the specimen was transformed to ferrite matrix. To ensure the quality of castings. Keywords:Nodular cast iron ,Inoculation ,The spheroidizing treatment ,Induction melting furnace

球墨铸铁生产时化学成分的选择原则

球墨铸铁生产时化学成分的选择原则是什么 球墨铸铁化学成分主要包括碳、硅、锰、硫、磷五大常见元素。对于一些对组织及性能有特殊要求的铸件,还包括少量的合金元素。同普通灰铸铁不同的是,为保证石墨球化,球墨铸铁中还须含有微量的残留球化元素。 1、碳及碳当量的选择原则: 球墨铸铁中碳当量的上限以不出现石墨漂浮为原则。 2、硅的选择原则: 选定碳当量后,一般采取高碳低硅强化孕育的原则。硅的下限以不出现自由渗碳体为原则。 3、锰的选择原则: 球墨铸铁中锰含量一般是愈低愈好,即使珠光体球墨铸铁,锰含量也不宜超过0.4~0.6%。只有以提高耐磨性为目的的中锰球铁和贝氏体球铁例外。 4、磷的选择原则: 球墨铸铁中磷的含量愈低愈好,一般情况下应低于0.08%。对于比较重要的铸件,磷含量应低于0.05%。 5、硫的选择原则: 球墨铸铁中硫的含量一般要求小于0.06%。 6、球化元素的选择原则: 目前在工业上使用的球化元素主要是镁和稀土。镁和稀土元素可以中和硫等反球化元素的作用,使石墨按球状生长。镁和稀土的残留量应根据铁液中硫等反球化元素的含量确定。在保证球化合格的前提下,镁和稀土的残留量应尽量低。镁和稀土残留量过高,会增加铁液的白口倾向,并会由于它们在晶界上偏析而影响铸件的机械性能。 铸铁碳当量 根据各元素对共晶点实际碳量的影响,将这些元素的量折算成碳量的增减。以CE%表示碳当量。为简化计算一般只考虑硅、磷的影响或只考虑硅的影响。碳当量算式分别是CE%=C%+1/3(Si+P)%或CE%=C%+1/3Si%。碳是铸铁生成石墨的来源,是石墨的自发晶核。硅在铸铁中含量较多,是强烈促进石墨化的元素,能使铁碳合金的共晶、共析点向上向左移动,表明硅降低了碳在液相和固相中的溶解度,增加了碳的活度,石墨就较容易析出长大,促进了石墨化过程,因此增加部分硅就相当于增加部分碳。 其关系是当含硅1%时可使共晶点左移O.31%,即共晶点含碳量下降O.3%。将CE%值和Fe-C稳定态相图上的共晶点C' 的碳量4.26%相比,即可判断某一具体成分的铸铁偏离共晶点的程度,如CE%高于4.26%为过共晶成分;CE%低于4.26%为亚共晶成分;CE%=4.26%则为共晶成分。除衡量对凝固过程可以作出判断外,还可以间接推断出铸铁铸造性能好坏及石墨化能力的大小,是计算铸铁共晶度的基础。碳当量和共晶度都是较重要的参数

铸态铁素体球铁件的生产与质量控制

铸态铁素体球铁件的生产与质量控制 摘要:本文根据多年的生产实践,分析了主要工艺因素对铸态铁素体球铁性能的影响。提出要在铸态条件下稳定获得高韧性球铁件需要根据生产条件,对原材料的选择,化学成分的确定,炉前控制,铸造工艺,开箱时间以及生产过程各个环节实施严格管理和监控。 关键词:铸态,铁素体球铁,生产技术,质量控制 前言 我公司是军工企业,其下属铸造厂主要进行军民用品的铁素体球铁件生产。其产品多是球铁小件,大部分铸件壁厚4-30mm,单件重0.4-40Kg。过去一直沿用退火处理工艺。自2001年后,采用铸态铁素体球铁生产技术,取消了热处理工艺,减少了设备投资,缩短了生产周期,节约能耗,节省工时,避免了热处理过程中铸件的变形、氧化、脱碳等缺陷。通过多年来的生产实践,我公司生产的铸态铁素体球铁件品质稳定,满足了客户要求,取得了良好的经济效益。 1 生产的基本条件 1.1 熔炼设备 铸态铁素体球铁对原铁水的质量要求是:化学成分稳定,符合设计要求;好的冶金质量,洁净,无氧化现象;高的出铁温度(一般1460-1490℃)。这就对熔炼提出了要求,笔者建议选用热风冲天炉,在使用北京焦,焦铁比为1:8的情况下,铁水出炉温度稳定在1440-1480℃。为了进一步提高球铁原铁水的冶金质量,自2002年后改用3t中频感应电炉生产。 1.2 造型设备 球墨铸铁凝固时有石墨析出,膨胀量大,生产上可利用这一特点,采用刚性铸型,避免铸型胀大,获得致密、无缩孔,无宏观缩松的铸件。要获得较强的刚性铸型最好采用机器造型,本公司生产的球铁件是采用一条145水平造型线和一条丹麦生产的DISA造型线。 2 原材料的选择 原材料的选择对生产铸态铁素体球铁是很重要的,应该引起重视。 2.1 铸造生铁 生铁应高碳低硅、低磷低硫。选用地方生铁应慎重,因常规五元素虽符合要求,但如含有干扰元素,就导致球化不良。对石墨片粗大、渣气孔较多的生铁也就尽量不用或少用。建议选用本溪生铁或其他地方生产的已被实践证明适用的球铁生铁,切忌乱采购和盲目使用。本公司根据客户要求,军品采用本溪低锰低磷生铁,民品采用山西、邯郸等地Q10、Q12低锰生铁。 2.2 回炉铁 加炉铁应用本单位生产的球铁浇冒口和废品铸件,杜绝使用市场收购的废旧铸铁件。 2.3 废钢 废钢主要是用来调整碳量,或是用于废钢增碳生产球铁的主要原材料,应是成分明确的无锈碳素钢,杜绝使用合金钢或来历不明的废钢。 2.4 焦炭 焦炭的优劣直接影响到冲天炉熔炼时的冶金质量和铁水温度。要求固定碳高、强高度、硫量低、灰分少。如果焦炭的固定碳低,灰分高,铁水出炉温度就不会高,这样给球化处理和浇注带来困难;如果焦炭的含硫量高,焦炭中的硫就会大量进入到铁液中,铁水含碳量就高,势必在球化处理时球化剂要多加,容易导致球形较差,白口增加,薄壁件加工困难,大件缩孔缩松增加,甚至有可能出现球化不良、球化衰退现象,因此,生产中最好选用铸造焦炭,

相关文档