文档库 最新最全的文档下载
当前位置:文档库 › 第一章 第二节 含绝对值不等式与一元二次不等式

第一章 第二节 含绝对值不等式与一元二次不等式

含参数的一元二次不等式的解法以及含参不等式恒成立问题(专题复习)

含参数的一元二次不等式的解法 解含参数的一元二次不等式,通常情况下,均需分类讨论,那么如何讨论呢?对含参一元 二次不等式常用的分类方法有三种: 一、按 x 2项的系数 a 的符号分类,即 a 0,a 0,a 0; 例 1 解不等式: ax 2 a 2 x 1 0 分析: 本题二次项系数含有参数, a 2 2 4a a 2 4 0 ,故只需对二次项 系数进行分类讨论。 2 解 :∵ a 2 2 4a a 2 4 0 a 2 a 2 4 a 2 a 2 4 ∴当 a 0时,解集为 x|x a 2 a 4 或x a 2 a 4 2a 2a 当 a 0 时,不等式为 2x 1 0, 解集为 x| x 1 例 2 解不等式 ax 2 5ax 6a 0a 0 分析 因为 a 0, 0 ,所以我们只要讨论二次项系数的正负。 解 a(x 2 5x 6) a x 2 x 3 0 当 a 0时,解集为 x|x 2或x 3 ;当 a 0时,解集为 x|2 x 3 、按判别式 的符号分类,即 0, 0, 0 ; 例 3 解不等式 x 2 ax 4 0 分析 本题中由于 x 2 的系数大于 0, 故只需考虑 与根的情况。 解: ∵ a 2 16 ∴当 a 4,4 即 0 时,解集为 R ; 解得方程 2 ax 2 a 2 x 1 0 两根 x 1 a 2 a 2 4 2a , x 2 a 2 a 2 4 2a 当 a 0时 , 解集为 x| a 2 a 2 4 2a x a 2 a 2 4 2a

当 a 4即Δ=0时,解集为 x x R 且x a ; 当 a 4 或 a 4 即 0, 此时两根分别为 x 1 a a 16 , x 2 2 x 1 x 2 , a a 2 16 a a 2 16 x 或 x 〈 22 例 4 解不等式 m 2 1 x 2 4x 1 0 m R 2 2 2 2 解 因 m 2 1 0, ( 4)2 4 m 2 1 4 3 m 2 当 m 3或 m 3 ,即 0 时,解集为 R 。 2 三、按方程 ax bx c 0 的根 x 1 , x 2的大小来分类,即 x 1 x 2,x 1 x 2 ,x 1 x 2; 1 例 5 解不等式 x 2 (a )x 1 0 (a 0) a 1 分析: 此不等式可以分解为: x a (x ) 0 ,故对应的方程必有两解。本题 a 只需讨论两根的大小即可。 11 解: 原不等式可化为: x a (x ) 0 ,令 a ,可得: a 1 aa 11 ∴当 a 1或 0 a 1时, a ,故原不等式的解集为 x |a x ; a 1 当 a 1 或 a 1 时, a , 可得其解集为 ; a 11 当 1 a 0或a 1时, a ,解集为 x| x a a 例 6 解不等式 x 2 5ax 6a 2 0 , a 0 分析 此不等式 5a 2 24a 2 a 2 0 ,又不等式可分解为 x 2a (x 3a) 0 ,故 所以当 m 3 ,即 0 时,解集为 x| x 1 2 当 3 m 3 ,即 0 时,解集为 2 3 m 2 x 或 x m 2 1 2 m 2 1 3 m 2 ; ; a a 2 16 a a 16 ,显然 ∴不等式的解集为

含参数的一元二次不等式的解法

含参数的一元二次不等式的解法 含参一元二次不等式常用的分类方法有三种: 一、按2 x 项的系数a 的符号分类,即0,0,0<=>a a a ; 例1 解不等式:()0122 >+++x a ax 分析:本题二次项系数含有参数,()04422 2 >+=-+=?a a a ,故只需对二次项 系数进行分类讨论。 解:∵()04422 2 >+=-+=?a a a 解得方程 ()0122 =+++x a ax 两根,24221a a a x +---=a a a x 24 222++--= ∴当0>a 时,解集为?? ????????+---<++-->a a a x a a a x x 242242|22或 当0=a 时,不等式为012>+x ,解集为? ?????> 21|x x 当0+-a a ax ax 分析 因为0≠a ,0>?,所以我们只要讨论二次项系数的正负。 解 ()()032)65(2 >--=+-x x a x x a ∴当0>a 时,解集为{}32|>--ax x ; 2、(1-ax )2 <1. } 2,2 |{,1)5(} 2|{,1)4(}2 ,2|{,10)3(}2|{,0)2(}22 | {,0)1(><>≠=><<<<=<<0, 即x (x -2 a )<0. ∵2a <0,∴不等式的解集为{x |2a

含参数的一元二次不等式及其解法

3.2.2含参数的一元二次不等式及其解法一.自主学习

以上结论是针对a>0的情形给出相应的解,a<0时请同学们自行分析。 解一元二次不等式的步骤: 1:确定二次项系数符号(一般将二次系数化为正); 2:计算△,求相应一元二次方程的根(能用十字相乘法的则不需用公式); 3:根据二次函数的图像,写出不等式的解集 二.自主探究 在解关于含参数的一元二次不等式时,往往都要对参数进行分类讨论。分类讨论的思想方法是中学数学的基本方法之一,是历年高考的重点。下面举例说明解题时如何做到分类“不重不漏”。 【题型一】对根的大小讨论 例1. 解关于x 的不等式0)1(2<+++a x a x .(a R ∈ ). 对应练习:解关于的不等式 2x a x a --<0 (a R ∈ ). 【题型二】对所对应方程根的个数进行讨论 例2、 解不等式02>+-a x x ,R a ∈ 对应练习:012 <+-ax x 【题型三】对首项系数a 的讨论

例3、 2(1)10、x ax a x +-->解关于的不等式,R a ∈ 对应练习:(1)关于x 的不等式0122<+-ax ax ,R a ∈ 训练(2):函数()f x = R ,则实数m 的取值范围. 课堂小结: 含参数的一元二次不等式需讨论一般分为 1:对二次项系数进行讨论; 2:对所对应方程根的个数进行讨论; 3:对所对应方程根的大小进行讨论; 注意:因不确定所以需要讨论,在讨论时需清楚在哪讨论;怎样讨论.讨论要不重不漏,通过讨论后化不确定为确定. 三.巩固性练习及作业 1.不等式x 2-ax-122a <0 (其中a<0)的解集为( ) A.(-3a, 4a ) B.(4a , -3a) C.(-3, 4) D.(2a , 6a) 2、22210x x x m -+->解关于的不等式

含参数的一元二次不等式题(答案)

一元二次不等式 参考例题(2) 1.(1)解不等式 121≤-x x (}0,1|{>-≤x x x 或) (2)不等式11<-x ax 的解集为}21|{>Φ±=<<<<-<时,或当时,当时,或当 }3,2|{3)3(}3,2|{32)2(}32,|{2)1(a x x x a x a x x a x a x x a <<-<><<-<<<-<<-<-<或时,当或时,当或时,当 (3)01)1(2<++-x a ax (4)0)2)(2(>--ax x }11|{1)5(1)4(}11|{10)3(} 1|{0)2(}1,1|{0)1(<<>Φ =<<<<>=><<>≠=><<<<=<<-+-<<时,当时,当时,当或时,当41)4(}24112411|{410)3(}1|{0)2(}2411,2411|{0)1(a a a x a a x a x x a a a x a a x x a }1,1|{0)3(}1|{0)2(}11| {0)1(a a x x x a x x a x a a x a -><<<=<<->或时,当时, 当时,当

含绝对值的不等式解法练习题及答案

含绝对值的不等式解法练习题及答案 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

例1 不等式|8-3x|>0的解集是 [ ]答选C. 例2 绝对值大于2且不大于5的最小整数是 [ ] A.3 B.2 C.-2 D.-5 分析列出不等式. 解根据题意得2<|x|≤5. 从而-5≤x<-2或2<x≤5,其中最小整数为-5, 答选D. 例3不等式4<|1-3x|≤7的解集为________. 分析利用所学知识对不等式实施同解变形. 解原不等式可化为4<|3x-1|≤7,即4<3x-1≤7或-7例4已知集合A={x|2<|6-2x|<5,x∈N},求A. 分析转化为解绝对值不等式. 解∵2<|6-2x|<5可化为 2<|2x-6|<5 因为x∈N,所以A={0,1,5}. 说明:注意元素的限制条件.

例5 实数a,b满足ab<0,那么 [ ] A.|a-b|<|a|+|b| B.|a+b|>|a-b| C.|a+b|<|a-b| D.|a-b|<||a|+|b|| 分析根据符号法则及绝对值的意义. 解∵a、b异号, ∴ |a+b|<|a-b|. 答选C. 例6 设不等式|x-a|<b的解集为{x|-1<x<2},则a,b 的值为 [ ] A.a=1,b=3 B.a=-1,b=3 C.a=-1,b=-3 分析解不等式后比较区间的端点. 解由题意知,b>0,原不等式的解集为{x|a-b<x<a+b},由于解集又为{x|-1<x<2}所以比较可得. 答选D. 说明:本题实际上是利用端点的位置关系构造新不等式组.例7 解关于x的不等式|2x-1|<2m-1(m∈R)

高考含绝对值不等式的解法

高考中常见的七种含有绝对值的不等式的解法 类型一:形如)()(,)(R a a x f a x f ∈><型不等式 解法:根据a 的符号,准确的去掉绝对值符号,再进一步求解.这也是其他类型的解题基础. 1、当0>a 时, a x f a a x f <<-?<)()( a x f a x f >?>)()(或a x f -<)( 2、当0=a a x f <)(,无解 ?>a x f )(使0)(≠x f 的解集 3、当0a x f )(使)(x f y =成立的x 的解集. 例1 (2008年四川高考文科卷)不等式22<-x x 的解集为( ) A.)2,1(- B.)1,1(- C.)1,2(- D.)2,2(- 解: 因为 22<-x x ,

所以 222<-<-x x . 即 ?????<-->+-0 20222x x x x , 解得: ? ??<<-∈21x R x , 所以 )2,1(-∈x ,故选A. 类型二:形如)0()(>><><<)()0()( 或a x f b -<<-)( 需要提醒一点的是,该类型的不等式容易错解为: b x f a a b b x f a <><<)()0()( 例2 (2004年高考全国卷)不等式311<+

含参数一元二次不等式练习题st

含参数一元二次不等式练习题st

含参数一元二次不等式练习题 一、选择题: 1.(2011·福建高考)若关于x 的方程x 2+mx +1=0有两个不相等的实数根,则实数m 的取值范围是( ) A .(-1,1) B .(-2,2) C .(-∞,-2)∪(2,+∞) D .(-∞,-1)∪(1,+∞) 2.关于x 的不等式x 2-(a +1)x +a <0的解集中,恰有3个整数,则a 的取值范围是( ) A .(4,5) B .(-3,-2)∪(4,5) C .(4,5] D .[-3,-2)∪(4,5] 3.若(m +1)x 2-(m -1)x +3(m -1)<0对任何实数x 恒成立,则实数m 的取值范围是( ) A . ? ?????-∞,-1311 B .(-∞,-1) C. (1,+∞) D .? ?????-∞,-1311∪(1,+∞) 4.(2012·长沙模拟)已知二次函数f (x )=ax 2-(a +2)x +1(a ∈Z ),且函数f (x )在(-2,-1)上恰有一个零点,则不等式f (x )>1的解集为( ) A .(-∞,-1)∪(0,+∞) B .(-∞,0)∪(1,

实数a 的取值范围是________. 10.(2012·九江模拟)若关于x 的不等式x 2-ax -a >0的解集为(-∞,+∞),则实数a 的取值范围是________;若关于x 的不等式x 2-ax -a ≤-3的解集不是空集,则实数a 的取值范围是________. 11.(2012·陕西师大附中模拟)若函数f (x )=??? x +5,x <3,2x -m ,x ≥3, 且f (f (3))>6,则m 的取值范围为________. 12.若关于x 的不等式x 2+12x -? ?????12n ≥0对任意n ∈N *在x ∈(-∞,λ]上恒成立,则实数λ的取值范围是________. 13.(2012·江苏高考)已知函数f (x )=x 2+ax +b (a ,b ∈R )的值域为[0,+∞),若关于x 的不等式f (x )<c 的解集为(m ,m +6),则实数c 的值为________. 三,解答题 14.解下列不等式: (1)x 2-2ax -3a 2<0(a <0). (2)x 2-4ax -5a 2>0(a ≠0). (3)ax 2-(a +1)x +1<0(a >0).

含参数的一元二次不等式的解法(专题)

含参数的一元二次不等式的解法 解含参数的一元二次不等式,通常情况下,均需分类讨论,那么如何讨论呢对含参一元 二次不等式常用的分类方法有三种: 一、按2 x 项的系数a 的符号分类,即0,0,0<=>a a a ; 例1 解不等式:()0122 >+++x a ax 分析:本题二次项系数含有参数,()044222>+=-+=?a a a ,故只需对二次项 系数进行分类讨论。 解:∵()044222 >+=-+=?a a a 解得方程 ()0122 =+++x a ax 两根,24221a a a x +---=a a a x 24222++--= ∴当0>a 时,解集为?? ????????+---<++-->a a a x a a a x x 242242|22或 当0=a 时,不等式为012>+x ,解集为? ????? >21|x x 当0+-a a ax ax 分析 因为0≠a ,0>?,所以我们只要讨论二次项系数的正负。 解 ()()032)65(2 >--=+-x x a x x a ∴当0>a 时,解集为{}32|>?; 例3 解不等式042>++ax x 分析 本题中由于2 x 的系数大于0,故只需考虑?与根的情况。 解:∵162-=?a ∴当()4,4-∈a 即0

当4±=a 即Δ=0时,解集为? ????? ≠∈2a x R x x 且; 当4>a 或4-?,此时两根分别为21621-+-=a a x ,2 1622---=a a x ,显然21x x >, ∴不等式的解集为?? ????????----+->21621622a a x a a x x 〈或 例4 解不等式() ()R m x x m ∈≥+-+014122 解 因,012>+m ()()2223414)4(m m -=+--=? 所以当3±=m ,即0=?时,解集为? ????? =21|x x ; 当33<<-m ,即0>?时,解集为??????? ???+--+-+>1321322222m m x m m x x 〈或; 当33> -a 时, a a 1>,解集为? ?????<+-a ax x ,0≠a 分析 此不等式()0245222>=--=?a a a ,又不等式可分解为()0)3(2>--a x a x ,故只需比较两根a 2与a 3的大小. 解 原不等式可化为:()0)3(2>--a x a x ,对应方程()0)3(2=--a x a x 的两根为

含参一元二次不等式的解法知识讲解

含参一元二次不等式的解法 温县第一高级中学数学组 任利民 解含参一元二次不等式,常涉及对参数的分类讨论以确定不等式的解,这是解含参一元二次不等式问题的一个难点.解含参一元二次不等式时对参数的分类主要依据有三个因素:①比较两根大小;②判别式的符号;③二次项系数的符号.下面例举几例来加以分析说明. 一、 根据二次不等式所对应方程的根的大小分类 例1解关于x 的不等式 2(1)0x x a a --->. 分析:原不等式等价于()(1)0x a x a -+->,所对应方程的两根是 x a =或1x a =-.这两个根的大小关系不确定,因此分类的标准是a 与1a -的大小关系.这样就容易将a 分成111,,222 a a a >=<这三类. 解:原不等式等价于()(1) 0x a x a -+->,所对应方程的两根是x a =或1x a =-. 当12 a >时,有1a a >-,所以不等式的解集为{x x a >或1}x a <-. 当12a =时,有1a a =-,所以不等式的解集为{x x R ∈且1}2 x ≠ 当12 a <时,有1a a <-,所以不等式的解集为{1x x a >-或}x a <. 【评注】对参数进行的讨论是根据解题的需要而自然引出的,并非一开始就对参数加以分类讨论.当二次项系数不含参数且能进行因式分解时,其解法较容 易,只讨论根的大小.本题中对a 的讨论时,12的选取依据就是比较两个根的大 小.解题关键是熟练掌握二次函数的图象特征,做到眼中有题,心中有图. 二、 根据判别式的符号分类 例2解关于x 的不等式 2220x ax ++>. 分析:设2()22f x x ax =++,欲确定()0f x =的根的情况,需讨论 0,0,0?>?=?<三种情况,由此来确定()f x 的图像,并最终确定不等

含参数的一元二次不等式题答案)

一 元二次不等式 参考例题(2) 1. (1)解不等式121≤-x x (2)不等式11 <-x ax 的解集为}21|{>--ax x (5)012<++x ax (6) )(11 R a a x x ∈-<- 3.(1)若不等式04)2(2)2(2<--+-x a x a 对R x ∈恒成立,求实数a 的取值范围.

(2)若不等式 13642222<++++x x m mx x 的解集为R ,求实数m 的取值范围. 4.(1)已知}0)1(|{},023|{22≤++-=≤+-=a x a x x B x x x A , ①若A B ,求实数a 的取值范围.; ②若A B ?,求实数a 的取值范围.; ③若B A 为仅含有一个元素的集合,求a 的值. (2)已知}031| {≤--=x x x A ,B B A a x a x x B =≤++-= 且},0)1(|{2,求实数a 的取值范围. (3) 关于x 的不等式2 )1(|2)1(|2 2-≤+-a a x 与0)13(2)1(32≤+++-a x a x 的解集依次为A 与B , 若B A ?,求实数a 的取值范围. (4)设全集R U =,集合}3|12||{},01 | {<+=≥+-=x x B x a x x A ,若R B A = , 求实数a 的取值范围. (5)已知全集R U =,}034|{},082|{},06|{2222<+-=>-+=<--=a ax x x C x x x B x x x A , 若C B A ?)( ,求实数a 的取值范围.

含绝对值的不等式解法·典型例题

含绝对值的不等式解法·典型例题 能力素质 例1 不等式|8-3x|>0的解集是 [ ] A B R C {x|x } D {83 }...≠.? 83 分析∵->,∴-≠,即≠. |83x|083x 0x 83 答 选C . 例2 绝对值大于2且不大于5的最小整数是 [ ] A .3 B .2 C .-2 D .-5 分析 列出不等式. 解 根据题意得2<|x|≤5. 从而-5≤x <-2或2<x ≤5,其中最小整数为-5, 答 选D . 例3 不等式4<|1-3x|≤7的解集为________. 分析 利用所学知识对不等式实施同解变形. 解 原不等式可化为4<|3x -1|≤7,即4<3x -1≤7或-7 ≤-<-解之得<≤或-≤<-,即所求不等式解集为-≤<-或<≤.3x 14x 2x 1{x|2x 1x }53835383 例4 已知集合A ={x|2<|6-2x|<5,x ∈N},求A . 分析 转化为解绝对值不等式. 解 ∵2<|6-2x|<5可化为 2<|2x -6|<5 即-<-<,->或-<-, 52x 652x 622x 62??? 即<<,>或<,12x 112x 82x 4???

解之得<<或<<.4x x 211212 因为x ∈N ,所以A ={0,1,5}. 说明:注意元素的限制条件. 例5 实数a ,b 满足ab <0,那么 [ ] A .|a -b|<|a|+|b| B .|a +b|>|a -b| C .|a +b|<|a -b| D .|a -b|<||a|+|b|| 分析 根据符号法则及绝对值的意义. 解 ∵a 、b 异号, ∴ |a +b|<|a -b|. 答 选C . 例6 设不等式|x -a|<b 的解集为{x|-1<x <2},则a ,b 的值为 [ ] A .a =1,b =3 B .a =-1,b =3 C .a =-1,b =-3 D a b .=,=1232 分析 解不等式后比较区间的端点. 解 由题意知,b >0,原不等式的解集为{x|a -b <x <a +b},由于解集又为{x|-1<x <2}所以比较可得. a b 1a b 2 a b -=-+=,解之得=,=.???1232 答 选D . 说明:本题实际上是利用端点的位置关系构造新不等式组. 例7 解关于x 的不等式|2x -1|<2m -1(m ∈R) 分析 分类讨论. 解若-≤即≤,则-<-恒不成立,此时原不等 2m 10m |2x 1|2m 112 式的解集为;? 若->即>,则--<-<-,所以-<2m 10m (2m 1)2x 12m 11m 12 x <m .

解绝对值不等式的解法

解绝对值不等式题型探讨 题型一 解不等式2|55|1x x -+<. [题型1]解不等式2|55|1x x -+<. [思路]利用|f(x)|0) -a-??求解。 [解题]原不等式等价于21551x x -<-+<, 即22551(1)551 (2)x x x x ?-+-?? 由(1)得:14x <<;由(2)得:2x <或3x >, 所以,原不等式的解集为{|12x x <<或34}x <<. [收获]1)一元一次不等式、一元二次不等式的解法是我们解不等式的基础,无论是解高次不等式、绝对值不等式还是解无理根式不等式,最终是通过代数变形后,转化为一元一次不等式、一元二次不等式组来求解。 2)本题也可用数形结合法来求解。在同一坐标系中画出函数2551y x x y =-+=与的 [变题1]解下列不等式:(1)|x +1|>2-x ;(2)|2x -2x -6|<3x [思路]利用|f(x)|g(x) f(x)>g(x)或f(x)<-g(x)去掉绝对值后转化为我们熟悉的一元一次、一元二次不等式组来处理。 解:(1)原不等式等价于x +1>2-x 或x +1<-(2-x ) 解得x >12或无解,所以原不等式的解集是{x |x >1 2 } (2)原不等式等价于-3x <2x -2x -6<3x 即22 2226360(3)(2)032(1)(6)0 16263560x x x x x x x x x x x x x x x x x ??-->-+->+-><->???????????+-<-<<--<--()g x 型不等式 这类不等式的简捷解法是等价命题法,即: ①|()f x |<()g x ?-()g x <()f x <()g x ②|()f x |>()g x ?()f x >()g x 或()f x <-()g x [请你试试4—1] ???

含参一元二次方程的解法

学科:数学 专题:含参一元二次方程的解法 主讲教师:黄炜 北京四中数学教师 重难点易错点解析 当系数中含有字母时,注意有实解的判断。 题一 题面:(x -m )2 =n .(n 为正数) 金题精讲 题一 题面:解关于x 的一元二次方程 1. x 2+2mx =n .(n +m 2≥0). 2. x 2-2mx +m 2-n 2=0. 3. .0422 2 =-+-b a ax x 4. abx 2-(a 2+b 2)x +ab =0.(ab ≠0) 解含参的一元二次方程:配方法、因式分解 满分冲刺 题一

题面:解关于x 的一元二次方程 1. ()()()b a a c x c b x b a ≠=-+-+-0 2 2. ()()()01222≠--=-b a x b a x 3. ()()() 0222222≠+-=-++b a b a bx a b ax 解含参的一元二次方程:因式分解 题二 题面:解关于x 的方程kx 2-(k +1)x +1=0. 解含参的方程,分类讨论。 题三 题面:已知关于x 的方程x 2-2ax -a +2b =0,其中a ,b 为实数. (1)若此方程有一个根为2a (a <0),判断a 与b 的大小关系并说明理由; (2)若对于任何实数a ,此方程都有实数根,求b 的取值范围. 一元二次方程的解,判别式。

讲义参考答案 重难点易错点解析 题一 答案:.,21m n x m n x +-=+= 金题精讲 题一 答案:1. .,2221n m m x n m m x +--=++-= 2. x 1=m +n ,x 2=m -n . 3. .2 ,221b a x b a x +=-= 4. ?==b a x a b x 21, 满分冲刺 题一 答案:(1)121,c a x x a b -==- (2) 12,1a ab x a x b +==- (3)当b=0时,120x x ==;当b ≠0时,无实根。 题二 答案:k =0时,x =1;k ≠0时,.1,121==x k x 题三 答案:解:(1)∵方程x 2-2ax -a +2b =0有一个根为2a ,∴4a 2-4a 2-a +2b =0. 整理,得2 a b = . ∵0

含绝对值不等式的解法(含答案)

含绝对值的不等式的解法 一、 基本解法与思想 解含绝对值的不等式的基本思想是等价转化,即采用正确的方法去掉绝对值符号转化为不含绝对值的不等式来解,常用的方法有公式法、定义法、平方法。 (一)、公式法:即利用a x >与a x <的解集求解。 主要知识: 1、绝对值的几何意义:x 是指数轴上点x 到原点的距离;21x x -是指数轴上1x ,2x 两点间的距离.。 2、a x >与a x <型的不等式的解法。 当0>a 时,不等式>x 的解集是{} a x a x x -<>或, 不等式a x <的解集是} a x a x <<-; 当0的解集是{}R x x ∈ 不等式a x <的解集是?; 3.c b ax >+与 c b ax <+型的不等式的解法。 把 b ax + 看作一个整体时,可化为a x <与a x >型的不等式来求解。 当0>c 时,不等式c b ax >+的解集是{ } c b ax c b ax x -<+>+或, 不等式c b ax <+的解集是{}c b ax c x <+<-; 当0+的解集是{}R x x ∈ 不等式c bx a <+的解集是?; 例1 解不等式32<-x 分析:这类题可直接利用上面的公式求解,这种解法还运用了整体思想,如把“2-x ” 看着一个整体。答案为{} 51<<-x x 。(解略) (二)、定义法:即利用(0),0(0),(0).a a a a a a >??==??-++。 分析:由绝对值的意义知,a a =?a ≥0,a a =-?a ≤0。 解:原不等式等价于 2 x x +<0?x(x+2)<0?-2<x <0。

含参一元二次不等式专项训练

含参一元二次不等式专题训练 解答题(共12小题) 1.已知不等式(ax﹣1)(x+1)<0 (a∈R).2.解关于x的不等式:x2+(a+1)x+a>0(a是实数).(1)若x=a时不等式成立,求a的取值范围; (2)当a≠0时,解这个关于x的不等式. 3.解关于x的不等式ax2+2x﹣1<0(a>0).4.解关于x的不等式,(a∈R): (1)ax2﹣2(a+1)x+4>0; (2)x2﹣2ax+2≤0. 5.求x的取值范围:(x+2)(x﹣a)>0. 6.当a>﹣1时,解不等式x2﹣(a+1)x﹣2a2﹣a≥0.7.解关于x的不等式(x﹣1)(ax﹣2)>0.8.解关于x 的不等式,其中a≠0.9.解不等式:mx2+(m﹣2)x﹣2<0. 10.解下列不等式: (1)ax2+2ax+4≤0;(2)(a﹣2)x2﹣(4a﹣3)x+(4a+2)≥0.11.解关于x的不等式ax2﹣(a+1)x+1<0.12.解关于x的不等式ax2﹣2≥2x﹣ax(a∈R).

含参一元二次不等式专题训练参考答案与试题解析 一.解答题(共12小题) 1.(2009?如皋市模拟)已知不等式(ax ﹣1)(x+1)<0 (a ∈R ). (1)若x=a 时不等式成立,求a 的取值范围; (2)当a ≠0时,解这个关于x 的不等式. 的大小关系即可解这个关于时,,所以不等式的解:;时,的解: ,所以不等式的解:.时,所以不等式的解:时,所以不等式的解:或 2.解关于x 的不等式:x 2 +(a+1)x+a >0(a 是实数). 3.解关于x 的不等式ax 2 +2x ﹣1<0(a >0). 4.解关于x 的不等式,(a ∈R ): (1)ax 2 ﹣2(a+1)x+4>0; (2)x 2 ﹣2ax+2≤0. ),即}=2,即﹣<><{x|<a <﹣> ﹣ a }综上,﹣a <﹣ > a }5.求x 的取值范围:(x+2)(x ﹣a )>0.

含绝对值的不等式解法练习题及答案

例1 不等式|8-3x|>0的解集是 [ ] A B R C {x|x } D {83 } ...≠.?8 3 分析∵->,∴-≠,即≠. |83x|083x 0x 8 3 答 选C . 例2 绝对值大于2且不大于5的最小整数是 [ ] A .3 B .2 C .-2 D .-5 \ 分析 列出不等式. 解 根据题意得2<|x|≤5. 从而-5≤x <-2或2<x ≤5,其中最小整数为-5, 答 选D . 例3 不等式4<|1-3x|≤7的解集为________. 分析 利用所学知识对不等式实施同解变形. 解 原不等式可化为4<|3x -1|≤7,即4<3x -1≤7或-7 ≤-<-解之得<≤或-≤<-,即所求不等式解集为 -≤<-或<≤. 3x 14x 2x 1{x|2x 1x }538 3 538 3 例4 已知集合A ={x|2<|6-2x|<5,x ∈N},求A . 分析 转化为解绝对值不等式. ' 解 ∵2<|6-2x|<5可化为 2<|2x -6|<5 即-<-<,->或-<-,52x 652x 622x 62??? 即<<,>或<,12x 112x 82x 4??? 解之得<< 或<<.4x x 21121 2 因为x ∈N ,所以A ={0,1,5}. 说明:注意元素的限制条件.

例5 实数a ,b 满足ab <0,那么 [ ] A .|a -b|<|a|+|b| · B .|a +b|>|a -b| C .|a +b|<|a -b| D .|a -b|<||a|+|b|| 分析 根据符号法则及绝对值的意义. 解 ∵a 、b 异号, ∴ |a +b|<|a -b|. 答 选C . 例6 设不等式|x -a|<b 的解集为{x|-1<x <2},则a ,b 的值为 [ ] A .a =1,b =3 : B .a =-1,b =3 C .a =-1,b =-3 D a b .=,=123 2 分析 解不等式后比较区间的端点. 解 由题意知,b >0,原不等式的解集为{x|a -b <x <a +b},由于解集又为{x|-1<x <2}所以比较可得. a b 1a b 2a b -=-+=,解之得=,=.?? ? 123 2 答 选D . 说明:本题实际上是利用端点的位置关系构造新不等式组. 例7 解关于x 的不等式|2x -1|<2m -1(m ∈R) 分析 分类讨论. 、 解若-≤即≤,则-<-恒不成立,此时原不等 2m 10m |2x 1|2m 11 2 式的解集为;? 若->即>,则--<-<-,所以-<2m 10m (2m 1)2x 12m 11m 1 2 x <m . 综上所述得:当≤时原不等式解集为; 当>时,原不等式的解集为 m m 1 2 1 2 ? {x|1-m <x <m}. 说明:分类讨论时要预先确定分类的标准.

解绝对值不等式的方法总结

解绝对值不等式题根探讨 题根四 解不等式2|55|1x x -+<. [题根4]解不等式2 |55|1x x -+<. [思路]利用|f(x)|0) ?-a-??求解。 [解题]原不等式等价于21551x x -<-+<, 即2 2 551(1)551 (2) x x x x ?-+-?? 由(1)得:14x <<;由(2)得:2x <或3x >,所以,原不等式的解集为{|12x x <<或34}x <<. [收获]1)一元一次不等式、一元二次不等式的解法是我们解不等式的基础,无论是解高次不等式、绝对值不等式还是解无理根式不等式,最终是通过代数变形后,转化为一元一次不等式、一元二次不等式组来求解。 2)本题也可用数形结合法来求解。在同一坐标系中画出函数2551y x x y =-+=与的的图象,解方程 2551x x -+=,再对照图形写出此不等式的解集。 第1变 右边的常数变代数式 [变题1]解下列不等式:(1)|x +1|>2-x ;(2)|2x -2x -6|<3x [思路]利用|f(x)|g(x) ?f(x)>g(x)或f(x)<-g(x)去掉绝对值后转化为我们熟悉的一元一次、一元二次不等式组来处理。 解:(1)原不等式等价于x +1>2-x 或x +1<-(2-x ) 解得x > 12或无解,所以原不等式的解集是{x |x >12 } (2)原不等式等价于-3x <2x -2x -6<3x 即22 2 226360(3)(2)032(1)(6)016263560x x x x x x x x x x x x x x x x x ??-->-+->+-><->???????????+-<-<<--<--()g x 型不等式 这类不等式的简捷解法是等价命题法,即: ①|()f x |<()g x ?-()g x <()f x <()g x ②|()f x |>()g x ?()f x >()g x 或()f x <-()g x

含绝对值不等式的解法(含答案)

含绝对值的不等式的解法 一、 基本解法与思想 解含绝对值的不等式的基本思想是等价转化,即采用正确的方法去掉绝对值符号转化为不含绝对值的不等式来解,常用的方法有公式法、定义法、平方法。 (一)、公式法:即利用a x >与a x <的解集求解。 主要知识: 1、绝对值的几何意义:x 是指数轴上点x 到原点的距离;21x x -是指数轴上1x ,2 x 两点间的距离.。 2、a x >与a x <型的不等式的解法。 当0>a 时,不等式>x 的解集是{} a x a x x -<>或, 不等式a x <的解集是{} a x a x <<-; 当0的解集是{} R x x ∈ 不等式a x <的解集是?; 3.c b ax >+与c b ax <+型的不等式的解法。 把 b ax + 看作一个整体时,可化为a x <与a x >型的不等式来求解。 当0>c 时,不等式c b ax >+的解集是{} c b ax c b ax x -<+>+或, 不等式c b ax <+的解集是{} c b ax c x <+<-; 当0+的解集是{} R x x ∈ 不等式c bx a <+的解集是?; 例1 解不等式32<-x 分析:这类题可直接利用上面的公式求解,这种解法还运用了整体思想,如把“2-x ” 看着一个整体。答案为{} 51<<-x x 。(解略)

(二)、定义法:即利用(0),0(0),(0).a a a a a a >?? ==??-++。 分析:由绝对值的意义知,a a =?a ≥0,a a =-?a ≤0。 解:原不等式等价于2 x x +<0?x(x+2)<0?-2<x <0。 (三)、平方法:解()()f x g x >型不等式。 例3、解不等式123x x ->-。 解:原不等式?22(1)(23)x x ->-?22(23)(1)0x x ---< ?(2x-3+x-1)(2x-3-x+1)<0?(3x-4)(x-2)<0 ? 4 23 x <<。 说明:求解中以平方后移项再用平方差公式分解因式为宜。 二、分类讨论法:即通过合理分类去绝对值后再求解。 例4 解不等式125x x -++<。 分析:由01=-x ,02=+x ,得1=x 和2=x 。2-和1把实数集合分成三个区间,即2-x ,按这三个区间可去绝对值,故可按这三个区间讨论。 解:当x <-2时,得2 (1)(2)5x x x <-??---+x 时,得1, (1)(2) 5.x x x >??-++

含参一元二次不等式

含参数的一元二次不等式解法 命题人:徐月玲 2016年10月 【学习目标】 1.掌握求解一元二次不等式的基本方法,并能解决一些实际问题。经历从实际情景中抽象出一元二次不等式模型的过程. 2.通过函数图象了解一元二次不等式与相应函数、方程的联系,会解一元二次不等式。 3.以极度的热情投入学习,体会成功的快乐。 【学习重点】 从实际问题中抽象出一元二次不等式模型,围绕一元二次不等式的解法展开,突出数形结合的思想。 【学习难点】 理解二次函数、一元二次方程与一元二次不等式解集的关系。 [回扣复习] 1.设不等式2m 210x x m --+<对于满足22m -≤≤的一切m 值都成立,则x 的取值范围为 . 2.一元二次不等式2(12)1a x a x a +-+ +>0的解集为R 的条件为 . 3.不等式2x 40ax ++<的解集为空集,则a 的取值范围是 .

4.已知一元二次不等式210ax bx ++>的解集为{} 21x x -<< 则 a ,b 的值为 . [典例剖析] 题型一:对方程根的个数及大小进行讨论 例1 解关于x 的不等式2220x ax ++> 例2 解关于x 的不等式21()10x a x a -++>(a>0) 变式训练:解关于x 的不等式 01x a x ->-

题型二:对二次项系数进行讨论 例3: 解关于x 的不等式 2(1)10ax a x -++< 题型三:不等式中的恒成立问题 例3 已知函数22(45)4(1)3y m m x m x =+-+-+对任意实数x ,函数值恒大于0,求实数m 的取值范围。 变式: 函数2()3f x x ax =++,当x R ∈时,()f x a ≥恒成立,求a 的范围。 深化总结: 1.含参数的一元二次不等式与不含参数的一元二次不等式其解题过程实质一样,结合二次函数的图象和一元二次方程分三级讨论: 1)讨论二次项前系数的符号; 2)讨论判别式 的符号; 3)当 时,讨论方程两根 的大小关系 2.分类标准要明确,分类要做到不重不漏. 12x x 与0?>?

相关文档
相关文档 最新文档