文档库 最新最全的文档下载
当前位置:文档库 › 电石炉尾气成分

电石炉尾气成分

电石炉尾气成分
电石炉尾气成分

电石炉尾气组成

我公司电石生产装置能力15万吨/年,电石炉尾气组成和除尘后的组成如下:

电石炉尾气组成一览表:

电石炉炉顶出气:温度在400℃~800℃.生产产每吨电石要产生400 Nm3炉气.

宁夏宝塔联合化工有限公司

全密闭电石炉尾气治理及综合利用

全密闭电石炉尾气治理及综合利用 摘要:与环境意识的不断改进,开发节能环保的电石行业已是当务之急,它还电石行业带来了巨大的机遇和挑战,我公司积极响应国家号召电石生产,充分利用电石炉尾气,干洗后使用电石炉尾气气烧石灰窑,电石渣水泥的干燥乙炔工艺,实现废气、废渣的综合利用,实现电石炉的零排放。如何进一步利用电石炉废气,充分利用电石渣,充分利用粉体,减少废气排放和环境污染,降低生产成本,已成为当前社会企业不能等的课题。 关键词:密闭电石炉;气烧石灰窑;尾气;电石渣; 电石是一个高能源消耗、高排放行业,为了呼吁国家节能减排的重要任务,从使用电石炉尾气,尾气余热利用,电石渣替代石灰石生产水泥的讨论,不仅节约成本,实现废气的综合利用,渣。实现循环经济,降低电石和水泥行业的生产成本,减少环境污染,是电石生产的必然发展趋势。 一、大型密闭电石炉尾气综合利用基本途径 1.电石炉尾气。大型密闭电石生产中产生出高温炉气400~600℃,主要成分CO。其主要化学反应方程式为:CaO+3C—>CaC2+CO↑,其中CO约占气体总量的75~85%,炉气的成分取决于石灰的品质,石灰的煅烧程度至关重要。而采用大型密闭式电石炉生产每吨电石一般副产炉气450Nm3左右,折合标煤约0.17吨,可满足生产1吨石灰所需的能源。 2.气烧石灰窑。电石炉尾气稳定后,其热值为2600Kcal/Nm 3,热值比较高,利用价值极高。所以,在电石生产中,配有套筒石灰窑装置,将所产生的炉气CO经过除尘、净化、冷却后送往石灰窑作为燃料使用,变废为宝,不仅实现了资源的有效利用,而且保护环境,实现了尾气的有效利用。气烧石灰窑是以CO作为燃料煅烧石灰石,气体在窑内分布均匀,煅烧石灰活性高、反应性能好,产量高、能耗低。同时,保证了电石生产稳定的高质量石灰原料,炉况稳定,电极易操作,电耗低。 二、全密闭电石炉尾气的治理和综合利用现状 当前,我国国内现存三种密闭电石炉尾气除尘和利用技术,其分别是湿法回收炉气后再利用、直接利用后除尘和干法除尘后再利用。 1.湿法回收炉气后再利用。湿法回收炉气技术可以在短时间内就可以将高温炉气降到饱和温度,温度降低可以使焦油硬化、析出,特点是快速洗涤,易于熄火。湿法净化系统其工艺流程如图1所示。 图1湿法回收炉气后再利用 该系统的特点是按照炉气的走向依次串联设置有带有刮板的炉气洗气机、粗洗一塔、粗洗二塔以及精洗三塔。炉气和水流形成逆向流程,在洗气机的出水口放置旋液分离器,分离器中的上清液回送至一塔的逆流段。回收的炉气被送入锅炉进行燃烧,产生的蒸汽供厂内生活取暖使用。在除尘工艺中使用机械刮板式洗气机,是因为降温后由于烟气中含有的少量焦油会析出,沉积下来的污垢通过机械刮板被挂掉,有效解决了除尘初期的积垢、堵塞问题,确保系统正常运行。洗涤产生的污水,很大一部分被循环利用。湿法回收利用工艺在技术上比较成熟,但是其系统复杂,隐患多,维护费用高,动力消耗大,而且会产生二次污染,与现在倡导的循环经济理念不相符,不适合大范围推广。 2.直接利用后除尘。该工艺使用炉气在余热锅炉内进行燃烧,分解气体和灰

【VIP专享】电石炉尾气净化系统培训教材

电石炉尾气净化系统培训教材 前言 净化系统在电石公司电石循环产业链中,占据着很重要的位置。如果净化系统出现问题,直接影响到石灰、兰炭和电石的产量。所 以说,净化系统是否能安全连续的运行是与电石公司业绩直接挂钩的。 学习和掌握净化系统的操作知识是必要的也是紧迫的。本次主 要就净化系统的操作、巡检和安全生产技术规程做讲解。 一、炉气特性 电石炉生产过程中,在投料、物料焙烧、出电石等不同生产阶 段的烟气温度和烟气量是不同的,可分为电石炉出炉烟尘和电石炉 尾气烟尘。电石炉尾气温度为500-850℃,瞬间温度1000℃,含尘量100-150g/Nm3。炉气含CO达70-90%, 是一种热值较高气体,同时含有一定量焦油等,炉气热值为2600-2700大卡/Nm3。 尾气烟尘经过降温除尘后,气体成分97%是一氧化碳,3%其他气体。因此电石炉尾气除尘系统,也称电石炉尾气净化系统。 2、净化系统的操作 设备启动前准备 设备正常启动操作 设备正常停车操作 电炉低负荷生产,净化系统运行操作 一氧化碳送气烧窑开停车操作

1、设备启动前的操作 炉气净化系统启动前,专业巡检人员,要对风机油位、风机的 循环冷却水、风机电机、卸灰阀(电机)、刮板机(电机)、电动阀门、氮气压力、空气压力、电器自控以及所有防爆膜进行检查,一 切正常后,才能启动净化系统。 风机连轴箱油位: 连轴箱有无漏油, 连轴箱油位不能低于油位显示窗口的1/3. 造成后果:连轴箱温度过高轴承损坏。 风机的循环冷却水: 风机连轴箱的循环冷却水 在二楼集水槽处观察净化风机的循环冷却水回水是否正常(有 无回水)。 造成后果:连轴箱轴承温度过高轴承损坏。 卸灰阀: 净化巡检时观察卸灰阀是否工作(电机是否烧坏、卸灰阀内部 卡死)。电机烧坏时及时更换电机,卸灰阀内部卡死时必须排除故障,排除不了及时更换卸灰阀。 造成后果:如未及时发现卸灰阀不工作可造成部分布袋烧坏和 净化不能开启

密闭电石炉尾气净化综合利用的工艺布置及注意事项

密闭电石炉尾气净化综合利用的工艺布置及注意事项在密闭及高温环境下,密闭电石炉中会伴随有碳素原料的不完全燃烧及分解,从而产生大量电石炉尾气。本文系统介绍了电石炉尾气净化工艺流程及其后续回收利用装置的工艺布置。 在电石生产中,实行清洁生产是必要的,但不能仅仅停留在清洁生产的层面上,还要深度思考循环经济理念的应用,发展循环经济。电石炉尾气含尘量大,温度高,并含有部分焦油等粘性物质,单座30000kVA密闭电石炉尾气量为2525Nm3/h,直接进行烟尘治理难度很大,国内开发的尾气直接燃烧净化技术,经生产实践证明是成功的。 该技术针对电石尾气的具体特点,认为尾气先净化后利用难度大。而直接送入电石尾气锅炉作为燃料,燃烧后再除尘大大降低了袋式除尘器设计和使用难度。同时利用了尾气潜热和显热,产生蒸汽加以利用。该技术已经在国内多家密闭炉电石生产厂家推广使用,取得了较好的经济和社会效益。 电石炉尾气净化的工艺流程分为两部分:干法净化、水洗净化。 干法净化工艺流程简述 净化气体在电石炉及净化系统全密闭的状态下生成,并且炉气的温度通过控制冷却风机的台数来调节,使炉气温度控制在220℃~280℃之间运行,否则炉气将冷却析出焦油,造成淤积管道,黏结阀门或烧损过滤器布袋等严重后果。 电石炉内产生的炉气温度为500℃~900℃,炉压0mmHg~5mmHg(0Pa~50Pa)。当过滤器工作时,灼热的炉气经过水冷烟道,温度下降到500℃左右,经一级旋风除尘器,再经三级空气

冷却器,炉气温度降为250℃~280℃,未净化的气体称之为粗气,尾气经粗气风机升压后并列进入3台过滤器中,过滤器内设置有聚四氟乙烯材料和玻璃纤维丝编织的耐高温过滤袋,将尾气中的粉尘过滤下来。 净化后的气体中粉尘含量为50mg/Nm3,在这之前,旋风除尘器及空冷器已将大颗粒粉尘滤下,从过滤器出来的气体,则称为净气。净气被净气风机送往用户做燃料燃烧,也可以送往下一工段进一步净化用于更高要求的用户使用。 从电石炉至净气风机出口的这段我们称之为干法净化。后续的进一步净化因为采用了水这一介质,我们称之为水洗净化。 水洗净化工艺流程简述 由净气风机出口送出的尾气,经过尾气总管送至喷淋塔、洗涤塔尾气与塔顶部喷下的水溶液逆流接触脱出尾气中的粉尘、焦油,并进一步降温至40℃左右,再经过气柜进行缓冲后送入罗茨风机输送给用户。 经湿法净化后的尾气可以用于热电厂的燃气锅炉代替煤粉燃烧炉气后产生蒸汽,带动汽轮机进行发电以及蒸汽的供应;也可以用于粒碱项目代替天然气加热熔岩炉。这两项技术已经在新疆天业进行使用并取得了良好的效果。一氧化碳还可以用于制作甲醇,及乙二醇等化工产品,市场前景广阔,有着客观的经济利益。 电石炉尾气净化工艺布置注意事项: 1)因为一氧化碳属于无色无味易燃易爆,有剧毒的高危气体,整个系统须保持正压以避免空气中的氧气进入系统发生安全事故; 2)因为从电石炉出来的尾气温度较高,因此输送炉气的管道上须布置自然补偿弯或者补偿装置用于消除线性膨胀应力; 3)因为在电石的生产过程中伴随有原料水分的蒸发及后续水洗净化工段水溶液中的饱和水随尾气的流动,故当温度低于水的露点时便会有液态水的析出,在管道的建设过程中需要分段的对管道进行放坡并在最低点设置排水阀定期排出管道内的水,防止积水过度,增加管道的阻力,及防止管道发生变形;

锅炉烟气脱硫脱硝工艺比选

锅炉烟气脱硫脱硝工艺比选 一、烟气脱硫: 根据吸收剂及脱硫产物在脱硫过程中的干湿状态,火力发电行业一般将脱硫技术分为湿法、干法和半干(半湿)法。 (1)湿法烟气脱硫技术是用含有吸收剂的浆液在湿态下脱硫和处理脱硫产物,该方法具有脱硫反应速度快、脱硫效率高、吸收剂利用率高、技术成熟可靠等优点,但也存在初投资大、运行维护费用高、需要处理二次污染等问题。应用最多的湿法烟气脱硫技术为石灰石湿法,如果将脱硫产物处理为石膏并加以回收利用,则为石灰石-石膏湿法,否则为抛弃法。 其他湿法烟气脱硫技术还有氨洗涤脱硫和海水脱硫等。 (2)干法烟气脱硫工艺均在干态下完成,无污水排放,烟气无明显温降,设备腐蚀较轻,但存在脱硫效率低、反应速度慢、石灰石利用率较低等问题,有些方法在设备大型化的进程中困难很大,技术尚不成熟(主要有炉内喷钙等技术)。 半干法通常具有在湿态下进行脱硫反应,在干态下处理脱硫产物的特点,可以兼备干法和湿法的优点。主要包括喷雾干燥法、炉内喷钙尾部增湿活化法、烟气循环流化床脱硫法、电子束辐照烟气脱硫脱氮法等。下表为几种主要脱硫工艺的比较。

目前,在众多的脱硫工艺中,石灰石—石膏湿法烟气脱硫工艺(简称FGD)应用最广。据统计,80%的脱硫装置采用石灰石(石灰)—石膏湿法,10%采用喷雾干燥法(半干法),10%采用其它方法。湿法脱硫工艺是目前世界上应用最多、最为成熟的技术,吸收剂价廉易得、副产物便于利用、煤种适应范围宽,并有较大幅度降低工程造价的可能性。 安徽电力设计院建议采用炉内与炉外湿法脱硫相结合的方法进行脱硫,脱硫效率可达98%。 二、脱硝: 烟气脱硝工艺可以分为湿法和干法两大类。 (1)湿法,是指反应剂为液态的工艺技术。通过氧化剂O2、ClO2、KMnO2把NO x氧化成NO2,然后用水或碱性溶液吸收脱硝。包括臭氧氧化吸收法和ClO2气相氧化吸收法。 (2)干法,是指反应剂为气态的工艺技术。包括氨催化还原法和非催化还原法。 无论是干法还是湿法,依据脱硝反应的化学机理,又可以分为还原法、分解法、吸附法、等离子体活化法和生化法等。 目前,世界上较多使用的湿法有气相氧化液相吸收法和液相氧化吸收法,较多使用的干法有选择性催化还原法(SCR)。 SCR脱硝:

电石炉尾气的处理和综合利用_顾丽萍

电石炉尾气的处理和综合利用 顾丽萍 (宝钢工程技术集团有限公司,上海 201999) 摘要电石乙炔是基本的化工原料,在化学工业的发展史上起过极为重要的作用。由于近年来世界石油化工高速发展,在发达国家已由乙烯、丙烯取代了电石乙炔的地位。根据我国化学工业的生产状况以及能源资源现状,电石作为化工原料还会在我国存在相当长的一段时间,而电石炉是高能耗、高污染设备,电石炉在生产过程中会产生大量高温的含尘尾气(烟气),这些尾气处理不当,会影响操作人员的健康,排入大气就会对环境产生污染。而电石炉的尾气中含有大量CO,又是一种可利用的能源介质。本文主要针对电石炉尾气的特性,对电石炉尾气进行收集、净化处理,使电石炉尾气满足清洁能源的要求,这样既改善了电石炉的操作环境,又变废为宝,节约了能源,提高了企业的经济效益,同时符合《电石行业准入条件》的规定。 关键词电石,电石炉尾气,净化,综合利用 Manage and Integrate Utilize the Exhaust Gas of Calcium Carbide Furnace Gu Liping (Baosteel Engineering & Technology Group Co., Ltd., Shanghai 201999, China) Abstract Acetylene derived from calcium carbide is the elementary raw chemical material which had played a significant role in chemical industry developing history. As the result of the high speed expansion of world petroleum chemical in recent years, it has been replaced by ethane and propylene in developed countries. Based on the status of production and energy sources of chemical industry in our nation, calcium carbide will have been used as raw chemical material in a quite long time. As calcium carbide furnace is high expand energy and high pollution facility, it will produce a large quantity of high temperature exhausted gas during production process. Those exhausted gas will impact operators’ health and cause environmental pollution if it was mishandled and been emitted into the atmosphere. There is a great amount of carbon monoxide in exhausted gas of calcium carbide furnace which can be used as a kind of energy medium. Basing on the characteristic of exhausted gas of calcium carbide furnace, this thesis mainly introduced how to collect, purify and manage those exhausted gas in order to meet the standard of clean energy. Thus it not only improved the operation environment of calcium carbide furnace but also make it possible to recycle and save energy which will increase the economic benefit of enterprise and finally correspond the regulation of Access conditions of calcium carbide industry. Key words calcium carbide, cxhausted gas of calcium carbide furnace, purify,integrate utilization 1引言 电石是基本的化工原料,其利用丰富廉价的石灰石、炭材为资源,生产出低成本的电石,从而满足PVC 等产品对电石的需求,对于延伸产业链、发展循环经济、提升市场竞争力、增强企业抵御风险能力,具有十分重要的意义。而电石炉是高能耗、高污染设备,电石炉在生产过程中会产生大量高温的含尘尾气(烟气), 顾丽萍,女,工学士,高级工程师,长期从事燃气工程的专业设计与研究工作,guliping@https://www.wendangku.net/doc/da3397137.html,

烟气的脱硫脱硝以及除尘技术

烟气的脱硫脱硝以及除尘技术 指导教师:安恩科 专业:热能与动力 姓名:张露 学号:1151903

烟气的脱硫脱硝以及除尘技术 摘要:脱硫(Desulfurization)、脱硝(Denitrifica-tion)(亦称脱硫脱氮)是除去或减少燃煤过程中的SO2和NOx,如何经济有效地控制燃煤中SO X和NOx的排放量是我国乃至世界节能减排领域中急需解决的关键问题。本文主要阐述火电厂脱硫、脱硝技术和脱硫脱硝一体化技术以及烟气除尘技术,并且分析了每种技术的原理及优缺点。 关键词:脱硫脱硝一体化除尘 引言:煤炭是一种重要的能源资源,当今世界上电力产量的60%是利用煤炭资源生产的。中国又是一个燃煤大国,一次能源能源76%是煤炭,到2005年我国煤年产量达20亿t,其中一半用于燃煤电厂,燃煤发电量约占全国总发电量的70%左右。煤燃烧排放烟气中含有硫氧化物SO X(主要包括:SO2、SO3)和氮氧化物NOx(主要包括:NO、NO2、N2O3、N2O4、N2O5),其中SO2、NO和NO2是大气污染的主要成分,也是形成酸雨的主要物质。 脱硫(Desulfurization)、脱硝(Denitrifica-tion)(亦称脱硫脱氮)是除去或减少燃煤过程中的SO2和NOx,如何经济有效地控制燃煤中SO X和NOx的排放量是我国乃至世界节能减排领域中急需解决的关键问题。本文主要阐述火电厂脱硝技术和脱硫脱硝一体化的发展趋势,有助于推动我国火电厂脱硝和脱硫脱硝一体化技术的应用,以减少燃煤电厂氮氧化物NOx的排放。氮氧化物排放量NOx排放量近70%来自于煤炭的直接燃烧,火力发电厂是NOx排放的主要来源之一,其中污染大气的主要是NO和NO2。降低NOx的污染主要有二种措施:一是控制燃烧过程中NOx的生成,即低NOx燃烧技术,亦称一级脱氮技术;二是对生成的NOx进行处理,即烟气脱硝技术,亦称二级脱氮技术。 正文: 一、烟气脱硫技术 目前针对燃煤中硫的脱除,国内外早已进行了大量的研究。从脱硫环节上可分为:燃烧前脱硫、燃烧中脱硫、燃烧后的烟气脱硫。脱硫方法有上百种,但工业化应用的只有十几种,目前世界上大规模商业化应用的脱硫技术是燃烧后烟气脱硫。烟气脱硫按其所采用吸收剂介质是固态还是液态可以分为干法、半干法、湿法。下面介绍几种典型的烟气脱硫工艺: 1.石灰石—石膏法 (Wet-FGD) 石灰石—石膏法是以 石灰石浆液作为吸收剂,在 吸收塔内通过石灰石浆液 对烟气进行洗涤,并发生反 应,去除烟气中的 SO2,反 应产生的亚硫酸钙通过强 制氧化,能够生成含两个结 晶水的硫酸钙,脱硫后的烟 气从烟囱排放。该工艺是目 前世界上技术最成熟、应用 最广泛的脱硫工艺,已有三 十年的运行经验,其脱硫效 率在 90%以上,副产品石膏

电石炉尾气净化系统操作规程

30000KV A 电石炉炉气净化岗位操作规程 文件编号: 版本:A 分发号: 审核:日期: 批准:日期: 受控状态:持有者: 2013年月日发布 2013年月日实施

电石炉炉气净化岗位操作规程 一、岗位基本任务 1、负责电石炉净化系统的开车、正常运行、停车操作,实现炉气利用和烟气达标排放。 2、负责电石炉净化系统的相关参数调整工作。 3、负责电石炉净化系统的控制操作。 4、负责净化系统运行工作的管理。 5、负责岗位的设备巡视。 二、操作方法 1、开车前的准备及检查工作 1.1过滤器启动前的准备及检查工作 1.1.1检查所有氮气管路是否连通,特别是链板机及各电机用于轴密封的氮气。 1.1.2检查电机的旋转方向,如反转,应调整到正确的旋向。 1.1.3必须在开始检查、维修之前切断电源。 1.1.4必须在开始检查、维修之前用氮气置换、排放一氧化碳,在确定一氧化碳化验结果为0 后,使用压缩空气对过滤器内进行清扫,保证过滤器内的氧气含量>18%。 1.1.5过滤器必须在检查、维修之前从约200℃的操作温度冷却下来。 1.1.6启动后检查和调整粗气风机的转速(压力调节阀)将电石炉的炉压控制到规定的压力。 1.2粗气风机、净气风机、冷却风机启动前的准备检查工作 1.2.1检查电机转动方向是否正常,用手盘动是否灵活。 1.2.2检查冷却水有无渗漏,冷却水系统是否正常工作。 1.2.3检查油箱的油面是否正常。 1.2.4检查传动三角带与皮带轮是否正常配套及松紧程度。 1.2.5检查各螺栓是否坚固。 1.2.6检查皮带罩是否安置合适,有无擦碰皮带现象。 1.2.7检查轴承润滑是否合适,达到润滑系统正常要求。 1.2.8启动风机时检查风叶有无异常震动。 1.2.9检查是否有工具或其他物品遗忘在风机内或管道内。 1.2.10启动风机时要用钳式电流表检查风机电机三相是否平衡。

循环流化床锅炉脱硝技术方案(详)

循环流化床锅炉SNCR脱硝技术方案 一、SNCR工程设计方案 1、SNCR和SCR两种技术方案的选择 1.1.工艺描述 选择性非催化还原(Selective Non-Catalytic Reduction,以下简写为SNCR)技术是一种成熟的商业性NOx控制处理技术。SNCR方法主要在900~1050℃下,将含氮的化学剂喷入贫燃烟气中,将NO还原,生成氮气和水。而选择性催化还原(Selective Catalytic Reduction,SCR),由于使用了催化剂,因此可以在低得多的温度下脱除NOx。两种方法都是利用氮剂对NOx还原的选择性,以有效的避免还原氮剂与贫燃烟气中大量的氧气反应,因此称之为选择性还原方法。两种方法的化学反应原理相同。 SNCR在实验室内的试验中可以达到90%以上的NOx脱除率。应用在大型锅炉上,短期示范期间能达到75%的脱硝率,长期现场应用一般能达到30%~50%的NOx脱除率。SNCR技术的工业应用是在20世纪70年代中期日本的一些燃油、燃气电厂开始的,在欧盟国家从80年代末一些燃煤电厂也开始SNCR技术的工业应用。美国的SNCR技术应用是在90年代初开始的,目前世界上燃煤电厂SNCR 工艺的总装机容量在2GW以上。 两种烟气脱硝技术都可以采用氨水、纯氨、或者尿素作为还原剂,工艺上的不同主要体现在两个方面:其一,SCR需要布置昂贵的金属催化剂,SNCR不需要催化剂;其二,SNCR存在所谓的反应温度窗口,一般文献介绍,其最佳反应温度窗口为850~1100℃,但是当采用氨做还原剂且和烟气在良好混合条件下,并且保证一定的停留时间,则在更低的760~950℃范围内也可以进行有效程度的脱硝反应。采用SCR技术的脱硝反应,由于催化剂的存在,则可以在尾部烟道低温区域进行。

电石炉中控工培训手册

大地化工一分公司一号密闭炉 表工培训手册 为贯彻公司稳定发展储备人才的指示精神,本炉特编制该培训手册,望各新进人员认真学习,结合实际生产操作,努力钻研岗位技能早日成长为优秀的仪表操作工。 目录: 一、密闭电石炉员工基本须知 二、仪表操作工基础知识 1、仪表操作岗位的作用? 2、生产电石的基本原料是什么? 3、生产电石的原料的质量要求: 4、什么是电石的发气量及发气量和电石质量的关系? 5、石灰中的杂质对电石生产有什么样的危害? 6、什么叫生烧石灰,为什么要求控制石灰的生烧率? 7、什么叫过烧石灰?它对电石生产有那些危害性? 8、为什么说碳素材料中的灰分越少对电石生产越好? 9、碳素材料中的水分对电石生产有什么影响? 10、怎样理解碳素材料中的挥发份对电石生产的影响? 11、电石生产中碳素材料的粒度多大才算合适? 12、什么是炉料的配比? 13、电石炉内的料层结构是怎样的? 14、什么是连续式自动烧结电极?

15、自动式烧结电极采用什么原料? 16、电极糊的烧结过程是怎样的? 17、焙烧电极糊的热源有那些? 18、电极软断的原因是什么?如何处理和预防 19、电极硬断的原因是什么?如何处理和预防 20、形成高炉温的条件有那些? 21、怎样掌握电极的工作长度和插入料层的深度? 22、什么叫明弧操作?有什么危害? 23、为什么会有塌料现象?如何预防? 24、为什么有时候加料刚完,电极反而上升? 25、电极入料深度测量方法的原理是什么? 26、炉气中氢气含量超过规定指标会发生事故吗? 三、表工必须知道的电学知识 1、电流、电压和电阻 2、欧姆定律 3、电流的热效应 4、功率因数 5、三相交流电路

电石炉尾气治理除尘技术(精)

电石炉尾气治理除尘技术 摘要:电石生产企业在符合行业准入条件的前提下,应采用大型综合利用技术,充分利用炉气及热能,本文围绕这一课题进行了研究探讨。 关键词:电石炉尾气治理除尘技术 0 引言 电石是基本的有机化工原料,由它制得的乙炔可替代石油制品生产醋酸、醋酸乙烯、聚氯乙烯、聚乙烯醇、乙炔碳黑等一系列数千种有机产品。又是冶金、矿山、机械、建筑等工业中必不可少的辅助材料。从氯碱行业的信息看,电石法PVC还将发展,电石行业仍有发展的空间,这与国际石油市场和我国资源现状以及化工生产有关,电石行业是高耗能、高污染的产业,大部分的电石炉粉尘都严重超标,因此,电石要长期持续健康发展,环境必须要治理好。 1 内燃式密闭电石炉尾气性质、治理和综合利用情况 尾气工艺参数 粉尘性质 粉尘化学性质 粉尘粒径分布 内燃式密闭电石炉尾气治理和综合利用技术 目前国内用于内燃式密闭电石炉的净化处理方法中有两种,分别是湿法除尘和干法除尘,湿法除尘在实际使用过程中存在很大的问题,主要原因是粉尘中含有CaO,遇水生成Ca(OH)2,碱性、粘性大,在高温下形成酸液严重腐蚀设备并造成二次污染。干法除尘有旋风除尘、袋式除尘和静电除尘,旋风除尘由于除尘效率低一般都不能达标;静电除尘要降低粉尘比电阻,才能够实现粉尘的达标排放,国内目前能够实现达标排放的几乎没有;布袋除尘使用的比较普遍,但在选用时要考虑降温、滤料和清灰方式的选择才能实现粉尘的达标排放;相比来说,布袋除尘的除尘效率是最高的,可以达到99%。 ①干法除尘:冷却或余热利用+电除尘、冷却或余热利用+袋除尘。②烟气非常干燥,致使粉尘比电阻较高,电除尘难以捕集烟气中的粉尘,除尘效率不能保证。③粉尘中含有不完全燃烧的物质,采用电除尘技术,因电场中有火花产生,所以有发生爆炸的危险。④湿法除尘:粉尘中CaO,遇水形成Ca(OH)2,碱性、粘性大,在高温下形成酸液严重腐蚀设备并造成二次污染。⑤大多采用袋除尘技术,且相当成熟。⑥余热锅炉+布袋除尘或电除尘的工艺。⑦强制冷却+布袋除尘的工艺。⑧增湿塔+电除尘的工艺。 用余热锅炉工艺可产蒸汽和发电,强制冷加布袋除尘是将烟温降到布袋所能承受的范围再进行净化。增湿塔+电除尘工艺要将粉尘比电阻降到合适的范围再用电除尘净化。 对于密封好的内燃式密闭电石炉炉气温度可达到600℃左右,其热量还是有很大的利用价值,针对不同的用户可选择烘干焦碳或余热锅炉产蒸汽的方式。炉气中热量的利用,可以达到更高的经济效益、环保效益和社会效益,开创三丰收的局面。 采用余热锅炉+布袋除尘的工艺流程

密闭电石炉尾气净化及综合利用

浅谈密闭电石炉尾气回收及综合利用 新疆中泰化学(集团)股份有限公司廉政 830009 XINJIANG ZHONGTAI CHEMICAL CO., LTD. Lian Zheng 【摘要】主要介绍了用电石炉生产电石产生的烟气的回收和利用原理、工艺流程以及技术方案。 【关键词】 电石炉尾气;回收利用 【Abstract】To introduce the process and technical plan for the recovery and utilization of flue gas coming from the production of calcium carbide by carbide furnace were introduced. 【Key words】flue gas of calcium carbide furnace;recovery and utilization 1862年由Hare和Wohler在实验室从Zn、Ca与C之合金首次制的CaC2 。三十年后Moisson和Willson用CaO和煤在电炉中制成CaC2 ,并在1862年取得了专利权。1895年美国兴建了第一个容量300KV的间歇式单相电石炉。接着又组装成功单相组式炉,容量不过1000kVA,但电耗却高达6000kWH/T电石。随后不久改建成连续式单相炉,直到1905年—1906年左右才首建连续的圆型开放式三相电炉。延至三十年代,几经改进,终于研究成功了连续化法自烧电极。电极直径得到扩大,从而使三相开放式电石炉的容量迅速放大到20000kVA。

我国于1949年至51年间在吉林修建二座2500kVA开放型电石炉。“一〃五计划”期间经改造扩建以及从苏联引进40000kVA半密闭型电石炉于57年投产,从而吉林电石厂成为国内最大的电石生产基地。随着以电石乙炔为原料之有机合成工业在全国蓬勃兴起,截至2006年为止全国共有175家电石厂,其中开放炉214座,半密闭炉1 座,密闭炉11 座,设备总容量为798370kVA,年生产能力160万吨。 近年来,由于原油价格暴涨,使乙烯法PVC的生产成本直线上升,利润降低,严重制约了其发展,因而促进了电石工业的迅速发展,但大部分电石厂技术落后,装备较差,环保意识淡薄,对我国环境状况构成严重威胁。随着社会发展和科学技术的进步,我国能源的日益紧缺,节能减排环保要求更加严格,电石生产技术正向着高效、节能和环保型的方向发展,因此,密闭炉型、大型化、规模化已成电石工业的发展趋势。但是,电石法PVC生产过程中出现的污染严重和消耗过高的问题还有待解决,特别是电石生产的污染问题,是制约电石法PVC发展的关键因素之一。本文就电石生产中污染最严重的尾气净化方法及综合利用进行分析。 1密闭电石炉尾气的特点 密闭电石炉尾气温度高,气量波动大,尾气成分复杂,尾气中粉尘颗粒粒径细小、粘性较强,这给尾气净化除尘带来了不小的难度。就我厂现阶段运行的30000kVA密闭电石

锅炉脱硝改造工程技术要求

腾龙特种树脂(厦门)有限公司3×220 t/h锅炉烟气脱硝工程 技术要求 腾龙特种树脂(厦门)有限公司 2013年10月

一、概述 项目概况 腾龙特种树脂(厦门)有限公司成立于2002年4月,已建成3台220 t/h循环流化床锅炉,一台100MW抽汽式汽轮发电机组。根据福建省及厦门市十二五期间对氮氧化物减排的整体部署和要求,拟对上述3台锅炉进行脱硝改造。 本脱硝工程采用EPC总承包方式建造,本工程包括烟气脱硝装置从设计开始到质保期结束为止所涉及到的所有工作,包括但不仅仅限于工程的工艺系统设计、设备选择、采购、运输及储存、制造及安装、土建建(构)筑物的设计、施工、调试、试验及检查、试运行、考核验收、消缺、培训和最终交付投产,并能满足锅炉正常连续运行需要,通过环保部门验收合格后提供一年内设备易损易耗备件。 在签订总承包合同之后,发包方保留对本技术要求提出补充要求和修改权利,承包方应允诺予以配合。如提出修改,具体项目和条件由双方商定。 主要设备及参数 表1锅炉设计参数

脱硝技术指标要求: 1.3.1 锅炉50%~100%BMCR负荷范围内,脱硝后NOx排放浓度:﹤200mg/Nm3; 1.3.2 氨逃逸量:﹤8mg/Nm3; 1.3.3 锅炉脱硝验收期间将按NOx初始浓度为480毫克/立方米进行排放达标核算验收; 1.3.4脱硝设施投运后锅炉热效率影响:﹤%; 1.3.5 脱硝装置投运后烟气阻力增加﹤300Pa; 说明:

1)脱硝效率定义为 脱硝率=C1-C2 ×100% C1 式中: C1——脱硝系统运行时脱硝入口处烟气中NO X 含量(mg/Nm3)。 C2——脱硝系统运行时脱硝出口处烟气中NO X 含量(mg/Nm3)。 2)氨的逃逸率是指在脱硝装置出口的氨的浓度。 标准与规范 1.4.1 设计规范及要求 投标方提供规范、规程和标准为下列规范、规程和标准的最新版本,但不仅限于此: GB8978-1996 《污水综合排放标准》 GB50187-93 《工业企业总平面设计规范》 DL5028-93 《电力工程制图标准》 SDGJ34-83 《电力勘测设计制图统一规定:综合部分(试行)》 DL5000-2000 《火力发电厂设计技术规程》 DL/T5121-2000 《火力发电厂烟风煤粉管道设计技术规程》 YB9070-92 《压力容器技术管理规定》 GBl50-98 《钢制压力容器》 DL5022-93 《火力发电厂土建结构设计技术规定》 GB4272-92 《设备及管道保温技术通则》 DL/T776-2001 《火力发电厂保温材料技术条件》 DL/T5072-2007 《火力发电厂保温油漆设计规程》 GBZ1-2002 《工业企业设计卫生标准》 DL/T5054-96 《火力发电厂汽水管道设计技术规定》 SDGJ6-90 《火力发电厂汽水管道应力计算技术规定》 GBJ16-1987(2002)《建筑设计防火规范》

浅析电石炉尾气综合利用技术

浅析电石炉尾气综合利用技术 发表时间:2019-02-27T11:04:52.860Z 来源:《防护工程》2018年第33期作者:王颖 [导读] 我国在对电石炉尾气利用和处理方面有一定的严格要求,存在一定的难度。 新疆中泰化学托克逊能化有限公司新疆吐鲁番 838100 摘要:众所周知,电石作为化工的最基础的材料已经被广泛的运用于各个领域,例如聚氯乙烯的生产,所以,在化工工业上,电石的作用是十分显著的,但是在利用电石的过程中会产生很多污染,电石行业是一个高能耗、高污染的行业,很多工厂对电石炉的尾气都没能进行很好的达标处理,以致于对环境污染十分严重,电石炉尾气非规范化处理在一定程度上限制了化工行业的发展。因此本文将针对电石炉尾气的利用技术进行分析,并给予电石炉尾气的几种精华方式,目的是促进电石生产企业的长效发展。 关键词:电石炉尾气;综合利用;节能减排 前言:我国在对电石炉尾气利用和处理方面有一定的严格要求,存在一定的难度,因为电石炉尾气性质较为特殊,因此当前我国的电石炉尾气利用方法分为三种:直接利用除尘、干法除尘后再利用和湿法回收炉气后再利用。这三种方法各有各的特点和优劣势,本文将重点介绍改三种利用技术,保障电视生产企业的可持续发展。 1.电石炉尾气特性及利用价值 1.1 电石炉尾气特性 使用密闭炉生产电石,每吨电石副产炉气量约400 Nm 3,在炉气中含尘量比较大,并且还有灰尘非常轻、并且比较黏、而且非常细等等特点;炉气在温度小于225 ℃时容易析出,会使除尘布袋黏结堵塞;炉气本身温度很高,同时含有难以除净的大量粉尘,治理难度比较大,在利用前需要对炉气进行充分的净化处理。 1.2 电石炉尾气利用价值 从电石炉尾气成分可以看出,炉气中含有大量的CO和H 2 ,是很好的燃料和化工原料,利用好这部分气体可以产生巨大的经济效益和社会效益。以我国2017年电石产量2500万吨计算,副产的电石炉尾气总量达到100亿Nm 3左右,如能全部回收,可得到约75亿Nm 3 CO 和7.5亿Nm 3 H 2 。因此,炉气净化利用对实现能源回收利用、降低生产成本、提高经济效益,都具有重要的意义。 2.电石炉尾气综合利用技术 2.1直接利用后除尘 直接利用后除尘技术是将炉气在余热锅炉内进一步进行燃烧,将炉气和灰尘中的氯化物进行分解,灰尘在燃烧过程中物理性质会发生变化,粘性降低、结构变得密实。此技术主要是利于除尘,大大降低了除尘难度,并且对氯化物的净化也有很好的解决。直接利用除尘的具体操作为,将炉气通过调节阀分开,一部分进入烟囱放空燃烧,一部分进行余热锅炉烧嘴,将炉气和空气进行混合之后进行燃烧,然后再将燃烧产生的气体送入除尘器后放空。利用此方式产生的热蒸汽可以通过送热器提供给用户。利用锅炉进一步燃烧炉气,经济上合理,占地面积较小,且产生的热量能够得到充分的利用,适合大范围的推广和利用。 2.2 湿法回收炉气后再利用 湿法回收炉气技术是在短时间内将高温炉气降到饱和温度状态,温度的降低能够有效的将气体和沸点相差较大的物质进行分离,析出的主要物质是焦油,此方法可以快速洗涤,易于熄火。湿法净化湿法净化系统的主要特点是按照炉气的走向依次串联带有刮板的炉气洗气机、粗洗一塔、粗洗二塔以及精洗三塔。经过一系列处理之后,回收的炉气便可以再次进入锅炉内燃烧,同时该系统产生的蒸汽供厂内生活取暖使用。在除尘工艺中使用机械刮板式洗气机,主要是因为在降温后,会有少量的焦油析出,如果不加以处理,长时间后会造成灰尘的积垢、堵塞等问题,利用机械刮板则可以很好的解决除尘初期的这一问题,保证西永的正常运行。总体来说,湿法回收利用工艺相对较之成熟,动力消耗较大,容易产生二次污染,与我国所倡导的循环经济理念不相符合,并不能很大范围上对其进行推广和发展。 2.3 干法除尘后再利用 此方式是我国在上世纪八十年代末从国外引进的一种利用方式,以此来推动我国电石炉行业的技术发展。该项技术能够将炉尾气净化后作为气烧窑的燃料制石灰,气烧窑所制得的生石灰反应性好,柔软适中,有利于电石的生产。 3.电石炉尾气的具体应用和影响 目前,部分企业的电石炉尾气只是经过简单处理后,作为燃料烧石灰、烧锅炉等使用,并没有将炉气价值最大化利用。电石炉尾气的主要成分是CO和H 2 ,在经过深度净化处理后,可利用CO和H 2 发展后续高附加值化工产品,可用于生产合成氨、甲醇、乙二醇、二甲醚、甲酸钠等较高附加值的化工产品,目前国内已成功建成生产甲酸钠、合成氨、乙二醇的装置。 3.1合成氨和甲醇 根据物料平衡以及原料气分析计算,电石尾气中的氮气的体积分数约占了5 %,如单产甲醇,5 %的氮气将作为无效气被放空,增加了压缩机的无效功;如单产合成氨,需要向系统中补充氮气,新增制氮装置,增加投资。综合考虑,如果采用以醇-氨联产工艺,即甲醇生产中串入合成氨生产,将炉气中的N 2 与H 2 合成氨,避免了合成甲醇过程中排放惰性气体而造成大量有效气体损失。这样在一定程度上增加了经济效益。 3.2 乙二醇 乙二醇合成气为高纯度的H 2 (99.9 %,vol)和CO(99 %,vol),且H 2 和CO的体积比约为1.95。若以电石炉尾气作为乙二醇合成气,与以煤为原料相比,省去了煤制气的过程,消耗低,原料成本大幅下降,无疑是一种优于单纯以煤为原料的生产乙二醇的原料路线。 3.3电石规模的影响 虽然电石炉尾气作为合成气原料,无论从投资上还是运行成本都较煤制气路线要低很多,但要利用好电石炉尾气还要看电石装置规模的大小。例如,利用电石炉尾气生产甲酸钠,10万吨/年电石可配套7万吨/年甲酸钠装置;而利用电石炉尾气生产合成氨、甲醇、乙二醇等高附加值的化工产品,10万吨/年电石仅能配套3.6万吨/年甲醇或合成氨装置。这样的化工装置一般难以发挥出巨大的作用,对提高经济效

25t锅炉烟气脱硫脱硝改造技术方案(新)

目录 第一章项目总说明 (3) 1.1、项目背景 (3) 1.2、项目目标 (3) 1.3概述 (3) 1.4、设计依据 (4) 1.5、设计改造原则 (5) 1.6、设计改造内容 (5) 第二章工艺方案部分 (6) 2.1 除尘系统工艺方案 (6) 2.2脱硫系统工艺方案 (8) 2.3脱硝系统工艺方案 (14) 第三章人员配置及防护措施 (21) 第四章环境保护 (22) 第五章概算及运行成本估算 (23)

第一章项目总说明 1.1、项目背景 现有25t/h锅炉一台,脱硫除尘系统已经投运。烟气脱硫运行过程中存在脱硫率低下以及运行成本过高等诸多问题。 现如今随着人们对环境的要求越来越高,以及环保部门对从锅炉烟囱排出的废气物的排放监控越来越严格,排放标准也越来越严厉。根据甲方要求,SO2的排放浓度要低于100mg/m3,粉尘颗粒物排放浓度要低于25mg/m3, 氮氧化合物排放浓度要低于150mg/m3,污染物排入大气必须达标排放。 公司领导十分重视环境保护工作,拟针对现行日益严格的环保要求,对锅炉尾气烟气进行处理改造,做到达标排放。 1.2、项目目标 本工程的目的就是在上述建设背景和有关法规要求下对该项目原有污染物治理和工艺系统进行改造,在不影响现有锅炉工况条件下,使该系统能有效减少中各项污染物的排放,保证尾气达标排放,实现良好的经济效益和环保效益,并尽可能利用现有设施资源,把项目改造费用降到最低。 1.3概述 本工程针对现有1台25t/h流化床锅炉脱硫除尘系统进行改造,将原有简易双碱法系统改为氧化镁系统,新增布袋除尘系统、新增脱硫塔装置、新增SNCR脱硝系统、一套新型工艺系统设备、改造配套电气仪表系统。锅炉出口到引风机出口之间工艺系统的所有设备; 详细分工界线内容如下(暂定,最终以招标文件为准): 一、除尘系统 a、除尘系统电气仪表系统1套 b、低压长袋脉冲布袋除尘器1套 二、脱硫系统 a、脱硫电气仪表系统1套; b、制浆系统1套; c、脱硫塔1台; d、脱硫塔工艺循环系统1套; e、土建改造系统1套;

电石炉余热利用方案

40MVA电石炉节能技改方案 草拟:孙继江(高级工程师) 电话:1 乌海市江嘉节能服务有限公司 2014年4月 电石炉技改方案 引言 目前,我国每年产生的电石炉尾气超过150亿m3。处置方式基本为炉气直排或点火炬,不仅浪费了大量能源,也造成环境污染。国家对此十分重视,在《电石行业准入条件(2007年修订)》中明确规定“新建电石生产装置必须采用密闭式电石炉,电石炉气必须综合利用”,“密闭式电石装置的炉气(指CO气体)必须综合利用,正常生产时不允许炉气直排或点火炬”。 但由于电石炉尾气成分复杂,净化提纯难度大,国内外目前可供选用的真正成熟可行且实现了工业化生产的技术工艺很少,因而电石炉尾气回收利用率一直很低。截至2008年底,全国电石炉尾气的利用量尚不足15亿m3,利用率不足10%。每年因此损失约240万吨标准煤,同时排放约1200万吨二氧化碳和90余万吨粉尘。 研究开发经济合理、工艺技术可行的电石炉尾气利用途径,迫在眉睫。 项目建设单位简介:为乌海xxxx化工公司,现有17MVA电石炉两座,技改为40MVA全密闭电石炉一座,配套50万t白灰窑一座,2000kw烟气余热发电机组一套。 一. 电石炉余热回收利用方案 1、余热资源情况 电石炉炉型全密闭电石炉 电石炉容量/MV A 40 MV A 烟气发热值/KJ/N m311000-13500 出口烟气温度/ ℃600-1000

烟气含尘量, /g/Nm3 50-200 炉烟气量/Nm3/h 22000-30000 烟气焦油含量/mg/Nm3 ≤150 热值(kJ/Nm3):2400~2700kcal/ Nm3) 2.密闭电石炉、白灰窑烟气余热综合利用工艺流程 2.1. 一台40000KVA密闭电石炉,产电石11.5t/h,产生电石废气量4666m3/h, , 废气 温度600-1000℃,尾气综合利用一套干法除尘(旋风+布袋)系统组成。废气入口600℃, 废气出口200℃。 2.2 一台12万t白灰窑,t灰用CO300m3,产白灰15.5t/h(耗用电石废气4650Nm3), 产生废气10万m3/h, 废气温度350-450℃,尾气综合利用机组方案由一台10t/h蒸 汽锅炉和一套除尘(旋风+布袋)系统组成。废气入口400℃, 废气出口100℃。 余热回收值: 10000 m3,300-400℃的废气经过锅炉可产生,1000kg过热蒸汽,发电 200kw/h,1kw/h等值于0.39kg标煤 烟气可回收余热量:100000/1000/1000=10t/h(蒸汽)×200kw/t=2000kw/h 可装机2000kwh/400v. 2.3. 余热回收产蒸汽10t/h,通过废气贮灌汽源,驱动一套2000kwh/400v汽轮发电机组, 运行8000h/年可发电16MW。减排6240Nt。 3. 余热发电投资估算

相关文档