文档库 最新最全的文档下载
当前位置:文档库 › 烟气中酸雾含量的测定

烟气中酸雾含量的测定

烟气中酸雾含量的测定
烟气中酸雾含量的测定

烟气制酸作业指导书

烟气中酸雾含量的测定

1.适用范围

本方法使用于硫酸车间烟气管道中酸雾含量的测定。

2.方法提要

烟气通过装有棉花塞的过滤管时,其中的酸雾被棉花吸附下了,将此棉花置于水中,先用碘标准溶液滴定其上吸附的少量二氧化硫,再用氢氧化钠溶液滴定总硫酸量,求出酸雾的含量。

反应式如下:

SO2+I2+2H2O=2HI+H2SO4

H2SO4+2NaOH=Na2SO4+2H2O

HI+NaOH=NaI+H2O

3.仪器和试剂

3.1采样管:玻璃制或不锈钢小孔直径2、3mm

3.2六连球管或两个三连球(如图)

3.3湿式流量计或转子流量计

3.4真空泵(在负压条件下采样时使用)

3.5 氢氧化钠标准溶液C(NaOH)=0.01mol/L。

3.6. 碘标准溶液)

c=0.01mol/L。

(2

/1I

2

3.7 硫代硫酸钠标准溶液C(Na2S2O3)=0.01mol/L。

3.8 5g/L淀粉溶液

3.9 1g/L甲基红乙醇溶液

3.10中性脱脂棉

4.测定准备

称取中性脱脂棉2g,均匀装入六连球管或两个三连球,备用。

5.分析步骤

5.1 按图接好测定装置,将采样管进气孔正对着气流方向,伸入气体管道内1/3处,开启真空泵。

5.2 用湿式流量计或转子流量计调节气体流速并开始记录采样时间(不同的点不同的速度)。

5.3连续采样30min-40min后,迅速旋转采样管,使进气孔方向背向气流,取出采样管,记录采样终止时间、温度、压力和体积。

5.4将六连球管(或两个三连球)以每分钟1~2L的速度通入空气约15min,以消除棉花塞中吸附的二氧化硫。

5.5用棉花或滤纸擦净采样管外壁,将六连球管(或三连球)内的棉花塞移入400ml烧杯中,用蒸馏水洗涤采样管和六连球内壁,洗液一并入烧杯中。

5.6加2ml淀粉(3.8),用碘(3.6)标准溶液滴定溶液由无色变为呈淡蓝色,用硫代硫酸钠(3.7)标准溶液将蓝色退去,加甲基红(3.9)3滴用氢氧化钠(3.5)标准溶液滴定至橙色出现即为终点。

5.7 同时用等量的棉花、水作空白试验。

6.计算及结果表示

按下式计算烟气中酸雾的含量,结果保留至小数点后一位。

酸雾含量(g/m 3)=0

2221104.49)]')(21(2)')(([V V V I c V V NaOH c ?--- 式中:C (NaOH )——NaOH 溶液的物质的量浓度

mol/L

V 1—NaOH 标准溶液的用量 ml

V 1’—空白试验消耗NaOH 标准溶液用量 ml

C(1/2I 2)—标准碘液物质的量浓度 mol/L

V 2—试验所消耗标准碘的体积 ml

V 2’—空白试验消耗碘标准溶液用量 ml

V 0—采样气体体积(标准状态) L

49.04—1/2(H 2SO 4)的摩尔质量 g/mol

采样体积V 0(标准状态)计算如下:

0V ------标准状态下的被测气体的采样体积,L ;

0T ------标准状态下的绝对温度,273K ;

0P ------标准状态下的大气压,760mmHg ;

测T ------采样时的绝对温度,K (即273+t );

测P =O H P P 2-大气压

(大气压P 为采样时大气压力;O H P 2为采样气体温度下的饱和水蒸汽压); 测Q ------采样时流量计指示读数,L/min ;

t ---------采样时间,min ;

校r -------校正流量计用气体(一般为空气)密度,g/L ;

测r ------采样气体在标准状态下的密度,g/L

经过简化得到下式:

t

273t 1.030.6220+-????=O H P P Q V 大气压测 7.注意事项

7.1.更换蒸馏水或棉花时,需重新做空白试验。

7.2.采样管与六连球(或两个三连球)用橡皮管连接时必须对接(两连接玻璃管端头靠紧)。 000r r t P T P T Q V ??????=测测测

校测

7.3样气中含有大量的水时,要在六连球管前加一水分离管(旋风),以防止棉花塞润湿后

失去捕集作用,分离液一并入烧杯参加测定。

7.4在电除雾器进口采样时,如有大量矿尘带入六连球管时,在滴定前需用铺两张滤纸的布

氏漏斗将矿尘滤除,并用蒸馏水洗涤至中性,洗涤液并入滴定烧杯中参加测定。

7.5测定除雾效率时,必须进出口同时采样。

7.6采样后在吹除棉花塞中二氧化硫时,如水分分离管有冷凝水,可晃动分离管促使SO2

逸出。

7.7如果测定气体中SO3高时,在六连球棉塞内加2ml蒸馏水,以增高捕集效率。

7.8用湿式流量计取样时,V0应进行校正。

7.9.电除雾器进口的酸雾测定用C(NaOH)≈0.1mol/L 标准溶液滴定。

锅炉烟气中二氧化硫的测定实验指导

锅炉烟气中二氧化硫的测定 一、实验目的 掌握甲醛吸收-副玫瑰苯胺分光光度法测定烟气中的二氧化硫的方法 学会使用尘毒采样器 熟练使用分光光度计 熟练滴定操作 复习标准曲线的测定 掌握正确的采样布点的方法 二、实验原理 二氧化硫被甲醛缓冲溶液吸收后,生成稳定的羟甲基磺酸加成化合物。在样品溶液中加入氢氧化钠使加成化合物分解,释放出二氧化硫与副玫瑰苯胺、甲醛作用,生成紫红色化合物,用分光光度计在577nm处进行测定。 三、仪器 多孔板吸收管(短时间采样) 空气采样器() 具塞比色管 分光光度计 四、试剂 1. 氢氧化钠溶液,c(NaOH)=1.5mo1/L。 2. 甲醛缓冲吸收液贮备液。吸取36%~38%的甲醛溶液5.5mL,CDTA-2Na溶液 (3.2)20.00mL;称取2.04g邻苯二甲酸氢钾,溶于小量水中;将三种溶液合并,再用水稀释至100mL,贮于冰箱可保存1年。 3. 甲醛缓冲吸收液。 用水将甲醛缓冲吸收液贮备液(3.3)稀释100倍而成。临用现配。 4. 乙二胺四乙酸二钠盐(EDTA)溶液,0.05g/100mL。 称取0.25gEDTA[-CH2N(CH2COONa)CH2COOH]2·H20溶于500mL新煮沸但已冷却的水中。临用现配。 5. 二氧化硫标准溶液。 称取0.200g亚硫酸钠(Na2SO3),溶于200mLEDTA·2Na溶液(3.13)中,缓缓摇匀以防充氧,使其溶解。放置2~3h后标定。此溶液每毫升相当于320~400μg二氧化硫。

标定出准确浓度后,立即用吸收液(3.4)稀释为每毫升含10.00μg二氧化硫的标准溶液贮备液,临用时再用吸收液(3.4)稀释为每毫升含1.00μg二氧化硫的标准溶液。在冰箱中5℃保存。10.0Qμg/mL的二氧化硫标准溶液贮备液可稳定6个月;1.00μg/mL的二氧化硫标准溶液可稳定1个月。 6. 副玫瑰苯胺(Pararosaniline,简称PRA,即副品红,对品红)贮备液,0.20g/100mL。 其纯度应达到质量检验的指标(见国标附录A)。 7. PRA溶液,0.05g/100mL。 吸取25.00mLPRA贮备液(3.15)于100mL容量瓶中,加30mL85%的浓磷酸,12mL浓盐酸,用水稀释至标线,摇匀,放置过夜后使用。避光密封保存。 五、测定步骤 采样: 短时间采样:根据空气中二氧化硫浓度的高低,采用内装10mL吸收液的U形多孔玻板吸收管,以O.5L/min的流量采样。采样时吸收液温度的最佳范围在23~29℃。 分析步骤 1. 校准曲线的绘制 取14支10mL具塞比色管,分A、B两组,每组7支,分别对应编号。A组按表1配制校准溶液系列: 表1 B组各管加入1.00mL PRA溶液(3.15),A组各管分别加入0.5mL氢氧化钠溶液(3.1),混匀。再逐管迅速将溶液全部倒入对应编号并盛有PRA溶液的B管中,(立即具塞混匀后放入恒温水浴中显色。显色温度与室温之差应不超过3℃,)根据不同季节和环境条件按表2选择显色温度与显色时间: 表2

粉煤灰三氧化硫含量作业指导书

粉煤灰三氧化硫检验作业指导书检测依据: GB/T176-2017《水泥化学分析方法》硫酸盐三氧化硫的测定——硫酸钡重量法(基准法)。 试样制备: 采用四分法将试样缩分至约100g,经150μm方孔筛筛析后,除去杂物,用磁铁吸去筛余物中的金属铁。将筛余物经过研磨后使其全部通过孔径为150μm方孔筛,充分混匀,装入干净、干燥的试样瓶中,密封,进一步混匀供测试用。 提示:尽可能快的进行试样制备,以防吸潮。 试剂制备: ①盐酸1+1:将50mL的水加入洁净的适量容积的烧杯中,然后加入50mL的市售盐酸(浓度36%),边加边搅拌。然后转移入试剂瓶中。 ②氯化钡溶液(100g/L):将100g氯化钡(BaCl2·2H2O)溶于水中,加水稀释至1L,必要时过滤后使用。 ③硝酸银溶液(5g/L):将5g硝酸银(AgNO3)溶于水中,加入1mL硝酸,加水稀释至100mL,贮存于棕色瓶中。 试验步骤: 1、称取约试样(m1),精确至,置于200mL的烧杯中,加入40mL的水搅拌试样使其完全分散。

2、在搅拌下加入10mL的盐酸(1+1)①,用平头玻璃棒压碎块状物,慢慢的加热溶液直至水泥完全分解。 3、将溶液加热微沸5-10min,用中速滤纸过滤,用热水洗涤10-12次,滤液及洗液收集与400mL烧杯中。加水稀释至250mL,玻璃棒底部压一小片定量滤纸,盖上表面皿,加热煮沸,在微沸下从杯口缓慢逐滴加入10mL热的氯化钡溶液②,继续微沸数分钟使沉淀良好地形成,然后在常温下静置12h-24h,溶液的体积应保持在约200mL。 4、将静置过的溶液用慢速滤纸过滤,用热水洗涤,用胶头擦棒和定量滤纸片擦洗烧杯及玻璃棒,洗涤至检验无氯离子为止(用水冲洗一下漏斗的下端,继续用水洗涤滤纸和沉淀,将滤液收集于试管中,加几滴硝酸银溶液③,观察试管中的溶液是否浑浊。如果浑浊,继续洗涤并检验,直至用硝酸银检验不再浑浊为止)。 5、将沉淀及滤纸一并移入灼烧恒量的瓷坩埚中,灰化完全后,放入800-950℃的高温炉内灼烧30min以上。取出坩埚,置于干燥器中冷却至室温,称量。反复灼烧,直至恒量后置于干燥器中冷却至室温后称量(m2)。 6、三氧化硫的质量百分数: ωso3=(m2-m02)×÷m1×100 式中: ωso3— — 硫酸盐三氧化硫的质量分数(%);

空气中二氧化硫监测

空气中二氧化硫(SO2)监测 甲醛缓冲溶液吸收—盐酸副玫瑰苯胺分光光度法 一.监测目的 1、掌握大气采样器的使用方法。 2、用分光光度法测定SO2的方法。 3、通过对环境空气中二氧化硫的监测,判断空气质量是否符合标准,为空气质量状况评价提供标准。 4、根据校园SO2分布情况,追踪寻找污染源,并提出规划建议。 二.基础资料收集 改革开发以来,我国经济社会得到了全面发展,与此同时,由于污染物排放大量增加,大气环境面临着巨大的压力。而SO2作为环境空气污染的主要因子之一,每次都是环境空气质量监测中的必测项目。成都市位于四川省中部,四川盆地西缘,成都平原的腹心地。它东西长192km,南北宽166km,幅员总面积12,378km2。成都市是四川省省会,全省政治、经济、金融、科学文化和交通信息的支撑中心。本市属亚热带湿润季风气候。其特点:四季分明,冬无严寒,夏无酷暑;风速小、日照少、阴天多、湿度大;多年平均降水量900~1000mm,多年平均相对湿度82%,平均气压956hpa;常年主导风向为北北东风,平均风速在112m/s以下,多年静风频率46%。本市区范围内热岛效应明显,逆温频繁,城市区域大气气象条件对大气污染物的扩散存在明显的不利影响。成都主要污染物为二氧化硫,二氧化氮,可吸入颗粒物。实验室目前常用的测定环境空气中SO2主要方法为甲醛缓冲溶液吸-盐酸副玫瑰苯胺分光光度法。自从1990年此方法在全国推广应用以来,取代了我国监测领域只能用四氯汞钾法测定的历史。甲醛法与汞法相比具有试剂无剧毒、价廉易得、甲醛标准溶液和样品溶液稳定性好等优点。 三.监测内容 监测空气中的二氧化硫浓度。我们小组负责二氧化硫的监测。是利用甲醛吸收-副玫瑰苯胺分光光度法监测SO2。通过监测数据绘制标准曲线,并分析校区二氧化硫的含量及污染情况。最后汇总空气质量情况。 四.监测方案的制定 1.采样地点 根据布设采样点原则。要离污染源50m以外,同时附近要有适当的车辆通道。校园的污染源主要有锅炉房。考虑各方面的综合因素(仪器电源,污染源距离等)将不布点设在校门口的警务室附近10m远处。 2.采样频率及采样时间 根据天气预报的情况,确定采样时间。采样连续三天,每天采样三次,时间分别为8:30-9:30;10:30-11:30,13:30-14:30。每次采样1h 3.采样方法 采用内装10ml 吸收液的多孔玻板吸收管,以0.3L/min 的流量采气60min。吸收液温度保持在23℃~29℃范围。样品采集过程中应避免阳光照射。 现场空白:将装有吸收液的采样管带到采样现场,除不采气之外,其他环境条件与样品相同。

紫外吸收法测试烟气中SO2

第一章烟气监测中干扰SO2测试的几种气体随着国家环保部开展的以锅炉或炉窑监测SO2/NOx为主的气态污染源调查,以及全国各省市环保局主张的CEMS在线监测系统的大力普及,SO2/NOx的CEMS在线监测与瞬时监测之间的数据不统一性的矛盾日趋突出。 目前国内普及的SO2/NOx 常用的瞬时监测仪器多为恒电位电解法—亦即电化学传感器法,国内自95年推出第一台电化学传感器的烟气测试仪以来,以电化学传感器为探测原件的便携式烟气监测仪籍其体积小、重量轻、测试方便等特点在十五年间迅速占领中国市场,成为锅炉烟气或炉窑尾气排放监测的主打仪器,目前国内生产该类型的便携式监测仪器有十几个生产厂家,加上来自英国、德国等国外品牌,供货厂家大致有20个。 几乎所有的便携式的以电化学传感器为探测元件的生产厂家都使用同一厂家即英国CITY公司生产的3SF/F—SO2传感器/3NF—NO传感器,个别厂家使用或部分使用瑞士公司生产的电化学传感器。 本人自1991年参加工作以来,一直从事烟尘烟气便携式测试仪器的市场调研、研发定向及市场推广、售后服务等,在实际的工作当中不断有用户反映烟气或管道气SO2的监测数据误差较大。我所接触的顾客最早提出该问题的是上海市环境监测中心,他们提出在对管道煤制气的监测中,SO2显示数值特别高,到了无法令人信服的地步,由于当时对SO2电化学的相关知识知之甚少,当时无法解答顾客的

疑问。2000年后,随着各地装备的CEMS在线监测仪器越来越多,CEMS的标定及校准仍使用电化学传感器的便携式烟气监测仪,但某些行业--例如水泥行业、铝业制造及钢铁冶炼高炉等炉窑的SO2排放使用原来电化学仪器标定其CEMS的SO2数值大部分是明显偏高的。 2007年8月,中国环境监测总站在青岛召开各省、直辖市、省会城市环境监测工作会议,许多与会代表提出目前电化学传感器测试烟气中的SO2存在许多问题,中环总站副站长在会上指出:电化学传感器是否继续适用我国的固定污染源测试值得商榷?建议环境监测仪器的生产厂家抓紧时间研制稳定、可靠的SO2测试仪。 2008年3月份,山东省环境监测中心、淄博市环境监测站、淄博市淄川区环境监测站三级监测部门分别使用英国、雷博3020烟尘烟气测试仪及3012自动烟尘气测试仪对淄川辖区的山水水泥集团淄博分公司的一台水泥轮窑尾气排放进行监测,测出的SO2结果分别为0、2200、3700mg/m3.出现明显错误,针对这一现象,淄博市环境监测中心曾两次召开办公会研究对策,顾客曾多次质疑我公司,为什么会出现这么大的差异。带着疑问笔者与英国CITY公司上海办事处的技术支持张先生多次深入探讨,3SF/F SO2电化学传感器的影响因素除温度、压力外,主要的影响因子就是烟气成分的复杂多样。 附表一列出了烟气其它气体组分对SO2监测的正负干扰及大致干扰幅度。 笔者于2008年12月参加中铝中州分公司高炉的现场监测,用英国一公司生产的电化学传感器的便携式仪器测试其SO2为

矿粉三氧化硫试验方法及试验用药品

矿粉三氧化硫测定 (硫酸钡重量法-基准法) 试验方法及试验用药品 一.试验用化学试剂 盐酸(1+1)【氯化氢HCL(1:1)注:氯化氢与水质量比为1:1】、氯化钡溶液、销酸银溶液、硝酸【HNO3】。 化学试剂配制方法: 盐酸(1+1)=氯化氢(1:1)注:氯化氢与水质量比为1:1进行稀释。 氯化钡溶液(100g/L)=将100g氯化钡(BaCl2·2H2O)溶于水中,加水稀释至1L。 销酸银溶液(5g/L)=将0.5g硝酸银(AaNO3)溶于水中,加入1mL 硝酸,加水稀释至100mL,贮存于棕色瓶中。 二.试验用仪器 电子天平(精度:0.1g、0.0001g)、200mL烧杯、400mL烧杯、(平头)玻璃棒、定量滤纸、慢速定量滤纸、表面皿、瓷坩埚、高温炉、干燥器等。 三.三氧化硫的测定----硫酸钡重量法(基准法) 1.方法提要 在酸性溶液中,用氯化钡溶液沉淀硫酸盐,经过滤灼烧后,以硫酸钡形式称重。测定结果以三氧化硫计。 2.分析步骤

称取约0.5g试样(m1),精确至0.001g,置于200mL烧杯中,加入约40mL水,搅拌使试样完全分散,在搅拌下加入10mL盐酸(1+1),用平头玻璃棒压碎块状物,加热煮沸并保持微沸(5〒0.5)min。用中速滤纸过滤,用热水洗涤10~12次,滤液及洗液收集于400mL烧杯中。加水稀释至约250mL,玻璃棒底部压一小片定量滤纸,盖上表面皿,加热煮沸,在微沸下从杯口缓慢逐滴加入10mL热的氯化钡溶液,继续微沸3min以上使沉淀良好地形成,然后在常温下静置12h~24h或温热处静置至少4h(仲裁分析应在常温下静置12h~24h),此时溶液体积应保持在约200mL。用慢速定量滤纸过滤,以温水洗涤,直至检验无氯离子为止。 将沉淀及滤纸一并移入已烧恒量的瓷坩埚中,灰化完全后,放入800℃~950℃的高温炉内灼烧30min,取出坩埚,置于干燥器中冷却至室温,称量(m2)。反复灼烧,直至恒量。 3.结果的计算与表示 试样中三氧化硫的质量分数w so3按下式计算: w so3=[(m2〓0.343)〔m1]〓100 式中:w so3--三氧化硫的质量分数,%; m2----灼烧后沉淀的质量,单位为克(g); m1----试样的质量,单位为克(g); 0.343--硫酸钡对三氧化硫的换算系数。

环境空气二氧化硫的测定--甲醛吸收-盐酸副玫瑰苯胺分光光度法及空气中颗粒物的测定

实验报告 课程名称:环境监测实验 指导老师:王凤平 成绩:________ ___ 实验名称:环境空气二氧化硫的测定--甲醛吸收-盐酸副玫瑰苯胺分光光度法及空气中颗粒物的测定 实验类型: 同组学生姓名: 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 一、实验目的 1、了解并掌握环境空气二氧化硫的测定--甲醛吸收-盐酸副玫瑰苯胺分光光度法的原理和操作。 2、了解并掌握空气中颗粒物的测定的原理及方法。 二、实验原理 1、环境空气二氧化硫的测定--甲醛吸收-盐酸副玫瑰苯胺分光光度法: 本标准适用于环境空气中二氧化硫的测定。当用10 ml 吸收液采样30 L 时,本法测定下限为0.007 mg /m 3;当用50 ml 吸收液连续24 h 采样300 L 时,空气中二氧化硫的测定下限为0.003 mg /m 3。 测定中主要干扰物为氮氧化物、臭氧及某些重金属元素。样品放置一段时间可使臭氧自动分解;加入氨磺酸钠溶液可消除氮氧化物的干扰;加入CDTA 可以消除或减少某些金属离子的干扰。在10 ml 样品中存在50μg 钙、镁、铁、镍、镉、铜等离子及5μg 二价锰离子时,不干扰测定。 二氧化硫被甲醛缓冲溶液吸收后,生成稳定的羟甲基磺酸加成化合物。在样品溶液中加入氢氧化钠使加成化合物分解,释放出二氧化硫与副玫瑰苯胺、

甲醛作用,生成紫红色化合物,用分光光度计在577 nm处进行测定。 结果表示 计算空气中二氧化硫的浓度按下式计算: 式中:A——样品溶液的吸光度; A0——试剂空白溶液的吸光度; Bs——校正因子,μg·SO2/12mL/A; Vt——样品溶液总体积,mL; Va——测定时所取样品溶液体积,mL; Vs——换算成标准状况下(0℃,101.325kPa)的采样体积,L。 二氧化硫浓度计算结果应准确到小数点后第三位。 2、空气中颗粒物的测定: 本方法适合于用大流量或中流量总悬浮颗粒物采样器进行空气中总悬浮颗粒物的测定。本方法的检测限为0.001mg/m3。总悬浮颗粒物含量过高或雾天采样使滤膜阻力大于10kPa时,本方法不适用。 通过具有一定切割特征的采样器,以恒速抽取定量体积的空气,空气中粒径小于100μm的悬浮颗粒物被阻留在已恒重的滤膜上。根据采样前后滤膜重量之差及采样体积,计算总悬浮颗粒物的浓度。滤膜经处理后,进行组分分析。 结果计算 总悬浮颗粒物含量

烟气SO2分析方法

1.1烟气中二氧化硫含量的测定及吸收率计算 1目的 测定进出口气中二氧化硫含量,可计算吸收率,调节吸收塔操作,使出口气中的二氧化硫含量控制在要求的范围内。 1.1.2原理 气体中所含的二氧化硫在通过一定量的碘溶液时被氧化成硫酸。其余气体收集在量气管中,待淀粉指示剂的兰色刚刚消失,表示反应完毕,根据碘和余气的数量可计算出二氧化硫的含量。 反应按下式进行: SO2 + I2 + H2O H2SO4 + 2HI 1.1.3仪器和试剂 A仪器 (1)反应管; (2)气体定量管(400毫升); (3)水准瓶(500毫升); (4)温度计(0--100℃); (5)采样管; (6)气体冷凝管; (7)移液管(10毫升)。 B试剂 (1)0.01N碘溶液; (2)0.001N碘溶液; (3)0.5%淀粉溶液; (4)蒸馏水。 1.1.4测定 A测定的准备工作 (1)检查量气管,水准瓶以及仪器装置是否漏气; (2)用移液管移取0.01N或0.001N (看气相中二氧化硫含量而定) 碘溶液10毫升注入反应管,加水至反应管的3/4处,加0.5%淀粉溶液2毫升,塞紧橡皮塞备用。 (3)检查采样管是否畅通。在负压下采样时,取样管与水准瓶连接,抬高水准瓶利用排水吸气法将样气抽处,充分置换进入反应管前管道中的余气,然后才进行测定。

B 测定方法 (1) 将仪器按图(1)连接好,旋转塞2,提高水准瓶,使气流由反应管的毛 细管中呈“豌豆;大小的气泡,由明显间隔的连续冒出,直到溶液兰色刚刚消失时,停止进气,将水准瓶中水位与量气管中的水位对平,读取量气管内气体体积和温度,根据读数进行查表和计算。 (2) 分析完毕后,打开水准瓶,使量气管内水位恢复零点。 1.1.5计算 二氧化硫含量的计算: 图1 气体中二氧化硫含量测定装置 1—气体管路;2—三通旋塞;3—冷却器;4—反应管;5—水准瓶;6—气体量管; 7—温度计 SO 2%(v )=N W N V t P P V V ++?-??273273760100 =N W N V t P P V V ++?-??])00367.01(760[100 式中: V N —与碘反应的二氧化硫体积(标准状态),毫升;V N =1.0944R ,R 为反应管中 加入的碘溶液的毫升数; V — 气体量管上表示的吸收二氧化硫后的余气体积,毫升; P — 大气压力,毫米汞柱;

水泥中三氧化硫含量的测定

水泥中三氧化硫含量得测定 水泥中得三氧化硫就是由石膏、熟料(特别就是以石膏作矿化剂煅烧得熟料)或混合材料引入,在水泥制造时加入适量石膏可以调节凝结时间,还具有增强、减缩等作用。制造膨胀水泥时,石膏还就是一种膨胀组分,赋予水泥以膨胀等性能,但水泥中得三氧化硫含量过多,却会引起水泥体积安定性不良等问题,因此,在水泥生产过程中必须严格控制水泥中得三氧化硫含量。 测定水泥中三氧化硫含量得方法多种,如硫酸钡质量法、磷酸溶样-氯化亚锡还原-碘量法以及离子交换法等。 一、 测定原理 1. 硫酸钡质量法得测定原理 用盐酸分解试样,时试样中不同形态得硫酸全部转变成可溶性得硫酸盐 ,以氯化钡沉淀剂,使之生成硫酸钡沉淀。该沉淀得溶解度极小,化学性质非常稳定,经灼烧后称重,再换算得出三氧化硫得含量,反应式如下: =↓(白色) 2. 碘量法得测定原理 水泥中得硫主要以硫酸盐硫(石膏)存在,部分硫存在于硫化钙、硫化亚锰、硫化亚铁等硫化物中。用磷酸溶解水泥试样时,水泥中得硫化物与磷酸发生下列反应,生成磷酸盐与硫化氢气体,其反应式如下: 3CaS +2=+3S ↑ 3MnS+2=+3S ↑ 3FeS+2=+3S ↑ 在有还原剂并加热得条件下,用浓磷酸溶解试样时,不仅硫化物与磷酸发生上述反应,硫酸盐也将与磷酸反应,生成得硫酸与还原剂氯化亚锡发生氧化还原反应,放出硫化氢气体。 根据碘酸钾溶液(加有碘化钾)在酸性溶液中析出碘得性质,在H2S 得吸收液中加入过量得碘酸钾标准溶液,使在溶液酸化时析出碘,并与硫化氢作用,剩余得碘则用硫代硫酸钠回滴,其反应式如下: 利用上述反应,先用磷酸处理试样,使水泥中得硫化物生成硫化氢溢出,然后用氯化亚锡-磷酸溶液处理试样,测定试样中得硫酸盐。 3.离子交换法得测定原理 水泥中得三氧化硫主要来自石膏,在强酸性阳离子交换树脂R-SO 3·H 得作用下,石膏在水中迅速溶解,离解成Ca 2+与,Ca 2+迅速与树脂酸性基团得H +进行交换,析出H +,它与石膏离解所得生成硫酸,直至石膏全部溶解,其离子交换反应式为: 2+2-44332CaSO Ca +SO +2R-SO H)R-SO )Ca+2H (固体)(( ⑴ ⑵ 在石膏与树脂发生离子交换得同时,水泥中得C 3S 等矿物将发生水解,生成氢氧化钙与硅酸: ⑶

空气中二氧化硫含量的简易测定方法

空气中二氧化硫含量的简易测定方法 作者/收集者:张锦耀 空气中的二氧化硫是造成大气污染的主要有害气体之一。在工业生产上规定空气中的二氧化硫,允许排放量不得超过0.02mg/L。否则将危害人类的健康,造成环境污染。通过本实验来对学生进行环保教育,增强环保意识。 一、实验原理 二氧化硫有还原性,能使碘(I2)还原成碘离子(I—),当二氧化硫通入碘一淀粉溶液中,则溶液由蓝色变为无色。 SO2 + I2 + 2H2O === H2SO4 + 2HI I2——淀粉呈蓝色 I———淀粉无色 二、测定装置 1.进气玻璃导管; 2.试管; 3.I2—淀粉溶液; 4.100mL注射器。 三、实验试剂 碘(I2)(AR级)、碘化钾、0.5%淀粉溶液。 四、实验步骤: 1.碘标准溶液的配制 准确称取1.27g粉末状纯碘(AR级),并称4g碘化钾,用少量水使之完全溶解,转入1000mL容量瓶中,定容1000mL,摇匀,取此溶液稀释10倍,即得5×10-4mol/L的碘溶液。 2.准确移取5mL5×10-4mol/L的碘溶液,注入测定装置图中的试管中,加2~3滴淀粉指示剂,此时溶液呈蓝色。按图连接好各仪器,在测定地点(如实验室或锅炉附近)徐徐抽气,每次抽气100mL,直到溶液的蓝色全部褪尽为止。记录抽气次数。 3.计算二氧化硫含量 设抽气次数为n,则空气中二氧化硫的含量为1.6/n mol/L。 五、注意事项 1.若空气中二氧化硫的允许含量以0.02mg/L为标准,则抽气次数n≥80次,才合符标准,否则超标。 2.抽气时应慢慢抽拉活塞,否则因抽拉太快,造成空气中二氧化硫未反应完全,产生误差。 3.碘的浓度以5×10-4mol/L为宜。若太稀不易观察化学计量点前后的颜色变化,若太浓,碘易挥发。 4.只要改变合适的吸收液,用该装置还可以测定空气中的其他有害气体(如一氧化碳)的含量。

废气SO2NOX现场测试复习题2003

废气中SO2、NO x、NO2复习题 一. 填空题 1.气态污染物在采样断面内,一般是混合均匀的,可取靠近(烟道中心)的一点作为采样点。(GB/T16157-1996固定污染源排气中颗粒物测定与气态污染物采样方法9.1.2) 2.气态污染物采样时,采样管入口与气流方向(垂直),或(背向)气流。 (空气和废气监测分析方法第349页) 3.根据气态污染物测试分析方法不同,分为(化学)法和(仪器直接测试)法。(GB/T16157-1996固定污染源排气中颗粒物测定与气态污染物采样方法9.2) 4.为防止烟尘进入试样干扰测定,在采样管入口或出口出装入阻挡尘粒的滤料,滤料应选择(不吸收)亦不与待测污染物起(化学反应)的材料,并能耐受(高温)排气。 (GB/T16157-1996固定污染源排气中颗粒物测定与气态污染物采样方法9.3.1.2) 5.烟气中的二氧化硫被(氨基磺酸铵)和(硫酸铵)混合溶液吸收,用碘标准溶液滴定。(空气和废气监测分析方法第349页) 6. 目前SO2测试常用的方法有(碘量法)、(定电位电解法)、(电导法)等,为避免采样气体在采样管中冷凝,通常对采样管进行(加热保温),温度(120—150)度。连接管要进行保温,内径应大于(6)mm,管长应(尽可能短)。 7. 烟气采样中应记录现场大气压力以及(采样流量)、(采样时间)、(流量前的气体温度),(流量前的气体压力)。 8.烟气化学法采气系统一般由(采样管)、连接导管、(吸收瓶)、旁路吸收瓶、干燥剂、(流量计)、(温度计)、(压力计)、抽气泵组成。 (环境空气监测质量保证手册110页) 9.烟气脱硫的工艺很多,根据脱硫介质的不同可分为(湿)法、(干)法和(半干)法。(环境测试技术基本理论试题集225页) 10.用吸收瓶采集烟气样品前,用旁路吸收瓶抽气的目的是为了置换吸收瓶前采样管路中的(空气),并使(滤料)被待测气体饱和。 (环境测试技术基本理论试题集225页) 11.用吸收瓶正式采集烟气样品前,应先用(旁路吸收瓶)抽气5-10min。 (环境测试技术基本理论试题集213页) 12.定电位电解二氧化硫测定仪在开机后,通常要倒计时,为仪器(标定零点)。 (HJ/T57-2000固定污染源排气中二氧化硫的测定定电位电解法6.1) 13. 定电位电解法测定烟道废气时,当仪器采样管插入烟道中,既可启动仪器抽气泵,抽取烟气进行测定。待仪器读数稳定后即可(读数)。同一工况下应连续测定(三)次,取(平均值)作为测量结果。 (HJ/T57-2000固定污染源排气中二氧化硫的测定定电位电解法6.2) 14. 定电位电解法电化学传感器灵敏度随时间变化,为保证测试精度,根据仪器使用频率每(三)月至(半)年需校准一次。 (HJ/T57-2000固定污染源排气中二氧化硫的测定定电位电解法6.4.1)

重量法检测三氧化硫应注意的问题

重量法检测三氧化硫应注意的问题 中国质量新闻网 2008-6-26 摘要本文探讨了重量法检测普通硅酸水泥产品中三氧化硫应注意的几个问题:掌握沉淀硫酸钡的条件;注意过滤、洗涤要求;掌握沉淀的灰化、灼烧及称量要点。 关键词重量法硫酸钡普通硅酸水泥 三氧化硫是判断普通硅酸水泥产品是否合格的重要理化指标之一。目前用重量法检测普通硅酸水泥产品中三氧化硫含量是最普通的检测方法。根据多年工作经验,笔者认为在检测中应注意以下几个问题: 掌握沉淀硫酸钡的条件 硫酸钡结晶初生成时比较细小,应严格遵守晶形沉淀的条件,以便获得相对大的晶形沉淀,便于过滤和洗涤。为了得到相对大的颗粒结晶,必须减小沉淀开始时溶液中硫酸钡的相对过饱和度,使沉淀剂与溶液中SO42-相遇的瞬间,生成较少的晶核,才能使较少的晶核渐渐增大成为较大的晶体。如果相对过饱和度大,瞬间生成很多晶核,在此后加入沉淀剂时,各晶体竞相生长,必然得到极多的极细小的晶体,甚至成为无定形沉淀,将很难过滤和洗涤,检验结果会有误差。 要取得理想的晶形沉淀,必须满足以下沉淀条件: 1.在稀溶液中进行沉淀。试验溶液及沉淀剂溶液均应为适当的稀溶液,以减小沉淀反应开始时溶液中硫酸钡的相对过饱和度。在测定水泥试样中三氧化硫时,0.5g试样最后制成约200ml溶液,沉淀剂为10%氯化钡溶液。但溶液也不能过稀,以免BaSO4沉淀溶解损失增大。 2.在热溶液中进行沉淀。试验溶液应在微沸条件下用氯化钡溶液进行沉淀。在热溶液中BaSO4的溶解度略有增大,从而降低了溶液的相对过饱和度。同时,在热溶液中还可减小BaSO4沉淀对杂质的吸附作用。沉淀完毕后冷却至室温,可减少BaSO4沉淀在热溶液中的溶解损失。 3.慢慢滴加沉淀剂。可用滴支吸取后慢慢加入热溶液中,切不可将10mlBaCL2溶液一次性全倒入试验溶液中。 4.在不断搅拌下加入氯化钡溶液,防止因试验溶液中氯化钡局部过浓而生成过多晶核。

烟气中二氧化硫及粉尘的计算方法

一、燃料燃烧过程二氧化硫排放量的计算 1.煤炭中硫的成分可分为可燃硫和非可燃硫,可燃硫约占全部的80%,计算公式如下: Gso2=2××B×S×(1-η)=×(1-η) 2. 燃油二氧化硫排放的计算公式如下: Gso2=2BS×(1-η) 式中:Gso2—SO2产生量量,kg ; W—燃煤(油)量,kg; S—煤(油)的全硫分含量,(重量) %; η—脱硫设备的脱硫效率%(实测值),无脱硫装置的脱硫效率η值为0 。 3. 燃烧天然气二氧化硫排放的计算公式如下: Gso2=×C H S×10-3 式中:Gso2—SO2产生量量,kg ; V—气体燃料消耗量,m3(标); C H S—气体燃料中H2S的体积%。 二、工艺过程产生气体污染物排放量计算 1.水泥生产中SO2排放量计算: G SO2=2×(B×式中: Gso2—水泥熟料烧成中排放SO2量,t; B—烧成水泥熟料的煤耗量,t; S—煤或油的全硫分含量,(重量)%; M—水泥熟料产量,t; f1—水泥熟料中S032-的含量(%); G d—水泥熟料生产中产生的窑灰量,回转窑一般占孰料量的25%(20%~30%),t; f2—粉尘中SO32-含量(%); —系数,即S/S032-=32÷80= 。 2.硫酸生产中排放S02的计算: Gso2=W×S×H×J×(1-Z)×(1-A)×2 式中:Gso2—硫酸废气SO2排放量,t; W—硫铁矿石用量,t; S—硫铁矿石含硫量(%): H—硫磺烧出率(%); J—净化工序硫的净化效率(%); Z—转化工序转化为SO3的转化率(%); A—尾气氨吸收净化率(%)。 3.烧结废气中排放SO2计算: G SO2=2×(SH-SJ-SF) 式中: G SO2—废气中SO2含量(千克/吨),烧结矿; SH—混合料中含硫量(千克/吨); SJ—烧结矿中含硫量(千克/吨); SF—粉尘带出的硫量(千克/吨)。 4. 工业粉尘排放量的计算: G d=10—6·Q f·C f·t 式中: G d—工业粉尘排放量,kg; Q f—排尘系统风量,m3(标)/h; C f—设备出口排尘浓度, mg/ m3(标)(实测); t—排尘除尘系统运行时间。

空气中二氧化硫的测定

空气中二氧化硫的测定 一、实验原理 将空气中的二氧化硫被四氯汞钾溶液吸收,生成稳定的络合物,再与甲醛和盐酸副玫瑰苯胺(PRA)反应生成紫红色化合物,比色定量。 二、器材 多孔玻板吸收管;气体采样器;具塞比色管25ml;分光光度计。 三、试剂 1、吸收液称取10.86g二氯化汞,5.96g氯化钾,0.066g乙二胺四乙酸二钠盐溶于水中,并稀释至1L。 2、6g/L氨基磺酸溶液称取0.6g氨基磺酸,溶于100ml水中,临用现配。 3、0.2%甲醛溶液量取1mL含量为36%~38%的甲醛,用水稀释到200ml。临用新配。 4、盐酸副玫瑰苯胺溶液储备溶液(2g/L)准确称取0.200g盐酸副玫瑰苯胺盐酸盐(PRA),其纯度不得少于95%,溶于100ml 1mol/L盐酸溶液中。 5、盐酸副玫瑰苯胺溶液使用液(0.16g/L)精确量取储备液20ml于250ml容量瓶中,加25ml 3mol/L磷酸溶液,并用水稀释到刻度。暗处保存,可保存6个月。 6、二氧化硫标准溶液称取0.20g亚硫酸钠(Na2SO3),溶解于250ml吸收液中,放置过夜,用滤纸过滤。此液1ml约含有相当于320~400μg二氧化硫,用下述碘量法标定浓度。标定后,立即用吸收液稀释成1.00ml含5μg的二氧化硫标准溶液。由于标准溶液不稳定,所以标定后当天使用。 四、采样 用一支内装10.0ml吸收液的U型多孔玻板吸收管,在采样点以0.5L/min流速,采气30L(大气)或10L(车间空气)。记录采样时的气温和气压。 五、分析步骤 1、样品处理将采样后的吸收液全部转入25ml比色管中,用吸收液洗涤吸收管3次,合并洗液于比色管中,定容至25ml,此为样品液。 2、取7支10ml具塞比色管,按下表配制二氧化硫标准系列: 管号0 1 2 3 4 5 6 标准应用液(ml)0 0.40 0.80 1.20 1.60 2.00 样品液1.00ml 吸收液(ml) 4.0 3.60 3.20 2.80 2.40 2.00 3.00 3、向样品管、标准管中各加入6.0g/L氨基磺酸溶液0.40mL,混匀,放置5min。 4、各加0.2%甲醛溶液0.50ml,0.16g/L盐酸副玫瑰苯胺应用液2.00ml,加蒸馏水至10ml,混匀,室温显色15min。 5、在波长548nm下,用1cm比色杯,以蒸馏水调零,测定吸光度值。 6、以标准系列管吸光度值对二氧化硫含量(μg)绘制标准曲线。 7、将测得样品管吸光度值,查标准曲线,即得二氧化硫含量(μg)。 六、计算 空气中二氧化硫的浓度(mg/m3)= (a/V0)×25 式中:a为样品管中二氧化硫含量,μg;V0为换算成标准状况下的采气体积,L。 七、注意事项 1、亚硫酸氢钠在存放过程中易氧化变质,若使用存放已久的亚硫酸氢钠,则应适当增加称取量。 2、盐酸副玫瑰苯胺不易溶于水,应先研细后,再用盐酸溶解。配制的溶液应放置3d后作用,才达到稳定状态。

高中化学实验实操空气中二氧化硫含量的简易测定方法

空气中二氧化硫含量的简易测定方法 空气中的二氧化硫是造成大气污染的主要有害气体之一。在工业生产上规定空气中的二氧化硫,允许排放量不得超过0.02mg/L。否则将危害人类的健康,造成环境污染。通过本实验来对学生进行环保教育,增强环保意识。 一、实验原理 二氧化硫有还原性,能使碘(I2)还原成碘离子(I—),当二氧化硫通入碘一淀粉溶液中,则溶液由蓝色变为无色。 SO2 + I2 + 2H2O === H2SO4 + 2HI I2——淀粉呈蓝色 I———淀粉无色 二、测定装置 1.进气玻璃导管; 2.试管; 3.I2—淀粉溶液; 4.100mL注射器。 三、实验试剂 碘(I2)(AR级)、碘化钾、0.5%淀粉溶液。 四、实验步骤: 1.碘标准溶液的配制 准确称取1.27g粉末状纯碘(AR级),并称4g碘化钾,用少量水使之完全溶解,转入1000mL容量瓶中,定容1000mL,摇匀,取此

溶液稀释10倍,即得5×10-4mol/L的碘溶液。 2.准确移取5mL5×10-4mol/L的碘溶液,注入测定装置图中的试管中,加2~3滴淀粉指示剂,此时溶液呈蓝色。按图连接好各仪器,在测定地点(如实验室或锅炉附近)徐徐抽气,每次抽气100mL,直到溶液的蓝色全部褪尽为止。记录抽气次数。 3.计算二氧化硫含量 设抽气次数为n,则空气中二氧化硫的含量为1.6/n mol/L。 五、注意事项 1.若空气中二氧化硫的允许含量以0.02mg/L为标准,则抽气次数n≥80次,才合符标准,否则超标。 2.抽气时应慢慢抽拉活塞,否则因抽拉太快,造成空气中二氧化硫未反应完全,产生误差。 3.碘的浓度以5×10-4mol/L为宜。若太稀不易观察化学计量点前后的颜色变化,若太浓,碘易挥发。 4.只要改变合适的吸收液,用该装置还可以测定空气中的其他有害气体(如一氧化碳)的含量。

固定污染源排气中二氧化硫的测定 定电位电解法

固定污染源排气中二氧化硫的测定 定电位电解法 Determination of sulpur dioxide from exhausted gas of stationary source Fixed-potential electrolysis method HJ/T57-2000 1、范围 本标准规定了定电位电解法测定固定污染源排气中二氧化硫浓度以及测定二氧化硫排放总量的方法。 2、引用标准 下列标准所包含的条文,在本标准中引用构成本标准的条文,与本标准同效。 GB/TI6157—1996固定污染源排气中颗粒物测定和气态污染物采样方法 3、原理 烟气中二氧化硫(SO2)扩散通过传感器渗透膜,进入电解槽,在恒电位工作电极上发生氧化反应: SO2+2H2O=SO4-2+4H++2e 由此产生极限扩散电流i,在一定范围内,其电流大小与二氧化硫浓度成正比,即: 在规定工作条件下,电子转移数Z、法拉第常数F、扩散面积S、扩散系数D和扩散层厚度δ均为常数,所以二氧化硫浓度c可由极限电流i来测定。

测定范围:15mg/m3~14300mg/m3。测量误差±5%。 影响因素:氟化氢、硫化氢对二氧化硫测定有干扰。烟尘堵塞会影响采气流速,采气流速的变化直接影响仪器的测试读数。 4、仪器 41定电位电解法二氧化硫测定仪。 4.2带加热和除湿装置的二氧化硫采样管。 4.3不同浓度二氧化硫标准气体系列或二氧化硫配气系统。 4.4能测定管道气体参数的测试仪。 5、试剂 5.1二氧化硫标准气体。 6、步骤 不同测定仪,操作步骤有差异,应严格按照仪器说明节操作。 6.1开机与标定零点 将仪器接通采样管及相应附件。定电位电解二氧化硫测定仪在开机后,通常要倒计时,为仪器标定零点。标定结束后,仪器自动进入测定状态。 6.2测定 采样应在额定负荷或参照有关标准或规定下进行。 将仪器的采样管插入烟道中,即可启动仪器抽气泵,抽取烟气进行测定。待仪器读数稳定后即可读数。同一工况下应连续测定三次,取平均值作为测量结果。

烟气中二氧化硫及粉尘的计算方法

烟气中二氧化硫及粉尘 的计算方法 文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]

一、燃料燃烧过程二氧化硫排 放量的计算 1.煤炭中硫的成分可分为可燃硫和非可燃硫,可燃硫约占全部的80%,计算公式如下: Gso 2=2×0.8×B ×S ×(1-η)=1.6BS ×(1-η) 2. 燃油二氧化硫排放的计算公式如下: Gso 2=2BS ×(1-η) 式中:Gso 2—SO 2产生量量,kg ; W —燃煤(油)量,kg ; S —煤(油)的全硫分含量,(重量) %; η—脱硫设备的脱硫效率%(实测值),无脱硫装置的脱硫效率η值为0 。 3. 燃烧天然气二氧化硫排放的计算公式如下: Gso 2=2.857V ×C H S ×10-3 式中:Gso 2—SO 2产生量量,kg ; V —气体燃料消耗量,m 3(标); C H S —气体燃料中H 2S 的体积%。 二、工艺过程产生气体污染物排放量计算 1.水泥生产中SO 2排放量计算: G SO2=2×(B ×S-0.4Mf 1-0.4G d f 2) 式中: Gso 2—水泥熟料烧成中排放SO 2量,t ; B —烧成水泥熟料的煤耗量,t ; S —煤或油的全硫分含量,(重量)%; M —水泥熟料产量,t ; f 1—水泥熟料中S032-的含量(%); G d —水泥熟料生产中产生的窑灰量,回转窑一般占孰料 量的25%(20%~30%),t ; f 2—粉尘中SO 32-含量(%); 0.4—系数,即S /S032-=32÷80=0.4 。 2.硫酸生产中排放S02的计算: Gso 2=W ×S ×H ×J ×(1-Z)×(1-A)×2 式中:Gso 2—硫酸废气SO 2排放量,t ; W —硫铁矿石用量,t ; S —硫铁矿石含硫量(%): H —硫磺烧出率(%); J —净化工序硫的净化效率(%); Z —转化工序转化为SO 3的转化率(%); A —尾气氨吸收净化率(%)。 3.烧结废气中排放SO 2计算: G SO2=2×(SH -SJ -SF) 式中: G SO2—废气中SO 2含量(千克/吨),烧结矿; SH —混合料中含硫量(千克/吨); SJ —烧结矿中含硫量(千克/吨); SF —粉尘带出的硫量(千克/吨)。 4. 工业粉尘排放量的计算: G d =10—6·Q f ·C f ·t 式中: G d —工业粉尘排放量,kg ; Q f —排尘系统风量,m 3(标)/h ; C f —设备出口排尘浓度, mg/ m 3(标)(实测);

hj57-2017固定污染源废气二氧化硫的测定定电位电解法培训试题

HJ 57-2017固定污染源废气二氧化硫的测定定 电位电解法培训试题 姓名:分数: 一、填空题(每空2分,共40分) 1、标准HJ 57-2017 的方法检出限为mg/m3,测定下限为 ( mg/m3。 2、二氧化硫浓度结果应保留位,当高于 mg/m3时保留3位有效数字。 3、监测前后应测定零气和二氧化硫标准气体,计算示值误差应不超过;系统偏差不超过,否则应查找原因,进行仪器维护或修复,直至满足要求。 4、样品测定结果应处于仪器的20%--100%之间,否则应重新(校准量程。 5、干扰显著,测定样品时必须同步测定一氧化碳浓度,一氧化碳浓度不超过 umol/mol时可用本标准测定样品。 6、用于气袋法校准测定仪的集气袋,容积为,内衬材料应选用对被测组分影响小的铝塑复合膜、等惰性材料。 7、标准给出的测定仪量程校准方法主要有a) 、b) 。 8、启动抽气泵,以测定仪规定的采样取样测定,待测定仪稳定后,按分钟保存测定数据,取连续测定数据的平均值。作为一次测量值。 9、测定仪更换二氧化硫后,应重新一氧化碳干扰实验。 10、定电位电解法传感器使用寿命一般不超过,到期后应及时更换;校准传感器时,若发现其动态范围变小,测量上限达不到,表明传感器已失效,应及时更换。

二、判断题(每题2分,共20分) 1、可采取包括采样管、导气管、除湿装置等全系统示值误差的检查代替分析仪示值误差和系统偏差的检查。() 2、本标准适用于固定污染源和环境空气以及无组织监测中的二氧化硫的测定。 3、取得测量结果后,待其示值回到零点附近后,可以不用零气清洗测定仪,直接关机断电,结束测定。() 4、除湿装置里的冷凝水,因其对测定结果不产生影响,可以不用排空。() 5、对于燃烧充分的燃气锅炉可以不用做一氧化碳的干扰性实验,因为排出的烟气里一氧化碳浓度低,不影响。() 6、在测定前需要事先检查二氧化硫测定仪、一氧化碳测定仪的气密性,确保系统气密性合格。() 7、测定仪长期不用时,每月应至少通电开机运行一次,以保持传感器的极化条件。() 8、采样器的滤尘装置应及时清洁,防止阻塞气路。() 9、零点漂移、量程漂移检查应每六个月进行一次,且符合标准条c)和d)的要求,否则应及时维护或修复仪器。() 10、二氧化硫采样时,应将采样管前端置于排气筒中的取样点上,堵严采样孔,使之不漏气。。() 二、选择题(每题 3分,共15分) 1、进入定电位电解法传感器的废气温度应不高于℃()。 A、80℃ B、 60℃ C、40℃ 2、测定仪应具有抗压能力,保证采样流量不低于其规定的。 A、压力范围 B、流量范围 C、量程范围 3、二氧化硫测定时对一次测量值,应获得不少于个有效二氧化硫浓度分

水泥厂化验室三氧化硫的测定树脂交换法

水泥厂化验室三氧化硫的测定(树脂交换法) 1、方法提要: 试样中的 Ca-SO4 与阳离子交换树脂在溶液中进行离子交 换,树脂中的H+被交换出来进入溶液中,用氢氧化钠标准溶 液滴定即可得出试样中三氧化硫的含量。 2、分析步骤 准确称取试样 0.5g (精确至 0.0003g ),置于 150ml 烧杯中(预先放入 5g 阳离子交换树脂和一根电磁搅拌棒),然后加 40ml 沸水,立即置于磁力搅拌器上搅拌 5 分钟,取下以快速定量滤纸过滤,用沸水洗涤树脂及残渣2—3 次(溶 液总体积在 70ml 左右),保存滤纸上的树脂以备再生。 滤液收集于 200ml 烧杯中(预先放入 2g 阳离子交换树脂和一根电磁搅拌棒),将烧杯再置于电磁搅拌器上搅拌 2 分钟,用滤布再次过滤,并洗涤 3~4 次,将滤液收集于 300ml 烧杯中,保存树脂以备再生。 向收集滤液的烧杯中加入 5—6 滴酚酞指示剂( 10g/l ),

以0.05mol/l的NaOH标准滴定溶液滴定至溶液出现微红色 (30秒不消失)。 3、结果表示: 三氧化硫的百分含量按下式计算: T so/ V SO= x 100 m 式中:T soe------每毫升NaOH标准溶液相当于三氧化硫的克数 ( g/ml ) V——滴定消耗NaOH标准溶液的毫升数(ml) m 试样质量(g)

f-CaO 的测定 方法A:甘油酒精法: 1、方法提要 熟料与甘油混合后,熟料中的游离钙与甘油化合(MgO

不与甘油发生反应),生成弱酸性的甘油酸钙,并溶于溶液中,酚酞指示剂使溶液呈红色,用苯甲酸无水乙醇溶液滴定生成的甘油酸钙至溶液退色,由苯甲酸消耗量可求出游离钙的含量。 2、分析步骤 准确称取熟料试样0.5g,置于150ml洁净干燥锥形瓶中,加15ml无水甘油无水乙醇溶液,摇动使试样分散均匀,装上循环冷凝器,放在有石棉网的低温电炉上加热到微沸,并保持30分钟,加热完毕,关上电炉。取下锥形瓶立即用 0.10mol/l的苯甲酸无水乙醇溶液滴定至红色消失。 3、结果表示 f-CaO的百分含量按下式计算: T cao XV f-CaO = x 100% m 式中:T cao-----每毫升苯甲酸无水乙醇溶液相当于f-CaO的 克数(g/ml ) V ---- 滴定时消耗苯甲酸无水乙醇溶液的总毫升数 ml)

相关文档
相关文档 最新文档