文档库 最新最全的文档下载
当前位置:文档库 › 实验三 傅里叶变换与分析

实验三 傅里叶变换与分析

实验三 傅里叶变换与分析
实验三 傅里叶变换与分析

实验三 傅里叶变换与分析

一、实验目的

⑴掌握连续时间信号傅里叶变换和傅里叶逆变换的实现方法以及傅里叶变换的时移特性、频移特性的实现方法;

⑵了解离散时间信号时域运算的基本实现方法,了解傅里叶变换的特点及其应用;

⑶掌握函数fourier 和函数ifourier 调用格式及其作用;

⑷掌握傅里叶变换的数值计算方法以及绘制信号频谱图的方法;

⑸通过本实验,掌握离散时间信号时域运算的原理及编程思想。

二、实验原理

1. 系统的频率特性

连续LTI 系统的频率特性是指系统在正弦信号激励下稳态响应随激励信号频率的变化而变化的情况。其定义为:)

()()(ωωωX Y H = 式中,X(ω)为系统激励信号的傅里叶变换,Y(ω)为系统在零状态条件下输出响应信号的傅里叶变换。 H(ω)是ω的复函数,其表达式:H(ω)=)()(ωφωj e H

)(ωH 随ω变化规律称为系统的幅频特性,)(ωφ随ω变化规律称为系统的相频特性。

2.连续时间信号傅里叶变换的数值计算方法

算法的理论依据:

dt e t f j F t j k ωω-+∞

∞-?=

)()(=ττττn jw n k e n f -∞-∞

=→∑)(lim 0 当f(t)为时限信号,n 取值可认作为是有限的,设为N ,则得:

τ

ττn jw N n k e n f k F --=∑=1

0)()( N k ≤≤0 式中k N k τ

πω2= 三、程序设计实验

试画出信号f(t)=e -3t ε(t),f(t-4),以及信号f(t)e -j4t 的频谱图。

①f(t)=e-3tε(t)

程序代码:

r=0.02;t=-5:r:5;

N=200;

W=2*pi;

k=-N:N;

w=k*W/N;

f1=exp(-3*t).*stepfun(t,0);

F=f1*exp(-j*t'*w)*r;

F1=abs(F);P1=angle(F);

subplot(1,3,1);plot(t,f1);grid;

xlabel('t');ylabel('f(t)');

title('f(t)');

subplot(1,3,2);plot(w,F1);grid; xlabel('w');ylabel('幅频特性曲线'); subplot(1,3,3);plot(w,P1*180/pi);grid; xlabel('w');ylabel('相频特性曲线'); 程序运行结果的对应信号波形图:

②f(t-4)

程序代码:

r=0.02;t=0:r:10;

N=200;

W=2*pi;

k=-N:N;

w=k*W/N;

f2=exp(-3*(t-4)).*stepfun(t,4);

F2=f2*exp(-j*t'*w)*r;

F3=abs(F2);P2=angle(F2);

subplot(1,3,1);plot(t,f2);grid;

xlabel('t');ylabel('f(t-1)');

title('f(t-1)');

subplot(1,3,2);plot(w,F3);grid;

xlabel('w');ylabel('幅频特性曲线'); subplot(1,3,3);plot(w,P2*180/pi);grid; xlabel('w');ylabel('相频特性曲线');

程序运行结果的对应信号波形图:

③f(t)e-j4t

程序代码:

r=0.02;t=-5:r:5;

N=200;

W=2*pi;

k=-N:N;

w=k*W/N;

f=exp(-3*t).*stepfun(t,0).*exp(-j*4*t); F=f3*exp(-j*t'*w)*r;

F1=abs(F);P1=angle(F);

subplot(1,3,1);plot(t,f);grid;

xlabel('t');ylabel('f(t)e^(-j4t)');

title('f(t)e^(-j4t)');

subplot(1,3,2);plot(w,F1);grid;

xlabel('w');ylabel('幅频特性曲线'); subplot(1,3,3);plot(w,P1*180/pi);grid; xlabel('w');ylabel('相频特性曲线');

程序运行结果的对应信号波形图:

四、思考题

⑴周期信号的频谱物理含义是什么?

周期信号能表示成傅里叶级数的形式。意义是信号在每一个离散频率分量处的幅度。

⑵周期信号频谱有何特点?其频谱间隔与什么有关?

周期信号的频谱是离散的。其频谱间隔与周期T有关。

⑶了解连续函数傅里叶级数的性质及其应用。如何理解傅氏变换的各种特点?

线性,奇偶性,对称性,尺度变换,时移特性,频移特性,卷积定理,时域微分、积分,频域微分、积分。

⑷周期信号频谱与非周期信号频谱密度函数的区别与联系是什么?

①区别:周期信号的频谱是离散的。非周期信号的频谱是连续的。②联系:当周期T 趋向于无穷大时,相邻谱线的间隔趋近于无穷小,从而周期信号的频谱密度成为非周期信号的频谱。

傅里叶(Fourier)级数的指数形式与傅里叶变换

傅里叶(Fourier )级数的指数形式与傅里叶变换 专题摘要:根据欧拉(Euler )公式,将傅里叶级数三角表示转化为指数表示,进而得到傅里叶积分定理,在此基础上给出傅里叶变换的定义和数学表达式。 在通信与信息系统、交通信息与控制工程、信号与信息处理等学科中,都需要对各种信号与系统进行分析。通过对描述实际对象数学模型的数学分析、求解,对所得结果给以物理解释、赋予其物理意义,是解决实际问题的关键。这种数学分析方法主要针对确定性信号的时域和频域分析,线性时不变系统的描述以及信号通过线性时不变系统的时域分析与变换域分析。所有这些分析方法都离不开傅里叶变换、拉普拉斯变换和离散时间系统的z 变换。而傅里叶变换的理论基础是傅里叶积分定理。傅里叶积分定理的数学表达式就是傅里叶级数的指数形式。 不但傅里叶变换依赖于傅里叶级数,就是纯数学分支的调和分析也来源于函数的傅里叶级数。因此,傅里叶级数无论在理论研究还是在实际应用中都占有非常重要的地位。我们承认满足狄里克莱(Dirichlet )条件下傅里叶级数的收敛性结果,不去讨论和深究傅里叶展式的唯一性问题。 傅里叶级数的指数形式 一个以T 为周期的函数)(t f ,在]2 ,2[T T 上满足狄里克莱条件:1o

)(t f 连续或只有有限个第一类间断点;2o 只有有限个极值点。那么)(t f 在]2 ,2[T T - 上就可以展成傅里叶级数。在连续点处 ∑∞ =++=1 )sin cos (2)(n n n t n b t n a a t f ωω, (1) 其中 T πω2= , ),2,1,0(,cos )(2 22Λ==?-n dt t n t f T a T T n ω, (2) ),3,2,1(,sin )(2 22 Λ==?-n dt t n t f T b T T n ω, (3) 根据欧拉(Euler )公式:θθθsin cos j e j +=,(1)式化为 ∑∞=--?? ????-+++=10222)(n t jn t jn n t jn t jn n j e e b e e a a t f ωωωω ∑∞=-?? ? ???++-+=10222n t jn n n t jn n n e jb a e jb a a ωω, (4) 若令 dt t f T c T T ?-=22 0)(1 Λ,3,2,1,)(1 ]sin )[cos (1 sin )(1cos )(1222 2222 22==-=-=-=????-----n dt e t f T dt t n j t n t f T dt t n t f T j dt t n t f T jb a c T T t jn T T T T T T n n n ωωωωω Λ,3,2,1,)(1 22 ==?--n dt e t f T c T T t jn n ω 综合n n c c c -,,0,可合并成一个式子 Λ,2,1,0,)(1 22 ±±==?--n dt e t f T c T T t jn n ω, (5)

快速傅里叶变更fft的Matlab实现 实验报告

一、实验目的 1在理论学习的基础上,通过本实验加深对快速傅立叶变换的理解; 2熟悉并掌握按时间抽取FFT算法的程序; 3了解应用FFT进行信号频谱分析过程中可能出现的问题,例如混淆、泄漏、栅栏效应等,以便在实际中正确应用FFT。 二、实验内容 1仔细分析教材第六章‘时间抽取法FFT ’的算法结构,编制出相应的用FFT 进行信号分析的C语言(或MATLAB 语言)程序; 用MATLAB语言编写的FFT源程序如下: %% 输入数据f、N、T及是否补零 clc; clear; f=input('输入信号频率f:'); N=input('输入采样点数N:'); T=input('输入采样间隔T:'); C=input('信号是否补零(补零输入1,不补零输入0):'); %补零则输入1,不补则输入0 if(C==0) t=0:T:(N-1)*T; x=sin(2*pi*f*t); b=0; e lse b=input('输入补零的个数:'); while(log2(N+b)~=fix(log2(N+b))) b=input('输入错误,请重新输入补零的个数:'); end t=0:T:(N+b-1)*T; x=sin(2*pi*f*t).*(t<=(N-1)*T); end %% fft算法的实现 A=bitrevorder(x); % 将序列按二进制倒序 N=N+b; M=log2(N); % M为蝶形算法的层数 W=exp(-j*2*pi/N); for L=1:1:M %第L层蝶形算法 B=2^L/2; % B为每层蝶形算法进行加减运算的两个数的间隔 K=N/(2^L); % K为每层蝶形算法中独立模块的个数 for k=0:1:K-1 for J=0:1:B-1

阿贝成像原理实验报告

佛山科学技术学院 实验报告 课程名称近代物理实验实验项目阿贝成像原理和空间滤波 专业班级 10物师姓名邓新炬学号 02 仪器组号 指导教师朱星成绩日期 2013年月日

2、关于阿贝成像原理 成像的这两个步骤本质上就是两次傅里叶变换。第一步把物面光场的空间分布()y x g ,变为频谱面上空间频率分布() y x f f G ,,第二步则是再作一次变换,又将() y x f f G ,还原到空间分布()y x g ,。 3、空间滤波 空间函数变为频谱函数,再变回到空间函数(忽略放大率)。显然如果我们在频谱面(即透镜的后焦面)上放一些不同结构的光阑,以提取(或摒弃)某些频段的物信息,则必然使像面上的图像发生相应的变化,这样的图像处理称为空间滤波,频谱面上这种光阑称为滤波器。滤波器使频谱面上一个或一部分频率分量通过,而挡住其它频率分量,从而改变了像面上图像的频率成分。例如光轴上的圆孔光栏可以作为一个低通滤波器,而圆屏就可以用作为高通滤波器。 四 实验步骤 1、实验光路调节 在光具座上将小圆孔光阑靠近激光管的输出端,上下左右调节激光管,使激光束能穿过小孔;然后移远小孔,如光束偏离光阑,调节激光管的仰俯,再使激光能穿过小孔,重新将光阑移近,反复调节,直至小孔光阑在光具座上平移时,激光束能通过小孔光阑。 2、阿贝成像原理实验 如实验光路图在物平面上放上一维光栅,用激光器发出的细锐光束垂直照到光栅上,用一短焦距薄透镜(6~10cm )组装一个放大的成像系统,调节透镜位置,使光栅狭缝清晰地成像在像平面屏上,那么在频谱面上的衍射点如图所示。在频谱面上放上可调狭缝或滤波模板,使通过的衍射点如下图所示:(a )全部;(b )零级;(c )零和±1级;分别记录图片信息。 3、阿贝一波特实验(方向滤波) (1)光路不变,将一维光栅的物换成二维正交光栅,在频谱面上可以观察到二维分立的光点阵(频谱),像面上可以看到放大了的正交光栅像,测出像面上的网格间距。 (2)在频谱面放上可旋转狭缝光阑(方向滤波器),在下述情况:(a )只让光轴上水平的一行频谱分量通过;(b )只让光轴上垂直的一行频谱分量通过;(c )只让光轴上45°的一行频谱分量通过。记录像面上的图像变化、像面上条纹间距,并做出适当的解释。 五 实验数据和数据处理 1. 1解释阿贝成像实验

MAtlab傅里叶变换实验报告

班级信工142 学号 22 姓名何岩实验组别实验日期室温报告日期成绩报告内容:(目的和要求,原理,步骤,数据,计算,小结等) 1.求信号的离散时间傅立叶变换并分析其周期性和对称性; 给定正弦信号x(t)=2*cos(2*pi*10*t),fs=100HZ,求其DTFT。 (a)代码: f=10;T=1/f;w=-10:0.2:10; t1=0:0.0001:1;t2=0:0.01:1; n1=-2;n2=8;n0=0;n=n1:0.01:n2; x5=[n>=0.01]; x1=2*cos(2*f*pi*t1); x2=2*cos(2*f*pi*t2); x3=(exp(-j).^(t2'*w)); x4=x2*x3; subplot(2,2,1);plot(t1,x1); axis([0 1 1.1*min(x2) 1.1*max(x2)]); xlabel('x(n)');ylabel('x(n)'); title('原信号x1'); xlabel('t');ylabel('x1'); subplot(2,2,3);stem(t2,x2); axis([0 1 1.1*min(x2) 1.1*max(x2)]); title('原信号采样结果x2'); xlabel('t');ylabel('x2'); subplot(2,2,2);stem(n,x5); axis([0 1 1.1*min(x5) 1.1*max(x5)]); xlabel('n');ylabel('x2'); title('采样函数x2'); subplot(2,2,4);stem(t2,x4); axis([0 1 -0.2+1.1*min(x4) 1.1*max(x4)]); xlabel('t');ylabel('x4'); title('DTFT结果x4'); (b)结果: 2.用以下两个有限长序列来验证DTFT的线性、卷积和共轭特性; (n) x1(n)=[1 2 3 4 5 6 7 8 9 10 11 12];x2(n)=R 10 (1)线性:(a)代码: w=linspace(-8,8,10000); nx1=[0:11]; nx2=[0:9]; x1=[1 2 3 4 5 6 7 8 9 10 11 12];

傅里叶变换定律-傅里叶变换定义定律

第2章信号分析 本章提要 信号分类 周期信号分析--傅里叶级数 非周期信号分析--傅里叶变换 脉冲函数及其性质 信号:反映研究对象状态和运动特征的物理量信号分析:从信号中提取有用信息的方法 和手段 §2-1 信号的分类 两大类:确定性信号,非确定性信号 确定性信号:给定条件下取值是确定的。 进一步分为:周期信号, 非周期信号。

质量M 弹簧 刚度K t x (t ) o x 0 质量-弹簧系统的力学模型 x (t ) ? ?? ? ??+=0cos )(?t m k A t x 非确定性信号(随机信号):给定条件下取值是不确定的 按取值情况分类:模拟信号,离散信号 数字信号:属于离散信号,幅值离散,并用二进制表示。 信号描述方法 时域描述 如简谐信号

频域描述 以信号的频率结构来描述信号的方法:将信号看成许多谐波(简谐信号)之和,每一个谐波称作该信号的一个频率成分,考察信号含有那些频率的谐波,以及各谐波的幅值和相角。

§2-2 周期信号与离散频谱 一、 周期信号傅里叶级数的三角函数形式 周期信号时域表达式 ) 21() ()2()()( ,,±±=+==+=+=n nT t x T t x T t x t x T :周期。注意n 的取值:周期信号“无始无终” # 傅里叶级数的三角函数展开式 ) sin cos ()(01 00t n b t n a a t x n n n ωω∑∞ =++= (n =1, 2, 3,…) 傅立叶系数:

?- = 2 2 0)(1T T dt t x T a ?- = 2 2 0cos )(2T T n tdt n t x T a ω ? - = 2 2 0sin )(2T T n tdt n t x T b ω 式中 T--周期;0--基频, 0=2 /T 。 三角函数展开式的另一种形式: ) cos()(1 00∑∞ =++=n n n t n A a t x ?ωN 次谐波 N 次谐波的相角 N 次谐波的频率 N 次谐波的幅值 信号的均值,直流分量

傅里叶光学实验

傅里叶光学的空间频谱与空间滤波实验11系09级姓名张世杰日期2011年3月30日学号PB09210044 实验目的: 1.了解傅里叶光学中基本概念,如空间频率,空间频谱,空间滤波和卷积 2.理解透镜成像的物理过程 3.通过阿贝尔成像原理,了解透镜孔径对分辨率的影响 实验原理: 一、基本概念 频谱面:透镜的后焦面 空间函数:实质即光波照明图形时从图形反射或透射出来的光波可用空间两维复变函数 空间频谱:一个复变函数f(x,y)的傅立叶变换为 ??+ ) exp[ , F)] ( ( (π , u ) { , ( )} v =dxdy vy ? = f ux - y x 2i f x y F(u,v)叫作f(x,y)的变换函数或频谱函数 空间滤波:在频谱面上放一些光栅以提取某些频段的物信息的过程 滤波器:频谱面上的光阑 二、阿贝尔成像原理 本质就是经过两次傅里叶变换,先是使单色平行光照在光栅上,经衍射分解成不同方向的很多束平行光,经过透镜分别在后焦面上形成点阵,然后代表不同空间频率的光束又在向面上复合而成像。 需要提及的是,由于透镜的大小有限,总有一部分衍射角度大的高频成分不 能进入到透镜而被丢弃了,因此像平面上总是可能会丢失一些高频的信息,即在 透镜的后焦平面上得到的不是物函数的严格的傅立叶变换(频谱),不过只有一 个位相因子的差别,对于一般情况的滤波处理可以不考虑。这个光路的优点是光 路简单,而且可以得到很大的像以便于观察。

三、空间滤波器 在频谱面上放置特殊的光阑,以滤去特定的光信号(1)单透镜系统 (2)双透镜系统 (3)三透镜系统

四、空间滤波器的种类 a .低通滤波:在频谱面上放如图2.4-3(1)所示的光阑,只允许位于频谱面中心及附近的低频分量通过,可以滤掉高频噪音。 b .高通滤波:在频谱面上放如图2.4-3(2)所示的光阑,它阻挡低频分量而让高频分量通过,可以实现图像的衬度反转或边缘增强。 c . 带通滤波:在频谱面上放如图2.4-3(3)所示的光阑,它只允许特定区域的频谱通过,可以去除随机噪音。 d .方向滤波:在频谱面上放如图2.4-3(4)或(5)所示的光阑,它阻挡或允许特定方向上的频谱分量通过,可以突出图像的方向特征。 以上滤波光阑因透光部分是完全透光,不透光部分是将光全 部挡掉,所以称作“二元振幅滤波器”。还有各种其它形式的滤波器,如:“振幅 滤波器”、“相位滤波器”和“复数滤波器”等。 e .相幅滤波器:是将位相转变为振幅的滤波器,它的重要应用就是把”位相物体”显现出来,所谓位相物体是指那些只有空间的位相结构而透明度却一样的透明物体。如生物切片、油膜、热塑等,它们只改变入射光的位相而不影响其振幅。所以人眼不能直接看到透明体中的位相分布也就是它们的形状和结构,利用相幅转换技术就能使人眼看到透明体的形状和结构,从而扩展了人眼的视觉功能。 图 3 图2.4-3 各种形式的空间滤波器

MAtlab 傅里叶变换 实验报告

陕西科技大学实验报告 班级信工142 学号22 姓名何岩实验组别实验日期__________ 室温_____________ 报告日期________________ 成绩报告内容:(目的和要求,原理,步骤,数据,计算,小结等) 1.求信号的离散时间傅立叶变换并分析其周期性和对称性; 给定正弦信号x(t)=2*cos(2*pi*10*t),fs=100HZ, 求其DTFT (a)代码: f=10;T=1/f;w=-10:0.2:10; t1=0:0.0001:1;t2=0:0.01:1; n1=-2; n2=8; n0=0; n=n 1:0.01: n2; x5=[ n>=0.01]; x1=2*cos(2*f*pi*t1); x2=2*cos(2*f*pi*t2); x3=(exp(-j)4(t2'*w)); x4=x2*x3; subplot(2,2,1);plot(t1,x1); axis([0 1 1.1*mi n(x2) 1.1*max(x2)]); xlabel('x( n)');ylabel('x( n)'); title('原信号x1'); xlabel('t');ylabel('x1'); subplot(2,2,3);stem(t2,x2); axis([0 1 1.1*mi n(x2) 1.1*max(x2)]); title(' 原信号采样结果x2'); xlabel('t');ylabel('x2'); subplot(2,2,2);stem( n, x5); axis([0 1 1.1*mi n(x5) 1.1*max(x5)]); xlabel(' n');ylabel('x2'); title(' 采样函数x2'); subplot(2,2,4);stem(t2,x4); axis([0 1 -0.2+1.1*mi n(x4) 1.1*max(x4)]); xlabel('t');ylabel('x4'); title('DTFT 结果x4'); (b)结果:

MATLAB实验傅里叶分析

MATLAB实验傅里叶分析

实验七 傅里叶变换 一、实验目的 傅里叶变换是通信系统、图像处理、数字信号处理以及物理学等领域内的一种重要的数学分析工具。通过傅里叶变换技术可以将时域上的波形分 布变换为频域上的分布,从而获得信号的频谱特性。MATLAB 提供了专门的函数fft 、ifft 、fft2(即2维快速傅里叶变换)、ifft2以及fftshift 用于实现对信号的傅里叶变换。本次实验的目的就是练习使用fft 、ifft 以及fftshift 函数,对一些简单的信号处理问题能够获取其频谱特性(包括幅频和相频特性)。 二、实验预备知识 1. 离散傅里叶变换(DFT)以及快速傅里叶变换(FFT)简介 设x (t )是给定的时域上的一个波形,则其傅里叶变换为 2()() (1)j ft X f x t e dt π∞--∞=? 显然X ( f )代表频域上的一种分布(波形),一般来说X ( f )是复数。而傅里叶逆变换定义为: 2()() (2)j ft x t X f e df π∞-∞ =?

因此傅里叶变换将时域上的波形变换为频域上的波形,反之,傅里叶逆变换则将频域上的波形变换为时域上的波形。 由于傅里叶变换的广泛应用,人们自然希望能够使用计算机实现傅里叶变换,这就需要对傅里叶变换(即(1)式)做离散化处理,使 之符合电脑计算的特征。另外,当 把傅里叶变换应用于实验数据的分 析和处理时,由于处理的对象具有 离散性,因此也需要对傅里叶变换 进行离散化处理。而要想将傅里叶 变换离散化,首先要对时域上的波 形x (t )进行离散化处理。采用一个 时域上的采样脉冲序列: δ (t -nT ), n = 0, 1, 2, …, N -1; 可以实现上述目的,如图所示。其中N 为采样点数,T 为采样周期;f s = 1/T 是采样频率。注意采样时,采样频率f s 必须大于两倍的信号频率(实际是截止频率),才能避免混迭效应。 接下来对离散后的时域波形()()()(x t x t t n T x n T δ= -=的傅里叶变换()X f 进行离散处理。与上述做法类 似,采用频域上的δ脉冲序列: x (t δ x (t )δ t t t

傅里叶光学实验报告

实验原理:(略) 实验仪器: 光具座、氦氖激光器、白色像屏、作为物的一维、二维光栅、白色像屏、傅立叶透镜、小透镜 实验内容与数据分析 1.测小透镜的焦距f 1 (付里叶透镜f 2=45.0CM ) 光路:激光器→望远镜(倒置)(出射应是平行光)→小透镜→屏 操作及测量方法:打开氦氖激光器,在光具座上依次放上扩束镜,小透镜和光屏,调节各光学元件的相对位置是激光沿其主轴方向射入,将小透镜固定,调节光屏的前后位置,观察光斑的会聚情况,当屏上亮斑达到最小时,即屏处于小透镜的焦点位置,测量出此时屏与小透镜的距离,即为小透镜的焦距。 112.1913.2011.67 12.3533 f cm ++= = 0.7780cm σ= = 1.320.5929 p A p t t cm μ=== 0.68P = 0.0210.00673 B p B p t k cm C μ?==?= 0.68P = 0.59cm μ== 0.68P = 1(12.350.59)f cm =± 0.68P =

2.利用弗朗和费衍射测光栅的的光栅常数 光路:激光器→光栅→屏(此光路满足远场近似) 在屏上会观察到间距相等的k 级衍射图样,用锥子扎孔或用笔描点,测出衍射图样的间距,再根据sin d k θλ=测出光栅常数d (1)利用夫琅和费衍射测一维光栅常数; 衍射图样见原始数据; 数据列表: sin || i k Lk d x λλ θ= ≈ 取第一组数据进行分析: 2105 13 43.0910******* 4.00106.810d m ----????==?? 210 523 43.0910******* 3.871014.110d m ----????==?? 2105 33 43.0910******* 3.95106.910d m ----????==?? 210 543 43.0910******* 4.191013.010 d m ----????==?? 554.00 3.87 3.95 4.19 10 4.0025104 d m m --+++= ?=? 61.3610d m σ-=? 忽略b 类不确定度:

快速傅里叶变换实验报告..

快速傅里叶变换实验报告 班级: 姓名: 学号:

快速傅里叶变换 一.实验目的 1.在理论学习的基础上,通过本实验加深对快速傅立叶变换的理解; 2.熟悉并掌握按时间抽取FFT 算法的程序; 3.了解应用FFT 进行信号频谱分析过程中可能出现的问题,例如混淆、泄漏、栅栏效应等,以便在实际中正确应用FFT 。 二.实验内容 1.仔细分析教材第六章‘时间抽取法FFT ’的算法结构,编制出相应的用FFT 进行信号分析的C 语言(或MATLAB 语言)程序; 2.用FFT 程序分析正弦信号 ()sin(2)[()(*)],(0)1y t f t u t u t N T t u π=---∞<<+∞=设 分别在以下情况进行分析并讨论所得的结果: a ) 信号频率f =50Hz ,采样点数N=32,采样间隔T=0.000625s b ) 信号频率f =50Hz ,采样点数N=32,采样间隔T=0.005s c ) 信号频率f =50Hz ,采样点数N=32,采样间隔T=0.0046875s d ) 信号频率f =50Hz ,采样点数N=32,采样间隔T=0.004s e ) 信号频率 f =50Hz ,采样点数N=64,采样间隔T=0.000625s f ) 信号频率f =250Hz ,采样点数N=32,采样间隔T=0.005s g ) 将c ) 信号后补32个0,做64点FFT 三.实验要求 1.记录下实验内容中各种情况下的X (k)值,做出频谱图并深入讨论结果,说明参数的变化对信号频谱产生哪些影响。频谱只做模特性,模的最大值=1,全部归一化;

2.打印出用C 语言(或MATLAB 语言)编写的FFT 源程序,并且在每一小段处加上详细的注释说明; 3.用C 语言(或MATLAB 语言)编写FFT 程序时,要求采用人机界面形式: N , T , f 变量均由键盘输入,补零或不补零要求设置一开关来选择。 四.实验分析 对于本实验进行快速傅里叶变换,依次需要对信号进行采样,补零(要求补零时),码位倒置,蝶形运算,归一化处理并作图。 此外,本实验要求采用人机界面形式,N,T,F 变量由键盘输入,补零或不补零设置一开关来选择。 1.采样 本实验进行FFT 运算,给出的是正弦信号,需要先对信号进行采样,得到有限 长序列()n x , N n ...... 2,1,0= Matlab 实现: t=0:T:T*(N-1); x=sin(2*pi*f*t); 2.补零 根据实验要求确定补零与否,可以用if 语句做判断,若为1,再输入补零个数, 并将补的零放到采样得到的序列的后面组成新的序列,此时新的序列的元素个数等于原采样点个数加上补零个数,并将新的序列个数赋值给N 。 Matlab 实现: a=input('是否增加零点? 是请输入1 否请输入0\n'); if (a) ZeroNum=input('请输入增加零点的个数:\n'); else ZeroNum=0; end if (a) x=[x zeros(1, ZeroNum)];%%指令zeros(a,b)生成a 行b 列全0矩阵,在单行矩阵x 后补充0 end N=N+ZeroNum; 3.码位倒置 本实验做FFT 变换的级数为M ,N M 2log =

信号与系统matlab实验傅里叶分析及应用报告答案

实验二傅里叶分析及应用 姓名学号班级 一、实验目的 (一)掌握使用Matlab进行周期信号傅里叶级数展开和频谱分析 1、学会使用Matlab分析傅里叶级数展开,深入理解傅里叶级数的物理含义 2、学会使用Matlab分析周期信号的频谱特性 (二)掌握使用Matlab求解信号的傅里叶变换并分析傅里叶变换的性质 1、学会运用Matlab求连续时间信号的傅里叶变换 2、学会运用Matlab求连续时间信号的频谱图 3、学会运用Matlab分析连续时间信号的傅里叶变换的性质 (三)掌握使用Matlab完成信号抽样并验证抽样定理 1、学会运用MATLAB完成信号抽样以及对抽样信号的频谱进行分析 2、学会运用MATLAB改变抽样时间间隔,观察抽样后信号的频谱变化 3、学会运用MATLAB对抽样后的信号进行重建 二、实验条件 需要一台PC机和一定的matlab编程能力 三、实验内容 2、分别利用Matlab符号运算求解法和数值计算法求下图所示信号的FT,并画出其频谱图(包括幅度谱和相位谱)[注:图中时间单位为:毫秒(ms)]。

符号运算法: Ft= sym('t*(Heaviside(t+2)-Heaviside(t+1))+Heaviside(t+1)-Heaviside(t-1)+(-t)*(Heavi side(t-1)-Heaviside(t-2))'); Fw = fourier(Ft); ezplot(abs(Fw)),grid on; phase = atan(imag(Fw)/real(Fw)); ezplot(phase);grid on; title('|F|'); title('phase'); 3、试用Matlab 命令求ω ωωj 54 -j 310)F(j ++= 的傅里叶反变换,并绘出其时域信号图。

光学仪器实验报告

常用光电仪器原理及使用 实验报告 班级:11级光信息1班 姓名:姜萌萌 学号:110104060016 指导老师:李炳新

数字存储示波器 一、实验目的 1、熟悉数字存储示波器的使用方法; 2、测量数字存储示波器产生方波的上升时间; 二、实验仪器 数字存储示波器 三、实验步骤 1、产生方波波形 ⑴、打开示波器电源阅读探头警告,然后按下OK。按下“DEFAULT SETUP”按钮,默认的电压探头衰减选项是10X。 ⑵、在P2200探头上将开关设定到10X并将探头连接到示波器的通道1上,然后向右转动将探头锁定到位,将探头端部和基线导线连接到“PROBE COMP”终端上。 ⑶、按下“AUTOSET”按钮,在数秒钟内,看到频率为1KHz 电压为5V峰峰值得方波。按两次CH1BNC按钮删除通道1,

按下CH2BNC按钮显示通道2,重复第二步和第三步。 2、自动测量 ⑴、按下“MUASURE”按钮,查看测量菜单。 ⑵、按下顶部的选项按钮,显示“测量1菜单”。 ⑶、按下“类型”“频率”“值”读书将显示测量结果级更新信息。 ⑷、按下“后退”选项按钮。 ⑸、按下顶部第二个选项按钮;显示“测量2菜单”。 ⑹、按下“类型”“周期”“值”读数将显示测量结果与更新信息。 ⑺、按下“后退”选项按钮。 ⑻、按下中间选项按钮;显示“测量3菜单”。 ⑼、按下“类型”“峰-峰值”“值”读数将显示测量结果与更新信息。 ⑽、按下“后退”选项按钮。 ⑾、按下底部倒数第二个按钮;显示“测量4菜单”。⑿、按下“类型”“上升时间”“值”读数将显示测量结果与更新信息。

LCR测试仪 一、实验目的 1、熟悉LCR测试仪的使用方法; 2、了解LCR测试仪的工作原理; 3、精确测量一些电阻,电感,电容的值; 二、实验仪器 LCR测试仪,电阻,电容,电感等元件 三、LCR测试原理 根据待测元器件实际使用的条件和组合上的差别,LCR 测量仪有两种检测模式,串联模式和并联模式。串联模式以检测元器件Z为基础,并联模式以检测元器件的导纳Y为基础,当用户将测出流过待测元件的电流I,数字电压表将测出待测元件两端的电压V,数字鉴相器将测出电压V和电流I 之间的相位角 。检测结果被储存在仪器内部微型计算机的

信号与系统实验报告3实验3 傅里叶变换及其性质

信息工程学院实验报告 课程名称: 实验项目名称:实验3 傅里叶变换及其性质 实验时间:2015/11/17 班级:通信141 姓名: 学号: 一、实 验 目 的: 学会运用MATLAB 求连续时间信号的傅里叶(Fourier )变换;学会运用MATLAB 求连续时间信号的频谱图;学会运用MATLAB 分析连续时间信号的傅里叶变换的性质。 二、实 验 设 备 与 器 件 软件:Matlab 2008 三、实 验 原 理 3.1傅里叶变换的实现 信号()f t 的傅里叶变换定义为: ()[()]()j t F F f t f t e dt ωω∞ --∞ ==? , 傅里叶反变换定义为:1 1()[()]()2j t f t F F f e d ωωωωπ ∞ --∞ == ? 。 信号的傅里叶变换主要包括MATLAB 符号运算和MATLAB 数值分析两种方法,下面分别加以探讨。同时,学习连续时间信号的频谱图。 3.1.1 MATLAB 符号运算求解法 MATLAB 符号数学工具箱提供了直接求解傅里叶变换与傅里叶反变换的函数fourier( )和ifourier( )。Fourier 变换的语句格式分为三种。 (1)F=fourier(f):它是符号函数f 的Fourier 变换,默认返回是关于ω的函数。 (2)F=fourier(f,v):它返回函数F 是关于符号对象v 的函数,而不是默认的 ω,即 ()()j v t F v f t e d t ∞ --∞ =? 。 (3)F=fourier(f,u,v):是对关于u 的函数f 进行变换,返回函数F 是关于v 的函数,即 ()()jvu F v f t e du ∞ --∞ =?。 傅里叶反变换的语句格式也分为三种。 (1)f=ifourier(F):它是符号函数F 的Fourier 反变换,独立变量默认为ω,默认返回是关于x 的函数。 (2)f=ifourier(F,u):它返回函数f 是u 的函数,而不是默认的x 。 (3)f=ifourier(F,u,v):是对关于v 的函数F 进行反变换,返回关于u 的函数f 。

MATLAB实验二傅里叶分析及应用

实验二傅里叶分析及应用 、实验目的 (一)掌握使用Matlab 进行周期信号傅里叶级数展开和频谱分析 1、学会使用Matlab 分析傅里叶级数展开,深入理解傅里叶级数的物理含义 2、学会使用Matlab 分析周期信号的频谱特性 二)掌握使用Matlab 求解信号的傅里叶变换并分析傅里叶变换的性质 1、学会运用Matlab 求连续时间信号的傅里叶变换 2、学会运用Matlab 求连续时间信号的频谱图 3、学会运用Matlab 分析连续时间信号的傅里叶变换的性质 三)掌握使用Matlab 完成信号抽样并验证抽样定理 1、学会运用MATLAB 完成信号抽样以及对抽样信号的频谱进行分析 2、学会运用MATLAB 改变抽样时间间隔,观察抽样后信号的频谱变化 3、学会运用MATLAB 对抽样后的信号进行重建 、实验条件 Win7系统,MATLAB R2015a 三、实验内容 1、分别利用Matlab 符号运算求解法和数值计算法求下图所示信号的FT,并画出其频谱图(包括幅度谱和相位谱)[注:图中时间单位为:毫秒(ms)]。

Code: ft = sym( ' (t+2)*(heaviside(t+2)-heavisi de(t+1))+(heaviside(t+1)-heav iside(t- 1))+(2-t)*(heaviside( t-1)-heaviside(t- 2))' ); fw = simplify(fourier(ft)); subplot(2, 1, 1); ezplot(abs(fw)); grid on; title( 'amp spectrum' ); phi = atan(imag(fw) / real(fw)); subplot(2, 1, 2); ezplot(phi); grid on ; title( 'phase spectrum' ); 符号运算法 Code: dt = 0.01; t = -2: dt: 2; ft (t+2).*(uCT(t+2)- uCT(t+1))+(u CT(t+1)-uCT(t- 1))+(2-t).*(uCT (t-1)- uCT(t-2)); N = 2000; k = -N: N; w = pi * k / (N*dt); fw = dt*ft*exp(-i*t'*w); fw = abs(fw); plot(w, fw), grid on; axis([-2*pi 2*pi -1 3.5]); 数值运算法

实验三傅里叶变换及其性质

信息工程学院实验报告 课程名称:信号与系统 实验项目名称:实验3 傅里叶变换及其性质实验时间:2013-11-29 班级: 姓名: 学号: 一、实验目的: 1、学会运用MATLAB 求连续时间信号的傅里叶(Fourier )变换; 2、学会运用MATLAB 求连续时间信号的频谱图; 3、学会运用MATLAB 分析连续时间信号的傅里叶变换的性质。 二、实验环境: 1、硬件:在windows 7 操作环境下; 2、软件:Matlab 版本7.1 三、实验原理: 3.1傅里叶变换的实现 信号()f t 的傅里叶变换定义为: ()[()]()j t F F f t f t e dt ωω∞ --∞ == ? , 傅里叶反变换定义为:1 1 ()[()]()2j t f t F F f e d ωωωωπ ∞ --∞ == ? 。 信号的傅里叶变换主要包括MATLAB 符号运算和MATLAB 数值分析两种方法,下面分别加以探讨。同时,学习连续时间信号的频谱图。 3.1.1 MATLAB 符号运算求解法 MATLAB 符号数学工具箱提供了直接求解傅里叶变换与傅里叶反变换的函数fourier( )和ifourier( )。Fourier 变换的语句格式分为三种。 (1)F=fourier(f):它是符号函数f 的Fourier 变换,默认返回是关于ω的函数。 (2)F=fourier(f,v):它返回函数F 是关于符号对象v 的函数,而不是默认的ω,即()()jvt F v f t e dt ∞ --∞ = ? 。 (3)F=fourier(f,u,v):是对关于u 的函数f 进行变换,返回函数F 是关于v 的函数,即 ()()jvu F v f t e du ∞ --∞ =? 。 傅里叶反变换的语句格式也分为三种。 (1)f=ifourier(F):它是符号函数F 的Fourier 反变换,独立变量默认为ω,默认返回是关于x 的函数。 (2)f=ifourier(F,u):它返回函数f 是u 的函数,而不是默认的x 。 (3)f=ifourier(F,u,v):是对关于v 的函数 F 进行反变换,返回关于u 的函数f 。

【免费下载】matlab实现傅里叶变换

一、傅立叶变化的原理; (1)原理 正交级数的展开是其理论基础!将一个在时域收敛的函数展开成一系列不同频率谐波的叠加,从而达到解决周期函数问题的目的。在此基础上进行推广,从而可以对一个非周期函数进行时频变换。 从分析的角度看,他是用简单的函数去逼近(或代替)复杂函数,从几何的角度看,它是以一族正交函数为基向量,将函数空间进行正交分解,相应的系数即为坐标。从变幻的角度的看,他建立了周期函数与序列之间的对应关系;而从物理意义上看,他将信号分解为一些列的简谐波的复合,从而建立了频谱理论。 当然Fourier积分建立在傅氏积分基础上,一个函数除了要满足狄氏条件外, 一般来说还要在积分域上绝对可积,才有古典意义下的傅氏变换。引入衰减因子e^(-st),从而有了Laplace变换。(好像走远了)。 (2)计算方法 连续傅里叶变换将平方可积的函数f(t)表示成复指数函数的积分或级数形式。 这是将频率域的函数F(ω)表示为时间域的函数f(t)的积分形式。 为 连续傅里叶变换的逆变换 (inverse Fourier transform) 即将时间域的函数f(t)表示为频率域的函数F(ω)的积分。 一般可称函数f(t)为原函数,而称函数F(ω)为傅里叶变换的像函数,原函数和像函数构成一个傅里叶变换对(transform pair)。 二、傅立叶变换的应用; DFT在诸多多领域中有着重要应用,下面仅是颉取的几个例子。需要指出 的是,所有DFT的实际应用都依赖于计算离散傅里叶变换及其逆变换的快速算

法,即快速傅里叶变换(快速傅里叶变换(即FFT )是计算离散傅里叶变换及其逆变换的快速算法。)。(1)、频谱分析DFT 是连续傅里叶变换的近似。因此可以对连续信号x(t)均匀采样并截断以得到有限长的离散序列,对这一序列作离散傅里叶变换,可以分析连续信号x(t)频谱的性质。前面还提到DFT 应用于频谱分析需要注意的两个问题:即采样可能导致信号混叠和截断信号引起的频谱泄漏。可以通过选择适当的采样频率(见奈奎斯特频率)消减混叠。选择适当的序列长度并加窗可以抑制频谱泄漏。(2)、数据压缩由于人类感官的分辨能力存在极限,因此很多有损压缩算法利用这一点将语音、音频、图像、视频等信号的高频部分除去。高频信号对应于信号的细节,滤除高频信号可以在人类感官可以接受的范围内获得很高的压缩比。这一去除高频分量的处理就是通过离散傅里叶变换完成的。将时域或空域的信号转换到频域,仅储存或传输较低频率上的系数,在解压缩端采用逆变换即可重建信号。(3)、OFDM OFDM (正交频分复用)在宽带无线通信中有重要的应用。这种技术将带宽为N 个等间隔的子载波,可以证明这些子载波相互正交。尤其重要的是,OFDM 调制可以由IDFT 实现,而解调可以由DFT 实现。OFDM 还利用DFT 的移位性质,在每个帧头部加上循环前缀(Cyclic Prefix ),使得只要信道延时小于循环前缀的长度,就能消除信道延时对传输的影响。三、傅里叶变换的本质; 傅里叶变换的公式为dt e t f F t j ?+∞∞--=ωω)()(可以把傅里叶变换也成另外一种形式: t j e t f F ωπ ω),(21)(=可以看出,傅里叶变换的本质是内积,三角函数是完备的正交函数集,不同频率的三 角函数的之间的内积为0,只有频率相等的三角函数做内积时,才不为0。)(2,21)(2121Ω-Ω==?Ω-ΩΩΩπδdt e e e t j t j t j

快速傅里叶变换实验报告

快速傅里叶变换实验报告

————————————————————————————————作者:————————————————————————————————日期: ?

快速傅里叶变换实验报告 机械34班 刘攀 2013010558 一、 基本信号(函数)的FF T变换 1. 000()sin()sin 2cos36x t t t t π ωωω=+++ 1) 采样频率08s f f =,截断长度N =16; 取02ωπ=rad/s,则0f =1Hz ,s f =8Hz ,频率分辨率 f ?=s f f N ?= =0.5Hz 。 最高频率c f =30f =3Hz ,s f >2c f ,故满足采样定理,不会发生混叠现象。 截断长度02T T =,整周期截取,不会发生栅栏效应。理论上有一定的泄漏,但在整周期 截取的情况下,旁瓣上的采样都约为 0,泄漏现象没有体现出来。 频谱图如下:

幅值误差0A ?=,相位误差0??=。 2) 采样频率08s f f =,截断长度N=32; 取02ωπ=rad/s ,则0f =1Hz,s f =8Hz ,频率分辨率f ?=s f f N ?==0.25Hz 。 最高频率c f =30f =3H z,s f >2c f ,故满足采样定理,不会发生混叠现象。 截断长度04T T =,整周期截取,不会发生栅栏效应。理论上有一定的泄漏,但在整周期 截取的情况下,旁瓣上的采样都约为 0,泄漏现象没有体现出来。 频谱图如下:

幅值误差0A ?=,相位误差0??=。 2. 00()sin()sin116x t t t π ωω=++ 1) 采样频率08s f f =,截断长度N=16; 取02ωπ=ra d/s,则0f =1Hz ,s f =8Hz,频率分辨率f ?=s f f N ?==0.5H z。 最高频率c f =110f =11H z,s f <2c f ,故不满足采样定理,会发生混叠现象。 截断长度02T T =,整周期截取,不会发生栅栏效应。理论上有一定的泄漏,但在整周期 截取的情况下,旁瓣上的采样都约为 0,泄漏现象没有体现出来。 频谱图:

常用傅立叶变换表

时域信号 弧频率表示的 傅里叶变换 注释 1 线性 2 时域平移 3 频域平移, 变换2的频域对应4 如果值较大,则会收缩 到原点附近,而会扩 散并变得扁平. 当 | a | 趋向 无穷时,成为 Delta函数。 5 傅里叶变换的二元性性质。通过 交换时域变量和频域变量 得到. 6 傅里叶变换的微分性质 7 变换6的频域对应 8 表示和的卷积—这

9 矩形脉冲和归一化的sinc 函数 10 变换10的频域对应。矩形函数是理想的低通滤波器,sinc 函数是这类滤波器对反因果冲击的响应。 11 tri 是三角形函数 12 变换12的频域对应 13 高斯函数 exp( ? αt 2) 的傅里叶变换是他本身. 只有当 Re(α) > 0时,这是可积的。 14 15 16 a>0 17 变换本身就是一个公式

18 δ(ω) 代表狄拉克δ函数分布. 这 个变换展示了狄拉克δ函数的重要 性:该函数是常函数的傅立叶变换 19 变换23的频域对应 20 由变换3和24得到. 21 由变换1和25得到,应用了欧拉公 式: cos(at) = (e iat + e?iat) / 2. 22 由变换1和25得到 23 这里, n是一个自然数. δ(n)(ω) 是狄拉克δ函数分布的n阶微分。这 个变换是根据变换7和24得到的。 将此变换与1结合使用,我们可以变 换所有多项式。 24 此处sgn(ω)为符号函数;注意此变 换与变换7和24是一致的. 25 变换29的推广. 26 变换29的频域对应. 27 此处u(t)是单位阶跃函数; 此变换 根据变换1和31得到.

相关文档
相关文档 最新文档