文档库 最新最全的文档下载
当前位置:文档库 › Measuring phase synchrony in brain signals

Measuring phase synchrony in brain signals

Measuring phase synchrony in brain signals
Measuring phase synchrony in brain signals

Measuring Phase Synchrony in Brain Signals

Jean-Philippe Lachaux,Eugenio Rodriguez,Jacques Martinerie,

and Francisco J.Varela*

Laboratoire de Neurosciences Cognitives et Imagerie Ce′re′brale,CNRS UPR640

Ho?pital de La Salpe?trie`re,Paris,France

??Abstract:This article presents,for the?rst time,a practical method for the direct quanti?cation of frequency-speci?c synchronization(i.e.,transient phase-locking)between two neuroelectric signals.The motivation for its development is to be able to examine the role of neural synchronies as a putative mechanism for long-range neural integration during cognitive tasks.The method,called phase-locking statistics(PLS),measures the signi?cance of the phase covariance between two signals with a reasonable time-resolution(?100ms).Unlike the more traditional method of spectral coherence,PLS separates the phase and amplitude components and can be directly interpreted in the framework of neural integration. To validate synchrony values against background?uctuations,PLS uses surrogate data and thus makes no a priori assumptions on the nature of the experimental data.We also apply PLS to investigate intracortical recordings from an epileptic patient performing a visual discrimination task.We?nd large-scale synchronies in the gamma band(45Hz),e.g.,between hippocampus and frontal gyrus,and local synchronies, within a limbic region,a few cm apart.W e argue that whereas long-scale effects do re?ect cognitive processing, short-scale synchronies are likely to be due to volume conduction.W e discuss ways to separate such conduction effects from true signal synchrony.Hum Brain Mapping8:194–208,1999.?1999W iley-L iss,I nc.

Key words:neural synchrony;phase-locking;coherence;EEG;EcoG;epilepsy;gamma-band;deblurring ??

INTRODUCTION

Cognitive acts require the integration of numerous functional areas widely distributed over the brain and in constant interaction with each other[Friston et al., 1997;Tonini and Edelman,1998].It has become a topic of much interest to explore the possibility that such large-scale integration could be mediated by neuronal groups that oscillate in the gamma range(30–80Hz, also referred to as40Hz)that enter into precise phase-locking over a limited period of time.(Hereafter,we refer to these phenomena simply as‘‘synchrony’’or ‘‘phase synchrony’’.)Whence the importance for a reliable and robust method for directly measuring such phase synchrony in this frequency band for experimentally recorded biological signals,which are not spikes,but local?eld potentials(LFP)of various degrees of spatial resolution.The purpose of this report is to introduce,for the?rst time,an effective method to estimate the instantaneous phase relationship between two neuroelectric or biomagnetic signals and to apply it to intracortically recorded signals in humans.W e also intro-duce the required statistical means to test the validity of the measured synchrony against the background?uctua-tions in a given experimental situation.

The role of synchronization of neuronal discharges, although not a new idea,has been greatly highlighted by results from microelectrodes in animals[see,e.g.,

Contract grant sponsor:DRET;Contract grant sponsor:Human

Science Frontier.

*Correspondence to:Dr.Francisco J.Varela,LENA-CNRS UPR640,

Ho?pital de La Salpe?trie`re,47Bd de l’Ho?pital,75651Paris cedex13,

France.E-mail:fv@ccr.jussieu.fr

Received for publication13March1998;accepted17May1999

?H uman B rain M apping8:194–208(1999)?

Singer and Gray,1995].In fact,two scales of phase synchrony can be distinguished:most animal studies based on microelectrode recordings have dealt with short-range synchronies[e.g.,Gray et al.,1989;Neuen-schwander et al.,1996],or between adjacent areas corre-sponding to a single sensory modality[e.g.,Ko¨nig et al.,1995].These local synchronies have been inter-preted most commonly as subserving‘‘perceptual bind-ing.’’More recently,evidence has also been found for long-range synchronizations between widely separated brain regions[Roelfsema et al.,1997].This is in agreement with the more general notion that phase synchrony should subserve not just binding of sensory attributes, but the overall integration of all dimensions of a cognitive act,including associative memory,emotional tone,and motor planning[Damasio,1990;Varela,1995].

These multiunit studies in animals have been comple-mented by studies at coarser levels of resolution in humans and animals.In fact,gamma band responses can be recorded during visual discrimination protocols on the human scalp[Tallon-Baudry et al.,1997]and in subdural electrocorticograms[Le van Quyen et al., 1997;Lachaux et al.,1999a].One can distinguish an early(100ms)response phase-locked to the stimulus or evoked response,and a later(200ms)induced re-sponse nonphase-locked to the stimulus.Both these responses necessarily imply a degree of local phase-locking,since otherwise no signal would reach the surface of cortex or scalp with enough amplitude. They would annihilate due to the summation of phases distributed very broadly.Thus there is some evidence to suggest that synchronization mechanisms as those found in single-unit studies in animals also occur at large scales recorded with macroelectrodes; they are long-range synchronies.

However,the quanti?cation of phase synchrony between macroelectrodes(EEG/MEG or intracortical recordings)requires methods that are entirely different that the cross-correlograms between spike discharges that suffice for microelectrode studies.This is the main purpose of the present study.But in this context,it is important to distinguish very sharply between syn-chrony(as de?ned above)and the classical measures of spectral covariance or coherence that have been extensively used elsewhere[Bullock and McClune, 1989;Bressler et al.,1993;Menon et al.,1996].Unfortu-nately,coherence is a measure that does not separate the effects of amplitude and phase in the interrelations between to signals.This point is discussed in detail later,but the novelty of our results is to a large extent simply to arrive at a measure where the phase compo-nent is obtained separately from the amplitude compo-nent for a given frequency.Only then can one proceed to test the synchrony hypothesis for brain integration. In a separate work,we have successfully applied the present method for the detection of gamma synchro-nies over the scalp during visual perception[Rod-riguez et al.,1999].Here,we present the methods in extenso on the basis of simulations and intracortical recordings as an ideal test case.

This report is divided into three main sections.The ?rst introduces a new technique for phase-locking detection:the phase-locking statistics(PLS).The sec-ond section applies PLS to LFP data from human intracortical recordings.In the third section,we exam-ine the problem of volume conduction and the choice of a reference electrode,the two main difficulties associated with the interpretation of synchrony results.

QUANTIFICATION OF PHASE-LOCKING

Phase-locking statistics

Here,we introduce our method of detecting syn-chrony in a precise frequency range between two recording sites.This method uses responses to a repeated stimulus and looks for latencies at which the phase difference between the signals varies little across trials(phase-locking).Given two series of signals x and y and a frequency of interest f,the procedure computes for each latency a measure of phase-locking between the components of x and y at frequency f(we call this measure phase-locking value,or PLV).This needs the extraction of the instantaneous phase of every signal at the target frequency.The procedure follows three steps (Fig.1).

Step1.We band-pass?lter(?nite impulse response of length?300ms)each signal between(f?2Hz). Step2.We compute its convolution with a complex Gabor wavelet centered at frequency f:

G(t,f)?exp1?t22?t22exp5j2?ft6.

Following Grossman[1989],we chose?t?7/f.For instance,?t?140ms for f?50Hz.The phase of this convolution?(t,n)is extracted for all time-bins t,trial n[1,...,N],and for each of the pair of electrodes. The phase locking value(PLV)is then de?ned at time t as the average value:

PLV t?

1

N0?n?1N exp(j?(t,n))

where?(t,n)is the phase difference?1(t,n)??2(t,n). PLV measures the intertrial variability of this phase

?P hase S ynchrony D etection?

difference at t:If the phase difference varies little across the trials,PLV is close to1;it is close to zero otherwise (Fig.2).This procedure can be repeated for several frequencies in order to study a broader frequency range.

Step 3.The third step,or‘‘test,’’is to build a statistical test based on surrogate data[Theiler et al., 1992,Mu¨ller-Gerking et al.,1996]to differentiate signi?-cant PLV against background?uctuations.Formerly, we test our samples of phase differences for random-ness against a unimodal distribution with an unspeci-?ed mean direction.The Raleigh test can be used [Fisher,1993]to test the H0hypothesis that our samples are drawn from a uniform distribution.However,in our case,the sampling distribution of a statistic is not known and we cannot assume uniformity.This can be seen in a simple example.Let us assume two indepen-dent neural populations that start to oscillate at40Hz in response to stimulation after a random delay of 50–55ms.The phase of these oscillations at55ms will vary from trial to trial from0–90°(5ms is about a quarter of a cycle at40Hz).Therefore,the phase difference between these two neural groups will reach values only between?90°and90°,which is not uniform.Yet,a Raleigh test would conclude that the phase differences are not uniformly distributed and

Figure1.

Evaluation of the instantaneous phase of a signal for a frequency f. As a?rst step,the raw signal s(t)is band-pass?ltered to generate f(t)(step1);the convolution of f(t)with a Morlet wavelet centered at frequency F provides the envelope a(t)and the instantaneous phase?(t)(step2).?(t)can also be inferred(bottom left)from a comparison between the latencies of f’s maxima(black points)and reference time markers(black ticks separated by a constant interval:1/f).Both methods give the same results.To test the methods,we generated a signal x(t)?sin(2?Ft??(t)),with abrupt phase variations,and computed?(t),an estimator of?(t). On the bottom right,inset shows cos(?(t))(rectangular function) together with cos(?(t))(smooth approximation).

?L achaux et al.?

would detect a phase-locking between the groups. When the sampling distribution of a statistic is un-known,one must rely on recent techniques of random-ization,or bootstrap[Fisher,1993].Our statistical test is based on randomization and is adapted to our particular set of data.

The main advantage of this approach is that it does not require any a priori hypothesis on the signals.We test the H0hypothesis that the two series of phase values?1(n)and?2(n)are independent.For this purpose,we generate200new series of variables, which have the same characteristics as the original signal coming from electrode2,except that we built them to be independent of the signals coming from electrode1.These series are created by shuffling the trials within the measures of electrode2to make new series y?(n)?y(shuffle(n)),where(y(i)is the signal recorded at electrode2during trial i(Fig.2).

For each surrogate series y?,we measure the maxi-mum between x and y?in time.These200values are used to estimate the signi?cance of PLV between the original signals x and y.The proportion of surrogate values higher than the original PLV(between x and y) for a time t is called phase-locking statistics(PLS).It measures the probability of having false positives for a given level of signi?cance.In this study,we used a criterion of5%(PLS?5%)to characterize signi?cant synchrony,but this is,of course,a function of the required rigor of signi?cance in the context of the signals being studied.Our method is related to an approach proposed by Friston et al.[1997]to quantify MEG data.In fact,they propose to estimate the

Figure2.

Estimation of phase-locking value.Left:Our synchrony index is directly related to the intertrial variability of the phase differences between two electrodes(see description of the method for details).By averaging these phase differences across the trials,we obtain a complex value u(for each latency t),which amplitude(abs (u))is the phase-locking value.Right:Surrogate data are con-structed by shuffling the trials of one of the electrodes(see text for details).

?P hase S ynchrony D etection?

correlation coefficient between two signals at a precise frequency,which implies a degree of phase-locking. Also,their statistical analysis was markedly different from ours.

Some comments are in order.In step1,one may wonder if the?ltering step is not redundant with the wavelet convolution and if it does not introduce artifacts.It seems that?(t,n)could be obtained directly by a convolution of the wavelet with the un?ltered signal(call this method A),instead of using a?ltering step prior to the convolution(method B).In fact,both methods were tested and led to slightly different results.We could make the following veri?cations of method B:(1)when transient40Hz oscillations easily could be seen in raw(un?ltered)data,we checked that the latencies of their peaks were identical with those of the?ltered signals,and(2)when the?ltered signal had clear oscillations,its exact phase could be read straight-forwardly from the latencies of the maxima of these oscillations(this direct lag estimation is slow,but highly reliable).By comparing this phase with our evaluation,we could check the exactness of method B. Since method A occasionally gave different results,we relied on method B.

In step3,the statistical method we use should detect any signi?cant phase synchrony between two elec-trodes,except in one important case:when the phase values?1(n)and?2(n)remains constant across the trials.In that situation,shuffling the trials within the measures of electrode2does not change the phase-locking value,whereas signals are actually synchronous. These false negatives easily can be detected since they are associated with high PL V.Also,they easily can be detected using simpler techniques that estimate the intertrial vari-ability of the phase of each electrode as recently proposed [T allon-Baudry et al.,1996;Lachaux et al.,1999a].

Why not use coherence?

Most studies that have attempted directly to study the putative importance of synchrony so far have employed a measure traditionally called frequency coherence(or more speci?cally,magnitude squared coherence,MSC)[Clifford Carter,1987].Thus the improvements provided by PLS are best seen in con-trast to MSC.The most salient differences are twofold. Coherence can be applied only to stationary signals. Coherence is a measure of the linear co-variance between two spectra.In particular,for each frequency f,the MSC is de?ned for two zero-mean stochastic processes by the squared modulus of their cross-spectral density at frequency f,normalized by their respective auto-spectra.These spectra can be estimated from?nite sets of data by:(1)subdividing the whole data sets into segments,(2)computing approximations of the spectra of each segment using a DFT(Discrete Fourier Transform),and(3)averaging these subspectra across all the segments.The quality of the estimation depends on the number and size of the segments [Clifford-Carter,1987].Segments are usually succes-sive time intervals,de?ned by a window sliding in time over the whole recording.In that case,a single measure of coherence typically needs several seconds of data,which limits the temporal resolution of the method.However,for protocols with repeated stimula-tions,coherence can be computed with a much better resolution because the window that de?nes the seg-ments can be slided across trials instead of being slided in time(event-related coherence).Yet,both methods require that each segment of data correspond to the same process with the same spectral properties.Since this assumption of stationarity(in time or across trials) can rarely be validated,we prefer a measure of phase-locking that does not require stationarity. Coherence does not speci?cally quantify phase-relationships.Coherence also increases with ampli-tude covariance,and the relative importance of ampli-tude and phase covariance in the coherence value is not clear.Since phase-locking is sufficient to conclude that two brain regions interact,it is important to develop alternative measures for the sole detection of phase covariance.In fact,there is no clear interpretation for the changes in coherence between two neural signals, beyond an obvious indication of interdependency.

In addition,the classic statistical analysis of coher-ence is not based on a comparison with trial-shifted surrogate data,but rather on a comparison with independent white noise signals[Clifford-Carter,1987]. Therefore,coherence statistics test the H0hypothesis that pairs of neural signals behave like independent white-noise signals.Since neural signals are not white-noise signals,this H0hypothesis might be too strong and might be rejected too easily.

Simulations

We?rst tested PLS with two series of signals phase-locked during two well-de?ned intervals in order to validate its temporal resolution.These signals were derived from two independent series of50 signals obtained from intracortical recordings of an epileptic patient(see next section)(s1(t,n?1...50) and s2(t,n?1...50),totaling50responses to two different stimuli measured in two different brain loca-

?L achaux et al.?

tions.We applied a ?nite impulse response band-pass ?lter (41–45Hz)to s 1and s 2to generate two new series

s 1?and s 2?and computed a third series c 1??Bell ·s 1?

?(1?Bell ·)·s 2?.(Bell was a function always equal to zero,except during two periods of 75ms and 200ms where it was equal to 1(Fig.3.)

Signal s 2was then modi?ed into c 2?s 2?s 2??c 1?

,a signal synchronous with s 1(41–45Hz)during two short intervals.We computed PLS between s 1and c 2(target frequency ?43Hz)to test whether this method could detect and separate these two episodes.As shown in Figure 3a,the temporal resolution of PLS was precise enough to do so.It can,therefore,be used to detect short episodes of synchrony (in this case,three oscillation cycles at 40Hz,75msec)with a relatively small number of trials (50).

We devised a second simulation intended to illus-trate the inability MSC to separate phase and ampli-tude covariance.We used two series of signals phase-locked during two well-de?ned intervals,but with independent amplitudes.We expected that a lack of amplitude covariance would induce MSC ignore syn-chrony,but not PLS.

This simulation was very similar to the previous one:using two independent series (50trials)of data s ?1and s ?2,we repeated the above procedure to generate

two series s ?1?and s ?2?and a third series c ?1??Bell ?·s ?1??(1?Bell ?·)·s ?2?.(In this case,Bell ?had two

nonzero periods lasting 200ms each.)s 2was this time

modi?ed into c 2?s 2?s 2??random ·c 1?

,where random was a value randomly chosen between 0and 1and different for each trial.This number was introduced to make the amplitudes of the signals independent,so that synchronous periods speci?ed by Bell ?corre-sponded solely to phase-coupling and not to ampli-tude covariance.The results of this simulation are shown in Figure 3b;as expected,MSC was reduced to the level of noise during the ?rst episode of synchrony .In contrast,PLS detects both episodes of synchrony correctly .Interestingly,in our simulations MSC did not give false positives when there was amplitude covariance,but not phase locking.Thus our tentative conclusion so far is that MSC is fooled specially by synchronies that are not accompanied by high amplitude covariances.

MEASURING SYNCHRONIES IN HUMAN

INTRACORTICAL RECORDINGS

Subjects and recordings

Here,we examine the results of applying PLS to subdural recordings of an epileptic patient performing a visual discrimination task.Details of the experimen-tal conditions can be found elsewhere [Lachaux et al.,1999a].This right medial temporal epilepsy patient (subject PI)required intracranial EEG monitoring to con?rm the exact site of the epileptogenic zone before surgical treatment.Four electrodes plots,each with eight recording sites,were inserted along occipito-Figure 3.

(a ).Estimation of PLV’s temporal resolution.Two periods of high synchrony are simulated.Synchrony periods are characterized by nonzero values of the bell function (see text for details).Values are plotted as a function of time;values above the horizontal line are signi?cant (PLS ?0.05).Synchrony can be detected in segments as short as 75ms.(b ).Estimation of PLV’s detection resolution.As in Figure 3,two periods of high synchrony are simulated (nonzero values of the bell function (see text for details).PLV and MSC values are plotted as a function of time;PLV above the horizontal line are signi?cant (PLS ?0.05).During periods of low amplitude co-variance,MSC gives a false negative.

?

P hase S ynchrony D etection ?

limbic and fronto-cingulate trajectories.The positions of the electrodes obtained from IRM are given in Table

I.The task was a classic visual oddball discrimination:

a panel of80red-light diodes(targets)was lighted randomly interleaved with320green diodes(nontar-gets).The stimuli were turned on for40ms,with an interstimulus interval varying randomly between800 ms and1,200ms.The patient had to press a button in response to target stimuli only.Electrical data were recorded relative to an average reference.

In a previous study of gamma emission from compa-rable human data using the same protocol,we had found that a speci?c response around45Hz is trig-gered speci?cally by the stimuli[Lachaux et al.,1999a]. Accordingly,we focused our study of PLS only around this frequency.

Results

The matrices of PLS values for all pairs of electrodes and both target and nontarget stimuli are shown in Figure4(see legend for conventions).As for the stimulation effect,signi?cant synchronies are slightly more common between left hippocampus and frontal-cingulate regions.On the whole,however,the syn-chrony patterns are roughly comparable for both conditions,although slightly increased for the nontar-get condition.It is important to make it clear that our purpose here was not to study in detail the neuro-signi?cance of phase-locking related to the visual task performed by the subject.This would entail a careful analysis of the time courses of synchrony and of the differences between target vs.nontarget,following Rodriguez and colleagues[1999].For subject PI,such a study is made difficult by the clinical constraints for electrode placement,preventing a choice of positions that would be more consonant given the chosen cognitive task.Thus we?nd only a very limited change in synchrony over time and between condi-tions.Accordingly,our aim here is more modest:to apply our method to real signals(subdural LFP poten-tials)in order to verify the existence of stimulus-triggered gamma synchronies between electrodes from signals of this intermediate level of resolution(as compared to scalp recordings)and to distinguish between short-range and long-range synchrony. Local synchronies.If we?rst focus on the short range for synchronies found within the same region of electrodes(limbic or frontal,left or right),it is easily seen that the intensity of phase-locking(quanti?ed by PLV)decreases steadily with interelectrode separation. For instance,in the right limbic recordings of this patient (which correspond to a necrotic hippocampus where the epileptic focus was diagnosed),synchrony extends up to interelectrode distances of up8cm(Fig.5).

However,these observations are an artifact due to the fact that neighboring electrodes simply will record the same?eld potential due to volume conduction and are thus trivially synchronous.To distinguish between volume conduction and true synchrony is actually the main difficulty that limits the understanding of syn-chrony at short range.The right hippocampus contains damaged tissues with a higher conductivity than normal,thus enhancing volume conduction locally.In contrast,in the left limbic region,synchrony decreased much faster with electrode separation,and it did not extend beyond2cm.This result coincides very well with the?ndings by Menon et al.[1996]on normal human subdural recordings,showing that short range synchrony decreased sharply after2cm of in-terelectrode distance.They explained these results by strong local lateral connections that would induce synchronization of neighboring neurons within the2 cm radius.In our view,simple passive volume conduc-tion also may create such spurious synchrony(see next section).

Long-range synchronies.In contrast with synchrony within regions(short-range synchrony),synchrony be-tween locations(long-range synchrony)varied in time

TABLE I.Electrodes positions for subject PI*

1.R anterior amygdalia

2.R hippocampus—head

3.R hippocampus—anterior

4.R hippocampus—body

5.R white matter

6.R white matter

7.R temporo-occipital sulcus

8.R temporo-occipital gyrus

9.L anterior amygdalia

10.L hippocampus—head

11.L hippocampus—anterior

12.L hippocampus—body

13.L white matter/hippo-

campus(posterior)

14.L white matter

15.L white matter

16.L temporo-occipital sulcus

17.R medial gyrus

18.R anterior cingulate

gyrus 19.R anterior cingulate

gyrus

20.R frontal superior gyrus

21.R frontal superior gyrus

22.R frontal superior gyrus

23.R front superior gyrus/

arachnoide space

24.R perimeningeal space

25.L medio orbital gyrus/

olfactory sulcus

26.L anterior cingulate

gyrus/cingular sulcus 27.L anterior cingulate

gyrus

28.L frontal superior gyrus

29.L frontal superior gyrus

30.L frontal superior gyrus

31.L front superior gyrus/

arachnoide space

32.L perimeningeal space

*R?right hemisphere;L?left hemisphere.

?L achaux et al.?

and occurred only between speci?c pairs of electrodes with no relation to interelectrode separation.For in-stance,the right-limbic vs.left-frontal quadrant of the matrix in Figure 4shows the localized emergence and disappearance of synchronies over time.The timing of this pair is quite different from its converse,with the left-limbic region.

We conclude that these observations are convincing evidence that signi?cant long-range synchronies are established during this cognitive task involving deep limbic and frontal regions.These synchronies cannot be explained by volume conduction;it seems more likely that they represent a partial correlate of the functional integration mechanism during visual dis-crimination.A detailed account and cognitive analysis of long-range synchronies in intracortical recordings of

several epileptic patients will be presented elsewhere.The present results,along with previous reports [Bressler et al.,1993;Desmedt and Tomberg,1994;Friston et al.,1997;Roelfsema et al.,1997],strongly support the view that gamma synchrony acts as distributed unify-ing mechanism [Rodriguez et al.,1999].

SEPARATING SYNCHRONY FROM VOLUME

CONDUCTION As noted above,synchrony between two macro recordings is not always due to neural interactions.Whereas animal studies of synchrony are based on the coincidence of spikes recorded from microelectrodes (single or multiunit recordings),human studies use surface or implanted electrodes that integrate neural

Figure 4.

PLV values for subject PI.Values are presented for six consecutive time windows (stimulation occurs at zero ms).Boxes above diagonal (up-left)correspond to the target stimulation;those under diagonal (down-right)to nontargets.Each box represents the synchrony value for an electrode pair.If synchrony does not reach signi?cance,the box is ?lled by a circle with a dot in the center.When it reaches signi?cance threshold (PLS ?0.05),the square is ?lled to an extent proportional to the PLV value.

?

P hase S ynchrony D etection ?

activity over large volumes.When the volumes re-corded by two electrodes overlap,the shared neuronal population creates spurious synchrony between the signals (see Appendix).Here,we discuss ways to reduce such synchrony due to volume conduction (or ‘‘conduction synchrony’’)better to identify synchrony due to actual neural couplings (‘‘true synchrony’’).Two factors are important to examine:(1)volume conduction,and (2)an inappropriate choice of the reference electrode.In?uence of volume conduction on synchrony Separation between conduction synchrony and true synchrony.The separation between these two types of synchrony is difficult because they can occur at the same latencies and in the same frequency range (Fig.4).This contradicts a common assumption that conduc-tion synchrony should be broad-band and roughly constant in time,whereas true synchrony should be more speci?c.Another common assumption is that the phase difference between electrodes should be zero in case of conduction synchrony.This is usually false:even if two electrodes record the same group of sources,the signals of these electrodes are different linear combinations of the sources amplitudes,be-cause each source is recorded by the two electrodes in two different ways that depend on the relative position of the source and the electrodes.Therefore,the phase

of the signals recorded by the two electrodes should be different,except if all the sources have the same phase.One can still suggest a rule of thumb based on intersite comparison.If volume conduction creates high synchrony between two electrodes,then high synchrony also should be observed between their neighbors.In other words,in general,when there is synchrony due to diffusion,there should be diffusion of synchrony.This diffusion of synchrony is precisely the effect shown in Figure 4within regions,but not between them.Y et,this rule of thumb falls short of providing a reliable test to identify conduction synchronies.

Reducing volume conduction.Since there is no univer-sal rule to distinguish true synchrony from conduction synchrony,one must rely on recordings with high spatial resolution in which the overlap between the brain volumes recorded by different probes is mini-mum.In this sense,subdural recordings constitute an ideal study case.To study normal subjects,the use of EEG or MEG is the most common option.MEG should be preferred:volume effects are less severe because the head tissues induce no diffusion of the magnetic ?eld,in contrast with electrical potential [Ha ¨ma ¨la ¨inen et al.,1993].Also,the amplitude of the magnetic ?eld de-creases faster with distance than the electrical poten-tial,so that the volume recorded by an EEG electrode is larger than that recorded by a MEG sensor.In addition,the spatial resolution of MEG can be increased before estimating synchronies [Friston et al.,1997].

Still,most studies turn to EEG data since MEG remains a rare and expensive technique and because EEG can record sources con?guration not recorded by MEG.Two main techniques have been used to im-prove the spatial precision of EEG:(1)inverse deblur-ring [Le and Gevins,1993],and (2)the derivation of the scalp current density pro?les (SCD)[Pernier et al.,1988].W e tested on a simulation the efficiency of both methods for the study of synchrony from surface EEG recordings.This simulation mimics the experimental setting of a classic EEG sensory task in which 50repetitions of the same stimulus generate independent responses in two cortical locations.We selected two independent series of 50recordings from subject PI and used them as amplitudes of two sources placed in a spherical model of the head [for details see Lachaux et al.,1997].This three-layered model comprised:(1)brain (conductiv-ity ?1,arbitrary units;radius ?8.5cm),(2)skull (conductivity ?0.0128;radius ?9.2cm),(3)skin (con-ductivity ?1;radius,10cm)(in?nite reference:poten-tial is zero far from the sphere).Electrical sources were expressed as two dipoles with radial orientations with respect to the scalp,located in two super?cial symmet-Figure 5.

PLV as a function of distance for the right temporal electrodes of subject PI.A regular 1cm spacing separates eight electrodes.The synchrony decreases almost linearly from 1to 0when the interelectrodes distance increases.

?

L achaux et al.?

ric positions in each hemisphere (see Fig.6).The surface activity induced by these dipoles was com-puted (forward calculation)using the software BESA [Scherg,1990]in 55scalp positions for all 50trials.

The EEG thus obtained was treated by a variation of the deblurring technique originally proposed by Le and Gevins [1993]to calculate the corresponding ECoG (backward calculation).Using BESA,we also computed the potential generated by the two dipoles on the cortex (i.e.,the true EcoG,forward problem)to check the accuracy of the ECoG reconstructed by deblurring.The dipole model and the corresponding EEG and ECoG are shown in Figure 6.

We then computed the phase-locking values for the scalp and cortical positions lying on a left-right axis (T7-Cz-T8).For comparison,we computed the scalp

current density on this spherical model [Pernier et al.,1988]and the PLV between the SCDs at these same scalp positions (Fig.7,EEG and ECoG;Fig.8,SCD).Since the sources of this model were indepen-dent,all signi?cant PLS were due to conduction synchrony.

As shown in Figure 7,deblurring sharpened the borders of synchronous regions and reduced spurious synchronies (Fig.7).SCD produced comparable ef-fects,but slightly less detailed.Therefore,these meth-ods seem useful ?rst steps before the estimation of synchrony from EEG recordings.In practical cases,SCD may be preferred because its computation is much simpler than deblurring.Precise deblurring requires a description of the geometry and the conduc-tivity of each individual’s skull and skin.

Figure 6.

Simulation of an EEG and its corresponding ECoG.Two radial dipoles were placed in symmetric positions in the (T7-Cz-T8)plane,containing both ears and the head’s vertex (c ).EEG generated by these dipoles was computed,and ECoG reconstructed using a deblurring technique.(a )EEG cartography for two dipoles with same amplitude (b )corresponding ECoG.(d )EEG and ECoG contributions of each dipole as a function of laterality along a T7-Cz-T8axis.

?

P hase S ynchrony D etection ?

In a recent study,Nunez and colleagues[1997]tested the effect of volume conduction on the correlation between electrodes and found converging conclusions. Independent distributed sources were simulated in a volume conductor model of the head,the correspond-ing EEG was calculated in64scalp positions,and the squared correlation coefficient was computed as a function of interelectrode separation.Granted,correla-tion coefficient is not a close estimate of synchrony; Nunez et al.[1997]also suggested using SCD or EcoG estimations to reduce conduction interactions.

In?uence of the reference-electrode on synchrony Apart from volume conduction,the other major problem in synchrony estimation is the choice of the reference electrode.This problem uniquely concerns EEG;another reason to prefer the MEG technique.For electric recordings,a review of the literature on fre-quency coherence provides no general agreement on the optimal reference.In the present study,we took an average reference to study epileptic data and an in?nite reference in the electrocorticogram simulation. Figure9shows results obtained with other references. When subtracting a reference term,it is not clear whether synchrony should decrease(because a common part of the signals is removed),or increase(because a common term is arti?cially added to all the signals).When studying EEG, the computation of scalp current density is often a way to solve the reference problem,because spatial derivation makes this term disappear.But our simulations(Fig.9) show that this processing can create arti?cial synchronies. However,we used here spline interpolations to estimate SCDs[Pernier et al.,1988];other approaches are possible and they may yield a better estimation[Lagerlund et al., 1995].Nunez and colleagues[1997]proposed a detailed

Figure7.

PLV values for simulated EEG and https://www.wendangku.net/doc/db3668891.html,ing the same presenta-tion as for Figure5,PLV is presented for n electrodes lying on the T7-Cz-T8lines.Electrodes are referred by their position along this axis from left(left ear)to right(right ear).For some electrode pairs,synchrony is signi?cant between a and b(up-left part of the matrix),but not between b and a(bottom-right part of the matrix). In other words,maps are not rigorously symmetric.This is because the surrogate PLV distributions are not strictly the same in the two cases,and thus the5%signi?cance thresholds may be slightly different.

?L achaux et al.?

study of the in?uence of reference on interelectrode corre-lation coefficients.They argue that it is impossible to predict the effect of a reference on scalp coherence without both an accurate volume conductor model and a priori knowledge of all sources locations.

In brief,the question of the distinction between synchrony due to volume conduction and synchrony as functional neural integration is still inconclusive.Here,we note some steps in that direction,but none that provide a complete solution.

DISCUSSION

Narrow vs.broad frequency bands

One of the main limitations of the method presented here is that it depends crucially on the choice of a

speci?c frequency for analysis in order to separate the amplitude and phase components of the signals.This separation is meaningless if one needs to work with a broad band.Further,choosing a given frequency needs ?lters with excellent resolutions in both time and frequency,which do not change the phase.(Our choice,a classic ?nite impulse response ?lter,may not be optimum.)

Yet,a careful time frequency analysis of intracortical and scalp data shows that their spectral content is very broad (between 0–80Hz0,and the relative amplitudes varies considerably over time during an experimental situation [Tallon-Baudry et al.,1997;Lachaux et al.,1999a;Rodriguez et al.,1999].It is of the greatest interest to investigate if there are interactions between frequencies located in different bands and what,if any,is their functional signi?cance.PLS permits only a

Figure 8.

PLV values for simulated scalp current density.SCD is computed from EEG presented on Figure 6.Up-left:Contributions of each dipole to SCD are presented as a function of laterality along a T7-Cz-T8axis.Right:PLV values are presented for electrodes lying on this axis.

?

P hase S ynchrony D etection ?

limited answer to these questions,since the same analysis can be repeated over several bands.However,a complete answer would require a method based on a broad-band calculation of synchrony.Such an ap-proach takes us far away from classical methods,but is an active area of study in mathematical physics.

Average vs.single trial

A second important limitation of the method intro-duced here is that it focuses on the detection of phase-locking between pairs recordings across trials:i.e.,the likelihood that phase-difference between the oscillations of two neural populations remains the same from trial to trial for a given delay in time.This excludes those synchronies that are not established with a ?xed delay from trial to trial.In order to extract

such information,one needs to introduce averaging or smoothing procedures over time and to work on the basis of single trials,not averages.An analogy for the study of gamma band emission can be helpful here.PLS can be compared to the procedures that detect the evoked gamma emission,but fail to detect the induced responses.In fact,induced responses are not stimulus locked and thus require a trial by trials analysis to construct a probability distribution [Tallon-Baudry et al.,1997;Lachaux et al.,1999a].PLS cannot detect this second type of single-trial phase locking if the phase-difference varies in latency between trials.

The detection of this second type of phase-locking in single trials is possible using a recent technique,smoothed phase locking statistics (SPLS)that we have introduced recently [Lachaux et al.,1999b].The appli-cation of this improved approach will tell,in time,if

Figure 9.

Effect of reference electrode on PLV values.We computed PLV for the simulated EEG data presented in Figure 7,using an average electrode (left),instead of the in?nite reference used for Figure 7.We also computed synchrony for subject PI for both stimulation conditions using no reference instead of average reference;spurious synchronies appear for almost all pairs.

?

L achaux et al.?

functional neural synchronies are more common than we have shown in this report.

NOTE ADDED IN PROOF

After this paper was sent for publication,a recent publication introduced an alternative method to com-pute phase synchorny between bivariate data based on the Hilbert transform(Tass et al.,Physical Rev Letters 81:3291–94,1998).The two approaches are comparable in several respects.A study of their comparative advantages is being carried out.

ACKNOWLEDGMENTS

This work began a few years ago thanks to the essential contribution of Johannes Mu¨ller-Gerkin on MSC calculations.Our thanks also to Laurent Hugue-ville for his help on EcoG methods.

REFERENCES

Bressler SL,Coppola R,Nakamura R.1993.Episodic multiregional cortical coherence at multiple frequencies during visual task performance.Nature366:153–156.

Bullock TH,McClune https://www.wendangku.net/doc/db3668891.html,teral coherence of the electrocor-ticogram:A new measure of brain synchrony.EEG Clin Neuro-phys73:479–498.

Clifford Carter G.1987.Coherence and time delay estimation.

Proceedings of the IEEE75:236–255.

Damasio AR.1990.Synchronous activation in multiple cortical regions:A mechanism for recall.Seminars in Neurosci2:287–296. Desmedt JE,Tomberg C.1994.Transient phase-locking of40Hz electrical oscillations in prefrontal parietal cortex re?ects the process of conscious somatic perception.Neurosci Lett168:126–129.

Fisher NI.1993.Statistical Analysis of Circular Data.Cambridge: Cambridge University Press.

Friston KJ,Stephan KM,Frackowiak RSJ.1997.Transient phase-locking and dynamic correlations:are they the same thing?Hum Brain Mapp5:48–57.

Gray CM,Konig P,Engel AK,Singer W.1989.Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which re?ects global stimulus properties.Nature338:334.

Grossman A,Kronland-Martinet R,Morlet J.1989.Reading and understanding continuous wavelets transforms.In:Combes JM,Groosmsman A,T chamitchian P(eds):W avelets,Time-frequency Methods and Phase Space.Berlin:Springer-V erlag,pp2–20.

Ha¨ma¨la¨inen M,Hari R,Ilmoniemi RJ,Knuutila J,Lounasmaa OV.

1993.Magnetoencephalography:Theory,instrumentation,and applications to noninvasive studies of the working human brain.

Rev Mod Phys65:

Ko¨nig P,Engel AK,Singer W.1995.Relation between oscillatory activity and long-range synchronization in cat visual cortex.Proc Natl Acad Sci USA92:290–294.

Lachaux J-Ph,Pezard L,Garnero L,Pelte C,Renault B,Varela FJ, Martinerie J.1997.Spatial extension of brain activity fools the

single-channel reconstruction of EEG dynamics.Hum Brain Mapp5:26–47.

Lachaux JP,Rodriguez E,Martinerie J,Adam C,Hasboun D,Varela FJ.1998.Gamma-band activity in human intracortical recordings triggered by cognitive tasks.Submitted to Europ.J.Neurosci. Lachaux J-P,Hurtado JM,Sigvart K,Varla FJ,Gray CM.1999b.

Measuring coherence between brain signals:A new method for single-trial analysis.J Comput Neuroscience(submitted) Lagerlund TD,Sharbrough FW,Busacker NE,Cicora KM.1995.

Interelectrode coherences from nearest-neighbor and spherical harmonic expansion computation of laplacian of scalp potential.

Electroencephalogr Clin Neurophysiol95:178–188.

Le J,Gevins A.1993.Methods to reduce blur distorsion from EEG’s using

a realistic head model.IEEE Transact BioMed Eng40:517–528.

Le Van Quyen M,Adam C,Lachaux JP,Martinerie J,Baulac M, Renault B,Varela FJ.1997.Temporal patterns in human epileptic activity are modulated by perceptual discriminations.Neurore-port8:1703–1710.

Menon V,Freeman WJ,Cutillo BA,Desmond JE,Ward MF,Bressler SL,Laxer KD,Barbaro N,Gevins AS.1996.Spatio-temporal correlations in human gamma band electrocorticograms.Electro-encephalogr Clin Neurophysiol98:89–102.

Mu¨ller-Gerking J,Neuenschwander S,Martinerie J,Pezard L,Re-nault B,Varela FJ.1996.Detecting non-linearities in neuro-electrical signals:A study of synchronous local?eld potentials.

Physica D94:65–91.

Neuenschwander S,Engel A,Ko¨nig P,Singer W,Varela F.1996.

Synchronization of neuronal responses in the optic tectum of awake pigeons.Visual Neurosci13:575–584.

Nunez PL,Srinivasan R,Wetdorp AF,Wijesinghe RS,Tucker DM, Silberstein RB,Cadusch PJ.1997.EEG coherency I:Statistics, reference electrode,volume conduction,Laplacians,cortical im-aging and interpretation at multiple scales.EEG Clin Neurophys 103:499–515.

Pernier J,Perrin F,Bertrand O.1988.Scalp current densities:Concept and properties.Electroenceph Clin Neurophysiol69:385–389. Rodriguez E,George N,Lachaux JP,Martinerie J,Renault B,Varela F.

1999.Perception’s shadow:Long-distance synchronization of human brain activity.Nature397:430–433.

Roelfsema PR,Engel AK,Ko¨nig P,Singer W.1997.Visuomotor integration is associated with zero time-lag synchronization among cortical areas.Nature385:157–161.

Scherg M.1990.Fundamentals of dipole source potential analysis.

In:Grandori F,Hoke M,Roamni GL(eds):Auditory Evoked Magnetic Fields and Potentials:Advances in Audiology,Vol6.

Basel:Karger,pp40–69.

Singer W,Gray CM.1995.Visual feature integration and the temporal correlation hypothesis.Annu Rev Neurosci18:555–586. Tallon-Baudry C,Bertrand O,Delpuech C,Pernier J.1996.Stimulus speci?city of phase-loked and non-phase-locked40Hz visual responses in human.J Neurosci16:4240–4249.

Tallon-Baudry C,Bertrand O,Delpuech C,Pernier J.1997.Oscilla-tory gamma-band(30–70Hz)activity induced by a visual search task in human.J Neurosci17:722–734.

Theiler J,Eubank S,Longtin A,Galdrikian B,Farmer D.1992.Testing for nonlinearity in time series:The method of surrogate data.

Physica D58.

Tononi G,Edelman M.1998.Consciousness and complexity.Science 282:1846–1851.

Varela FJ.1995.Resonant cell assemblies:A new approach to cognitive functions and neuronal synchrony.Biol Res28:81–95.

?P hase S ynchrony D etection?

APPENDIX

Source of spurious synchronies

Here,we consider how volume conduction can induce spurious correlations between electrode poten-tials.For this purpose,we consider a set of micro-electrodes located within a brain area to record local-?eld potentials produced by an assembly of neurons with uncorrelated activities.

In response to a stimulation s,each neuron has an activation p(x,t,s),which is a function of its position x, time t,and s.Suppose to?x ideas that p(x,t,s)is a white-noise such that the mean value of p(x,t,s)2over time is unity.Since the neurons have uncorrelated activities,the mean value of p(x,t,s)·p(x?,t,s)across time and trials(we note it7p(x)·p(x?)8)is then?(x,x1), (i.e.,1if x?x?,0if not).

The local-?eld potential recorded by an electrode located in y,can be expressed as a linear combination of the sources amplitudes:

e(y,t,s)??h(y,x)·p(x,t,s)dx.

We consider further that all the electrodes are roughly located at the same distance around the sources,so that7e(y)8is roughly the same for all the electrodes. Thus we get a fair approximation of the correlation between the potentials in two positions y and y?by computing7e(y)·e(y?)8.This is done as follows.For any time t and sample s,

e(y,t,s)·e(y?,t,s)

?1?h(y,x)·p(x,t,s)·dx2·1?h(y?,x?)·p(x?,t,s)·dx?2 or

e(y,t,s)·e(y?,t,s)

???h(y,x)h(y?,x?)·p(x,t,s)·p(x?,t,s)dxdx?so that when averaging,

7e(y)·e(y?)8???h(y,x)h(y?,x?)·7p(x)·p(x?)8dxdx?or,

7e(y)·e(y?)8???h(y,x)h(y?,x?)·?(x,x?)dxdx??nally,

7e(y)·e(y?)8??h(y,x)h(y?,x)dx.

Thus due to volume-conduction,7e(y)·e(y?)8is non-zero even if there is no correlation at all between the two sources of activities.

?L achaux et al.?

考研真题及答案解析

徐之明权威解析2013年考研政治试题马原客观题答案解析 一、单项选择题马原部分 1.有一副对联,上联是“桔子洲,洲旁舟,舟行洲不行”,下联是“天心阁,阁中鸽,鸽飞阁不飞”。这形象地说明了运动和静止是相互联系的。静止是() A.运动的普遍状态 B.运动的内在原因 C.运动的衡量尺度 D.运动的存在方式 【答案】C 【思路剖析】本题属于案例型考题,即通过一个具体的事例,去探究其中所包含的哲理。题干所引对联的作者,是毛泽东和周恩来。1960年5月,毛泽东、周恩来一行视察长沙,工作之余,到江边散步。遥望橘子洲头,百舸争流,万帆竞发,毛泽东逸兴遄飞,口占一上联:“橘子洲,洲旁舟,舟行洲不行”,此联动静相对,意境悠远,三个断句,两处“顶针”,“洲”和“舟”又是谐音,应对难度极大。毛泽东对身边的周恩来说:“恩来,我一时江郎才尽,请你来个锦上添花如何?”周恩来才思敏捷,了解长沙,应声对道:“天心阁,阁中鸽,鸽飞阁不飞。”天心阁系长沙市内一景,与橘子洲相对。整个对联工整流畅、浑然一体,留下一段佳句和佳话。从考试答题的角度论,最关键的是抓住题干中的最后一句:“这形象地说明了运动和静止是相互联系的。静止是()。“.运动的普遍状态”是胡编的干扰项,学术上没有这个说法。故A.项错误。“.运动的内在原因”是矛盾,故B项为错误。物质的存在方式是运动;没有“运动的存在方式”这个说法。C. 项“静止是运动的衡量尺度”是正确的说法。该说法的出处是马克思、恩格斯的话:“运动应当从它的反面即从静止找到它的量度”。所包含的深层哲理是在对立中认识同一。 【必背考点】《马原》第2章之“运动和静止”。 【应试对策】本题的难度,主要不是来自考查的内容,而是来自于干扰项的设定。“运动”、“普遍”、“内在原因”、“存在方式”等,都是我们学习哲学中经常碰到的基本概念。如果没有理解作为支撑,并且采取临时抱佛脚的突击记忆方式,比较难做出正确的决断。 2.一位机械工程专家讲过这样一件事:“文革”中,他在某地劳动,有一天公社派他去割羊草。他没养过羊,怎么认得羊草呢?但终于一个办法出来了。他把羊牵出去,看羊吃什么就割什么。不到半天就割回了羊草。这位专家之所以这样做是因为他认识到,“羊吃草”与“割羊草”两者之间存在着() A.因果联系 B.必然联系 C.主观联系 D.本质联系 【答案】B 【思路剖析】本题是案例型考题。通过一个生活中的故事,考查所其中所包含的哲理。题干中的“羊吃草”是指羊的行为;“割羊草”是指人的行为。连起来看,

马原知识点整理

1、什么是马克思主义?(P2-P3) (1)马克思主义是由马克思、恩格斯创立的,为他们的后继者所发展的,以批判资本主义、建设社会主义和实现共产主义为目标的科学理论体系,是关于无产阶级和人类解放的科学。它包括马克思主义哲学、马克思主义政治经济学和科学社会主义三个有机统一基本组成部分。 (2)①从创造者、继承者的认识成果讲,马克思主义是由马克思、恩格斯创立,由其后各个时代、各个民族的马克思主义者不断丰富和发展的观点和学说的体系;它既包括有马克思、恩格斯创立和列宁等发展了的马克思主义,也包括中国共产党人将其与中国具体实际相结合,不断推进马克思主义中国化的理论成果。 ②从阶级属性讲,马克思主义是无产阶级争取自身解放和整个人类解放的科学理论,是关于无产阶级斗争的性质、目的和解放条件的学说; ③从研究对象和主要内容讲,马克思主义是无产阶级的科学世界观和方法论,是关于自然、社会和人类思维发展一般规律的学说,是关于资本主义发展及其转变为社会主义以及社会主义和共产主义发展规律的学说。 2、思考并归纳意识能动作用及其表现、主观能动性与客观规律性的辩证关系。(P29-P33) (1)意识的能动作用及其表现:①辩证唯物主义在坚持物质决定意识,意识依赖于物质的同时,又承认意识对物质有能动作用。②意识的能动作用是人的意识所特有的积极反映世界和改造世界的能力和活动。表现为如下四个方面:第一,意识具有目的性和计划性。人反映世界时会表现出主体选择性。第二,意识活动具有非凡创造性。人能在思维中建构一个现实中没有的理想世界。第三,意识具有指导实践改造客观世界的作用,可变客观为现实。第四,意识具有指导、控制人的行为和生理活动的作用。 (2)主观能动性与客观规律性的辩证关系:首先,发挥人的主观能动性必须以承认规律的客观性为前提。必须尊重客观规律,认识和改造自然界,要尊重自然界的规律;认识和改造社会,要尊重社会规律。其次,只有正确发挥主观能动性,才能正确认识和利用客观规律。在尊重客观规律的基础上,要充分发挥主观能动性。否认人的主观能动性,必然导致对人的价值性的否定,导致对历史发展动力的否定。 3、当前中国一再强调走中国特色社会主义道路,试结合有关矛盾原理谈谈看法。(P42-P43) (1)矛盾的普遍性与矛盾的特殊性是辩证统一的关系的基本原理。矛盾的普遍性即矛盾的共性,矛盾的特殊性即矛盾的个性。矛盾的共性是无条件的、绝对的,矛盾的个性是有条件的、相对的。任何现实存在的事物的矛盾都是共性和个性的有机统一,共性寓于个性之中,没有离开个性的共性,也没有离开共性的个性。矛盾的共性和个性、绝对和相对的道理,是关于事物矛盾问题的精髓,是正确理解矛盾学说的关键。 (2)矛盾的普遍性和特殊性辩证关系的原理是马克思主义的普遍真理同各国的具体实际相结合的哲学基础,也是建设中国特色社会主义的哲学基础。21世纪,掌握矛盾普遍性和特殊性辩证关系的原理,把马克思主义同我国的实际和时代特征结合起来,努力推进中国特色社会主义的实践创新、理论创新和制度创新,是我们面临的重大课题。 (3)中国特色社会主义,既坚持了科学社会主义基本原则,又根据时代条

密室逃脱计划书

密室逃脱计划书 一、项目介绍 真人密室逃脱,打破了电脑游戏的局限和束缚,原汁原味的展现了密室的精髓,让玩家能过通过自己的双眼和双手,经过逻辑思考和观察力,不断的发现线索和提示,最重要的是团队的合作,能够顺利的逃脱。整个过程充满了未知性和不确定性,在紧张的场景氛围中,真正的融入到故事背景中去,这是电脑游戏所无法提供的乐趣。 真人密室也是在2011年才在国内正式起步,相较于国外已经成熟的体系,还未完全被大众所接受。2011年9月20日,第一家主营真人密室逃脱的俱乐部,在杭州正式成立。据可靠统计,全国目前已经有超过500家以上真人密室逃脱俱乐部,其中以北上广三地发展最为迅速。福州地区2013年3月左右,开始出现第一家真人密室逃脱俱乐部。我们的密室逃脱俱乐部名为八度空间,于2013年5月开始经营,属于福州地区比较早的密室商家。 二、市场分析 1.市场前景分析: 我们都是生活在平静生活中的普通人,每天重复着相同的事情,毫无生机。即便有着看电影、唱K、泡吧等种种休闲活动,但是对于追求新鲜的年轻人来说,闲暇时间还是显得越来越乏味。而要脱离这种提不起劲的困境,逐渐兴起的真人主题密室逃脱无疑会是一个最好的选择。密室逃脱实体游戏项目,既好玩刺激,又可以让每个体验者在游戏中充分调用智慧和体力,享受酐畅淋漓的畅快感觉。 据调查,福州2010年人口711万,现在福州的密室逃脱有6家(有实力),一年的订单数为22100个,票价35左右。和福州的土地面积差不多大小的洛阳和北京,与之比较,洛阳和北京的密室逃脱比福州早一年开始,2010年洛阳人口680万,现在洛阳一年的订单数为27200个,但是只有一家的密室逃脱(有实力),为寡头市场。2012年北京人口2069万,现在北京一年的订单数为49000个,票价70元,11家密室逃脱。福州与洛阳比较:店铺越多,接收客源面积越大,订单数越多。所以福州的未来市场的需求量为增幅状态。福州与北京比较:价钱越贵,订单数越少。所以福州的未来市场的需求量为增幅状态。 注:以上数据来源于美团网和中国知网,店铺收入不单单来源于网络的团购,还有其他收入,所以这只是代表部分的收入,所以当做消极悲观者的眼光来看待市场的需求量也是为增幅状态。 作为一个新兴行业,它的市场是还没有饱和的,你的质量比别家的好,有吸引力,客源量就会增加。结论:2014年起,至少一年,市场的需求量为增幅状态。 2.与传统娱乐项目对比的优势 ①体验刺激 或许过山车的尖叫只是生理上的一种释放,但是主题密室逃脱却能够从心理上让体验者感受刺激。各种精心布置的主题场景,暗含玄机的种种物品,还有与场景相配的音乐,这些都能够让体验者产生一种身临其境的感觉,从而可以更快地融入密室逃脱当中。当然,情节悬疑也是好玩的密室逃脱中一个重要影响因素。只有环环相扣的故事情节以及层层迭进的线索,才能够带动体验者更充分地享受推理和逃脱的过程。 ②高科技力挺 密室逃脱要做得好仅仅依靠故事情节和环境布置就太单薄了,高科技产品的使用也是使密室逃脱更加真实的一个诀窍。运用高科技物理机械和电子幻灯制造悬疑的场景气氛,炫酷的室内特技效果让场景显得更加逼真,而红外线、夜视仪等道具的使用也充分调动了体验者的紧张感和积极性。这些高科技的使用让密室逃脱不仅仅只是一个游戏项目,还成为一场科技产品展示的体验与经历。 ③价值无限 如果只将其当作是一个娱乐项目未免有点太低看真人密室逃脱了,因为在整个的逃脱过程当中,除了让体验者感受刺激和悬疑以外,还考验了每个体验者的智力、耐性以及良好的团队协作力。只有将团队中每个人找到的线索结合起来,才能够找到正确的出路。当然,这中间也需要有人指挥,有人配合,一旦团

2017考研政治肖秀荣马原分析题审题答题技巧

必看!)马原分析题审题答题技巧 2015年11月18日21:37 阅读116万+ 这篇文章中给大家介绍一下马原分析题的审题答题技巧以及复习方法。此前还有8套卷使用方法、分析题复习方法、形势与政策复习方法等文章,还没有看过的同学可以往前翻微博。 【复习方法】 马原分析题的难度就在于提问不明确考哪个原理,要从众多原理中自己去匹配,这个思维模式是要培养的,因为一旦原理选错,写得再好也没用,而其他学科分析题多少还是能够围绕材料中来写的。从练习角度讲,有两个资料是一定要好好研究的,一个是真题,一个是8套卷。首先是做真题,学习审题答题技巧(后面有实例),而且从中也可以看到哪些原理是容易命题、经常命题的。比如矛盾的普遍性特殊性,在08、09、11、12年连续命题,是同学们必须掌握的原理,在头脑里搭建的框架图中也必须明确这个原理的位置。 之前我已经多次强调,做马原分析题,头脑中必须有一个哲学框架,最怕的就是到考场上,看完材料完全不知道从哪里下手,连唯物论、辩证法、认识论、唯物史观中的哪一快都搞不清楚。或者是明明看到材料应该是讲的认识与实践的关系,但是这一块有哪些原理脑子里一片空白,这就是框架没有建立起来,头绪没有整理清楚。我建议同学们自己画一个框架图,或者直接参考我在《知识点提要》中给出的12页哲学逻辑图,自己把过去10年的马原分析题认真研究之后,标出各个原理所在的位置,你会发现很多原理都是重复在考的,在复习框架图的时候就要尤其注意这些原理的应用。 比如说关于认识与实践,在《提要》逻辑图的第7页,需要掌握实践和认识活动中的主体客体(2013年),实践对认识的决定作用(4点,其中①在08、01年考查,③在01年考查,④在13年考查),认识对实践的指导作用、认识的本质(2013年)。同时,还要关联到其他一些知识点,比如认识与实践的统一(见《提要》逻辑图第8页),需要把握认识世界与改造世界的关系(2013年)、理论创新与实践创新(2012年)。再进一步扩展,达到认识世界和改造世界的目的,是在认识和掌握客观规律的基础上,那么又涉及到客观规律性与主观能动性的关系(2002年)。实际上,在真题的标准答案里,我们经常会看到把这些知识点串在一起的情况,比如“认识世界是为了改造世界”、“采取科学的方法,不断创新”、“按规律办事”、“要发挥主观能动性,勇于创新”,这些也是同学们要通过研究真题,从真题的标准答案中学习的。把这种常见的“套话”记住,在结合材料组织语言的时候就不怕没有素材可用,可以让回答更加“丰满”。

小游戏----密室逃脱

活动名称:大班数学探索活动----密室逃脱 设计思路: 偶然的机会听孩子们分享自己玩游戏的经验,发现他们对比较有挑战性的游戏如密室逃脱闯关等非常感兴趣,于是,我就想:能不能用游戏这样一个载体,将数学这一学科的某些知识呈现在里面?于是,我就按照自己的理解,把生活中常见的物品分成几个层次:将游戏材料有的散点状放置,有的向不同方向有序排列,有的重叠排列等,投放到科学探索区内,观察幼儿的游戏情况。在幼儿操作材料过程中,我发现他们数数时的方法、速度、能力等都有异同,因此,我梳理了幼儿的一些数数经验,结合大班幼儿的年龄特点,生成了本次活动。 活动目标:1、在幼儿观察、比较、推理中,尝试通过操作材料,探索可以将物品数正确的方法。 2、仔细倾听同伴的想法,乐意分享观察方式。 活动准备:幼儿操作卡(每人2张)、PPT4张、笔、夹子、照片。 活动过程: 1、呈现密室,激发幼儿兴趣:了解幼儿数数的能力。 出示PPT1,谈话引出课题 1、讲解密室逃脱游戏规则。 师:今天,老师带你们玩密室逃脱,你知道这个游戏怎么玩吗?师讲解游戏规则:密室逃脱就是我们进入房间,通过数房间里各种物品的数量来推算出房门的密码,从而打开房门,逃出密室。 2、报数游戏:让幼儿数数接龙。 师:清点人数完毕,请你们摆一个最漂亮、最帅气的姿势跟老师们打个招呼,不然,待会出不来可能没有人来救你。 3、谈话:你能数到几? 师:刚才集体报数完全正确,现在,我问问小朋友,你最多能数到几?我说一个数字,你接着往下数,往下数()个数。(教师一方面关注幼儿数数是否正确,另一方面关注幼儿从十位数数到百位数数的能力,同时,观察其他幼儿,聆听每个幼儿的数数情况。)师:小朋友们都能数到很大的数,真了不起!但你们数数的正确性怎么样呢?老师会在游戏中检查你们的本领。 2、进入密室:探索正确数数的方法。 第一环节:来到密室一:出示PPT2 师:我们已经进入密室,现在,赶紧来找找怎打开房门的密码。(引导幼儿找到门上的密码锁,通过寻找密码打开锁从而逃出密室。)密码锁提示我们找哪些物品? 1、幼儿完成相应操作卡,正确数出PPT上相框、靠枕、猫及红花的数量。 师:密码锁提示我们:要仔细找找密室里有几幅相框?靠枕有几个?猫有几只?红花有几朵?把你观察到的结果记录在对应的空格里,不会写数字的用圆点代替。(教师重点关注猫和红花的记录情况) 2、幼儿交流自己的观察结果。教师及时提升幼儿表达的数数要领: A、一起告诉我,相框有几幅?靠枕有几个?师总结:东西比较少,数起来很方便; B、数猫可就不简单了,请您告诉我,你数到有几只猫?你在哪里找到了第×只猫?师总结:要把东西数清楚是需要讲究方法,要从上到下、从左到右、从前到后,只要按照一定的顺序就能数清楚。(教师要重点关注幼儿的表达,如方位是否正确,语句是否完整,还要关注幼儿数猫的方法) C、这里的花特别多,你是怎么数的?你是怎么数的?黄花能不能数进去?引导幼儿说出2个2个一起数的规律。师总结:数东西的时候,不但要讲究顺序,而且要仔细看清楚题目,

考研政治材料马原分析题十大重要考点

考研政治材料马原分析题十大重要考点教材考点1 意识观 意识产生的条件;意识的本质:客观内容和主观形式的统一。 教材考点2 运动观 物质和运动的关系;时间和空间的特性。 教材考点3 实践观、人与自然 实践的特征;人与自然的关系;自然界和人类社会的分化和统一 教材考点4 联系与发展 联系的特征;发展的实质;判断新事物的标准。 教材考点5 对立统一规律 矛盾的同一性和斗争性关系原理;矛盾的普遍性和特殊性关系原理。 教材考点6 质量互变规律 量变和质变的关系 教材考点7 实践和认识 实践和认识的关系;认识的本质 教材考点8 真理的特征 真理的客观性、绝对性和相对性、具体性。 教材考点9 社会发展动力

社会基本矛盾;阶级斗争;革命;改革;科学技术。 教材考点10 剩余价值论 资本有机构成;资本主义生产过程的二重性;提高剩余价值的两种基本方法 唯物辩证法的方法论 【解题思路】 1.运动与静止辩证关系原理的实践意义; 2.事物质与量的辩证统一关系及其方法论意义; 3.度是质与量的统一,“度”的方法论意义; 4.事物普遍联系原理的方法论意义; 5.辩证否定观的方法论意义; 6.矛盾同一性与斗争性辩证关系的方法论意义; 7.矛盾普遍性和特殊性辩证关系的方法论意义; 8.矛盾不平衡性原理的方法论意义; 9.形而上学与唯物辩证法的根本对立; 10.矛盾分析方法的实践意义。 【答案要点】

1.马克思主义方法论一方面要求我们用运动、变化、发展的观点观 察和处理一切问题,想问题、办事情时一切以时间、地点、条件为转移,使我们的思想和行动跟上发展着的客观实际,防止思想僵化、实践滞后和行动保守,对事物的静态分析必须与动态考察相结合;另一方面,又要正确理解相对静止对事物存在发展的积极意义,相对静止是事物存在发展的基本条件。在实践中高度重视稳定、和谐的保障作用,把变革和稳定结合起来,既要勇于变革以推动事物的发展,又要注意稳定局面以巩固变革的成果,正确处理改革、发展、稳定的关系,建设和谐社会。 在运动和静止的关系问题上必须坚决反对两种错误:一种是夸大运动否认静止,把物质运动看成是瞬息万变的、没有任何稳定性过程的相对主义诡辩论的错误(“人一次也不能踏进同一条河流”);一种是夸大静止否认运动,把物质的存在或者世界的发展看成是绝对不变过程的形而L学不变论的错误(“刻舟求剑”、“天不变道亦不变”)。 2.事物质与量的辩证统--0 (1)量是事物存在和发展的规模、程度、速度以及它的构成成分在空间上排列组合等可以用数量表示的规走性。量和事物是不可分离的,但量和事物的存在不是直接同一的,在一定范围内量的增减不影响事物的存在。认识量的方法论意义:一是认识事物量的定量分析是认识的深化和精确化。区分质的定性分析是认识量的前提,考察量是认识质的深化。只有精确地认识量,才能更深刻地把握质。二是只有正确了解了事物的量,才能正确估计事物在实践中的地位和作用,因为同质的事物由于数量不同,在实践中的地位和作用往往不同。做任何事情,既要有质的要求,又要有量的要求,做到心中有数。 (2)事物发展的过程,经由景变和质变两种状态。任何事物都是质与量的统一体。马克思主义哲学方法论指出,实践中要坚持定性分析与定量分析相统一,办事情、想问题要做到心中有数,要有量的要求,更要“好 字优先”,质量第一,抓质量、讲效益,不能做心中无数的“马大哈”,“失之毫厘,谬以千里”,细节决定成败,粗枝大叶做不好工作;不能不讲质量,以量取胜,片面追求数量增长,更不能“滥竽充数”,假冒伪劣,以次充好。 3.度是质与量的统一,是事物保持自己质的存在的数量界线,即事物的范围、幅度和限度。它的极限叫关节点,超出了关节点,事物就形成了新的质量统一。认识度才能确切地把握事物的质,不致混淆不同的Ⅲ物;认识度才能为实践活动提供正确的准则即适度原则,中

徐之明-马原强化篇

马原强化篇 第3章认识世界和改造世界 一、单项选择题下列每题给出的四个选项中,只有一个选项是符合题目要求的。 1.牛顿的经典物理学是科学史上的重要科学成果,直到今天仍然在帮助人们认识世界。 但是,随着科学的进步,现代出现了许多新的科学问题和领域,牛顿物理学在很多方面不能解释新的科学现象了,于是诞生了如相对论和量子力学等这样的新的科学理论。这些科学发展史的事实说明(本题难度系数为0.65)() A.科学真理具有相对性 B.科学真理是绝对的 C.人的认识能力是有限的 D.科学真理是人类永远无法认识的 2.同一句格言,年轻人的理解没有饱经风霜的老人理解丰富。这说明(本题难度系数为 0.7)() A.感性经验支撑下的理论认识更丰富深刻 B.理性指导下的感性认识丰富 C.理性认识依赖于感性认识 D.感性认识依赖于理性认识 3.有思想家指出:“忧心忡忡的穷人甚至对最美丽的风景都没有什么感觉;贩卖矿物的商人只看矿物的商业价值,他没有矿物学的感觉”。这说明(本题难度系数为0.65)()A.认识来源于人的感觉 B.认识是人的主观想象 C.人的认识具有主观能动性 D.人的地位身份决定认识水平 4.古希腊的怀疑论者们强调说对同一事物,不同的人感觉是不同的。如同一盆水,有人感觉说温,而有人感觉说凉。这说明(本题难度系数为0.65)() A世界的真实状况是人们无法知道的 B认识结果是由主体决定的 C认识具有主体差异性 D认识具有客观性 5.马克思有句名言说:“搬运夫和哲学家之间的原始差别要比家犬和猎犬之间的差别小得多。他们之间的鸿沟是分工造成的。”这说明(本题难度系数为0.7)() A.人的认识和能力差别主要来源于后天的实践 B.人与人之间不存在先天差异 C.人的地位是由其出身决定的 D.人的差别主要取决于后天的主观努力程度 6.人们要判断某种认识是不是真理,要看它(本题难度系数为0.65)() A.能不能满足人的需要 B.能不能被多数人接受 C.能不能付诸实践 D.能不能在实践中最终取得预期的结果 7.列宁指出:“只要再多走一小步,哪怕是向同一方向迈的一小步,真理便会变成谬误。” 这句话表明了(本题难度系数为0.7)() A.真理和谬误是认识的两个阶段 B.真理和谬误没有确定的区别 C.真理是有条件的 D.真理的标准是双重的

(完整版)马原主要知识点归纳

绪论知识点 1.马克思主义的根本特征?马克思主义的精髓? 实践基础上的科学性的革命性的统一,是马克思主义的根本特征。马克思主义的立场,观点和方法,是马克思主义的精髓。 2、马克思主义的三大组成部分及其直接理论来源? 组成部分:1.马克思主义哲学;2.马克思政治经济学;3.科学社会主义。来源:1德国古典哲学;2.英国古典政治经济学;3.法国,英国空想社会主义哲学。 3、马克思一生的两大发现? 唯物史观;剩余价值论 第一章知识点 1.什么是哲学?哲学的基本问题及其内容? 哲学是系统化,理论化的世界观,又是方法论。 哲学的基本问题是思维和存在的关系问题。 内容:其一,意识和物质、思维和存在,究竟谁是世界的本源;根据对该基本问题的不同回答,哲学可划分为唯物主义和唯心主义两个对立的派系;其二思维能否认识或正确认识存在的问题;根据对该基本问题的不同回答,哲学又分为可知论和不可知论。 2.唯物主义的三种历史形态和唯心主义的两种形式? 唯物主义的三种历史形态:古代朴素唯物主义、近代形而上学唯物主义、现代唯物主义即辩证唯物主义和历史唯物主义。唯心主义的两种

基本形态:客观唯心主义和主观唯心主义。 3、马克思主义物质观、运动观、时空观?实事求是、解放思想、与时俱进的哲学理论依据?唯物主义运动观和唯心主义运动的区别?(1)物质的唯一特性是客观实在性,它存在于人的意识之外,所以我们必须从存在客观事实出发,也可以为人的意识所反映。世界是物质的。 (3)唯物主义运动观和唯心主义运动共同点是多层运用发展都是运动观;区别:A运动变化主题不同,唯物主义运动观主体是物质,唯心主义运动主体是精神与意识;B运动变化根源不同:唯物主义运动观在于物质,唯心主义运动根源在于观念,意识。 4.运动和静止的关系?为什么人不能两次踏入同一条河流? A运动是绝对的,静止是相对的;运动和静止相互依赖,相互渗透,相互包含,“动中有静,静中有动”。 B物质运动时间和空间的客观实在性是绝对的,物质运动时间和空间的具体特性是相对的。 5.实践及其特点、形式?A实践是人类能动地改造客观世界的物质活动B实践具有物质性、自觉能动性和社会历史性等基本特征C实践的基本形式包括物质生产实践、社会政治实践和科学文化实践等。 6.唯物辩证法的总特征和根本方法? 联系和发展是唯物辩证法的总特征,矛盾分析法是根本方法 7.为什么说对立统一规律是唯物辩证法的实质和核心?因为对立统一规律揭示了事物普遍联系的根本内容和永恒发展的内在动力,从根

马原知识点梳理整理版

2018年马原知识点梳理 第一章马克思主义是关于无产阶级和人类解放的科学 一、马克思主义的创立和发展 (一)含义:马克思主义包括三个部分: 1、马克思主义哲学 2、马克思主义政治经济学 3、科学社会主义 (二)马克思主义基本原理 (三)马克思主的产生 马克思主义的产生有其深刻的经济社会根源、思想渊源和实践基础 1、资本主义经济的发展为马克思主义的产生提供了经济、社会历史条件。 2、无产阶级反对资产阶级的斗争日益激化,强烈需要科学理论的指导。 3、马克思和恩格斯的革命实践及其对人类文明成果的继承与创新。 (四)马克思主义的发展 1、马克思和恩格斯根据实践的发展对自己创立的理论不断充实和完善。 2、列宁等马克思主义者在领导俄国革命过程中对马克思主义的发展。 3、中国共产党从成立之日就把马克思列宁主义确立为自己的指导思想,并在长期奋斗中坚持把马克思主义基本原理同中国具体实际相结合,发展了马克思主义,先后产生了毛泽东思想和中国特色社会主义理论体系。 (五)其他记忆点: 1、马克思创立了唯物史观和剩余价值学说,把社会主义由空想成为科学。 2、马克思写的《关于费尔巴哈的提纲》和马克思、恩格斯的《德意志意识形态》标志着马克思主义的基本形成;《哲学的贫困》和《共产党宣言》的发表,标志着马克思主义的公开问世。 二、马克思主义的鲜明特征 (一)马克思主义科学性和革命性的统一 马克思主义的强大生命力的根源在于它的以实践为基础的科学性与革命性的统一。这种实践基础上科学性与革命性的统一,是马克思主义基本的和鲜明的特征。 (二)马克思主义的哲学基础、政治立场、理论品质和社会理想 1、马克思主义的哲学基础 辩证唯物主义与历史唯物主义是马克思主义根本的世界观和方法论。 2、马克思主义的政治立场 马克思主义政党的一切理论和奋斗都致力于实现以劳动人民为主体的广大人民的根本利益,这是马克思主义鲜明的政治立场。 (1)这是由马克思主义理论的本性决定的。鲜明的阶级性和实践性是马克思主义的根本特性。 (2)这是由无产阶级的历史使命决定的。 (3)是否始终站在广大人民的立场上,是唯物史观和唯心史观的分水岭,也是判断马克思主义政党的试金石。 3、马克思主义的理论品质 坚持一切从实际出发,理论联系实际,实事求是,在实践中检验真理和发展真理,是马克思主义重要的理论品质。这种与时俱进的理论品质是马克思主义始终保持蓬勃生命力的关键所在。 (1)这种品质是马克思主义理论本质的反映。马克思主义理论的本质属性,在于其彻底

最新《马原》大学期末考试必背知识点汇总

马原必背知识点 最新《马原》大学期末考试必背知识点汇总 第一章马克思主义是关于无产阶级和人类解放的科学 1、《共产党宣言》的发表,标志着马克思主义的公开问世 2、马克思主义产生的社会根源(或经济、社会历史条件)是资本主义经济的发展 3、马克思、恩格斯完成了从唯心主义同唯物义、从革命民主主义向共产主义的转变,为创 立马克思主义奠定思想前提 4、在马克思主义创立过程中,第一次比较系统地阐述了历史唯物主义基本原理的著作是《德意志意识形态》 5、在马克思主义的经典著作中,被誉为“工人阶级的圣经”的著作是《资本论》 6、马克思主义经济理论的基石是剩余价值理论 7、世界上第一个无产阶级政党是共产主义者同盟 8、马克思主义理论区别于其他理论的显著特征是实践性 第二章世界的物质性及发展规律 9、唯物主义与唯心主义的对立和斗争中交织着辩证法与形而上学的对立和斗争 10、全部哲学,特别是近代哲学的重大的基本问题,是思维和存在的关系问题;唯物主义和唯心主义这两个专门的哲学术语有着特定的含义和确定的标准,不能随意乱用,也不能另立标准,否则会造成混乱。这里所说的特定含义和确定标准是指对世界本原究竟是物质还是精 神的回答;存在和思维是否具有同一性,是哲学基本问题的第二方面的内容,对这个问题的不同回答,是划分可知论和不可知论的标准, 11、唯物主义一元论同唯心主义一元论对立的根本点在于世界本原问题 12、物质的唯一特性是客观实在性,“客观实在”是指存在于人的意识之外,不以人的意志为 转移 13、相信“意念移物” ,甚至相信可以用意念来直接改变物质结构,就是信奉主张精神主宰 客观物质世界的主观唯心论 14、“心诚则灵,心不诚则不灵”的说法是夸大了意识能动作用的唯心主义观点 15、哲学物质概念与自然科学关于具体的物质形态和物质结构的概念之间共性与个性的关系 (不是整体和部分的关系、系统与要素的关系) 16、列宁对辩证唯物主义物质范畴的定义是通过物质与意识的关系界定的

密室逃脱相关 (2)

Q1:别人做密室逃脱 从大二时,开始接触密室逃脱游戏,到今年寒假一天能玩上三、四次,“既然大家都喜欢,干嘛不自己也开一个呢?”黄皓月介绍,决定开一个“密室逃脱”店,很偶然,也很仓促。5个爱玩密室的女孩当即一拍即合,其中有两个女生已经工作,三个在校生中,黄皓月也即将本科毕业,她还“跨界”选修了金融专业的双学位。 三月份,考察江汉路所有密室逃脱店、玩遍40多个主题,敲定店址; 四月份,店面装修,自己设计主题、自己安装机关、自己制作装置……; “五一”,新店开张,首日客流量过百,不大的客厅里,挤满了前来“尝鲜”的同龄人。 开业的前一天,女孩们都在店里通宵加班,“创业比考研费精力多了,四月份的时候,天天熬夜。”黄皓月告诉记者,开店,比想象中的复杂、琐碎。对于“学霸”的称号,她觉得那是上高中以前的事了,从高二起,一直到现在,她更愿意把自己定义为“学霸班上的玩货”。 中考前,黄皓月因成绩优秀,提前保送到当地最好的学校——新洲一中“火箭班”。然而高一的第一次月考,成绩仅排在班上十几名,随后几次月考,更是滑落到二十几名。“我已经很努力了,学习成绩就是上不去。”家长的不理解,老师的不重视,让曾经的“神童公主”的骄傲光环瞬间破碎,从台上最闪亮的“明星”,跌落成台下普通观众,巨大的落差,让她一度“放松”自己,按照自己的意愿学习、生活,成为学霸班上的“另类”。 “其实二十几名已经很好了,至少可以考上武大华科,但那个时候没有人告诉我,我以为自己真的很差。”说到这里的时候,黄皓月的眼中有一丝伤感和落寞,虽然之后成绩时常徘徊在班上倒数几名,但高考总分依然超过一本分数线,考入湖北大学生物科学专业。

徐涛背诵大作战1—14天汇总

DAY1 【马原】人与自然的辩证关系 一、使用场景 在分析题的材料当中,如果提到了比如说:自然灾害、人类的一些行为在改善环境、生态文明这样的一些说法的话。答题的时候,往往是要我们回答人与自然的辨证关系。 二、必背得分句 ●人与自然的两个前提,两个基础和两个方面: (对应《背诵笔记》P12) (1)自然界是人类社会形成的前提,是构成人类社会客观现实性的自然基础。 (2)实践是使物质世界分化为自然界与人类社会的历史前提,又是使自然界与人类社会统一起来的现实基础。(两个前提和两个基础) (3)自然规律的存在制约着人类的实践活动。 (4)人可以在认识自然规律、尊重自然规律的基础上,发挥自身的主观能动性,合理地改造自然,同时改造自己。(两个方面:自然会对人怎么样;人又可以对自然怎么样。) 图片巧记 三、拓展延伸句 上述四点是我们必须要背熟的文字,考到必写,写了就得分。 下面是给你扩展用的,当你写的不多的时候,记住下面这些文字可以帮你们写的更多,我们也可以一起背一下。 只有通过劳动实践才可能协调人与自然的关系,实现它们的和谐统一。 如果人类不保持自身与自然的和谐统一,那就会危及自身的生存发展。所以,当今世界出现的生态、环境、人口、资源等全球危机问题,并不单纯是自然系统内平衡关系的严重破缺,实际也是人与自然关系的严重失衡。

恩格斯早就提出了自然界“对人进行报复”以及“人类同自然的和解”问题。实践的规律与人类不断自觉遵循物质世界的规律是一致的。正确的实践观点是理解人与自然关系、人与自然统一的关键。 四、小结 关于人与自然的辩证关系,相信有这些文字,考到这类题目我们肯定是能拿分的,但是在考场上还需要大家灵活处理,把它扩充为更多更详实的答案就可以了。 DAY2 【马原】意识的能动作用 一、使用场景 在做答马哲论述题的时候,如果题干材料中的主人公出现了以下两种情况,我们都用这个原理去进行做答: 1.人们遇到了一些困难时,开动脑子去思考解决困难的办法。一律用这个原理。 他为什么会思考呢、寻找解决问题的办法呢?就是因为他有意识,且意识有能动性,意识的能动性可以帮助我们去解决困难。 2.当人们利用自己的创意、设计去改变生活的时候。也要用这个原理。 因为我们有意识,而意识有能动性。 总结:只要是开动脑子去琢磨、思考、寻找、设计、想象等等的情况,一律都用这个原理进行作答。 下面这些文字必须要背熟,并且写上去。

徐之明马原详解

徐之明马原 马原24 单选:1-4 多选:17-21 分析:34 哲学-原理 政经-运用 科社-结果 第一章 本章为前言,三大内容:马克思主义产生、发展、属性 易考记忆形选择题 逻辑图很重要,把书读薄 第二章、第三章、第五章重点 内容:内容理论性强,考核目标一能力为主,难度最大 方法:弄懂概念,多做练习 二、 (一)、资本主义生产方式是发展为马克思主义的产生提供了经济、社会历史条件和客观基础。 (二)、马克思主义不是凭空产生的,对文明成果的继承与创新,是马克思主义产生的重要条件。其中,德国古典哲学、英国古典政治经济学和法国、英国的空想社会主义是马克思主义的直接的思想渊源。 命题模式:整体与局部 辩证法思想是黑格尔哲学体系的“合理内核” (三)无产阶级反对资产阶级的斗争、马克思恩格斯的革命实践,是马克思主义产生的实践基础。 19世纪30-40年代所发生的法国里昂工人起义、英国宪章运动以及德国西里西亚纺织工人的起义,标志着现代物产阶级作为独立的政治力量已经登上了历史舞台。 无产阶级是马克思主义的阶级基础(阶级性),无产阶级反对资产阶级的斗争,构成为马克思主义产生的现实需要。 (四)19世纪40-60年代,马克思恩格斯批判地继承了前人的成果,创立了唯物史观和剩余价值学说(两大发现),使社会主义从空想发展到科学,实现了人类思想史上的伟大革命。 1848年2月《共产党宣言》的发展,是主义产生的标志。马克思主义哲学、马克思主义政治经济学和科学社会主义,是马克思主义理论体系不可分割的三个主要组成部分。 第二节 马克思主义从产生到发展所表现出的强大生命力的(根源),在于它以实践为基础的(科学性)和(革命性)的统一。 马克思主义发展始终保持蓬勃生命力的(关键),是与时俱进的理论品质。一、马克思主义最根本的世界观和方法论 辩证唯物主义与历史唯物主义(马克思主义哲学)是马克思主义最根本的世界观和方法论。

小游戏----密室逃脱

活动名称: 大班数学探索活动----密室逃脱 设计思路: 偶然的机会听孩子们分享自己玩游戏的经验,发现他们对比较有挑战性的游戏如密室逃脱闯关等非常感兴趣,于是,我就想: 能不能用游戏这样一个载体,将数学这一学科的某些知识呈现在里面?于是,我就按照自己的理解,把生活中常见的物品分成几个层次: 将游戏材料有的散点状放置,有的向不同方向有序排列,有的重叠排列等,投放到科学探索区内,观察幼儿的游戏情况。在幼儿操作材料过程中,我发现他们数数时的方法、速度、能力等都有异同,因此,我梳理了幼儿的一些数数经验,结合大班幼儿的年龄特点,生成了本次活动。 活动目标: 1、在幼儿观察、比较、推理中,尝试通过操作材料,探索可以将物品数正确的方法。 2、仔细倾听同伴的想法,乐意分享观察方式。 活动准备: 幼儿操作卡(每人2张)、PPT4张、笔、夹子、照片。 活动过程: 1、呈现密室,激发幼儿兴趣: 了解幼儿数数的能力。 出示PPT1,谈话引出课题 1、讲解密室逃脱游戏规则。 师:

今天,老师带你们玩密室逃脱,你知道这个游戏怎么玩吗?师讲解游戏规则: 密室逃脱就是我们进入房间,通过数房间里各种物品的数量来推算出房门的密码,从而打开房门,逃出密室。 2、报数游戏: 让幼儿数数接龙。 师: 清点人数完毕,请你们摆一个最漂亮、最帅气的姿势跟老师们打个招呼,不然,待会出不来可能没有人来救你。 3、谈话: 你能数到几? 师: 刚才集体报数完全正确,现在,我问问小朋友,你最多能数到几?我说一个数字,你接着往下数,往下数()个数。(教师一方面关注幼儿数数是否正确,另一方面关注幼儿从十位数数到百位数数的能力,同时,观察其他幼儿,聆听每个幼儿的数数情况。)师: 小朋友们都能数到很大的数,真了不起!但你们数数的正确性怎么样呢?老师会在游戏中检查你们的本领。 2、进入密室: 探索正确数数的方法。 第一环节: 来到密室一: 出示PPT2

华中师大心理学(707)考研经验教训分享

追梦路上有过迷茫 ——华中师大心理学考研记(初试篇) 写着写着发现稍有点偏题,却也是我的本心写照。 先自我介绍 楼主求学路上磕磕绊绊,大四也准备过考研,后来因为实习就放弃了,毕业后一直对读研念念不忘,15年暑假开始全职跨考心理学研究生。初试三百五十多,今天上午终于看到拟录取名单有我的名字,也算初战告捷吧。 其次,对我即将就读的华中师大心理学做个介绍吧! 华师最为大家熟悉的可能就是咨询方向的江光荣老师了,华师咨询室设计很人性化、非常优美,江老师的理论与实践水平都很高。管理方向大牛是马红宇老师,还有一个特聘教授洪建中老师。发展方向的周宗奎老师、教育方向的刘华山老师、社会方向的佐斌老师、人格方向的郭永玉老师、脑认知方向的周治金老师在各自领域都是执牛耳的人物之一。 华师心理学的最大特色是对网络心理学的研究,周宗奎院长领导建立的青少年网络心理与行为教育部重点实验室几乎整合了华师心理学院所有师资,研究方向包括网络认知学习与教学、网络社会行为、网络与青少年心理健康、青少年网络文化与内容安全等。听说华师心理学院每年都会有很多师兄师姐去游戏开发公司、网络产品开发公司任职。是不是很羡慕?那就选择华师吧!爱在华师,今后三年就要在华师学习了,想想就有点小激动。下面对我的考研做个总结,也算是对学弟学妹的一份经验之谈吧。 一、择校 一定要充分搜集资料——各种——包括学校的优势和劣势、导师的研究情况、往年的报录比、各科最低分数线(注意!对绝大部分同学,国家线意义不大)等等等等。这些在学院官方网站大部分都能找到。除此之外,可以多问你有意学校的学长学姐,这个就可以发挥论坛和群的强大功能了。 择校时要考虑的几点: 1.读研的目的。 为了就业?做研究?提高学历?。。。。。。就业选城市和学校,研究选学校与专业,为了学历那就无所谓了。 2.本身实力。 自己可能的努力程度?这是最重要的。好像除了这一点外也没其他的了。自己好好掂量,是否愿意放弃之前去的一系列荣誉?是否能禁得住同学、工作、娱乐的诱惑?家里和学校是否支持。。。。。。说白了,考研就是一场努力了就会有收获的抗战。 3.目标院校相关情况。 学校的实力,该校该学科的实力,该学科各方向的研究情况。特别重要的是报考难度如何。除非抱着非某名校或名师不去的心态,还是要多考虑录取成功率。 4.选择学校一定要有层次,多选几个备胎。 我当时理想的是几所985,根据实际情况选择了华中师大(211),选了母校(一个地方重本)作为备胎。这样复习的时候不会太心慌或太放松,要记住适中的目标动机最有利

【马原】重要知识点整理

马克思主义基本原理 第一章 1、哲学的基本问题 其一,意识和物质、思维和存在,究竟谁是世界的本原,即物质和精神何者是第一性、何者是第二性问题;其二。“我们关于我们周围世界的思想对这个世界本身的关系是怎样的?我们的思维能不能认识现实世界?我们能不能在我们关于现实世界的表象和概念中正确地反映现实?”即思维能否认识或正确认识存在的问题。 2、社会的物质性表现 第一,人类社会依赖于自然界,是整个物质世界的组成部分。 第二,人们谋取物质生活资料的实践活动虽然有意识作指导,但仍然是以物质力量改造物质力量的活动,仍然是物质性的活动。 第三,物质资料的生产方式是人类社会存在和发展的基础,集中体现着人类社会的物质性。综上所述,包括自然界和人类社会在内的整个世界,其真正统一性在于它的物质性。物质是世界的本原,社会运动也是物质运动的一种特殊形式。 3、社会生活的实践性表现 第一,实践是社会关系形成的基础。 第二,实践形成了社会生活的基本领域 第三。实践构成了社会发展的动力 4、矛盾的普遍性与特殊性的辩证关系 第一、盾的普遍性,是指矛盾是自然、社会以及人类思维中客观的普遍的现象;是指矛盾的共性、绝对性。 第二、矛盾的特殊性是指具体事物的矛盾以及矛盾的每一个侧面都有自己的特点;是指矛盾的个性、相对性。 第三、矛盾的普遍性和特殊性的关系是共性与个性的对立统一关系。 第四、矛盾的普遍性即共性是无条件的、绝对的,特殊性即个性是有条件的、相对的;共性包括的是个性中本质的东西,它比个性深刻,个性比共性丰富。 第五、二者相互依存,相互制约:共性寓于(存在于)个性之中,共性只能通过个性而存在;共性统摄着个性,个性总是与共性相联系而存在。割裂了这种联系,就会导致类似“白马非马”的诡辩命题。 第六、二者在一定条件下相互转化:随事物的发展和条件的改变,共性与个性可以相互过渡,相互转化。 5、量变和质变的辩证关系 第一,量变是质变的必要准备 第二,质变是量变的必然结果 第三,量变和质变是相互渗透的 质量互变规律体现了事物发展的渐进性和飞跃性的统一 6、客观规律性与主观能动性的辩证关系 尊重客观规律是发挥主观能动性的前提 在尊重客观规律的基础上充分发挥主观能动性 必须尊重客观规律。发挥人的主观能动性必须以承认规律的客观性为前提。

《密室逃脱》碧绿色房间闯关攻略详解

《密室逃脱》碧绿色房间闯关攻略详解 继博士的家之后,小编接下来要为大家介绍密室逃脱碧绿色房间闯关攻略。密室逃脱,又 叫TAKAGISM ,是一款密室闯关游戏,游戏需要玩游戏者在游戏中寻找线索,一步一步地走出 密室。《密室逃脱》游戏的玩法很简单,只需用鼠标即可。整个游戏过程都是在一间房子里进行的,游戏的主人公不知道为什么被困在这里(每集都交待了不同的原因,但这些原因都是相当的 离奇)T akagism的逃离房间系列是非常经典的解迷小游戏,自从作者推出第一个版本Crimson Room后便深受世界各地网友的喜爱,并因此掀起了一股“逃离房间热”。本文将详细介绍密室逃脱碧绿色房间如何闯关。 1、开灯,左转(点画面的左下角,右转同理)在鞋橱的鞋下边发现“若”字图片;鞋橱底发现镜框。 2、左转,在土黄色的垫子底下发现“般”字图片。 3、左转,在壁橱的最上一格中左右边分别发现“多”字图片和一束香。二格的红笔记本有锁打 不开,在最下面的小橱里发现黄影集里两张照片。 4、点地上的红毯子,发现骷髅!点击靠近,在左手手腕处发现钥匙,右手发现药瓶,点小腿处的红绳物体可以把毯子叠起,并发现脚上有密码锁(暂时不开),点物品栏中的红毯,再点下边的“查看物体”(即"About Item"),可放大,点大图的红毯子得到十字架状物体。 百度攻略&口袋巴士提供 1

5、左转,在斜对着蓝门处,(就是那个有窟窿的蓝门,不是一开始的那个门)。点头顶的 灯罩,在灯罩上发现“罗”字图片(小红块,仔细点),在墙上发现“ 蜜”字图片(小白块)。 6、左转,在小冰箱里发现“ 波”字图片和一罐啤酒(啤酒先不要拿,因为骷髅要冰冻的)。在旁边的红桶里发现张纸,打开是些黑头发。记住:点装黑头发的纸,然后点击查看物体,放大纸,多点几下纸,然后就可以在红桶底下得到打火机。 7、用钥匙开红笔记本打开,在日记中可以找到女孩的生日,那就是开骷髅脚上的密码。(通常会是在日记的第四页,里面有一句话“The day after tomorrow is her birthday”,这一天的简单写法 就是密码。你先看你所翻到的那页日记上是几月几号,再在那个日期后加两天,就是小女孩子的 生日,那一天的简写就是密码。(如9月10日,简写就是0910,这就是密码),记下密码。继续翻日记,翻到最后得到一张CD。 8、放大装有头发的纸,点打火机,再点纸,可以烧出东西来,放大药瓶,里面有两粒药,一 张写有箴言的纸。放大绿十字,按照箴言的顺序位置和烧出来得数字相对应(形位相同),把字( 6张图片)填在十字架状物体上(位置随机的),放对会变成个四方体,放下暂不用。 9、在壁橱的第3格,有香炉和磬(旁边红的是槌),把装有CD的CD盒放在香炉后面,把香放香炉左,罐啤放香左(要冰镇的啊,冰一两分钟就可以拿出来了,先把啤酒从冰箱拿出来,点显 百度攻略&口袋巴士提供 2

相关文档
相关文档 最新文档