文档库 最新最全的文档下载
当前位置:文档库 › 金属拉伸实验报告

金属拉伸实验报告

金属拉伸实验报告
金属拉伸实验报告

金属拉伸实验报告

【实验目的】

1、测定低碳钢的屈服强度屉、ReL及Re、抗拉强度&、断后伸长率/和断面收缩率Z。

2、测定铸铁的抗拉强度凡和断后伸长率札

3、观察并分析两种材料在拉伸过程中的各种现象(包括屈服、强化、冷作硬化和颈缩等现象),并绘制拉伸图。

4、比较低碳钢(塑性材料)与铸铁(脆性材料)拉伸机械性能的特点。

【实验设备和器材】

1、电子万能试验机WD-200B型

2、游标卡尺

3、电子引伸计

【实验原理概述】

为了便于比较实验结果,按国家标准GB228-76中的有关规定,实验材料要按上述标准做成比例试件,即:

圆形截面试件:L o=lOdo (长试件)

式中:L。一试件的初始计算长度(即试件的标距);

曲Q —试件的初始截面而积;

do 一试件在标距内的初始直径

实验室里使用的金屈拉伸试件通常制成标帶圆形截而试件,如图1所示

图1拉伸试件

将试样安装在试验机的夹头中,然后开动试验机,使试样受到缓慢增加的 拉力

(应根据材料性能和试验目的确定拉伸速度),直到拉断为止,并利用试验 机的门动绘图装置绘出材料的拉伸图(图2—2所示)。应当指出,试验机自动绘 图装置绘出的拉伸变形△厶主要是整个试样(不只是标距部分)的伸长,还包括 机器的弹性变形和试样在夹头屮的滑动等因素。由于试样开始受力时,头部在夹

头内的滑动较大,故绘出的拉伸图最初一段是曲线。

1、低碳钢(典型的塑性材料)

当拉力较小时,试样伸长最与力成正比增加,保持直线关系,拉力超过 后拉伸曲

线将由直变曲。保持直线关系的最大拉力就是材料比例极限的力值冃。

在尺的上方附近有一点是尺,若拉力小于&而卸载时,卸载后试样立刻恢 复原状,

若拉力大于尺后再卸载,则试件只能部分恢复,保留的残余变形即为 塑性变形,因而尺是代表材料弹性极限的力值。

当拉力增加到一定程度时,试验机的示力指针(主动针)开始摆动或停止不 动,

拉伸图上出现锯齿状或平台,这说明此时试样所受的拉力儿乎不变但变形却 在继续,

这种现象称为材料的屈服。低碳钢的屈服阶段常呈锯齿状,其上屈服点 方7受变形速度

及试样形式等因素的影响较大,而下屈服点B 则比较稳定(因此 工程上常以其下屈服点B 所对应的力值凡作为 材料屈服时的力值)。确定屈服力值时,必须注 意观察读数表盘上测力抬针的转动情况,读取测 力度盘指针首次回转前指示的最大力心(上屈 服荷载)和不计初瞬时效应时屈服阶段中的最小 力凡(下屈服荷载)或首次停止转动指示的恒定力尺2(下屈服荷载),将其分别 除以试样的原始横截而积(S )便可得到上屈服强度心和下屈服强度即

ReFF J S^R C L~F e J So

屈服阶段过后,虽然变形仍继续增大,但力值也随Z

增加,拉伸曲线乂继续 上升,这说明材料乂恢复了抵抗变

形的能力,这种现象称为材料的强化。在强化 阶段内,试

样的变形主要是塑性变形,比弹性阶段内试样的变形大得

多,在达到 最大力化之前,

试样标距范用内的变形是均匀

(a )低碳钢拉伸曲线图 (b )铸铁拉伸曲线图 图2-2由试验机绘图装垃绘出的拉伸曲线图

图2-3低碳钢的冷作硬化

的,拉伸曲线是一段半缓上升的曲线,这时可明显地看到整个试样的横向尺寸在缩小。此最大力尺为材料的抗拉强度力值,由公式R F F」So即可得到材料的抗拉强度如果在材料的强化阶段内卸载后再加载,直到试样拉断,则所得到的曲线如图2-3所示。卸载时曲线并不沿原拉伸曲线卸回,而是沿近乎半行于弹性阶段的直线卸回,这说明卸载前试样中除了有塑性变形外,还有一部分弹性变形: 卸载后再继续加载,曲线几乎沿卸载路径变化,然后继续强化变形,就像没有卸载一样,这种现象称为材料的冷作硬化。显然,冷作硬化提高了材料的比例极限和屈服极限,但材料的塑性却相应降低。

当荷载达到最大力尺后,示力指针由最大力F?缓慢回转时,试样上某一部位开始产生局部伸长和颈缩,在颈缩发生部位,横截面而积急剧缩小,继续拉伸所需的力也迅速减小,拉伸曲线开始下降,直至试样断裂。此时通过测量试样断裂后的标距长度厶和断口处最小直径4,计算断后最小截面积(S),由计算公式

A= R __ xlOCM、z =亠 _ ' xlO(M

4 %

即可得到试样的断后伸长率A和断而收缩率Zc

2、铸铁(典型的脆性材料)

脆性材料是指断后伸长率A<5%的材料,其从开始承受拉力直至试样被拉断,变形都很小。而且,大多数脆性材料在拉伸时的应力一应变曲线上都没有明显的直线段,几乎没有塑性变形,也不会出现屈服和颈缩等现象(如图2-2b 所示),只有断裂时的应力值一一强度极限。

铸铁试样在承受拉力、变形极小时,就达到最大力尺而突然发生断裂,其抗拉强度也远小丁?低碳钢的抗拉强度。同样,由公式R?=F」&即可得到其抗拉强度R,而由公式A= 乎xlOO%则可求得其断后伸长率A.

【实验步骤】

一、低碳钢拉伸试验

1、试样准备:

为了便于观察标距范围内沿轴向的变形情况,用试样分划器或标距仪在试样标距厶范伟I内每隔5 mm刻划一标记点(注意标记刻划不应影响试样断裂),将试样的标距段分成十等份。

用游标卡尺测量标距两端和中间三个横截面处的直径,在每一横截面处沿相互垂直的两个方向齐测一次取其平均值,用三个平均值中最小者计算试样的原始横截面积S (计算时S应至少保留四位有效数字)。

2、试验机准备:

根据低碳钢的抗拉强度&和试样的原始横截面积S估计试验所需的最大荷载,并据此选择合适的量程,配上相应的舷码花,做好试验机的调零(注意:应消除试验机工作平台的自重)、安装绘图纸笔等准备工作。

3、装夹试样:

先将试样安装在试验机的上夹头内,再移动试验机的下夹头(或工作平台、或试验机横梁)使其达到适当位置,并把试样下端夹紧(注意:应尽量将试样的夹持段全部夹在夹头内,并且上下要对称。完成此步操作时切忌在装夹试样时对试样加上了荷载)。

4、装载电子引伸计:

将电子引伸计装载在低碳钢试样上,注意电子引伸计要在比例极限处卸载。

5、进行试验:

开动试验机使之缓慢匀速加载(依据规范要求,在屈服前以6?60MPa/s的速率加载),并注意观察示力抬针的转动、〔1动绘图的情况和相应的试验现象。当主动针不动或倒退时说明材料开始屈服,记录上屈服点心(主动针首次回转前的最大力)和下屈服点Ez (屈服过程中不计初始瞬时效应时的最小力或主动针苗次停上转动的恒定力),具体情况如图2—4所示(说明:前所给出的加载速率挺国标中规定的测定上屈服点时应采用的速率,在测定下屈服点时,屮行长度内的应变速率应在0. 00025?0. 0025 / s之间,并应尽可能保持恒定。如果不能直接控制这一速率,则应固定屈服开始前的应力速率直至屈服阶段完成)。

根据国标规定,材料屈服过后,试验机的速率应使试样平行长度内的应变速率不超过

0.008/s。在此条件下继续加载,并注意观察主动针的转动、自动绘图的情况和相应的试验现象(强化、冷作硬化和颈缩等现象一一在强化阶段的任一位置卸载后再加载进行冷作硬化现象的观察;此后,待主动针再次停止转动而缓慢回转时,材料进入颈缩阶段,注意观察试样的颈缩现象),直至试样断裂停车。记录所加的最大荷载用(从动针最后停留的位置)。

6、试样断后尺寸测定:

取出试样断体,观察断口情况和位置。将试样在断裂处紧密对接在一起,并尽量使其轴线处于同一直线上,测最断后标距厶和颈处的最小直径d (应沿相互垂直的两个方向各测一次取其平均值),计算断后最小横截面积S.o

注意:在测定厶时,若断口到最临近标距端点的距离不小于1/3厶,则直接测量标距两端点的距离;若断口到最临近标距端点的距离小于1/3厶,则按图2 一5所示的移位法测定:符合图(a)情况的,L=AC^BC,符合图(b)情况的,L?=AG+BC;若断口非常靠近试样两端,而其到最临近标距端点的距离还不足两等份,且测得的断后伸长率小于规定值,则试验结果无效,必须重做。此时应检查试样的质量和夹具的工作状况,以判断是否属于-偶然情况。

7、归整实验设备:

取下绘记录图纸,谙教师检査试验记录,经认可后清理试验现场和所用仪器设备,并将所

用的仪器设备全部恢复原状。

二、铸铁拉伸试验

1、测量试样原始尺寸:

测量方法要求同前,但只用快干墨水或带色涂料标出两标距端点,不用等分标距段。

2、试验机准备:(要求同前)。

3、安装试样:(方法同前)。

4、检査试验机工作是否正常:(检査同前,但勿需试车)。

5、进行试验:

开动试验机,保持试验机两夹头在力作用下的分离速率使试样半行长度内的应变速率不超过0.008/s的条件下对试样进行缓慢加载,直至试样断裂为止。停机并记录最大力F.。

6、试样断后尺寸测定:

取出试样断体,观察断口情况。然后将试样在断裂处紧密对接在一起,并尽量使其轴线处于同一直线上,测帚:试样断后标距―直接用游标卡尺测量标距两端点的距离)。

7、归整实验设备:

取下绘记录图纸,请教师检査试验记录,经认可后清理试验现场和所用仪器设备,并将所使用的仪器设备全部复原。

8、结束试验

【实验记录】

试样原始尺寸

表2 — 2、试验数据记录单位:KN

表2 — 3、试样断后尺寸

金属拉伸实验报告

金属拉伸实验报告 【实验目的】 1、测定低碳钢的屈服强度R Eh 、R eL及R e 、抗拉强度R m、断后伸长率A和断面收缩率Z。 2、测定铸铁的抗拉强度R m和断后伸长率A。 3、观察并分析两种材料在拉伸过程中的各种现象(包括屈服、强化、冷作硬化和颈缩等现象),并绘制拉伸图。 4、比较低碳钢(塑性材料)与铸铁(脆性材料)拉伸机械性能的特点。 【实验设备和器材】 1、电子万能试验机WD-200B型 2、游标卡尺 3、电子引伸计 【实验原理概述】 为了便于比较实验结果,按国家标准 GB228—76中的有关规定,实验材料要按上述标准做成比例试件,即: 圆形截面试件: L 0 =10d (长试件)

式中: L 0 --试件的初始计算长度(即试件的标距); --试件的初始截面面积; d 0 --试件在标距内的初始直径 实验室里使用的金属拉伸试件通常制成标准圆形截面试件,如图1所示 图1拉伸试件 将试样安装在试验机的夹头中,然后开动试验机,使试样受到缓慢增加的拉力(应根据材料性能和试验目的确定拉伸速度),直到拉断为止,并利用试验机的自动绘图装置绘出材料的拉伸图(图2-2所示)。应当指出,试验机自动绘 图装置绘出的拉伸变形ΔL 主要是整个试样(不只是标距部分)的伸长,还包括机器的弹性变形和试样在夹头中的滑动等因素。由于试样开始受力时,头部在夹头内的滑动较大,故绘出的拉伸图最初一段是曲线。 1、低碳钢(典型的塑性材料) (a )低碳钢拉伸曲线图 (b )铸铁拉伸曲线图

当拉力较小时,试样伸长量与力成正比增加,保持直线关系,拉力超过F P 后拉伸曲线将由直变曲。保持直线关系的最大拉力就是材料比例极限的力值F P。 在F P的上方附近有一点是F c,若拉力小于F c而卸载时,卸载后试样立刻恢复原状,若拉力大于F c后再卸载,则试件只能部分恢复,保留的残余变形即为塑性变形,因而F c是代表材料弹性极限的力值。 当拉力增加到一定程度时,试验机的示力指针(主动针)开始摆动或停止不动,拉伸图上出现锯齿状或平台,这说明此时试样所受的拉力几乎不变但变形却在继续,这种现象称为材料的屈服。低碳钢的屈服阶段常呈锯齿状,其上屈服点B′受变形速度及试样形式等因素的影响较大,而下屈服点B则比较稳定(因此工程上常以其下屈服点B所对应的力值F eL作为 材料屈服时的力值)。确定屈服力值时,必须注 意观察读数表盘上测力指针的转动情况,读取测 力度盘指针首次回转前指示的最大力F eH(上屈 服荷载)和不计初瞬时效应时屈服阶段中的最小 力F eL(下屈服荷载)或首次停止转动指示的恒 定力F eL(下屈服荷载),将其分别除以试样的原 图2-3 低碳钢的冷作硬化 始横截面积(S0)便可得到上屈服强度R eH和下屈服强度R eL。即 R = F e H/S0 R e L= F e L/S0 e H 屈服阶段过后,虽然变形仍继续增大,但力值也随之增加,拉伸曲线又继续上升,这说明材料又恢复了抵抗变形的能力,这种现象称为材料的强化。在强化阶段内,试样的变形主要是塑性变形,比弹性阶段内试样的变形大得多,在达到最大力F m之前,试样标距范围内的变形是均匀的,拉伸曲线是一段平缓上升的曲线,这时可明显地看到整个试样的横向尺寸在缩小。此最大力F m为材料的抗拉强度力值,由公式R m=F m/S0即可得到材料的抗拉强度R m。 如果在材料的强化阶段内卸载后再加载,直到试样拉断,则所得到的曲线如图2-3所示。卸载时曲线并不沿原拉伸曲线卸回,而是沿近乎平行于弹性阶

材料的拉伸试验实验报告

材料的拉伸试验 实验内容及目的 (1)测定低碳钢材料在常温、静载条件下的屈服强度s σ、抗拉强度b σ、伸长率δ和断面收缩率ψ。 (2)掌握万能材料试验机的工作原理和使用方法。 实验材料及设备 低碳钢、游标卡尺、万能试验机。 试样的制备 按照国家标准GB6397—86《金属拉伸试验试样》,金属拉伸试样的形状随着产品的品种、规格以及试验目的的不同而分为圆形截面试样、矩形截面试样、异形截面试样和不经机加工的全截面形状试样四种。其中最常用的是圆形截面试样和矩形截面试样。 如图1所示,圆形截面试样和矩形截面试样均由平行、过渡和夹持三部分组成。平行部分的试验段长度l 称为试样的标距,按试样的标距l 与横截面面积A 之间的关系,分为比例试样和定标距试样。圆形截面比例试样通常取d l 10=或d l 5=,矩形截面比例试样通常取 A l 3.11=或A l 65.5=,其中,前者称为长比例试样(简称长试样),后 者称为短比例试样(简称短试样)。定标距试样的l 与A 之间无上述比例关系。过渡部分以圆弧与平行部分光滑地连接,以保证试样断裂时的断口在平行部分。夹持部分稍大,其形状和尺寸根据试样大小、材

料特性、试验目的以及万能试验机的夹具结构进行设计。 对试样的形状、尺寸和加工的技术要求参见国家标准GB6397—86。 (a ) (b ) 图1 拉伸试样 (a )圆形截面试样;(b )矩形截面试样 实验原理 进行拉伸试验时,外力必须通过试样轴线,以确保材料处于单向应力状态。低碳钢具有良好的塑性,低碳钢断裂前明显地分成四个阶段: 弹性阶段:试件的变形是弹性的。在这个范围内卸载,试样仍恢复原来的尺寸,没有任何残余变形。 屈服(流动)阶段:应力应变曲线上出现明显的屈服点。这表明材料暂时丧失抵抗继续变形的能力。这时,应力基本上不变化,而变形快速增长。通常把下屈服点作为材料屈服极限(又称屈服强度),即A F s s =σ,是材料开始进入塑性的标志。结构、零件的应力一旦超过 屈服极限,材料就会屈服,零件就会因为过量变形而失效。因此强度

拉伸实验报告

abaner 拉伸试验报告 [键入文档副标题] [键入作者姓名] [选取日期] [在此处键入文档的摘要。摘要通常是对文档内容的简短总结。在此处键入文档的摘要。 摘要通常是对文档内容的简短总结。] 拉伸试验报告 一、试验目的 1、测定低碳钢在退火、正火和淬火三种不同热处理状态下的强度与塑性性能 2、测定低碳钢的应变硬化指数和应变硬化系数 二、试验要求: 按照相关国标标准(gb/t228-2002:金属材料室温拉伸试验方法)要求完成试验测量工 作。 三、引言 低碳钢在不同的热处理状态下的力学性能是不同的。为了测定不同热处理状态的低碳钢 的力学性能,需要进行拉伸试验。 拉伸试验是材料力学性能测试中最常见试验方法之一。试验中的弹性变形、塑性变形、 断裂等各阶段真实反映了材料抵抗外力作用的全过程。它具有简单易行、试样制备方便等特 点。拉伸试验所得到的材料强度和塑性性能数据,对于设计和选材、新材料的研制、材料的 采购和验收、产品的质量控制以及设备的安全和评估都有很重要的应用价值和参考价值 通过拉伸实验测定低碳钢在退火、正火和淬火三种不同热处理状态下的强度和塑形性能, 并根据应力-应变曲线,确定应变硬化指数和系数。用这些数据来进行表征低碳钢的力学性能, 并对不同热处理的低碳钢的相关数据进行对比,从而得到不同热处理对低碳钢的影响。 拉伸实验根据金属材料室温拉伸试验方法的国家标准,制定相关的试验材料和设备,试 验的操作步骤等试验条件。 四、试验准备内容 具体包括以下几个方面。 1、试验材料与试样 (1)试验材料的形状和尺寸的一般要求 试样的形状和尺寸取决于被试验金属产品的形状与尺寸。通过从产品、压制坯或铸件切 取样坯经机加工制成样品。但具有恒定横截面的产品,例如型材、棒材、线材等,和铸造试 样可以不经机加工而进行试验。 试样横截面可以为圆形、矩形、多边形、环形,特殊情况下可以为某些其他形状。原始 标距与横截面积有l?ks0关系的试样称为比例试样。国际上使用的比例系数k的值为5.65。 原始标距应不小于15mm。当试样横截面积太小,以至采用比例系数k=5.65的值不能符合这 一最小标距要求时,可以采用较高的值,或者采用非比例试样。 本试验采用r4试样,标距长度50mm,直径为18mm。 尺寸公差为±0.07mm,形状公差为0.04mm。 (2)机加工的试样 如果试样的夹持端与平行长度的尺寸不同,他们之间应以过渡弧相连,此弧的过渡半径 的尺寸可能很重要。 试样夹持端的形状应适合试验机的夹头。试样轴线应与力的作用线重合。 (5)原始横截面积的测定

材料力学拉伸实验报告

材料的拉伸压缩实验 徐浩1221241020 机械一班 一、实验目的 1.观察试件受力和变形之间的相互关系; 2.观察低碳钢在拉伸过程中表现出的弹性、屈服、强化、颈缩、断裂等物 理现象。观察铸铁在压缩时的破坏现象。 3.测定拉伸时低碳钢的强度指标(σs、σb)和塑性指标(δ、ψ)。测定压缩 时铸铁的强度极限σb。 二、实验设备 1.微机控制电子万能试验机; 2.游标卡尺。 三、实验材料 拉伸实验所用试件(材料:低碳钢)如图所示, 四、实验原理 低碳钢试件拉伸过程中,通过力传感器和位移传感器进行数据采集,A/D转换和处理,并输入计算机,得到F-?l曲线,即低碳钢拉伸曲线,见图2。 对于低碳钢材料,由图2曲线中发现OA直线,说明F正比于?l,此阶段称为弹性阶段。屈服阶段(B-C)常呈锯齿形,表示载荷基本不变,变形增加很快,材料失去抵抗变形能力,这时产生两个屈服点。其中,B'点为上屈服点,它受变形大小和试件等因素影响;B点为下屈服点。下屈服点比较稳定,所以工程上均以下屈服点对应的载荷作为屈服载荷。测定屈服载荷Fs时,必须缓慢而均匀地加载,并应用σs=F s/ A0(A0为试件变形前的横截面积)计算屈服极限。

图2 低碳钢拉伸曲线 屈服阶段终了后,要使试件继续变形,就必须增加载荷,材料进入强化阶段。当载荷达到强度载荷F b 后,在试件的某一局部发生显著变形,载荷逐渐减小,直至试件断裂。应用公式σb =F b /A 0计算强度极限(A 0为试件变形前的横截面积)。 根据拉伸前后试件的标距长度和横截面面积,计算出低碳钢的延伸率δ和端面收缩率ψ,即 %100001?-= l l l δ,%1000 1 0?-=A A A ψ 式中,l 0、l 1为试件拉伸前后的标距长度,A 1为颈缩处的横截面积。 五、实验步骤及注意事项 1、拉伸实验步骤 (1)试件准备:在试件上划出长度为l 0的标距线,在标距的两端及中部三 个位置上,沿两个相互垂直方向各测量一次直径取平均值,再从三个平均值中取最小值作为试件的直径d 0。 (2)试验机准备:按试验机→计算机→打印机的顺序开机,开机后须预热十分钟才可使用。按照“软件使用手册”,运行配套软件。 (3)安装夹具:根据试件情况准备好夹具,并安装在夹具座上。 (4)夹持试件:若在上空间试验,则先将试件夹持在上夹头上,力清零消除试件自重后再夹持试件的另一端;若在下空间试验,则先将试件夹持在下夹头上,力清零消除试件自重后再夹持试件的另一端。 (5)开始实验:消除夹持力;位移清零;按运行命令按钮,按照软件设定的方案进行实验。 (6)记录数据:试件拉断后,取下试件,将断裂试件的两端对齐、靠紧,用游标卡尺测出试件断裂后的标距长度l 1及断口处的最小直径d 1(一般从相

14.金属的单向静拉伸实验

实验19 金属的单向静拉伸实验 一、实验目的 1.了解拉伸实验机的基本原理和操作规程。 2.掌握金属拉伸性能指标的测定方法 3. 熟悉标准光滑及缺口拉伸试样的规范。 二、拉伸性能指标测定方法概述 本试验主要测定主属材料的σs、σb、δ和Ψ等性能指标。根据国家标准GB228-76《金属拉力试验法》,上述性能指标的测定方法如下: 1、屈服点试样在拉伸过程中,载荷不增加或首次下降而仍继续伸长时的最小应力称为屈服点 式中,P S为屈服点的载荷,F为试样标距部分原始截面积。 P S之值可借助于试验机测力度盘的指针或拉伸曲线来确定。(1)指针法;当测力计度盘的指针停止转动的恒定载荷或第一次回转的最小载荷即为此P S。 (2)图示法:在拉伸曲线上找出屈服平台的恒定载荷或第一次下降的最小戴荷即为P S。 2、屈服强度; 对于无明显物理屈服现象的材料,则应测定其屈服强度σ0.2。σ0.2为试样在拉伸过程中标距部分残余伸长达原标距长度的0.2%时的应力。 屈服强度载荷σ0.2可用图解法或引伸计法测定。 3、抗拉强度σb 将试样加载至断裂,自测力度盘或拉伸曲线上读出试样拉断前的最大载荷Pb,Pb所对应之应力即为抗拉强度σb。 4、伸长率δ 伸长率δ为试样拉断后标距长度的增量与原标距长度的百分比,即δ=(Lk-L0)/ L0*100%。Lk和L0分别为试样原标距长度和拉断后标距间的长度(mm)。 由于试样断裂位置对δ有影响,其中以断在正中的试样伸长率最大。因此,测量断后标距部分长度Lk时。规定以断在正中试样的Lk为标准,若不是断在正中者,则应换算到相当于正中的Lk。为此,试样在拉伸前应将标距部分划为10等分,划上标记。测量时分为两种情况: (1)如果拉断处到邻近标距端点的距离大于1/3,可直接测量断后两端点的距离为Lk。(2)如果拉断处到邻近标距端点的距离小于或等于1/3,要用移位法换算Lk。 5、断面收缩率Ψ 断面收缩率Ψ为试样拉断后缩颈处横截面的最大缩减量与原横截面积的百分比。即 式中,F0和F k分别为试样原始横截面积和拉断后缩颈处的最小横截面积(mm2)。 测定F k的方法对于圆柱试样在缩颈最小处两个互相垂直方向上测其直径,然后取其算术平均值。

大学物理-拉伸法测弹性模量 实验报告

大连理工大学 大 学 物 理 实 验 报 告 院(系) 材料学院 专业 班级 姓 名 学号 实验台号 实验时间 年 月 日,第 周,星期 第 节 实验名称 拉伸法测弹性模量 教师评语 实验目的与要求: 1. 用拉伸法测定金属丝的弹性模量。 2. 掌握光杠杆镜尺法测定长度微小变化的原理和方法。 3. 学会处理实验数据的最小二乘法。 主要仪器设备: 弹性模量拉伸仪(包括钢丝和平面镜、直尺和望远镜所组成的光杠杆装置), 米尺, 螺旋测微器 实验原理和内容: 1. 弹性模量 一粗细均匀的金属丝, 长度为l , 截面积为S , 一端固定后竖直悬挂, 下端挂以质量为m 的砝码; 则金属丝在外力F=mg 的作用下伸长Δl 。 单位截面积上所受的作用力F/S 称为应力, 单位长度的伸长量 Δl/l 称为应变。 有胡克定律成立:在物体的弹性形变范围内,应力F/S 和Δl/l 应变成正比, 即 l l ?=E S F 其中的比例系数 l l S F E //?= 称为该材料的弹性模量。 性质: 弹性模量E 与外力F 、物体的长度l 以及截面积S 无关, 只决定于金属丝的材料。

实验中测定E , 只需测得F 、S 、l 和l ?即可, 前三者可以用常用方法测得, 而l ?的数量级很小, 故使用光杠杆镜尺法来进行较精确的测量。 2. 光杠杆原理 光杠杆的工作原理如下: 初始状态下, 平面镜为竖直状态, 此时标尺读数为n 0。 当金属丝被拉长l ?以后, 带动平面镜旋转一角度α, 到图中所示M ’位置; 此时读得标尺读数为n 1, 得到刻度变化为 01n n n -=?。 Δn 与l ?呈正比关系, 且根据小量 忽略及图中的相似几何关系, 可以得到 n B b l ??= ?2 (b 称为光杠杆常数) 将以上关系, 和金属丝截面积计算公式代入弹性模量的计算公式, 可以得到 n b D FlB E ?= 2 8π (式中B 既可以用米尺测量, 也可以用望远镜的视距丝和标尺间接测量; 后者的原理见附录。) 根据上式转换, 当金属丝受力F i 时, 对应标尺读数为n i , 则有 02 8n F bE D lB n i i +?= π 可见F 和n 成线性关系, 测量多组数据后, 线性回归得到其斜率, 即可计算出弹性模量E 。 P.S. 用望远镜和标尺测量间距B : 已知量: 分划板视距丝间距p , 望远镜焦距f 、转轴常数δ 用望远镜的一对视距丝读出标尺上的两个读数N1、N2, 读数差为ΔN 。 在几何关系上忽略数量级差别大的量后, 可以得到 N p f x ?= , 又在仪器关系上, 有x=2B , 则N p f B ??=21 , (100=p f )。 由上可以得到平面镜到标尺的距离B 。

拉伸实验报告

实验报告(一) 实验名称: 金属静态拉伸破坏实验 实验目的: 1、测定低碳钢的屈服极限S σ、强度极限b σ、延伸率δ、截面收缩率ψ。 2、测定铸铁的抗拉强度极限b σ。 3、观察低碳钢和铸铁在拉伸过程中表现的现象,绘出外力和变形间的关系曲线(L F ?-曲线)。 4、分析和比较低碳钢和铸铁的拉伸力学性能和破坏特征。 实验设备和仪器: 材料试验机、游标卡尺、试样划线器等。 拉伸试件: 金属材料拉伸实验常用的试件形状如图所示。图中工作段长度l 称为标距,试件的拉伸变形量一般由这一段的变形来测定,两端较粗部分是为了便于装入试验机的夹头内。 为了使实验测得的结果可以互相比较,试件必须按国家标准做成

标准试件,即d l10 =。 =或d l5 对于一般板的材料拉伸实验,也应按国家标准做成矩形截面试件。其截面面积和试件标距关系为A .5 =,A为标距段 l65 l3. =或A 11 内的截面积。 实验原理: 1、低碳钢 低碳钢的拉伸图全面而具体的反映了整个变形过程。观察自动绘图机绘出的拉伸图。 图1-2 从图中可以看出,当载荷增加到A点时,拉伸图上OA段是直线,表明此阶段内载荷与试件的变形成比例关系,即符合虎克定律的弹性变形范围。当载荷增加到B'点时,L -曲线变成锯齿状,这时变形 F? 增加很快,载荷在小幅度内波动很慢;这说明材料产生了流动(或者叫屈服)与B'点相应的应力叫上流动极限(屈服高限),与B相应的应力叫下流动极限(屈服低限),因下流动极限比较稳定,所以材料的流动极限一般规定按下流动极限取值。以B点相对应的载荷值 F除 S

以试件的原始截面积A 即得到低碳钢的流动极限S σ, A F S S =σ流动阶段后,试件要承受更大的外力,才能继续发生变形若要使塑性变形加大,必须增加载荷,如图形中C 点至D 点这一段为强化阶段。当载荷达到最大值b F (D 点)时,试件的塑性变形集中在某一截面处的小段内,此段发生截面收缩,即出现“颈缩”现象(局部变形)。此时记下最大载荷值b F ,用b F 除以试件的原始截面积A ,就得到低碳钢的强度极限A F /b b =σ。在试件发生“颈缩”后,由于截面积的减小,载荷迅速下降,到E 点试件断裂,其断口形貌成杯锥状。试样拉断后,弹性变形立即消失,而塑性变形则保留在拉断的试样上。 关闭机器,取下拉断的试件,将断裂的试件紧对到一起,用游标卡尺测量出断裂后试件标距间的长度1l ,按下式可计算出低碳钢的延伸率δ %1001?-= l l l δ。 将断裂的试件的断口紧对在一起,用游标卡尺量出断口(细颈)处的直径1d ,计算出面积1A ;按下式可计算出低碳钢的截面收缩率ψ, %1001 ?-= A A A ψ 2、铸铁 从铸铁的拉伸图可以看出,在整个拉伸过程中变形很小,无屈服、颈缩现象,拉伸图无直线段。曲线快达到最大拉力b F ,试样突然发生断裂,其断 口是平齐粗糙的,是一种典型的脆性破坏断口。其抗拉强度远小于低碳钢的抗拉强度。

材料拉伸与压缩试验报告

材料的拉伸压缩实验 【实验目的】 1.研究低碳钢、铸铁的应力——应变曲线拉伸图。 2.确定低碳钢在拉伸时的机械性能(比例极限R p、下屈服强度R eL、强度极限R m、延伸率A、断面收缩率Z等等)。 3. 确定铸铁在拉伸时的力学机械性能。 4.研究和比较塑性材料与脆性材料在室温下单向压缩时的力学性能。 【实验设备】 1.微机控制电子万能试验机; 2.游标卡尺。 3、记号笔 4、低碳钢、铸铁试件 【实验原理】 1、拉伸实验 低碳钢试件拉伸过程中,通过力传感器和位移传感器进行数据采集,A/D转换和处理,并输入计算机,得到F-?l曲线,即低碳钢拉伸曲线,见图1。 对于低碳钢材料,由图1曲线中发现OA直线,说明F正比于?l,此阶段称为弹性阶段。屈服阶段(B-C)常呈锯齿形,表示载荷基本不变,变形增加很快,材料失去抵抗变形能力,这时产生两个屈服点。其中,B'点为上屈服点,它受变形大小和试件等因素影响;B点为下屈服点。下屈服点比较稳定,所以工程上均以下屈服点对应的载荷作为屈服载荷。测定屈服载荷Fs时,必须缓慢而均匀地加载,并应用σs=F s/ A0(A0为试件变形前的横截面积)计算屈服极限。 图1低碳钢拉伸曲线 屈服阶段终了后,要使试件继续变形,就必须增加载荷,材料进入强化阶段。

当载荷达到强度载荷F b后,在试件的某一局部发生显著变形,载荷逐渐减小,直至试件断裂。应用公式σb=F b/A0计算强度极限(A0为试件变形前的横截面积)。 根据拉伸前后试件的标距长度和横截面面积,计算出低碳钢的延伸率δ和端面收缩率ψ,即 % 100 1? - = l l l δ,% 100 1 0? - = A A A ψ 式中,l0、l1为试件拉伸前后的标距长度,A1为颈缩处的横截面积。 2、压缩实验 铸铁试件压缩过程中,通过力传感器和位移传感器进行数据采集,A/D转换和处理,并输入计算机,得到F-?l曲线,即铸铁压缩曲线,见图2。 对铸铁材料,当承受压缩载荷达到最大载荷F b时,突然发生破裂。铸铁试件破坏后表明出与试件横截面大约成45?~55?的倾斜断裂面,这是由于脆性材料的抗剪强度低于抗压强度,使试件被剪断。 材料压缩时的力学性质可以由压缩时的力与变形关系曲线表示。铸铁受压时曲线上没有屈服阶段,但曲线明显变弯,断裂时有明显的塑性变形。由于试件承受压缩时,上下两端面与压头之间有很大的摩擦力,使试件两端的横向变形受到阻碍,故压缩后试件呈鼓形。 铸铁压缩实验的强度极限:σb=F b/A0(A0为试件变形前的横截面积)。 【实验步骤及注意事项】 1、拉伸实验步骤 (1)试件准备:在试件上划出长度为l0的标距线,在标距的两端及中部三个位置上,沿两个相互垂直方向各测量一次直径取平均值,再从三个平均值中取最小值作为试件的直径d0。 (2)试验机准备:按试验机→计算机→打印机的顺序开机,开机后须预热十分钟才可使用。按照“软件使用手册”,运行配套软件。 (3)安装夹具:根据试件情况准备好夹具,并安装在夹具座上。若夹具已 图2 铸铁压缩曲线

工程力学拉伸实验报告

试验目的: 1. 测定低碳钢(塑性材料)的弹性摸量E;屈服极限σs 等机械性能。 2.测定灰铸铁(脆性材料)的强度极限σb 3.了解塑性材料和脆性材料压缩时的力学性能。 材料拉伸与压缩实验指导书 低碳钢拉伸试验 拉伸试验的意义: 单向拉伸试验是在常温下以缓慢均匀的速度对专门制备的试件施加轴向载荷,在试件加载过程中观测载荷与变形的关系,从而决定材料有关力学性能。通过拉伸试验可以测定材料在单向拉应力作用下的弹性模量及屈服强度、抗拉强度、延伸率、截面收缩率等指标。其试验方法简单且易于得到较可靠的试验数据,所以是研究材料力学性能最基本、应用最广泛的试验。 操作步骤: 1.试验设备:WDW-3050电子万能试验机 2.试件准备:用游标卡尺测量试件试验段长度l0和截面直径d0,并作记录。 3.打开试验机主机及计算机等相关设备。 4.试件安装(详见WDW3050电子万能试验机使用与操作三.拉伸试件的安装)。 5.引伸计安装(用于测量E, 详见WDW3050电子万能试验机使用与操作四.引伸计安装)。 6.测量参数的设定: 7.再认真检查一遍试件安装等试验准备工作。 8.负荷清零,轴向变形清零,位移清零。 9.开始进行试验,点击试验开始。 10.根据提示摘除引伸计。 11.进入强化阶段以后,进行冷作硬化试验,按主机控制面板停止,再按▼,先卸载到10kN,再加载,按▲,接下来计算机控制,一直到试件断裂(此过程中计算机一直工作,注意观察负荷位移曲线所显示的冷作硬化现象.). 12.断裂以后记录力峰值。 13.点击试验结束(不要点击停止)。

14.材料刚度特征值中的弹性模量E的测定 试验结束后,在试验程序界面选定本试验的试验编号,并选择应力─应变曲线。在曲线上较均匀地选择若干点,记录各点的值,分别为及 (如i =0,1,2,3,4),并计算出相应的 计算E i的平均值,得到该材料的弹性模量E的值。 15.材料强度特征值屈服极限和强度极限的测定 试验结束后,在试验程序界面选定本试验的试验编号,并选择负荷─位移曲线,找到的曲线屈服阶段的下屈服点,即为屈服载荷F s, 找到的曲线上最大载荷值,即为极限载荷P b. 计算屈服极限:;计算强度极限:; 16.材料的塑性特征值延伸率及截面收缩率的测定 试件拉断后,取下试件,沿断裂面拼合,用游标卡尺测定试验段长度,和颈缩断裂处截面直径。 计算材料延伸率 计算截面收缩率 低碳钢拉伸试验报告 试验目的: 1. 掌握电子万能试验机操作; 2. 理解塑性材料拉伸时的力学性能; 3. 观察低碳钢拉伸时的变形特点; 4. 观察低碳钢材料的冷作硬化现象; 5. 测定低碳钢材料弹性模量E ; 6. 测定材料屈服极限和强度极限; 7. 测定材料伸长率δ和截面收缩率Ψ 试验设备:

金属的拉伸实验(实验报告)

金属的拉伸实验一 一、实验目的 1、测定低碳钢的屈服强度二S、抗拉强度匚b、断后延伸率「?和断面收缩率'■ 2、观察低碳钢在拉伸过程中的各种现象,并绘制拉伸图( F —「丄曲线) 3、分析低碳钢的力学性能特点与试样破坏特征 二、实验设备及测量仪器 1、万能材料试验机 2、游标卡尺、直尺 三、试样的制备 试样可制成圆形截面或矩形截面,采用圆形截面试件,试件中段用于测量拉伸变形,其 长度I。称为“标矩”。两端较粗部分为夹持部分,安装于试验机夹头中,以便夹紧试件。试验表明,试件的尺寸和形状对材料的塑性性质影响很大,为了能正确地比较材料力学性能,国家对试件的尺寸和形状都作了标准化规定。直径d0= 20mm ,标矩 I。=2O0nm(k 1 0或I0 =100mm(l0 =5d0)的圆形截面试件叫做“标准试件”,如因原 料尺寸限制或其他原因不能采用标准试件时,可以用“比例试件”。 四、实验原理 在拉伸试验时,禾U用试验机的自动绘图器可绘出低碳钢的拉伸曲线,见图2-11所示的F —△L曲线。图中最初阶段呈曲线,是由于试样头部在夹具内有滑动及试验机存在间隙等原因造成的。分析时应将图中的直线段延长与横坐标相交于O点,作为其坐标原点。拉伸曲 线形象的描绘出材料的变形特征及各阶段受力和变形间的关系,可由该图形的状态来判断材 料弹性与塑性好坏、断裂时的韧性与脆性程度以及不同变形下的承载能力。但同一种材料的 拉伸曲线会因试样尺寸不同而各异。为了使同一种材料不同尺寸试样的拉伸过程及其特性点 便于比较,以消除试样几何尺寸的影响,可将拉伸曲线图的纵坐标(力F)除以试样原始横 截面面积并将横坐标(伸长△ L)除以试样的原始标距I。得到的曲线便与试样尺寸无关,此曲线称为应力一应变曲线或R —;曲线,如图2 —12所示。从曲线上可以看出,它与拉伸 图曲线相似,也同样表征了材料力学性能。 爲一上屈服力:①一下屈服力'厂最尢力;叫一断裂后塑性伸恰业一彈性佃长 團2—11低碳钢拉伸曲线 拉伸试验过程分为四个阶段,如图2—11和图2-12所示。 (1 )、弹性阶段OC。在此阶段中拉力和伸长成正比关系,表明钢材的应力与应变为线性关系,完全遵循虎克定律,如图2-12所示。若当应力继续增加到C点时,应力和应变的关系不再是线性关系,但变形仍然是弹性的,即卸除拉力后变形完全消失。

拉伸实验报告

实验一拉伸实验报告 一、实验目的 1、掌握如何正确进行拉伸实验的测量; 2、通过对拉伸实验的实际操作,测定低碳钢的弹性模量E、屈服极限бs、强度极限бb 、延伸率δ、截面收缩率ψ; 3、观察在拉伸过程中的各种现象,绘制拉伸图(P―Δ曲线) ; 4、通过适当转变,绘制真应力-真应变曲线S-e,测定应变硬化指数n ,并了解其实际意义。 二、实验器材与设备 1、电子万能材料试验机(载荷、变形、位移) 其设备如下: 主机 微机处理系统 测试控制 CSS-44200

2、变形传感器(引申仪) 型 号 ∶YJ Y ―11 标 距 L ∶50 mm 量 程 ΔL ∶ 25mm 3、拉伸试件 为了使试验结果具有可比性,按GB228-2002规定加工成标准试件。 其标准规格为:L 0=5d 0,d 0=10mm 。 试件的标准图样如下: 标准试件图样 三、实验原理与方法 1、低碳钢拉伸 随着拉伸实验的进行,试件在连续变载荷作用下经历了弹性变形阶段、屈服阶段、强化阶段以及局部变形阶段这四个阶段。 其拉伸力——伸长曲线如下: 夹持部分 工作部分 过渡部分

弹性阶段屈服阶段强化阶段局部变形阶段 低碳钢的拉伸力——伸长曲线 2、低碳钢弹性模量E的测定 在已经获得的拉伸力—伸长曲线上取伸长长度约为标距的1%~8%的相互距离适当的两点(本实验选取了伸长为4%和8%的两点),读出其力和伸长带入相关的计算公式计算出弹性模量E。

3、应变硬化指数n的测定 在金属整个变形过程中,当外力超过屈服强度之后,塑性变形并不是像屈服平台那样连续流变下去,而需要不断增加外力才能继续进行。这表明金属材料有一种阻止继续塑性变形的能力,这就是应变硬化性能。塑性应变是硬化的原因,而硬化则是塑性应变的结果。应变硬化是位错增值,运动受阻所致。 准确全面描述材料的应变硬化行为,要使用真实应力——应变曲线。因为工程应力——应变曲线上的应力和应变是用试样标距部分原始截面积和原始标距长度来度量的,并不代表实际瞬时的应力和应变。当载荷超过曲线上最大值后,继续变形,应力下降,此与材料的实际硬化行为不符。 在拉伸真实应力——应变曲线上,在均匀塑性变形阶段,应力与应变之间符合Hollomon关系式 S=Ke n 式中,S为真实应力;K为硬化系数,亦称强度系数,是真实应变等于1.0时的真实应力;e为真实应变;n为应变硬化指数。 应变硬化指数n反映了金属材料抵抗均匀塑性变形的能力,是表征金属材料应变硬化行为的性能指标。 根据GB5028-85,应变硬化指数n的计算过程如下: 首先,要绘制出真实的应力——应变曲线,然后根据在塑性变形阶段下:真应力S=F/A 真应变e=△L/L SA F= = + =SdA AdS dF ) 1 ln( 0 ε+ = =?l l l dl e

力学实验报告标准答案

1、为何在拉伸试验中必须采用标准试件或比例试件,材料相同而长短不同的 试件延伸率是否相同 答:拉伸实验中延伸率的大小与材料有关,同时与试件的标距长度有关.试件局部变形较大的断口部分,在不同长度的标距中所占比例也不同.因此拉伸试验中必须采用标准试件或比例试件,这样其有关性质才具可比性.材料相同而长短不同的试件通常情况下延伸率是不同的(横截面面积与长度存在某种特殊比例关系除外). 2、分析比较两种材料在拉伸时的力学性能及断口特征. 答:试件在拉伸时铸铁延伸率小表现为脆性,低碳钢延伸率大表现为塑性;低碳钢具有屈服现象,铸铁无.低碳钢断口为直径缩小的杯锥状,且有450的剪切唇,断口组织为暗灰色纤维状组织。铸铁断口为横断面,为闪光的结晶状组织。. 3.分析铸铁试件压缩破坏的原因. 答:铸铁试件压缩破坏,其断口与轴线成45°~50°夹角,在断口位置剪应力已达到其抵抗的最大极限值,抗剪先于抗压达到极限,因而发生斜面剪切破坏。 4、低碳钢与铸铁在压缩时力学性质有何不同结构工程中怎样合理使用这两类不同性质的材料 答:低碳钢为塑性材料,抗压屈服极限与抗拉屈服极限相近,此时试件不会发生断裂,随荷载增加发生塑性形变;铸铁为脆性材料,抗压强度远大于抗拉强度,无屈服现象。压缩试验时,铸铁因达到剪切极限而被剪切破坏。通过试验可以发现低碳钢材料塑性好,其抗剪能力弱于抗拉;抗拉与抗压相近。铸铁材料塑性差,其抗拉远小于抗压强度,抗剪优于抗拉低于抗压。故在工程结构中塑性材料应用范围广,脆性材料最好处于受压状态,比如车床机座。 5.试件的尺寸和形状对测定弹性模量有无影响为什么 答: 弹性模量是材料的固有性质,与试件的尺寸和形状无关。 6.逐级加载方法所求出的弹性模量与一次加载到最终值所求出的弹性模量是否相同为什么必须用逐级加载的方法测弹性模量 答: 逐级加载方法所求出的弹性模量与一次加载到最终值所求出的弹性模量不相同,采用逐级加载方法所求出的弹性模量可降低误差,同时可以验证材料此时是否处于弹性状态,以保证实验结果的可靠性。 7.试验过程中,有时候在加砝码时,百分表指针不动,这是为什么应采取什么措施 答:检查百分表是否接触测臂或超出百分表测量上限,应调整百分表位置。8.测G时为什么必须要限定外加扭矩大小 答:所测材料的G必须是材料处于弹性状态下所测取得,故必须控制外加扭矩大小。 9.碳钢与铸铁试件扭转破坏情况有什么不同分析其原因. 答:碳钢扭转形变大,有屈服阶段,断口为横断面,为剪切破坏。铸铁扭转形变小,没有屈服阶段,断口为和轴线成约45°的螺旋形曲面,为拉应力破坏。 10.铸铁扭转破坏断口的倾斜方向与外加扭转的方向有无直接关系为什么

材料力学拉伸试验

§1-1 轴向拉伸实验 一、实验目的 1、 测定低碳钢的屈服强度eL R (s σ)、抗拉强度m R (b σ)、断后伸长率A 11.3(δ10)和断面收缩率Z (ψ)。 2、 测定铸铁的抗拉强度m R (b σ)。 3、 比较低碳钢?5(塑性材料)和铸铁?5(脆性材料)在拉伸时的力学性能和断口特征。 注:括号内为GB/T228-2002《金属材料 室温拉伸试验方法》发布前的旧标准引用符号。 二、设备及试样 1、 电液伺服万能试验机(自行改造)。 2、 0.02mm 游标卡尺。 3、 低碳钢圆形横截面比例长试样一根。把原始标距段L 0十等分,并刻画出圆周等分线。 4、 铸铁圆形横截面非比例试样一根。 注:GB/T228-2002规定,拉伸试样分比例试样和非比例试样两种。比例试样的原始标距0L 与原始横截面积0S 的关系满足00S k L =。比例系数k 取5.65时称为短比例试样,k 取11.3时称为长比例试样,国际上使用的比例系数k 取5.65。非比例试样0L 与0S 无关。 三、实验原理及方法 低碳钢是指含碳量在0.3%以下的碳素钢。这类钢材在工程中使用较广,在拉伸时表现出的力学性能也最为典型。 ΔL (标距段伸长量) 低碳钢拉伸图(F —ΔL 曲线) 以轴向力F 为纵坐标,标距段伸长量ΔL 为横坐标,所绘出的试验曲线图称为拉伸图,即F —ΔL 曲线。低碳钢的拉伸图如上图所示,F eL 为下屈服强度对应的轴向力,F eH 为上屈服强度对应的轴向力,F m 为最大轴向力。 F —ΔL 曲线与试样的尺寸有关。为了消除试样尺寸的影响,把轴向力F 除以试样横截面的原始面积S 0就得到了名义应力,也叫工程应力,用σ表示。同样,试样在标距段的伸长ΔL 除以试样的原始标距LO 得到名义应变,也叫工程应变,用ε表示。σ—ε曲线与F —ΔL 曲线形状相似,但消除了儿何尺寸的影响,因此代表了材料本质属性,即材料的本构关系。

pe的拉伸实验报告

pe的拉伸实验报告 篇一:PE塑料拉伸性能试验报告 PE塑料拉伸性能试验报告 执行标准试样宽度 15.196 mm GB/T 1040-92 试样厚度 2.916 mm 试样原始标距偏置屈服应变 139.56 mm 篇二:塑料拉伸实验报告 篇一:塑料拉伸试验 塑料拉伸试验 (一)实验目的 掌握塑料拉伸试验方法,了解塑料拉伸试验机的基本结构和工作原理,并通过试样的拉伸应力—应变曲线和各试验数据来分析该材料的静态拉伸力学性能,对其拉伸强度、屈服强度、断裂伸长率和弹性模量作出评价。 (二)实验原理 在规定的试验温度、湿度与拉伸速度下,通过对塑料试样的纵轴方向施加拉伸载荷,使试样产生形变直至材料破坏。记录下试样破坏时的最大负荷和对应的标线间距离的变化情况。 ( 在带微机处理器的电子拉力机上,只要输入试样的规格尺寸等有关数据和要求,在拉伸过程中,传感器把力值传给电脑,电脑通过处理,自动记录下应力—应变全过程的数据,并把应力—应变曲线和各测试数据通过打印机打印

出来 ) 。 (三)试验设备和拉伸试祥 1 .试验设备 (1) 机械式拉力试验机 ①备有适应各型号试样的专用夹具。 ③试验数据示值应在每级表盘的 10 %一 90 %,但不小于试验最大载荷的 4 %读取,示值的误差应在 1 %之内。 (2) 带微机处理器的电子拉力机机械传动原理同机械式拉力机,但精密度高于普通机械式拉力机。当试样受载拉伸时,力值和材料的伸长率由传感器感量输入电脑,经电脑处理同时在屏幕上显示出来。每个试样试验结束,电脑自动记录全过程并存入硬盘,试验者需要哪一个试样的应力—应变曲线图,需要哪一个数据,随时可以从连接电脑的打印机上打印出来。 2 .拉伸试样 (1) 试样的形状和尺寸标准方法规定使用四种型号的试样,见图 1 至图 4 。 (2) 试样的选择热固性模塑材料:用 i 型。 硬板材料:用 ii 型 ( 可大于 170mm ) 。 硬质、半硬质热塑性模塑材料:用 ii 型,厚度 d= ( 4 ± 0 . 2 ) mm 。 软板、片材:用 iii 型,厚度 d ≤ 2mm 。 塑料薄膜:用 iv 型。

金属材料力学性能实验报告

金属材料力学性能实验报告 姓名:班级:学号:成绩: 实验名称实验一金属材料静拉伸试验 实验设备1)电子拉伸材料试验机一台,型号HY-10080 2)位移传感器一个; 3)刻线机一台; 4)游标卡尺一把; 5)铝合金和20#钢。 试样示意图 图1 圆柱形拉伸标准试样示意图 试样宏观断口示意图 图2 铝合金试样常温拉伸断裂图和断口图 (和试样中轴线大约成45°角的纤维状断口,几乎没有颈缩,可以知道为切应力达到极限,发生韧性断裂)

图3 正火态20#钢常温拉伸断裂图和断口图 (可以明显看出,试样在拉断之后在断口附近产生颈缩。断口处可以看出有三个区域:1.试样中心的纤维区,表面有较大的起伏,有较大的塑性变形;2.放射区,表面较光亮平坦,有较细的放射状条纹;3.剪切唇,轴线成45°角左右的倾斜断口) 原始数据记录 表1 正火态20#钢试样的初始直径测量数据(单位:mm ) 左 中 右 平均值 9.90 10.00 10.00 9.97 9.92 10.00 10.00 10.00 10.00 9.92 左 中 右 平均值 8.70 8.72 8.68 8.69 8.68 8.70 8.70 8.64 8.72 8.70 表2 时效铝合金试样的初始直径测量数据(单位:mm ) 两试样的初始标距为050 L mm 。 表3 铝合金拉断后标距测量数据记录(单位:mm ) AB BC AB+2BC 平均 12.32 23.16 58.64 58.79 24.02 17.46 58.94 测量20#钢拉断后的平均标距为u L =69.53 mm ,断口的直径平均值为u d =6.00 mm 。 测量得到铝合金拉断后的断面直径平均值为7.96mm 。

拉伸法测弹性模量实验报告

大连理工大学 大学物理实验报告 院(系)材料学院专业材料物理班级0705成绩 姓名童凌炜学号200767025实验台号 实验时间2008 年11月11日,第 12 周,星期二第5-6节 教师签字 实验名称拉伸法测弹性模量 教师评语 实验目的与要求: 1.用拉伸法测定金属丝的弹性模量。 2.掌握光杠杆镜尺法测定长度微小变化的原理和方法。 3.学会处理实验数据的最小二乘法。 主要仪器设备: 弹性模量拉伸仪(包括钢丝和平面镜、直尺和望远镜所组成的光杠杆装置),米尺,螺旋测微器 实验原理和内容: 1.弹性模量 一粗细均匀的金属丝,长度为 l,截面积为S,一端固定后竖直悬挂,下端挂以质量为m 的砝码;则金属丝在外力F=mg 的作用下伸长l 。单位截面积上所受的作用力F/S 称为应力,单位长度的伸长量l/l 称为应变。 有胡克定律成立:在物体的弹性形变范围内,应力F/S 和l/l 应变成正比,即 F E l S l 其中的比例系数 F / S E l / l 称为该材料的弹性模量。 性质:弹性模量 E 与外力 F、物体的长度l 以及截面积S 无关,只决定于金属丝的材料。

实验中测定E,只需测得 F S l 和 l 即可,前三者可以用常用方法测得,而 l 的数量级 、、 很小,故使用光杠杆镜尺法来进行较精确的测量。 2.光杠杆原理 光杠杆的工作原理如下:初始状态下,平面镜为竖直状态,此时标尺读数为n0。当金属丝被拉长l 以 后,带动平面镜旋转一角度α ,到图中所示M ’位置; 此时读得标尺读数为 n1,得到刻度变化为 n n1 n0。n 与l 呈正比关系,且根据小量忽略及图中的相似几何关系,可以得到 l b ( b 称为光杠杆常数)n 2B 将以上关系,和金属丝截面积计算公式代入弹性模量的计算公式,可以得到 E 8FlB D 2b n (式中 B 既可以用米尺测量,也可以用望远镜的视距丝和标尺间接测量;后者的原理见附录。) 根据上式转换,当金属丝受力F i时,对应标尺读数为n i,则有 8lB n i D 2bE F i n0 可见 F 和 n 成线性关系,测量多组数据后,线性回归得到其斜率,即可计算出弹性模量 E。 P.S. 用望远镜和标尺测量间距 B : 已知量:分划板视距丝间距p,望远镜焦距f、转轴常数δ 用望远镜的一对视距丝读出标尺上的两个读数N1 、N2 ,读数差为N 。在几何关系上忽略数量级差别大的量后,可以得到 x f1f N ,( f )。 N ,又在仪器关系上,有 x=2B,则B p 100 p2p 由上可以得到平面镜到标尺的距离 B 。

材料力学拉伸实验报告

材料的拉伸压缩实验 徐浩20 机械一班 一、实验目的 1.观察试件受力和变形之间的相互关系; 2.观察低碳钢在拉伸过程中表现出的弹性、屈服、强化、颈缩、断裂等物 理现象。观察铸铁在压缩时的破坏现象。 3.测定拉伸时低碳钢的强度指标(s 、b )和塑性指标(、)。测定 压缩时铸铁的强度极限b。 二、实验设备 1.微机控制电子万能试验机; 2.游标卡尺。 三、实验材料 拉伸实验所用试件(材料:低碳钢)如图所示, d l0 l 四、实验原理 低碳钢试件拉伸过程中,通过力传感器和位移传感器进行数据采集,A/D转换和处理,并输入计算机,得到F-l曲线,即低碳钢拉伸曲线,见图2。 对于低碳钢材料,由图2曲线中发现OA直线,说明F 正比于l,此阶段称为弹性阶段。屈服阶段(B-C)常呈锯齿形,表示载荷基本不变,变形增加很快,材料失去抵抗变形能力,这时产生两个屈服点。其中,B点为上屈服点,它受变形大小和试件等因素影响;B点为下屈服点。下屈服点比较稳定,所以工程上均以下屈服点对应的载荷作为屈服载荷。测定屈服载荷Fs时,必须缓慢而均匀地加载,并应用s=F s/ A0(A0为试件变形前的横截面积)计算屈服极限。

图2 低碳钢拉伸曲线 屈服阶段终了后,要使试件继续变形,就必须增加载荷,材料进入强化阶段。当载荷达到强度载荷F b 后,在试件的某一局部发生显著变形,载荷逐渐减小,直至试件断裂。应用公式b =F b /A 0计算强度极限(A 0为试件变形前的横截面积)。 根据拉伸前后试件的标距长度和横截面面积,计算出低碳钢的延伸率和端 面收缩率,即 %100001?-= l l l δ,%1000 1 0?-=A A A ψ 式中,l 0、l 1为试件拉伸前后的标距长度,A 1为颈缩处的横截面积。 五、实验步骤及注意事项 1、拉伸实验步骤 (1)试件准备:在试件上划出长度为l 0的标距线,在标距的两端及中部三 个位置上,沿两个相互垂直方向各测量一次直径取平均值,再从三个平均值中取最小值作为试件的直径d 0。 (2)试验机准备:按试验机计算机打印机的顺序开机,开机后须预热十分钟才可使用。按照“软件使用手册”,运行配套软件。 (3)安装夹具:根据试件情况准备好夹具,并安装在夹具座上。 (4)夹持试件:若在上空间试验,则先将试件夹持在上夹头上,力清零消除试件自重后再夹持试件的另一端;若在下空间试验,则先将试件夹持在下夹头上,力清零消除试件自重后再夹持试件的另一端。 (5)开始实验:消除夹持力;位移清零;按运行命令按钮,按照软件设定的方案进行实验。 (6)记录数据:试件拉断后,取下试件,将断裂试件的两端对齐、靠紧,用游标卡尺测出试件断裂后的标距长度l 1及断口处的最小直径d 1(一般从相

相关文档
相关文档 最新文档