文档库 最新最全的文档下载
当前位置:文档库 › AuTiO2 纳米催化剂

AuTiO2 纳米催化剂

AuTiO2 纳米催化剂
AuTiO2 纳米催化剂

Preparation of Monodisperse Au/TiO2Nanocatalysts via

Self-Assembly

Jing Li and Hua Chun Zeng*

Department of Chemical and Biomolecular Engineering,Faculty of Engineering,National Uni V ersity of

Singapore,10Kent Ridge Crescent,Singapore119260

Recei V ed February14,2006.Re V ised Manuscript Recei V ed June29,2006

In this work,we report that presynthesized metallic nanoparticles(such as gold nanoparticles),rather than on-site growing ones that are prepared under thermally or photochemically activated conditions, can be“impregnated”uniformly onto premade oxide supports with organic interconnects which have bifunctional groups.Methodic features of this general technique have been demonstrated using a model metal-oxide system,Au/TiO2(TiO2in anatase phase)catalyst,in the photodegradation of organic compounds(e.g.,methyl orange).On the basis of our investigations with a range of analytical techniques, it has been further found that,if desired,permanent engagement and direct contact between the supported metals and oxide carriers can also be achieved with additional heat treatments.In principle,other oxide-supported metal catalysts can also be fabricated at low temperatures through these types of self-assembling routes.

Introduction

Conventional impregnation method for oxide-supported

metal catalysts for heterogeneous catalysis involves a number

of processing steps:1,2soaking the oxide carriers in a metal

salt precursor solution,drying,thermal decomposition of

precursor salt to surface oxide,and reduction of the surface

oxide to metallic particles(i.e.,active catalytic components).

Because of uneven precursor-solution loading caused by

gravitational settlement and trapping among the catalyst

carriers,metal particles generated from this conventional

process are normally polydispersed.Metal agglomeration,

including chemical modification of support through(metal)

ionic diffusion upon thermal treatments,is a major drawback

for these kinds of methods.Furthermore,surface active sites,

such as atomic and ionic defects and vacancies,atomic steps,

kinks,and terraces,of both surface metals and oxide carriers

are often diminished along these high-temperature treatments,

as schematically illustrated in Figure1a.

As a model system,catalysts of metal oxide-supported gold (Au)nanoparticles has been investigated extensively over the past2decades,due to their many important applications such as low-temperature oxidation of carbon monoxide.3,4 Several attempts,with both gas and liquid techniques,have been made recently for supported nanosized Au/TiO2.3-10 Nonetheless,fabrication for highly monodispersed metal loading has so far remained unsuccessful.To further this research,we note that newer fabrication methods may be attainable by taking advantage of solution chemistry of metallic nanoparticles,which has become a very matured research field in recent years;numerous synthetic methods have been in place.11-15Herein,as depicted in Figure1b, we report that monodispersed Au nanoparticles,2-4nm in size,can be presynthesized in solution and later assembled

*To whom correspondence should be addressed.E-mail:chezhc@https://www.wendangku.net/doc/da2594967.html,.sg.

(1)Stiles,A.B.;Koch,T.A.Catalyst Manufacture,2nd ed.;Dekker:

New York,1995.

(2)Zeng,H. C.In The Dekker Encyclopedia of Nanoscience and

Nanotechnology;Dekker:New York,2004;pp2539-2550.

(3)Haruta,M.Catal.Today1997,36,153-166.

(4)Valden,M.;Lai,X.;Goodman,D.W.Science1998,281,1647-

1650.

(5)Chou,J.;McFarland,https://www.wendangku.net/doc/da2594967.html,mun.(Cambridge)2004,

1648-1649.

(6)Li,D.;McCann,J.T.;Gratt,M.;Xia,Y.N.Chem.Phys.Lett.2004,

394,387-391.

(7)Tada,H.;Soejima,T.;Ito,S.;Kobayashi,H.J.Am.Chem.Soc.2004,

126,15952-15953.

(8)(a)Yan,W.F.;Mahurin,S.M.;Pan,Z.W.;Overbury,S.H.;Dai,S.

J.Am.Chem.Soc.2005,127,10480-10481.(b)Tian,Y.;Tatsuma, T.J.Am.Chem.Soc.2005,127,7632-7637.

(9)(a)Tong,X.;Benz,L.;Kemper,P.;Metiu,H.;Bowers,M.T.;Buratto,

S.K.J.Am.Chem.Soc.2005,127,13516-13518.(b)Remediakis I.

N.;Lopez,N.;N?rskov,J.K.Angew.Chem.,Int.Ed.2005,44,1824-1826.(c)Yoon,B.;Ha¨kkinen,H.;Landman,U.J.Phys.Chem.A 2003,107,4066-4071.

(10)Li,J.;Zeng,H.C.Angew.Chem.,Int.Ed.2005,44,4342-4345.

(11)Brust,M.;Walker,M.;Bethell,D.;Schiffrin,D.J.;Whyman,R.J.

Chem.Soc.,https://www.wendangku.net/doc/da2594967.html,mun.1994,801-

802.

Figure1.Illustrative comparison:(a)conventional metal ion impregnation method(oxide in precursor salt solution,drying,and thermal treatment (calcination and reduction));(b)the present“impregnation”method(oxide in metal suspension and drying);and(c)photoassisted reductive method (oxide in precursor salt solution and photocatalytic reduction of metal cations,another soft method studied in this work).

4270Chem.Mater.2006,18,4270-4277

10.1021/cm060362r CCC:$33.50?2006American Chemical Society

Published on Web08/05/2006

evenly onto anatase TiO 2support at low temperature.The prepared Au/TiO 2catalyst has also been tested for organic compound degradation,16and an excellent photocatalytic activity has been demonstrated.

Experimental Section

In synthesis of Au nanoparticle suspension,tetra-n -octylammo-nium bromide ([CH 3(CH 2)7]4NBr,TOAB;0.19g in 7.0mL of toluene)and HAuCl 4(12mL,0.01M in water)were vigorously stirred in order to transfer HAuCl 4to toluene phase,followed by adding 1.0mL of 0.22M dodecanethiol (CH 3(CH 2)11SH,DDT)in toluene.Afterward,12.0mL of freshly prepared 0.1M NaBH 4aqueous solution was added to obtain 2-4nm Au particles (transmission electron microscopy (TEM)image,Figure 2).11Spherical TiO 2support in anatase polymorph was obtained by hydrolyzing 30.0mL of 2.67mM TiF 4at 180°C for 2h,followed by a similar postgrowth treatment described in the literature.17The

(12)Kanehara,M.;Oumi,Y.;Sano,T.;Teranishi,T.J.Am.Chem.Soc.

2003,125,8708-8709.

(13)Maye,M.M.;Luo,J.;Lim,I.S.;Han,L.;Kariuki,N.N.;Rabinovich,

D.;Liu,T.B.;Zhong,C.-J.J.Am.Chem.Soc.2003,125,9906-9907.

(14)Hao,E.;Bailey,R.C.;Schatz,G.C.;Hupp,J.T.;Li,S.Y.Nano

Lett.2004,4,327-330.

(15)(a)Subramanian,V.;Wolf,E.E.;Kamat,P.V.J.Am.Chem.Soc.

2004,126,4930-4950.(b)Ojama ¨e,L.;Aulin,C.;Pedersen,H.;Ka ¨ll,P.-O.J.Colloid Interface Sci.2006,296,71-78.

(16)Carp,O.;Huisman,C.L.;Reller,A.Prog.Solid State Chem.2004,

32,33-177.

(17)Yang,H.G.;Zeng,H.C.J.Phys.Chem.B 2004,108,3492-

3495.

Figure 2.Overall views of samples:(a)TEM image for starting Au nanoparticles and (b)FESEM image of resultant Au/TiO 2catalyst prepared by the route b of Figure 1,which takes a spherical

shape.

Figure 3.TEM images of as-prepared Au/TiO 2:(a)Au-loaded TiO 2spheres (route b,Figure 1)and (b)2-4nm Au particles on the TiO 2surface.HRTEM images of Au/TiO 2after 30min of reaction (also see Figure 4):(c)Au particle distribution and (d)individual Au particles and their lattice

fringes.

Figure 4.(a)Photocatalytic conversions of methyl orange using the Au/TiO 2catalysts prepared in this work and referenced TiO 2catalysts (see the text)and (b)a representative UV absorption spectrum of methyl orange used in the concentration determination of a.Experimental conditions:10mg of Au/TiO 2or 10mg of TiO 2catalyst and 4.0mL of methyl orange (C 0)10mg/L)under UV irradiation (see Experimental Section).

Au/TiO 2Nanocatalysts V ia Self-Assembly Chem.Mater.,Vol.18,No.18,20064271

prepared TiO 2spheres (20.0mg)were then mixed with a 3-mer-captopropionic acid solution (HS(CH 2)2COOH,MPA;1.0mL,0.22M in toluene),and the mixture was sonicated in an ultrasonic water bath for 10min,after which 0.5mL of the Au suspension was added and sonicated for another 10min.Continuously aging for 3h,the prepared Au/TiO 2catalyst was washed with acetone for 3times and dried at 60°C overnight (field emission scanning electron microscopy (FESEM)image,Figure 3).The resultant catalyst showed a gray color.In photocatalytic testing,a dilute methyl orange aqueous solution (10mg/L)was first bubbled with air for 1h;then 10mg of the Au/TiO 2catalyst was dispersed in 4.0mL of the above solution in a glass reactor and sonicated for 10min.The reactor was rotated on a rolling station under a UV lamp (UVP R-52G,254nm,2400μW/cm 2).After each reaction,the solution was separated from catalyst by centrifugation.The concentration of methyl orange was measured with a UV -vis -near-IR scanning spectrophotometer (Shimadzu UV-3101PC).The crystallographic structure of the solid samples was determined with X-ray diffraction (XRD,Shimadzu XRD-6000,Cu K R ).The spatial,morphological,and compositional studies were carried out with field-emission scanning electron microscopy and energy-dispersive X-ray spec-troscopy (FESEM/EDX;JSM-6700F),transmission electron mi-croscopy (TEM,JEM-2010F;HRTEM,Tecnai-G 2,FEI),and Fourier transform infrared spectroscopy (FTIR,KBr pellet method,Bio-Rad FTS 135).Furthermore,X-ray photoelectron spectroscopy

(XPS,AXIS-Hsi,Kratos Analytical)was used to investigate the compositional evolutions of used and treated catalyst surface.The spectra of all interested elements were referenced to the C 1s peak arising from adventitious carbon (binding energy (BE)was set at 284.6eV).10

Results and Discussion

In our general materials characterization,crystallographic phases and chemical compositions of all prepared catalyst samples reported in this work were confirmed routinely with XRD,EDX,and XPS,as we did in the previous studies.10,17,18It should be noted that there are actually two tiers of self-organization in this catalyst fabrication.The first tier,the spherical self-aggregation of anatase TiO 2nanocrystallites,has been detailed in our previous report.17The second tier,introduction of gold nanoparticles onto the above-prepared TiO 2support,will be the main focus of the present study.In Figure 2a,presynthesized gold nanoparticles were first investigated with TEM to ensure their size uniformity.Figure 2b shows the general morphology of an Au/TiO 2catalyst prepared by the present self-assembly method (Figure 1b).

(18)Shon,Y.-S.;Gross,S.M.;Dawson,B.;Porter,M.;Murray,R.W.

Langmuir 2000,16,6555-

6561.

Figure 5.TEM images indicating that the anchored Au nanoparticles (2-4nm)are still stabilized after a prolonged UV irradiation.Experimental conditions:10mg of Au/TiO 2catalyst and 4.0mL of methyl orange (C 0)10mg/L)under UV irradiation for 9

h.

Figure 6.TEM images of heat-treated and used Au/TiO 2catalysts:(a)heat-treated catalyst (300°C for 3h)and (b)catalyst a used after photoreactions for 9h.

4272Chem.Mater.,Vol.18,No.18,2006Li and Zeng

The Au metal loading can be controlled in a range of about 1-5wt %(see Supporting Information).Indeed,both the presynthesized Au nanoparticles and TiO 2nanospheres (and therefore their resultant Au/TiO 2catalyst)are highly mono-dispersed.Quite surprisingly,as displayed in Figure 3,Au nanoparticles with small sizes of only 3.64(0.70nm can be distributed extremely evenly across an entire surface of TiO 2nanosphere carrier (500-800nm in diameter,Figure 3b,c)for the first time with this self-organizing method.Furthermore,most metal nanoparticles are discrete,separated with an interparticle distance of 2-6nm,and the crystallinity of Au nanoparticles and the spherical TiO 2support are also clearly shown in their lattice fringes (Figure 3d).8,13

The achieved uniformity of metal particle distribution can be primarily attributed to the presence of bifunctional groups in the MPA linker molecules.The interconnectivity of MPA molecules to Au and TiO 2nanoparticles (i.e.,Au and TiO 2both in comparable sizes)has been investigated,15where the carboxyl end of MPA is adsorbed on the metal oxide surface while its thiol tail,on the metal.In this agreement,it was indeed observed in our experiments that the Au suspension becomes less colorful when they are introduced to the MPA-adsorbed TiO 2nanospheres.In view of the assembling nature of this process,it is further anticipated that with this method the dimension and population of metal nanoparticles on the oxide support can be controlled precisely,because the size and amount of metal nanoparticles allocated can be pre-determined in a catalyst preparation.Apparently,the self-assembling feature of the present method is rather unique,concerning a progressive paradigm shift of catalyst design and fabrication to “bottom-up”

approaches.

Figure 7.XPS spectra of C 1s:(a)as-prepared Au/TiO 2catalysts,(b)the catalyst in a used after photoreactions for 9h,(c)heat-treated Au/TiO 2catalyst (300°C for 3h),and (d)the catalyst in c used after photoreactions for 9

h.

Figure 8.XPS spectra of S 2p:(a)as-prepared Au/TiO 2catalysts,(b)the catalyst in a used after photoreactions for 9h,(c)heat-treated Au/TiO 2catalyst (300°C for 3h),and (d)the catalyst in c used after photoreactions for 9h.

Au/TiO 2Nanocatalysts V ia Self-Assembly Chem.Mater.,Vol.18,No.18,20064273

To evaluate the activity of Au/TiO 2catalyst under a real working environment,we compared a range of TiO 2catalysts in photodegradation of methyl orange.The photocatalytic activities of the studied catalysts are reported in Figure 4a,on the basis of measuring a strong absorption band of methyl orange at 464nm (Figure 4b).As can be seen,a significant decrease in the C t /C 0ratio (where C 0is the initial concentra-tion of methyl orange and C t is the concentration of methyl orange left at time t )can be attained with the addition of Au nanoparticles onto the TiO https://www.wendangku.net/doc/da2594967.html,pared with the pure anatase TiO 2nanospheres (which was used as the catalyst carrier in the present study;specific surface area,40-45m 2/g),17a significant reduction in the C t /C 0ratio is observed in the self-assembled Au/TiO 2.It is believed that the surface Au acts as local electron reservoirs and prevents recombination of photogenerated holes and electrons upon the irradiation of UV light,15a although the predissolved oxygen also functions as an electron receiver in the reactions.In addition to the above results,the self-assembled Au/TiO 2catalyst also shows a rapid decrease in the C t /C 0ratio over a commercial TiO 2catalyst (P 25,Degussa),5which has a similar specific surface area at 45-50m 2/g but with mixed phases of rutile and anatase TiO 2.All these results show that the synergetic action between Au and TiO 2is excellent in the catalysts prepared with the present method.

It is important to note that the UV irradiation and related photochemical reactions do not cause obvious metal coarsen-ing.This observation has been reported in Figure 3c,d for a used catalyst.Quite encouragingly,as also shown in Figure 5,both the density and size of Au particles were not changed appreciably even with the prolonged UV irradiations.It is thus concluded that the anchored Au nanoparticles are indeed immobile on the TiO 2surface under UV irradiation.Appar-ently,the small MPA interconnect used here can withstand the photoreactions imposed;a recent theoretical calculation reports that the adsorption energy of a carboxyl group on TiO 2surfaces is about 150kJ/mol.15b The process is also probably benefited from a short distance between Au and TiO 2for photoelectron tunneling using this organic linker.Therefore,it seems that our low-temperature route for catalyst fabrication is feasible for a practical use.To further demonstrate methodic features of the present approach,the as-prepared Au/TiO 2was heat-treated in air at 300°C for 3h.The catalyst morphology resulting from this process is reported in Figure 6,and the photocatalytic activity of this heat-treated sample is also given in Figure 4.In agreement with a small degree of aggregation of Au nanoparticles (i.e.,growth;they became 4.48(0.74nm)at this moderate processing temperature,the catalytic activity of the

heated

Figure 9.XPS spectra of Ti 2p:(a)as-prepared Au/TiO 2catalysts,(b)the catalyst in a used after photoreactions for 9h,(c)heat-treated Au/TiO 2catalyst (300°C for 3h),and (d)the catalyst in c used after photoreactions for 9

h.

Figure 10.XPS spectra of Au 4f:(a)as-prepared Au/TiO 2catalysts,(b)the catalyst in a used after photoreactions for 9h,(c)heat-treated Au/TiO 2catalyst (300°C for 3h),and (d)the catalyst in c used after photoreactions for 9h.

4274Chem.Mater.,Vol.18,No.18,2006Li and Zeng

catalyst for the conversion of methyl orange is deteriorated (Figure 4).The heating seems to have also caused a population reduction of inherited structural defects of the pristine gold nanoparticles and the anatase support,which are believed to be catalytically more reactive.2This treatment,however,can generate a more permanent engagement or direct contact between the metal and support for the self-assembled type of catalysts in order to sustain harsher reacting environments,as required in “traditional”Au-based catalysts used for oxidation.9It is also recognized that despite the certain deterioration in catalytic activity,the heat-treated Au/TiO 2is still a second most active catalyst in the present study (Figure 4).The anchoring-then-heating route devel-oped here may serve as a new means for general fabrication of high-performance supported metal catalysts.

It is noted that the Au nanoparticles in the as-prepared Au/TiO 2prior to thermal treatment or photoreactions are chemically bonded to both the surfactant DDT and bifunc-tional linker MPA.While the MPA molecules bind the Au nanoparticles to the TiO 2support,the DDT keeps Au nanoparticles apart in the initial metal-particle suspensions as well as during their deposition process to the TiO 2support.In particular,asymmetric and symmetric IR vibrational modes of C -H (CH 2)at 2920and 2850cm -1and weaker modes of C -H (CH 3)at 2962and 2878cm -1from DDT molecules can be observed simultaneously in the as-prepared Au/TiO 2catalyst.18After photoreactions (Figure 4),it is found that the amount of S-containing surfactants was drastically reduced,due to a reductive desorption of anionic species from the Au surface.7

To have an in-depth understanding of the above process,surface composition of this catalyst system upon various

reactions was further investigated by XPS method.The XPS spectra of C 1s in Figure 7are nearly the same for all four samples.Three deconvoluted peaks are positioned at 284.6,286.1,and 288.5-288.6eV,respectively.19While it pre-dominantly arises from adventitious carbon,the C 1s peak at 284.6eV also includes the contribution from aliphatic hydrocarbon chains from surfactants (e.g.,DDT,MPA,and TOAB for a and MPA for b).19The spectra also exhibit C -OH and/or C -O -C species at a BE of 286.1eV,which can be ascribed to the oxidized carbon species of adventitious carbon as well as aliphatic hydrocarbons of the surfactants (catalysts a and b).19Compared to the heat-treated catalysts c and d,however,organic-containing samples a and b display no obvious advantage in the two peak areas (284.6and 286.1eV).It is because their surface contents are much lower than adventitious carbon.As commonly assigned,the peaks at 288.5-288.6eV can be assigned to CO 32-from atmospheric CO 2adsorption.20

In fitting the S 2p 3/2and S 2p 1/2doublet,as shown in Figure 8,a spin -orbit splitting of 1.2eV and a peak area ratio of 2can be attained.In the freshly prepared Au/TiO 2catalyst,the peaks for the S 2p 3/2and S 2p 1/2doublet (162.0and 163.2eV)can be assigned to the S -Au bond as reported in the literature.21-23Clearly,both thiol ends from DDT and MPA

(19)Xu,R.;Zeng,https://www.wendangku.net/doc/da2594967.html,ngmuir 2004,20,9780-9790.

(20)Chang,Y.;Lye,M.L.;Zeng,https://www.wendangku.net/doc/da2594967.html,ngmuir 2005,21,3746-3748.(21)Lukkari,J.;Meretoja,M.;Kartio,I.;Laajalehto,K.;Rajama ¨ki,M.;

Lindstro ¨m,M.;Kankare,https://www.wendangku.net/doc/da2594967.html,ngmuir 1999,15,3529-3537.

(22)Gonella,G.;Cavalleri,O.;Terreni,S.;Cvetko,D.;Floreano,L.;

Morgante,A.;Canepa,M.;Rolandi,R.Surf.Sci.2004,566-568,638-643.

(23)Jiang,L.;Glidle,A.;McNeil,C.J.;Cooper,J.M.Biosens.Bioelectron.

1997,12,1143-

1155.

Figure 11.XPS spectra of O 1s:(a)as-prepared Au/TiO 2catalysts,(b)the catalyst in a used after photoreactions for 9h,(c)heat-treated Au/TiO 2catalyst (300°C for 3h),and (d)the catalyst in c used after photoreactions for 9h.

Au/TiO 2Nanocatalysts V ia Self-Assembly Chem.Mater.,Vol.18,No.18,20064275

molecules can contribute to the S-Au formation.24After9 h of photoreactions using this catalyst,consistent with our FTIR results,it is found that both peaks show a significant decrease in intensity.It has been shown that the photolysis process can clean up alkanethiols from the Au surface by converting it to soluble alkyl sulfonate in solution.23,25,26After photoreaction,therefore,the removal of alkanethiols leads to weaker S2p peaks compared with the freshly prepared catalyst.22This seems to support what we have predicted in the photoreactions:DDT molecules have been removed largely from the Au surface,while the majority of MPA is retained,considering the presence of Au nanoparticles. Besides the main doublets,there is another very weak one in both spectra(i.e.,163.3eV for a and163.0eV for b). This component is doubtful or insignificant considering the noise level of the data,although the component has been explained to unbound thiol molecules or X-ray-induced molecular damage.22,27From curves c and d of the heat-treated catalysts,no S2p peak in this BE range is found. This result is rather expected since all organic sulfur is oxidized away from the Au surface at a high temperature. Figure9displays the XPS spectra of Ti2p,which indicates that titanium in samples b-d has a chemical state of+4.17 Note that the freshly prepared sample a shows a negative shift of0.2eV.This may be due to the existence of a large amount of surfactants that induces the congregation of electrons on the TiO2surface.The XPS peaks of Au4f5/2 and4f7/2,shown in Figure10,for the nanosized metallic Au at87.3and83.7eV with a constant separation of spin-orbit coupling of3.6eV can be clearly observed for both the as-prepared and reacted catalysts.This result is consistent with our TEM results and S2p XPS analysis.Since MPA is not expected to be removed during UV irradiation,Au can be bonded with TiO2through MPA linkers during the photoreaction.After heat treatment,however,Au4f peaks show a negative shift of0.2eV(87.1eV for4f5/2and83.5 eV for4f7/2;spin-orbit coupling separation)3.6eV).The observed shift has been related to the change of the Au

particle size,28-30which is indeed observed in this study (Figure6).We therefore attribute the observed shift to this size effect.31On the other hand,it is unsuspicious that the Au in the heat-treated catalysts(Figure10;samples c and d)has a zero oxidation state(confirmed by87.1eV for4f5/2 and83.5eV for4f7/2)after thermal removal of MPA.But for the MPA-anchored samples a and b,relatively positive Auδ+is expected since the electronegative element(sulfur) in the MPA can rip some electrons from Au particles.10

The O1s XPS spectra exhibited in Figure11are quite complicated.All these spectra can be deconvoluted into four peaks with very similar BEs.The peak at529.8eV for samples b-d can be assigned to lattice oxygen in anatase TiO2.32Compared to these samples,the freshly prepared one (a)has a negative shift at529.5eV,noting that the same kind of shift has also been observed in the Ti2p spectra (Figure10).It is believed that an abundant amount of surfactants such as DDT and TOAB in this sample is responsible for the negative shifts.The role of MPA must be trivial since it still exists in sample b,where no BE shift is observed.The two O1s peaks at533.2-533.4and531.5-531.7eV in all these spectra can be assigned to oxygen species in H2O molecules and Ti-OH or CO32-,19,20respec-tively,while the peak at532.6-532.7eV is attributed to

(24)Nakamura,T.;Kimura,R.;Sakai,H.;Abe,M.;Kondoh,H.;Ohta,

T.;Matsumoto,M.Appl.Surf.Sci.2002,202,241-251.

(25)Huang,J.Y.;Dahlgren,D.A.;Hemminger,https://www.wendangku.net/doc/da2594967.html,ngmuir1994,10,

626-628.

(26)Behm,J.M.;Lykke,K.R.;Pellin,M.J.;Hemminger,https://www.wendangku.net/doc/da2594967.html,ngmuir

1996,12,2121-2124.

(27)Castner,D.G.;Hinds,K.;Grainger,https://www.wendangku.net/doc/da2594967.html,ngmuir1996,12,5083-

5086.

(28)Zhang,L.;Persaud,R.;Madey,T.E.Phys.Re V.B1997,56,10549-

10557.

(29)Chang,F.-W.;Yu,H.-Y.;Roselin,L.S.;Yang,H.-C.Appl.Catal.,A

2005,290,138-147.

(30)Schumacher,B.;Plzak,V.;Kinne,M.;Behm,R.J.Catal.Lett.2003,

89,109-114.(31)Zwijnenburg,A.;Goossens,A.;Sloof,W.G.;Craje′,M.W.J.;van

der Kraan,A.M.;de Jongh,L.J.;Makkee,M.;Moulijn,J.A.J.Phys.

Chem.B2002,106,9853-9862.

(32)Centeno,M.A.;Paulis,M.;Montes,M.;Odriozola,J.A.Appl.Catal.,

B2005,61,177-

183.

Figure12.TEM images indicating that the particle size of Au nanoparticles deposited via a photoassisted method(route c,Figure1)is much larger and less uniform.Experimental conditions: 2.0mL of0.040M TiF4was added to28.0mL of H2O and hydrothermally treated at180°C for50min (i.e.,preparation of TiO2nanospheres).The prepared TiO2spheres were added with0.04mL of0.010M HAuCl4and2.0mL of PVP(0.05g in 100mL of H2O).The mixture was then irradiated with the UV light for1 h.

4276Chem.Mater.,Vol.18,No.18,2006Li and Zeng

C-OH or C-O-C groups from the oxidized carbon species of adventitious carbon(consistent with C1s peak of286.1 eV in Figure7).It is also interesting to note that the TiO2 surface of sample b is covered with more adsorbed species after photoreactions compared to that of sample a,based on a comparison of the relative intensity change of the lattice oxygen peaks of TiO2(Figure11).In contrast,the TiO2 surface becomes cleaner in the heat-treated sample(d)after similar photoreactions(compared with the sample(c)),on the basis of intensity changes observed in the peaks at529.8 eV.

The above detailed information on the surface composition may shed light on our future design and fabrication of the self-assembled Au/TiO2catalysts.It should be pointed out that,in terms of controllability to generate monodisperse catalysts,the present self-assembly method is clearly more advantageous than other soft syntheses investigated in this work,although it is also important to recognize that monodisperse nanoparticles are not necessarily beneficial for all types of catalysis.In Figure12,for example,the size of Au nanoparticles grown in a photoassisted synthesis(Figure 1c)is much less uniform compared to those prepared with the self-assembly method(see both Figure1b and Figure 3),although the photoassisted on-site process can also be carried out at room temperature.

Finally,it should be mentioned that one of the unique features of the self-assembled catalysts is that the original active sites of the oxide support can be well-preserved,as there are plenty of unanchored areas of oxide supports in the resultant catalysts.In the conventional metal cation impregnation or photoassisted metal reduction,oxide sup-ports have to be soaked in the metal salt solutions and ionic adsorption of metal species on the pristine oxide surface cannot be entirely avoided although sometimes this cationic adsorption/modification of oxide carrier may be beneficial. In contrast,the self-assembly method uses metal nanoparticle suspensions instead of metal salt solutions.As a new alternative illustrated in Figure1b,apart from the loaded active metal nanoparticles,metal-free areas of the oxide carrier can be attained easily with the present self-assembly technique.These metal-free areas preserve intrinsic chemical functionality of the supporting oxide,ensuring the genuine composite nature for a desired materials system.

Conclusions

In summary,we have developed a self-assembly process to fabricate oxide-supported metal catalysts with a high monodispersivity for metal components.In these types of fabrications,presynthesized metallic nanoparticles,rather than on-site growing ones under thermally or photochemi-cally activated conditions,can be“impregnated”evenly onto oxide supports with organic interconnects having bifunctional groups.Permanent engagement between the metal catalyst and oxide support can also be attained with simple heating. Methodic features of this technique have been demonstrated for Au/TiO2system in the photodegradation of methyl orange.In principle,other oxide-supported metal catalysts can also be fabricated at low temperatures through these types of self-assembling routes.

Acknowledgment.The authors gratefully acknowledge the financial support of the Ministry of Education,Singapore. Supporting Information Available:EDX results(PDF).This material is available free of charge via the Internet at http:// https://www.wendangku.net/doc/da2594967.html,.

CM060362R

Au/TiO2Nanocatalysts V ia Self-Assembly Chem.Mater.,Vol.18,No.18,20064277

纳米催化剂

纳米催化剂的制备及应用 学院:化工学院专业:化学工程与技术 学生姓名:学号: 摘要:纳米催化剂具有大比表面积、高表面能、高度的光学非线性、特异催化性和光催化性等特性,在一些反应中表现出优良的催化性能。本文简要介绍了纳米催化剂的基本性质,综述了纳米催化剂的制备方法和特性,讨论了纳米催化在化工中的应用,对今后纳米催化材料研究方向进行了展望。 关键词:纳米催化剂制备在化工中的应用发展 近年来,纳米催化剂(Nanometer catalyst--NCs)的相关研究蓬勃发展。NCs 具有比表面积大、表面活性高等特点,显示出许多传统催化剂无法比拟的优异特性;此外,NCs还表现出优良的电催化、磁催化等性能,已被广泛地应用于石油、化工、能源、涂料、生物以及环境保护等许多领域。目前,纳米技术的研究主要向两个方向进行:一是通过新技术减少目前使用的材料如金属氧化物的用量;二是进行新材料的开发,如复合氧化物纳米晶。由于纳米粒子表面积大、表面活性中心多,所以是一种极好的催化材料。将普通的铁、钴、镍、钯、铂等金属催化剂制成纳米微粒,可大大改善催化效果。在石油化工工业采用纳米催化材料,可提高反应器的效率,改善产品结构,提高产品附加值、产率和质量。目前已经将纳米粉材如铂黑、银、氧化铝和氧化铁等直接用于高分子聚合物氧化、还原和合成反应的催化剂。纳米铂黑催化剂可使乙烯的反应温度从600e降至常温。随着世界对环境和能源问题认识的深入,纳米材料在处理污染、降解有毒物质方面有良好光解效果[1]。在润滑油中添加纳米材料可显著提高其润滑性能和承载能力,减少添加剂的用量,提高产品的质量。对纳米催化剂的研究无论理论上还是实际应用上都具有深远的意义。 1纳米催化剂的制备方法 纳米催化剂的制备方法直接影响到其结构、粒径分布和形态,从而影响其催化性能。文献中报道的制备方法多达数10种,本文主要介绍其中常用的几种。1.1溶胶-凝胶法 溶胶-凝胶法是指金属有机或无机化合物经过溶胶-凝胶化和热处理形成氧化物或其他固体化合物的方法。其过程是:用液体化学试剂(或粉状试剂溶于溶剂中)或溶胶为原料,而不是传统的粉状物为反应物,在液体中混合均匀并进行反

催化剂分类

中国工业催化剂分类方法 一.石油炼制催化剂 1.催化裂化催化剂 2.催化重整催化剂 3.加氢裂化催化剂 4.加氢精制催化剂 5.烷基化催化剂 6.异构催化剂 二.无机催化剂 1.脱硫——加氢脱硫、硫回收催化剂 2.转化——天然气转化、炼厂气转化、轻油转化催化剂3.变换——高(中)变、低变、耐硫宽变催化剂 4.甲烷化——合成气甲烷化、城市燃气甲烷化 5.氨合成催化剂 6.氨分解催化剂 7.正、仲氢转化催化剂 8.硫酸制造催化剂 9.硝酸制造催化剂 10.硫回收催化剂 三.有机化工催化剂 1.加氢催化剂 2.脱氢催化剂 3.氧化——气相、液相催化剂 4.氨氧化催化剂 5.氧氯化催化剂 6.CO+H2合成——合成醇、F-T合成催化剂 7.酸催化——水合、脱水、烷基化催化剂 8.烯烃反应——齐聚、聚合、岐化、加成催化剂 四.环境保护催化剂 1.硝酸尾气处理催化剂 2.内燃机排气处理催化剂 3.制氮催化剂 4.纯化——脱痕量氧或氢催化剂 五.其它催化剂 其它催化剂 中国工业催化剂常规分类Classification industrial Catalysts 一、化肥催化剂(Catalysts for fertilizer manufacture) 一)脱毒剂(Purification agent)

1.活性炭脱硫剂(Active carbon desulfurizer) 2.加氢转化脱硫催化剂(Hydrodesulfurization Catalyst) 3.氧化锌脱硫剂(Zinc oxide sulfur absorbent) 4.脱氯剂(Dechlorinate agent) 5.转化吸收脱硫剂(Converted-absoubed desulfurizer) a.氧化铁脱硫剂(Iron ozide desulfurizer) b.铁锰脱硫剂(Iron-Nanganese oxide desulfurizer) c.羰基硫水解催化剂(Carbonyl Sulfide hydrolysis) 6.脱氧剂(Deoxidezer) 7.脱砷剂(Hydrodearsenic Catalyst) 二)转化催化剂(Reforming Catalyst) 1.天然气一段转化催化剂(Nature gas primary reforming catalyst) 2.二段转化催化剂(Secondary reforming catalyst) 3.炼厂气转化催化剂(Refinery gas steam reforming catalyst) 4.轻油转化催化剂(Naphtha steam reforming catalyst) 三)变换催化剂(CO shift catalyst) 1.中温变换催化剂(High temperature CO shift catalyst) 2.低温变换催化剂(Low temperature CO shift catalyst) 3.宽温耐硫变换催化剂(Sulfur tolerant shift catalyst) 四)甲烷化催化剂(Methanation catalyst) 1.甲烷化催化剂(Methanation Catalyst) 2.城市煤气甲烷化催化剂(Town gas methanation Catalyst) 五)氨合成催化剂(Ammonia synthesis Catayst) 1.氨合成催化剂(Ammonia synthesis catalyst) 2.低温氨合成催化剂(Low temperatuer ammonia synthesis catalyst) 3.氨分解催化剂(Ammonia decomposition catalyst) 六)甲醇催化剂(Methanol Catalyst) 1.高压甲醇合成催化剂(High pressure methanol synthesis catalyst) 2.联醇催化剂(Combined methanol synthesis catalyst) 3.低压甲醇合成催化剂(Low pressure methanol synthesis catalyst) 4.燃料甲醇合成催化剂(Fuel methanol synthesis catalyst) 5.低碳混合醇合成催化剂(mixture of lower alcohols synthesis catalyst) 七)制酸催化剂(Acid manufacture catalyst) 1.硫酸生产用钒催化剂(Vanudium catalyst for manufacture of sulfuric acid)2.硝酸生产用铂网催化剂(Platinum ganze catalyst for manufacture 3.非铂氨氧化催化剂(Non-platinum catalyst for ammonia oxidation)4.铂捕集网(platinum catch gamze) 5.硝酸尾气处理催化剂(Treated catalyst for tail gas from nitric acid plant)八)制氮催化剂(Nitrogen manufacture catalyst) 1.一段制氮催化剂(Frist stage catalyst for ammonia combined) 2.二段制氮催化剂(Second stage catalyst for nitrogen manufacture)

纳米催化剂

纳米催化剂

纳米催化剂进展 中国地质大学,材化学院,武汉430000 摘要:简要介绍了纳米催化剂的基本性质、其相对于其他催化剂的优势,并较详细地介绍了纳米催化剂类型、部分应用以及相对应类型催化剂例子的介绍,以及常见的制备方法及其表征手段,最后介绍了部分国内和国外纳米催化剂的应用,并对其发展方向进行一定的预测。 关键词:纳米催化剂应用制备催化活性进展 近年来, 纳米科学与技术的发展已广泛地渗透到催化研究领域, 其中最典型的 实例就是纳米催化剂(nanocatalysts—NCs)的出现及与其相关研究的蓬勃发展。NCs具有比表面积大、表面活性高等特点, 显示出许多传统催化剂无法比拟的优异特性;此外, NCs还表现出优良的电催化、磁催化等性能,已被广泛地应用于石油、化工、能源、涂料、生物以及环境保护等许多领域。本文主要就近年来NCs 的研究进展进行了综述。 1.纳米催化剂的性质 1.1表面效应 通常所用的参数是颗粒尺寸、比表面积、孔径尺寸及其分布等,有研究表明,当微粒粒径由10nm减小到1nm时, 表面原子数将从20%增加到90%。这不仅使得表面原子的配位数严重不足、出现不饱和键以及表面缺陷增加, 同时还会引起表面张力增大, 使表面原子稳定性降低, 极易结合其它原子来降低表面张力。此外,Perez等认为NCs的表面效应取决于其特殊的16种表面位置, 这些位置对外来吸附质的作用不同, 从而产生不同的吸附态, 显示出不同的催化活性。 1.2体积效应 体积效应是指当纳米颗粒的尺寸与传导电子的德布罗意波长相当或比其更小时, 晶态材 料周期性的边界条件被破坏, 非晶态纳米颗粒的表面附近原子密度减小, 使得其在光、电、声、力、热、磁、内压、化学活性和催化活性等方面都较普通颗粒相发生很大变化,如纳米级胶态金属的催化速率就比常规金属的催化速率提高了100倍。 1.3量子尺寸效应 当纳米颗粒尺寸下降到一定值时, 费米能级附近的电子能级将由准连续态分裂为分立能级, 此时处于分立能级中的电子的波动性可使纳米颗粒具有较突出的光学非线性、特异催化

铂纳米团簇用于制作双功能电催化剂

铂纳米团簇用于制作双功能电催化剂 2016-05-26 13:32来源:内江洛伯尔材料科技有限公司作者:研发部 多孔钙钛矿锰氧化物负载纳米铂催化剂示意图 质子交换膜燃料电池(Proton Exchange MembraneFuel Cell,简称:PEMFC),又称固体高分子电解质燃料电池(Polymer ElectrolyteMembrane Fuel Cells ),是一种以含氢燃料与空气作用产生电力与热力的燃料电池,运作温度在50℃至100℃,无需加压或减压,以高分子质子交换膜为传导媒介,没有任何化学液体,发电后产生纯水和热。 燃料电池中,质子交换膜燃料电池相对低温与常压的特性,加上对人体无化学危险、对环境无害,适合应用在日常生活,所以被发展应用在运输动力型(Transport)、现场型(Stationary)与便携式(Portable)等机组。 燃料电池商品化的催化剂以Pt/C最具代表性。然而,Pt/C催化剂使用过程中,碳基底容易被腐蚀,进而导致铂纳米颗粒团聚、电化学活性比表面积急剧下降;另一方面,Pt价格昂贵、资源稀缺,极大地限制了此类催化材料的规模应用。因此,寻找低铂载量、高活性和高稳定性的电催化材料成为重要课题。 针对Pt/C催化剂中碳载体易被腐蚀、稳定性差这一关键问题,过渡金属氧化物被研究用来替代碳载体负载铂纳米颗粒。其中,锰基氧化物特别是复合锰氧化物由于价格低廉、储量丰富、环境友好以及自身具有氧催化性能而受到关注。 最近,南开大学科研人员设计开发了一种新型氢化Pt纳米簇/多孔CaMnO3复合电催化材料,相比于普通Pt/C催化剂,在碱性体系中,对氧还原催化反应表现出5倍的质量活性、11倍的比表面积活性以及更佳的稳定性,同时对氧析出反应性能优异。研究表明,该材料的高活性源于以下因素:第一,Pt与CaMnO3的协同效应,优化了催化剂表面对含氧物种的吸脱附;第二,高分散和小粒径的铂纳米簇有利于氧分子的活化与解离;第三,氢化处理在氧化物中引入了氧缺陷,不仅提高了材料的电导率,而且导致Mn的混合价态,促进电催化过程。该材料优异的催化稳定性可归因于两个方面:首先,钙钛矿型CaMnO3载体自身在碱性溶液中具有更好的化学稳定性以及抗腐蚀能力;其次,多孔结构的限域作用有效阻止了Pt纳米簇的团聚。研究结果有助于促进低铂载量、高活性、长寿命复合电催化材料的研制。

纳米催化剂简介

纳米催化剂简介 摘要 催化剂的作用主要可归结为三个方面:一是提高反应速度,增加反应效率;二是决定反应路径,有优良的选择性,例如只进行氢化、脱氢反应,不发生氢化分解和脱水反应;三是降低反应温度。纳米粒子作为催化剂必须满足上述的条件。近年来科学工作者在纳米微粒催化剂的研究方面已取得一些结果,显示了纳米粒子催化剂的优越性。 纳米微粒由于尺寸小,表面所占的体积百分数大,表面的键态和电子态与颗粒内部不同,表面原子配位不全等导致表面的活性位置增加,这就使它具备了作为催化剂的基本条件。最近,关于纳米微粒表面形态的研究指出,随着粒径的减小,表面光滑程度变差,形成了凸凹不平的原子台阶,这就增加了化学反应的接触面。有人预计超微粒子催化剂在下一世纪很可能成为催化反应的主要角色。尽管纳米级的催化剂还主要处于实验室阶段,尚未在工业上得到广泛的应用,但是它的应用前途方兴未艾。 关键词:性质,制备,典型催化剂,表征技术,应用,

目录 绪论-----------------------------------------------------------1 1. 纳米催化剂性质----------------------------------------------1 1.1 纳米催化剂的表面效应-------------------------------------1 1.2 体积效应-------------------------------------------------1 1.3 量子尺寸效应---------------------------------------------1 2. 纳米催化剂的制备--------------------------------------------2 2.1 溶胶凝胶法-----------------------------------------------2 2.2 浸渍法---------------------------------------------------2 2.3 沉淀法---------------------------------------------------3 2.4 微乳液法-------------------------------------------------3 2.5 离子交换法-----------------------------------------------3 2.6 水解法---------------------------------------------------3 2.7 等离子体法----------------------------------------------3 2.8 微波合成法-----------------------------------------------4 2.9 纳米材料制备耦合技术-------------------------------------4 3. 几种典型催化剂----------------------------------------------4 3.1 纳米金属粒子催化剂---------------------------------------4 3.2 纳米金属氧化物催化剂-------------------------------------5 3.3 纳米半导体粒子的光催化-----------------------------------5 3.4 纳米固载杂多酸盐催化剂-----------------------------------5 3.5 纳米固体超强酸催化剂-------------------------------------6 3.6 纳米复合固体超强酸催化剂---------------------------------6 3.7 磁性纳米固体酸催化剂-------------------------------------6 3.8 碳纳米管催化剂-------------------------------------------7 3.9 其它纳米催化剂-------------------------------------------7 4. 纳米催化剂表征技术------------------------------------------7

金属纳米晶体的表面与其催化效应

金属纳米晶体的表面与其催化效应 沈正阳 (浙大材料系1104 3110103281) 摘要:概括纳米材料的表面与界面特性,从金属纳米晶体表面活性与结构介绍其的催化性能,简要概述金属纳米晶体形状与晶面的关系以及金属纳米晶体的成核与生长。 关键词:纳米金属;表面活性;催化;高指数晶面 1.纳米材料的表面与界面 纳米微粒尺寸小,表面能高,位于表面的原子占相当大的比例。由于表面原子数增多,原子配位不足及高的表面能,使这些表面原子具有高的活性,极不稳定,很容易与其他原子结合。强烈的表面效应,使超微粒子具有高度的活性。如将刚制成的金属超微粒子暴露在大气中,瞬时就会氧化,若在非超高真空环境,则不断吸附气体并发生反应。[1] 纳米晶体是至少有一个维度介于1到100纳米之间的晶体。纳米材料主要由晶粒和晶粒界面2部分组成,二者对纳米材料的性能有重要影响。纳米材料微观结构与传统晶体结构基本一致,但因每个晶粒仅包含着有限个晶胞,晶格点阵必然会发生一定程度的弹性畸变,其内部同样会存在各种缺陷,如点缺陷、位错、孪晶界等。纳米金属粒子的形状、粒径、颗粒间界、晶面间界、杂质原子、结构缺陷等是影响其催化性能的重要因素。纳米材料中,晶界原子质量分数达15%~50%,晶界上的原子排列极为复杂,尤其三相或更多相交叉区,原子几乎是自由的、孤立的,其量子力学状态和原子、电子结构已非传统固体物理、晶体理论所能解释。金属纳米晶体研究中,发现面心立方结构纳米金属如 Al、Ni、Cu 和密排六方结构Co都存在孪晶和层错缺陷,Cu纳米金属中存在晶界滑移。 2.金属纳米晶体的催化性能 近年来,关于纳米微粒催化剂的大量研究表明,纳米粒子作为催化剂,表现出非常高的催化活性和选择性。这是因为纳米微粒尺寸小,位于表面的原子或分子所占的比例非常大,并随纳米粒子尺寸的减小而急剧增大,同时微粒的比表面积及表面结合能迅速增大。纳米颗粒表面原子数的增加、原子配位的不足必然导致了纳米结构表面存在许多缺陷。从化学角度看,表面原子所处的键合状态或键

纳米催化剂及其应用(可编辑修改word版)

纳米催化剂及其应用 四川农业大学化学系应用化学201401 徐静20142672 摘要:近年来,纳米科学与技术的发展已广泛地渗透到催化研究领域,其中最典型的实例就是纳米催化剂(nanocatalysts——NCS)的出现及与其相关研究的蓬 勃发展。纳米材料具有独特的晶体结构及表面特性,其催化活性和选择性大大高于传统催化剂,目前已经被国内外作为第 4 代催化剂进行研究和开发。本文简要 介绍了纳米催化剂的基本性质、独特的催化活性等;并较详细地介绍了纳米催 化剂分类以及常见的制备方法;最后对其研究动态进行了分析,预测了其可能 的发展方向。 关键词:纳米催化剂材料制备催化活性应用 Nano - catalyst and its application Abstract: In recent years, the development of nano-science and technology has been widely penetrated into the field of catalysis research. The most typical example is the emergence of nanocatalysts (NCS) and the flourishing of related research. Nanomaterials have unique crystal structure and surface characteristics, and their catalytic activity and selectivity are much higher than those of traditional catalysts. At present, they have been researched and developed as the 4th generation catalyst at home and abroad. In this paper, the basic properties of nanocatalysts and their unique catalytic activity are briefly introduced. The classification of nanocatalysts and their preparation methods are introduced in detail. At the end of this paper, the research trends are analyzed and the possible development trends are predicted. Key words: nanocatalyst material preparation catalytic activity application 催化剂又称触媒,其主要作用是降低化学反应的活化能,加速反应速率, 因此被广泛应用于炼油、化工、制药、环保等行业。催化剂的技术进展是推动 这些行业发展的最有效的动力之一。一种新型催化材料或新型催化剂工业的问世,往往引发革命性的工业变革,并伴随产生巨大的社会和经济效益。1913 年,

促进剂的分类

促进剂的分类 硫化促进剂简称为促进剂。凡能加快硫化反应速度,缩短硫化时间,降低硫化反应温度,减少硫化剂用量产能提高或改善硫胶有物理机械性能的配合剂,称为硫化促进剂。应用促进剂可以提高橡胶制品的生产效率,降低产品成本,可以提高的改善制品的物理机械性能,使厚制品质量均匀,并改善制品的外观质量并使色泽鲜艳。目前橡胶工业采用的促进剂种类很多,按其性质和化学组成可以分为两大类:无机促进剂、有机促进剂。无机促进剂使用最早,但因促进效果小,硫化胶性能差,除在外别情况仍少量使用以外,绝大多数场合已为有机促进剂所取代。有机促进剂促进效果大,硫化特性好,硫化胶有物理机械性能优良,因而发展迅速。随着合成橡胶品种和用途有不断发展,现有促进剂名目日益繁杂,但目前最常用的亦不过数十种。促进剂按其化学结构、促进效果大小、以及与硫化氯反应所呈现和酸碱性分类。根据化学结构的不同,促进剂分可以为噻唑类、秋兰姆类、次磺酰胺类、胍类、二硫代氨基甲酸盐类、醛胺类、黄原酸盐类和硫脲类等八大类。一、噻唑类这是有机促进剂中较早的品种。属于酸性促进剂。其特点是具有较高的硫化活性,能赋予硫化胶良好的耐老化性能和耐疲劳性能。所以在橡胶工业中应用比较广泛,耗用量较大。主要品种有如下两种。(1)2硫醇基苯并噻唑商品名称为促进剂M。本品为淡黄色粉末,味极苦,无毒,贮藏稳定。为通用型促进剂,对天然橡胶及二烯类通用合成橡胶具有快速促进作用,硫化平坦性较好,硫化临界温度为125℃,混炼时有脑炎烧的可能。在橡胶中容易分散,不污染,但不适于食品用橡胶制品。用作第一促进剂的用量为1~2份,作第二促进剂的用量为0.2~0.5份。还可用于天然橡胶的塑解剂。(2)二硫化二苯并噻唑商品名称为促进剂DM。本品为淡黄色粉末,味苦,无毒,贮藏时稳定。其特性和用途与M相似,但硫化临界温度为130℃。140℃以上活性增大,有较好的后效性,硫化操作安全。常与其它促进剂并用以提高其活性。二、秋兰姆类这类促进剂呈酸性。属于超速促进剂。包括一硫化秋兰姆、二硫化秋兰和多硫化秋兰。二硫化秋兰姆可用于无硫黄硫化有硫化剂。作为促进剂一般用作第二促进剂,与噻唑类和次磺酰胺类促进剂并用以提高硫化速度。与次磺酰胺类促进剂并用时,能延迟胶料开始反应的时间,硫化开始以后反应又能进行得特别快,硫化胶的硫化程度也比较高。这种产用体系在低硫硫化中特别重要。采用秋兰姆促进剂的硫化胶的物理机械性能和耐老化性能受促进剂和硫黄用量比例的影响。一般来讲,硫黄用量正常,硫化胶的定伸强度较高,其它物理机械性能也比较好;当硫黄用量较低,促进用量较大时,则硫化胶的耐热老化性能可以得到改善。秋兰姆类促进剂最常用的品种是二硫化四甲基秋兰姆,商品名称为促进剂TMTD,简称促进剂TT。它既可作促进剂使用,也可作硫化剂使用。用作促进剂时用量一般为0.2~0.3份。三、次磺酰胺类这是一类迟效性促进剂,呈酸性。具有焦烧时间长、硫化活性大的特点。硫化胶的硫化程度比较高,物理机械性能优良,耐老化性能相当好。胶料具有较宽广的硫化平坦性。由于合成橡胶的发展和大量应用及高分散性炉法炭黑的推广应用,特别需求迟效性良好的促进剂。因而该类促进剂占有相当重要的地位,成为近年来发展最快,也是最有前途的一类促进剂。目前世界上使用的各种促进剂中,遥以次横酰胺类为主,其中大量应用的有CZ、NOBS、NS 、DZ和OTOS等,它们均为硫醇基苯并噻唑的衍生物。(1)N-环己基-2-苯并噻唑次磺酰胺商品名称为促进剂CZ。本品为淡黄色粉末,稍有气味,无毒,比重为1.31~1.34,熔点不低于94℃,贮藏稳定。其硫化临界温度为138℃,兼有抗焦烧性能优良和硫化速度快的优点。本品变色轻微、为喷霜、硫化胶耐老化性能优良。一般用量为0.5~ 2份。(2)N-氧二乙撑-2-苯并噻唑次磺酰胺或2-(4-吗啡啉基硫代)苯并噻唑商品名称为促进剂NOBS。本品为淡黄色粉末,无毒。比重为1.34~1.40。熔点为80℃~86℃。遇热时逐渐分解,故应低温贮存。贮存时间超过6个月以上时,胶料焦烧倾秘增加,硫化临界温度在138℃以上,焦烧时间比促进剂CZ更长,操作更安全。本品在胶料中容易分散,不喷霜、变色轻微。一般用量范围为0.5~2.5份,并配以2~0.5份硫黄。(3)N-叔丁基苯并噻唑次磺酰胺商品名称为促进剂NS。本品为淡黄色粉末,有特殊气味。比重为1.29,熔点不你低于105℃。其性能和用法与促进剂

铂钇合金纳米催化剂的性能研究

铂钇合金纳米催化剂的性能研究 2016-08-30 13:14来源:内江洛伯尔材料科技有限公司作者:研发部 钇金属 现今生活中存在多种燃料电池,但它们运作原理基本上大致相同,必定包含一个阳极,一个阴极以及电解质让电荷通过电池两极。电子由阳极传至阴极产生直流电,形成完整电路。各种燃料电池是基于使用不同的电解质以及电池大小而分类的,因此电池种类变得更多元化,用途亦更广泛。由于以个体燃料电池计,单一颗电池只能输出相对较小的电压,大约0.7V,所以燃料电池多以串连或一组的分式制造,以增加电压,配合应用需求。 另一方面,燃料电池产电后会产生水与热,基于不同的燃料使用,有可能产生极少量二氧化氮和其他物质,对环境的污染比原电池少,是一种绿色能源。燃料电池的能量效率通常为40-60%之间;如果废热被捕获使用,其热电联产的能量效率可高达85%。 聚合物燃料电池(PEMFCs)具有零排放的特点,在汽车上有广阔的应用前景。和电池相比,聚合物燃料电池可以让汽车有更长的行驶里程和更短的燃料再注入时间。即便如此,PEMFCs 的使用也由于阴极铂催化剂的高载量要求而受到限制。即使使用目前最先进的技术,也不可能将PEMFCs的生产规模有全球性的冲击,比如达到太瓦级规模。 近日,丹麦技术大学对外宣称研发出一种铂—钇燃料电池催化剂。与目前的铂催化剂相比,铂—钇催化剂更稳定、活性更高、价格相对较低。

目前,减少铂载量最有效的路径就是将铂和另一种金属铸成合金用作氧化还原反应的催化剂。大部分研究人员都在铂和后过渡金属合金上做了大量研究,比如镍、钴、铜或者铁。尽管如此,这些催化剂的长久稳定性在脱合金过程中逐渐减弱。 2009年,丹麦技术大学物理系个体纳米功能中心的科研小组发现一种用于氧化还原反应的新型合金:铂—钇。这种新型合金不但比其它铂合金的活性更高,稳定性也更好。但是,铂—钇的最初测试是以大块的多晶形式进行,而在真正的燃料电池中只能以纳米粒子的形式进行,这对科研人员来说是个非常大的挑战。 现在,丹麦技术大学物理系的科研人员合成了纳米级的铂—钇合金。在稳定性的扩展测试中,这种新型催化剂仍保留了最初活性的63%。 丹麦技术大学副教授Ifan Stephns表示:“我们的测试结果证明,铂—钇纳米粒子能够合成,而且在氧化还原反应中活性很高。此外,如果我们能够进一步优化粒子大小和铂—钇催化剂的合成,这种催化剂的性能会更高。我们下一步面临的挑战是寻找一种化学合成方法,能够大批量生产这种催化剂,从而推动它在燃料电池中的应用。该试验由丹麦技术大学和美国SLAC 国家实验室的科研人员共同完成。

影响纳米材料光催化性能的因素

二、影响纳米材料光催化活性的因素。 1、半导体的能带位置 半导体的带隙宽度决定了催化剂的光学吸收性能。半导体的光学吸收阈值λg与Eg有关,其关系式为:λg=1240/Eg。半导体的能带位置和被吸附物质的氧化还原电势,从本质上决定了半导体光催化反应的能力。热力学允许的光催化氧化还原反应要求受体电势比半导体导带电势低(更正);而给体电势比半导体价带电势高(更负)。导带与价带的氧化还原电位对光催化活性具有更重要的影响。通常价带顶VBT越正,空穴的氧化能力越强,导带底CBB越负,电子的还原能力越强。价带或导带的离域性越好,光生电子或空穴的迁移能力越强,越有利于发生氧化还原反应。对于用于光解水的光催化剂,导带底位置必须比 H+/H2O(-0.41eV)的氧化还原势负,才能产生H2,价带顶必须比O2/H2O(+0.82eV)的氧化还原势正,才能产生O2,。因此发生光解水必须具有合适的导带和价带位置,而且考虑到超电压的存在,半导体禁带宽度Eg应至少大于1.8eV。目前常被用作催化剂的半导体大多数具有较大的禁带宽度,这使得电子-空穴具有较强的氧化还原能力。 2、光生电子和空穴的分离和捕获 光激发产生的电子和空穴可经历多种变化途径,其中最主要的是分离和复合两个相互竞争的过程。对于光催化反应来说,光生电子和空穴的分离与给体或受体发生作用才是有效的。如果没有适当的电子或空穴的捕获剂,分离的电子和空穴可能在半导体粒子内部或表面复合并放出荧光或热量。空穴捕获剂通常是光催化剂表面吸附的OH-基团或水分子,可能生成活性物种·OH,它无论是在吸附相还是在溶液相都易引发物质的氧化还原反应,是强氧化剂。光生电子的捕获剂主要是吸附于光催化剂表面上的氧,它既能够抑制电子与空穴的复合,同时也是氧化剂,可以氧化已经羟基化的反应产物。 3、晶体结构 除了对晶胞单元的主要金属氧化物的四面体或八面体单元的偶极矩的影响,晶体结构(晶系、晶胞参数等)也影响半导体的光催化活性。TiO2是目前认为最好的光催化剂之一。TiO2主要有两种晶型—锐钛矿和金红石,两种晶型结构均可由相互连接的TiO6八面体表示,两者的差别在于八面体的畸变程度和八面体间相互连接的方式不同。结构上的差异导致了两种晶型有不同的质量密度及电子能带结构。锐钛矿的质量密度略小于金红石,且带间隙(3.2eV)略大于金红石(3.1eV),这是其光催化活性比金红石的高。 4、晶格缺陷 根据热力学第三定律,除了在绝对零度,所有的物理系统都存在不同程度的不规则分布,实际晶体都是近似的空间点阵式结构,总有一种或几种结构上的缺陷。当有微量杂质元素掺入晶体时,也可能形成杂质置换缺陷。这些缺陷的存在对光催化活性可能起着非常重要的影响。有的缺陷可能会成为电子或空穴的捕获

纳米催化剂的介绍及其制备

纳米催化剂的介绍及其制备 --工业催化剂小论文 姓名:蒋应战 班级:化工091 学号:0806044111(32号) 指导老师:宫惠峰老师 学校:邢台职业技术学院

目录 1.纳米材料作催化剂的特点 (2) 2.纳米催化剂制备……………………………….. ..2-3 3.微乳液法制备纳米催化剂………………………...4-9 4.纳米粒子催化剂的应用 (10) 5.纳米催化剂的展望................................. . (11) 参考文献................................. . .. (11)

纳米催化剂的介绍及其制备 纳米材料是指颗粒尺寸为纳米量级(1nm~l00nm)的超细粒子材料。纳米技术是当前材料学中研究的前沿和热点,纳米粒子具有比表面积大、表面晶格缺陷多,表面能高的特性,在一些反应中表现出优良的催化性能。纳米催化剂的制备已成为催化剂制备学科中的一个热点。纳米催化剂相对常规尺寸的催化剂具有更高的表面原子比和比表面积,其催化活性和选择性大大高于传统催化剂,可作为新型材料应用于化工中。 1. 纳米材料作催化剂的特点 工业生产中的催化剂应具有表面积大,稳定性好,活性高等优点。而纳米材料恰恰满足这些特点。采用纳米材料制备的催化剂比常规催化剂的催化效率选择性更高。例如,利用纳米材料可用作加氢催化剂,粒经小于0.3nm的镍和铜—锌合金的纳米材料的催化效率比常规镍催化剂高10倍。又如纳米稀土氧化物/氧化锌可作为二氧化碳选择性氧化乙烷制乙烯的催化剂,用这种纳米催化剂,乙烷和二氧化碳反应可高选择性地转化为乙烯,乙烷转化率可达60%,乙烯选择性可达90%。 1.1 纳米催化剂的表面与界面效应 纳米催化剂颗粒尺寸小,位于表面的原子占的体积分数很大,产生了相当大的表面能,随着纳米粒子尺寸的减少,比表面积急剧加大,表面原子数及所占的比例迅速增大。例如,某纳米粒子粒径为5nm时,比表面积为180/g,表面原子所占比例为50%,粒径为2nm时,比表面积为450/g,表面原子所占比例为80%,由于表面原子数增多,比表面积大,原子配位数不足,存在不饱和键,导致纳米颗粒表面存在许多缺陷,使其具有很高的活性,容易吸附其它原子而发生化学反应。这种表面原子的活性不但引起纳米粒子表面输送和构型的变化,同时也引起表面电子自旋、构象、电子能谱的变化。 1.2纳米催化剂的量子尺寸效应 当粒子的尺寸降到(1~10)nm时,电子能级由准连续变为离散能级,半导体纳米粒子存在不连续的最高被占据分子轨道和最低未被占据的分子轨道能级,能隙变宽,此现象即量子尺寸效应,量子尺寸效应会导致能带蓝移,并有十分明显的禁带变宽现象,使得电子/空穴具有更强的氧化电位,从而提高了纳米半导体催化剂的光催化效率。 1..3纳米粒子宏观量子隧道效应 量子隧道效应是从量子力学观点出发,解释粒子能穿越比总能量高的势垒的一种微观现象。近年来发现,微颗粒的磁化强度和量子相干器的磁通量等一些宏观量也具有隧道效应,即宏观量子隧道效应。研究纳米这一特性,对发展微电子学器件将具有重要的理论和实践意义。 2. 纳米催化剂制备 目前制备纳米材料微粒的方法有很多,但无论采用何种方法,制备的纳米粒子必须符合下列要求:a.表面光洁;b.粒子形状、粒径及粒度分布可控;c.粒子不易团聚、易于收集;d.包产出率高。

催化剂的历史及其发展趋势

催化剂的历史及其发展趋势 1.催化剂的历史 催化现象由来已久,早在古代,人们就利用酵素酿酒制醋,中世纪炼金术士用硝石催化剂从事硫磺制作硫酸。十三世纪发现硫酸能使乙醇产生乙醚,十八世纪利用氧化氮之所硫酸,即所谓的铅室法[1]。最早记载“催化现象”的资料可以追溯到十六世纪末(1597年)德国的《炼金术》一书,但是当时“催化作用”还没有被作为一个正式的化学概念提出。一直到十九世纪初期,由于催化现象的不断发现,为了要解释众多的催化现象,开始提出了“催化”这一个名词。最早是在1835年,瑞典化学家J.J.Berzelius(1779-1848)在其著名的“二元学说”的基础上,把观察到的零星化学变化归结为是由一种“催化力(catalyticforce)”所引起的,并引入了“催化作用(cataysis)”一词[2]。从此,对于催化作用的研究才广泛的开展起来。 1.1萌芽时期(20世纪以前) 催化剂工业发展史与工业催化过程的开发及演变有密切关系。1740年英国医生J.沃德在伦敦附近建立了一座燃烧硫磺和硝石制硫酸的工厂,接着,1746 年英国J.罗巴克建立了铅室反应器,生产过程中由硝石产生的氧化氮实际上是一种气态的催化剂,这是利用催化技术从事工业规模生产的开端。1831年P.菲利普斯获得二氧化硫在铂上氧化成三氧化硫的英国专利。19世纪60年代,开发了用氯化铜为催化剂使氯化氢进行氧化以制取氯气的迪肯过程。1875年德国人E.雅各布在克罗伊茨纳赫建立了第一座生产发烟硫酸的接触法装置,并制造所需的铂催化剂,这是固体工业催化剂的先驱。铂是第一个工业催化剂,现在铂仍然是许多重要工业催化剂中的催化活性组分。19世纪,催化剂工业的产品品种少,都采用手工作坊的生产方式。由于催化剂在化工生产中的重要作用,自工业催化剂问世以来,其制造方法就被视为秘密。 1.2奠基时期(20世纪初) 在这一时期内,制成了一系列重要的金属催化剂,催化活性成分由金属扩大到氧化物,液体酸催化剂的使用规模扩大。制造者开始利用较为复杂的配方来开发和改善催化剂,并运用高度分散可提高催化活性的原理,设计出有关的制造技术,例如沉淀法、浸渍法、热熔融法、浸取法等,成为现代催化剂工业中的基

铂基纳米材料电催化剂研究进程

铂基纳米材料电催化剂研究进程 对于各种燃料电池的实际应用具有重要的促进作用。从载体负 载的纯铂颗粒、组分调节、晶面控制和三维结构构建等几方面详细 介绍了铂基纳米材料电催化剂制备合成和性质研究的最新进展。 关键词:铂基纳米材料;燃料电池;电催化剂;合成方法 铂(Pt)材料因具有独特而丰富的电子结构和高的结构稳定性,在很多反应中显示出优异的催化性能,在石油催化重整、有机 合成、硝酸生产等现代工业的重要领域中具有不可替代的作用。伴 随着能源需求的日益增长、传统化石能源的逐渐消耗和生态环境的 持续恶化,寻求更加充足和清洁的能源变得非常急迫。燃料电池具 有能量转化效率高、有害气体排放少、燃料来源广泛、噪声低等优点,近几十年来一直受到人们的大量关注,相关研究也获得了极大 的进展。在燃料电池中,铂对阴极氧还原反应和阳极小分子(氢气、甲醇、乙醇、乙二醇、甲酸等)氧化反应都具有优异的催化作用, 是已知性质最好的单金属燃料电池电极催化剂。但是铂储量稀少, 价格非常昂贵,寻找有效的途径以提高铂的利用率显得非常重要。 相对于块体材料,铂基纳米材料具有较高的比表面积、丰富的活性 位点,其催化活性较前者有很大的增强,铂的利用率也得到了提高。构建高比表面积的铂基纳米材料有两种主要途径,一是将尺寸很小 的铂纳米颗粒负载或生长在导电载体上,另一个是设计合成“三维”结构,如空心、多孔、框架结构等。催化剂材料所暴露的晶面决定 了表面的原子构型和电子结构,直接影响反应物分子的电化学吸附 和分解反应。因此,控制铂基催化剂纳米颗粒具有不同的晶面,或 具有不同的几何外形,是探索高性能铂基催化剂的一种有效途径。 另外,将铂与其他组分结合在一起,构建合金、异质和核壳等纳米

纳米载体的限域效应对催化性能影响机制的研究进展

纳米载体的限域效应对催化性能影响机制的研究进展 自上世纪末以来, 纳米科学和技术有了长足的进展,其中纳米材料的一个重要特性是,将体系的尺寸减小到一个特定的范围(如 1~100 nm)时,在不添加任何其他组分的情况下,纳米体系的电子结构会发生变化。量子力学已经证明,大量原子组成的固体材料的价电子为连续的“能带”,当这类体相材料在某一方向上被缩小,特别是缩小到纳米尺度时,电子在该方向的运动就受到空间的束缚和限域,这种限域效应将会改变电子运动特性、导致体系电子结构特别是价电子结构的改变,从而可能会产生量子突变。这种体系尺寸对电子特性的调变为催化剂的催化特性进行调控提供了一种很好的途径[1]。. 近几年,部分研究团队在利用纳米材料的限域效应对催化剂的改性以及催化过程的研究等方面开展了创新性的研究工作,并且大量具有影响力的研究报道和文章被发表出来,其中中国科学院大连化学物理所包信和院士团队在这方面的工作开展的较早也很突出。该团队在铂金属颗粒表面加载了过渡金属氧化物,制备出了具有界面限域效应的TMO/Pt非均相逆催化剂(Oxide-on-Metal Inverse Catalysts),利用界面限域效应对催化体系结构和电子特性的影响作用,改善了在催化过程(特别是在催化氧化反应)中传统非均相催化剂容易出现的催化活性中心的失活以及催化功能的失效等问题[2]。

图1两种金属催化体系的结构示意图 (A)传统的氧化物作为载体的金属催化体系(Oxide supported metal system) 和 (B)过渡金属纳米氧化物倒载型催化体系(oxide-on-metal system) 如图1所示为传统过渡金属氧化物作为载体的催化体系和过渡金属纳米氧化物倒载型催化体系的结构示意图。纳米氧化物倒载型催化体系相比传统非均相催化剂,具有更多的TMO/Pt界面(如示意图B 中氧化物边缘的黄色虚线所示)。由于TMO与Pt的表面张力的不同,倒载型催化体系中氧化物(FeO)趋向于在Pt金属表面形成均有双层结构的层状纳米岛结构(由于Fe与Pt具有较强的作用力,双层结构底层与Pt金属结合的为Fe原子,上层为氧原子),而传统催化体系中的Pt金属易于在氧化物颗粒形成较大的颗粒状结构,如下图2所示。基于上述的界面结构特点,倒载型催化体系具有更多的TMO/Pt 界面,并且过渡金属中阳离子(Fe)与贵金属(Pt)间的相互作用力更强。 图2 两种催化体系的界面结构示意图 (A、B为传统的氧化物作为载体的金属催化体系, C、D为过渡金属纳米氧化物倒载型催化体系)

中国工业催化剂常规分类

中国工业催化剂常规分类 一、化肥催化剂(Catalysts for fertilizer manufacture) 一)脱毒剂(Purification agent) 1.活性炭脱硫剂(Active carbon desulfurizer) 2.加氢转化脱硫催化剂(Hydrodesulfurization Catalyst) 3.氧化锌脱硫剂(Zinc oxide sulfur absorbent) 4.脱氯剂(Dechlorinate agent) 5.转化吸收脱硫剂(Converted-absoubed desulfurizer) a.氧化铁脱硫剂(Iron ozide desulfurizer) b.铁锰脱硫剂(Iron -Nanganese oxide desulfurizer) c.羰基硫水解催化剂(Carbonyl Sulfide hydrolysis) 6.脱氧剂(Deoxidezer) 7.脱砷剂(Hydrodearsenic Catalyst) 二)转化催化剂(Reforming Catalyst) 1.天然气一段转化催化剂(Nature gas primary reforming catalyst) 2.二段转化催化剂(Secondary reforming catalyst) 3.炼厂气转化催化剂(Refinery gas steam reforming catalyst) 4.轻油转化催化剂(Naphtha steam reforming catalyst) 三)变换催化剂(CO shift catalyst) 1.中温变换催化剂(High temperature CO shift catalyst) 2.低温变换催化剂(Low temperature CO shift catalyst) 3.宽温耐硫变换催化剂(Sulfur tolerant shift catalyst) 四)甲烷化催化剂(Methanation catalyst) 1.甲烷化催化剂(Methanation Catalyst) 2.城市煤气甲烷化催化剂(Town gas methanation Catalyst) 五)氨合成催化剂(Ammonia synthesis Catalyst) 1.氨合成催化剂(Ammonia synthesis catalyst) 2.低温氨合成催化剂(Low temperature ammonia synthesis catalyst) 3.氨分解催化剂(Ammonia decomposition catalyst) 六)甲醇催化剂(Methanol Catalyst) 1.高压甲醇合成催化剂(High pressure methanol synthesis catalyst) 2.联醇催化剂(Combined methanol synthesis catalyst) 3.低压甲醇合成催化剂(Low pressure methanol synthesis catalyst) 4.燃料甲醇合成催化剂(Fuel methanol synthesis catalyst) 5.低碳混合醇合成催化剂(mixture of lower alcohols synthesis catalyst) 七)制酸催化剂(Acid manufacture catalyst) 1.硫酸生产用钒催化剂(Vanadium catalyst for manufacture of sulfuric acid)2.硝酸生产用铂网催化剂(Platinum ganze catalyst for manufacture) 3.非铂氨氧化催化剂(Non-platinum catalyst for ammonia oxidation) 4.铂捕集网(platinum catch gamze) 5.硝酸尾气处理催化剂(Treated catalyst for tail gas from nitric acid plant)八)制氮催化剂(Nitrogen manufacture catalyst) 1.一段制氮催化剂(First stage catalyst for ammonia combined) 2.二段制氮催化剂(Second stage catalyst for nitrogen manufacture)

相关文档