文档库 最新最全的文档下载
当前位置:文档库 › 高中物理奥赛必看讲义——静电场

高中物理奥赛必看讲义——静电场

静电场

第一讲基本知识介绍

在奥赛考纲中,静电学知识点数目不算多,总数和高考考纲基本相同,但在个别知识点上,奥赛的要求显然更加深化了:如非匀强电场中电势的计算、电容器的连接和静电能计算、电介质的极化等。在处理物理问题的方法上,对无限分割和叠加原理提出了更高的要求。

如果把静电场的问题分为两部分,那就是电场本身的问题、和对场中带电体的研究,高考考纲比较注重第二部分中带电粒子的运动问题,而奥赛考纲更注重第一部分和第二部分中的静态问题。也就是说,奥赛关注的是电场中更本质的内容,关注的是纵向的深化和而非横向的综合。

一、电场强度

1、实验定律

a、库仑定律

内容;

条件:⑴点电荷,⑵真空,⑶点电荷静止或相对静止。事实上,条件⑴和⑵均不能视为对库仑定律的限制,因为叠加原理可以将点电荷之间的静电力应用到一般带电体,非真空介质可以通过介电常数将k进行修正(如果介质分布是均匀和“充分宽广”的,一般认为k′= k /εr)。只有条件⑶,它才是静电学的基本前提和出发点(但这一点又是常常被忽视和被不恰当地“综合应用”的)。

b、电荷守恒定律

c、叠加原理

2、电场强度

a、电场强度的定义

电场的概念;试探电荷(检验电荷);定义意味着一种适用于任何电场的对电场的检测手段;电场线是抽象而直观地描述电场有效工具(电场线的基本属性)。

b、不同电场中场强的计算

决定电场强弱的因素有两个:场源(带电量和带电体

的形状)和空间位置。这可以从不同电场的场强决定式看出——

⑴点电荷:E = k

2

r Q 结合点电荷的场强和叠加原理,我们可以求出任何电场的场强,如—— ⑵均匀带电环,垂直环面轴线上的某点P :E = 2

322

)

R r (k Qr +,其中r 和R 的意义见图7-1。

⑶均匀带电球壳 内部:E 内 = 0

外部:E 外 = k

2

r Q

,其中r 指考察点到球心的距离 如果球壳是有厚度的的(内径R 1 、外径R 2),在壳体中(R 1

<r <R 2):

E =

2

3

1

3r R r k

34-πρ ,其中ρ为电荷体密度。这个式子的物理意义可以参照万有引力定律当中(条件部分)的“剥皮法则”理解〔)R r (3

433-πρ即为图7-2中虚线以内部分的总电量…〕。

⑷无限长均匀带电直线(电荷线密度为λ):E =

r

k 2λ

⑸无限大均匀带电平面(电荷面密度为σ):E = 2πk σ 二、电势

1、电势:把一电荷从P 点移到参考点P 0时电场力所做的功W 与该电荷电量q 的比值,即

U =

q

W

参考点即电势为零的点,通常取无穷远或大地为参考点。

和场强一样,电势是属于场本身的物理量。W 则为电荷的电势能。 2、典型电场的电势 a 、点电荷

以无穷远为参考点,U = k r

Q b 、均匀带电球壳

以无穷远为参考点,U 外 = k r Q ,U 内 = k R Q 3、电势的叠加

由于电势的是标量,所以电势的叠加服从代数加法。很显然,有了点电荷电势的表达式

和叠加原理,我们可以求出任何电场的电势分布。

4、电场力对电荷做功 W AB = q (U A - U B )= qU AB 三、静电场中的导体

静电感应→静电平衡(狭义和广义)→静电屏蔽 1、静电平衡的特征可以总结为以下三层含义——

a 、导体内部的合场强...为零;表面的合场强...不为零且一般各处不等,表面的合场强...方向总是垂直导体表面。

b 、导体是等势体,表面是等势面。

c 、导体内部没有净电荷;孤立导体的净电荷在表面的分布情况取决于导体表面的曲率。 2、静电屏蔽

导体壳(网罩)不接地时,可以实现外部对内部的屏蔽,但不能实现内部对外部的屏蔽;导体壳(网罩)接地后,既可实现外部对内部的屏蔽,也可实现内部对外部的屏蔽。 四、电容

1、电容器

孤立导体电容器→一般电容器 2、电容 a 、定义式 C =

U

Q

b 、决定式。决定电容器电容的因素是:导体的形状和位置关系、绝缘介质的种类,所以不同电容器有不同的电容

⑴平行板电容器 C = k d 4S r πε = d

S

ε ,其中ε为绝对介电常数(真空中ε0 =

k

41

π ,其它介质中ε=

k 41

'

π),εr 则为相对介电常数,εr =

εε

。 ⑵柱形电容器:C =

1

2

r R R ln

k 2L

ε ⑶球形电容器:C = )

R R (k R R 122

1r -ε

3、电容器的连接 a 、串联

C 1 = 1C 1+2C 1+3C 1+ … +n

C 1 b 、并联 C = C 1 + C 2 + C 3 + … + C n

4、电容器的能量

用图7-3表征电容器的充电过程,“搬运”电荷做功W 就是图中阴影的面积,这也就是电容器的储能E ,所以

E = 21q 0U 0 = 21C 2

0U = 21C

q 2

电场的能量。电容器储存的能量究竟是属于电荷还是属于电场?正确答案是后者,因此,我们可以将电容器的能量用场强E 表示。

对平行板电容器 E 总 =

k

8Sd πE 2

认为电场能均匀分布在电场中,则单位体积的电场储能 w = k

81πE 2

。而且,这以结论适用于非匀强电场。 五、电介质的极化

1、电介质的极化

a 、电介质分为两类:无极分子和有极分子,前者是指在没有外电场时每个分子的正、负电荷“重心”彼此重合(如气态的H 2 、O 2 、N 2和CO 2),后者则反之(如气态的H 2O 、SO 2和液态的水硝基笨)

b 、电介质的极化:当介质中存在外电场时,无极分子会变为有极分子,有极分子会由原来的杂乱排列变成规则排列,如图7-4所示。

2、束缚电荷、自由电

荷、极化电荷与宏观过剩电荷

a 、束缚电荷与自由电荷:在图7-4中,电介质左右两端分别显现负

电和正电,但这些电荷并不能自由移动,因此称为束缚电荷,除了电介质,导体中的原子核和内层电子也是束缚电荷;反之,能够自由移动的电荷称为自由电荷。事实上,导体中存在束缚电荷与自由电荷,绝缘体中也存在束缚电荷和自由电荷,只是它们的比例差异较大而已。

b 、极化电荷是更严格意义上的束缚电荷,就是指图7-4中电介质两端显现的电荷。而宏观过剩电荷是相对极化电荷来说的,它是指可以自由移动的净电荷。宏观过剩电荷与极化电荷的重要区别是:前者能够用来冲放电,也能用仪表测量,但后者却不能。

第二讲 重要模型与专题

一、场强和电场力

【物理情形1】试证明:均匀带电球壳内部任意一点的场强均为零。 【模型分析】这是一个叠加原理应用的基本事例。

如图7-5所示,在球壳内取一点P ,以P 为顶点做两个对顶的、顶角很小的锥体,锥体与球面相交得到球面上的两个面元ΔS 1和ΔS 2 ,设球面的电荷面

密度为σ,则这两个面元在P 点激发的场强分别为

ΔE 1 = k 211

r S ?σ ΔE 2 = k

2

22

r S ?σ 为了弄清ΔE 1和ΔE 2的大小关系,引进锥体顶部的立体角ΔΩ ,显然

2

11r cos S α? = ΔΩ = 2

22r cos S α

? 所以 ΔE 1 = k

α?Ωσcos ,ΔE 2 = k α

σcos ,即:ΔE 1 = ΔE 2 ,而它们的方向是相反的,故在P 点激发的合场强为零。

同理,其它各个相对的面元ΔS 3和ΔS 4 、ΔS 5和ΔS 6 … 激发的合场强均为零。原命题得证。

【模型变换】半径为R 的均匀带电球面,电荷的面密度为σ,试求球心处的电场强度。 【解析】如图7-6所示,在球面上的P 处取一极小的面元ΔS ,它在球心O 点激发的场强大小为

ΔE = k

2

R S

?σ ,方向由P 指向O 点。 无穷多个这样的面元激发的场强大小和ΔS 激发的完全相同,但方向各不相同,它们矢量合成的效果怎样呢?这里我们要大胆地预见——由于由于在x 方向、y 方向上的对称性,Σ

ix E

= Σiy E = 0 ,最后的ΣE = ΣE z ,所以先求

ΔE z = ΔEcos θ= k

2

R cos S θ

?σ ,而且ΔScos θ为面元在xoy 平面的投影,设为ΔS ′

所以 ΣE z =

2

R k σ

ΣΔS ′ 而 ΣΔS ′= πR 2

【答案】E = k πσ ,方向垂直边界线所在的平面。

〖学员思考〗如果这个半球面在yoz 平面的两边均匀带有异种电荷,面密度仍为?,那么,球心处的场强又是多少?

〖推荐解法〗将半球面看成4个81

球面,每个81球面在x 、y 、z 三个方向上分量均为4

1 k π?,能够对称抵消的将是y 、z 两个方向上的分量,因此ΣE = ΣE x …

〖答案〗大小为k π?,方向沿x 轴方向(由带正电的一方指向带负电的一方)。 【物理情形2】有一个均匀的带电球体,球心在O 点,半径为R ,电荷体密度为ρ ,球体内有一个球形空腔,空腔球心在O ′点,半径为R ′,O O '= a ,如图7-7所示,试求空腔中各点的场强。

【模型分析】这里涉及两个知识的应用:一是均匀带电球体的场强定式(它也是来自叠加原理,这里具体用到的是球体内部的结论,即“剥皮法则”),二是填补法。

将球体和空腔看成完整的带正电的大球和带负电(电荷体密度相等)的小球的集合,对于空腔中任意一点P ,设OP = r 1 ,P O ' = r 2 ,则大球激发的场强为

E 1 = k 213

1r r 34

πρ = 3

4

k ρπr 1 ,方向由O 指向P

“小球”激发的场强为

E 2 = k 223

2r r 34πρ = 3

4

k ρπr 2 ,方向由P 指向O ′

E 1和E 2的矢量合成遵从平行四边形法则,ΣE 的方向如图。又由于矢量三角形PE 1ΣE 和空间位置三角形OP O ′是相似的,ΣE 的大小和方向就不难确定了。

【答案】恒为3

4

k ρπa ,方向均沿O → O ′,空腔里的电场是匀强电场。

〖学员思考〗如果在模型2中的OO ′连线上O ′一侧距离O 为b (b >R )的地方放一个电量为q 的点电荷,它受到的电场力将为多大?

〖解说〗上面解法的按部就班应用…

〖答〗34πk ρq …23b R ?2

3

)a b (R -'?。

二、电势、电量与电场力的功

【物理情形1】如图7-8所示,半径为R 的圆环均匀带电,电荷线密度为λ,圆心在O

点,过圆心跟环面垂直的轴线上有P 点,PO = r ,以无穷远为参考点,试求P 点的电势U P 。

【模型分析】这是一个电势标量叠加的简单模型。先在圆环上取一个元段ΔL ,它在P 点形成的电势

ΔU = k 2

2

r

R L +?λ

环共有

L

R

2?π段,各段在P 点形成的电势相同,而且它们是标量叠加。 【答案】U P =

2

2

r

R R k 2+λπ

〖思考〗如果上题中知道的是环的总电量Q ,则U P 的结论为多少?如果这个总电量的分布不是均匀的,结论会改变吗?

〖答〗U P =

2

2r R k Q + ;结论不会改变。

〖再思考〗将环换成半径为R 的薄球壳,总电量仍为Q ,试问:(1)当电量均匀分布时,球心电势为多少?球内(包括表面)各点电势为多少?(2)当电量不均匀分布时,球心电势为多少?球内(包括表面)各点电势为多少?

〖解说〗(1)球心电势的求解从略;

球内任一点的求解参看图7-5

ΔU 1 = k 11r S ?σ= k 1

r σ

〃α??Ωcos r 21= k ?ΔΩαcos r 1

ΔU 2 = k ?ΔΩ

α

cos r 2

它们代数叠加成 ΔU = ΔU 1 + ΔU 2 = k ?ΔΩα

+cos r r 2

1 而 r 1 + r

2 = 2Rcos α 所以 ΔU = 2Rk ?ΔΩ

所有面元形成电势的叠加 ΣU = 2Rk ?ΣΔΩ

注意:一个完整球面的ΣΔΩ = 4π(单位:球面度sr ),但作为对顶的

锥角,ΣΔΩ只能是2π ,所以——

ΣU = 4πRk ?= k

R

Q (2)球心电势的求解和〖思考〗相同;

球内任一点的电势求解可以从(1)问的求解过程得到结论的反证。

〖答〗(1)球心、球内任一点的电势均为k

R Q ;(2)球心电势仍为k R

Q

,但其它各点的电势将随电量的分布情况的不同而不同(内部不再是等势体,球面不再是等势面)。

【相关应用】如图7-9所示,球形导体空腔内、外壁的半径分别为R 1和R 2 ,带有净电量+q ,现在其内部距球心为r 的地方放一个电量为+Q 的点电荷,试求球心处的电势。

【解析】由于静电感应,球壳的内、外壁形成两个带电球壳。球心电势是两个球壳形成电势、点电荷形成电势的合效果。

根据静电感应的尝试,内壁的电荷量为-Q ,外壁的电荷量为+Q+q ,虽然内壁的带电是不均匀的,根据上面的结论,其在球心形成的电势仍可以应用定式,所以…

【答案】U o = k

r Q - k 1R Q + k 2

R q

Q 。 〖反馈练习〗如图7-10所示,两个极薄的同心导体球壳A 和B ,半径分别为R A 和R B ,现让A 壳接地,而在B 壳的外部距球心d 的地方放一个电量为+q 的点电荷。试求:(1)A 球壳的感应电荷量;(2)外球壳的电势。

〖解说〗这是一个更为复杂的静电感应情形,B 壳将形成图示的感应电荷分布(但没有净电量),A 壳的情形未画出(有净电量),它们的感应电荷分布都是不均匀的。

此外,我们还要用到一个重要的常识:接地导体(A 壳)的电势为零。但值得注意的是,这里的“为零”是一个合效果...

,它是点电荷q 、A 壳、B 壳(带同样电荷时)单独存在时.....在A 中形成的的电势的代数和,所以,当我们以球心O 点为对象,有

U O = k

d q + k A A R Q + k B

B R Q

= 0 Q B 应指B 球壳上的净电荷量,故 Q B = 0 所以 Q A = -

d

R A

q ☆学员讨论:A 壳的各处电势均为零,我们的方程能不能针对A 壳表面上的某点去列?

(答:不能,非均匀带电球壳的球心以外的点不能应用定式!)

基于刚才的讨论,求B 的电势时也只能求B 的球心的电势(独立的B 壳是等势体,球心电势即为所求)——

U B = k

d q + k B

A R Q

〖答〗(1)Q A = -

d R A q ;(2)U B = k d q (1-B

A R R

) 。

【物理情形2】图7-11中,三根实线表示三根首尾相连的等长绝缘细棒,每根棒上的电荷分布情况与绝缘棒都换成导体棒时完全相同。点A 是Δabc 的中心,点B 则与A 相对bc 棒对称,且已测得它们的电势分别为U A 和U B 。试问:若将ab 棒取走,A 、B 两点的电势将变为多少?

【模型分析】由于细棒上的电荷分布既不均匀、三根细棒也没有构成环形,故前面的定式不能直接应用。若用元段分割→叠加,也具有相当的困难。所以这里介绍另一种求电势的方法。

每根细棒的电荷分布虽然复杂,但相对各自的中点必然是对称的,而且三根棒的总电量、分布情况彼此必然相

同。这就意味着:①三棒对A 点的电势贡献都相同(可设为U 1);②ab 棒、ac 棒对B 点的电势贡献相同(可设为U 2);③bc 棒对A 、B 两点的贡献相同(为U 1)。

所以,取走ab 前 3U 1 = U A 2U 2 + U 1 = U B

取走ab 后,因三棒是绝缘体,电荷分布不变,故电势贡献不变,所以

U A ′= 2U 1

U B ′= U 1 + U 2 【答案】U A ′=

32U A ;U B ′= 61U A + 2

1

U B 。 〖模型变换〗正四面体盒子由彼此绝缘的四块导体板构成,各导体板带电且电势分别为U 1 、U 2 、U 3和U 4 ,则盒子中心点O 的电势U 等于多少?

〖解说〗此处的四块板子虽然位置相对O 点具有对称性,但电量各不相同,因此对O 点的电势贡献也不相同,所以应该想一点办法——

我们用“填补法”将电量不对称的情形加以改观:先将每一块导体板复制三块,作成一个正四面体盒子,然后将这四个盒子位置重合地放置——构成一个有四层壁的新盒子。在这

个新盒子中,每个壁的电量将是完全相同的(为原来四块板的电量之和)、电势也完全相同(为U 1 + U 2 + U 3 + U 4),新盒子表面就构成了一个等势面、整个盒子也是一个等势体,故新盒子的中心电势为

U ′= U 1 + U 2 + U 3 + U 4

最后回到原来的单层盒子,中心电势必为 U = 4

1 U ′ 〖答〗U = 4

1(U 1 + U 2 + U 3 + U 4)。

☆学员讨论:刚才的这种解题思想是否适用于“物理情形2”?(答:不行,因为三角形各边上电势虽然相等,但中点的电势和边上的并不相等。)

〖反馈练习〗电荷q 均匀分布在半球面ACB 上,球面半径为R ,CD 为通过半球顶点C 和球心O 的轴线,如图7-12所示。P 、Q 为CD 轴线上相对O 点对称的两点,已知P 点的电势为U P ,试求Q 点的电势U Q 。

〖解说〗这又是一个填补法的应用。将半球面补成完整球面,并令右边内、外层均匀地带上电量为q 的电荷,如图7-12所示。

从电量的角度看,右半球面可以看作不存在,故这时P 、Q 的电势不会有任何改变。

而换一个角度看,P 、Q 的电势可以看成是两者的叠加:①带电量为2q 的完整球面;②带电量为-q 的半球面。

考查P 点,U P = k

R

q

2 + U 半球面 其中 U 半球面显然和为填补时Q 点的电势大小相等、符号相反,即 U 半球面= -U Q 以上的两个关系已经足以解题了。 〖答〗U Q = k

R

q

2 - U P 。 【物理情形3】如图7-13所示,A 、B 两点相距2L ,圆弧D C O

是以B 为圆心、L 为半径的半圆。A 处放有电量为q 的电荷,B 处放有电量为-q 的点电荷。试问:(1)将单位正电

荷从O 点沿D C O

移到D 点,电场力对它做了多少功?(2)将单位负电荷从D 点沿AB 的延长线移到无穷远处去,电场力对它做多少功?

【模型分析】电势叠加和关系W AB = q (U A -

U B )= qU AB 的基本应用。

U O = k L q + k L q - = 0 U D = k

L 3q + k L q - = -L

3kq 2 U ∞ = 0

再用功与电势的关系即可。 【答案】(1)

L 3kq 2;(2)L

3kq

2。 【相关应用】在不计重力空间,有A 、B 两个带电小球,电量分别为q 1和q 2 ,质量分别为m 1和m 2 ,被固定在相距L 的两点。试问:(1)若解除A 球的固定,它能获得的最大动能是多少?(2)若同时解除两球的固定,它们各自的获得的最大动能是多少?(3)未解除固定时,这个系统的静电势能是多少?

【解说】第(1)问甚间;第(2)问在能量方面类比反冲装置的能量计算,另启用动量守恒关系;第(3)问是在前两问基础上得出的必然结论…(这里就回到了一个基本的观念斧正:势能是属于场和场中物体的系统,而非单纯属于场中物体——这在过去一直是被忽视的。在两个点电荷的环境中,我们通常说“两个点电荷的势能”是多少。)

【答】(1)k

r q q 21;(2)E k1 = 212m m m +k r q q 21 ,E k2 = 2

11

m m m +k r q q 21;(3)k r q q 21 。 〖思考〗设三个点电荷的电量分别为q 1 、q 2和q 3 ,两两相距为r 12 、r 23和r 31 ,则这个点电荷系统的静电势能是多少?

〖解〗略。 〖答〗k (

1221r q q +2332r q q +31

13r q q )。 〖反馈应用〗如图7-14所示,三个带同种电荷的相同金属小球,每个球的质量均为m 、电量均为q ,用长度为L 的三根绝缘轻绳连接着,系统放在光滑、

绝缘的水平面上。现将其中的一根绳子剪断,三个球将开始运动起来,试求中间这个小球的最大速度。

〖解〗设剪断的是1、3之间的绳子,动力学分析易知,2球获得最大动能时,1、2之间的绳子与2、3之间的绳子刚好应该在一条直线上。而且由动量守恒知,三球不可能有沿绳子方向的速度。设2球的速度为v ,1球和3球的速度为v ′,则

动量关系 mv + 2m v ′= 0

能量关系 3k

L q 2 = 2 k L q 2 + k L

2q 2 + 21mv 2

+ 212m 2v '

解以上两式即可的v 值。 〖答〗v = q

mL

3k

2 。 三、电场中的导体和电介质

【物理情形】两块平行放置的很大的金属薄板A 和B ,面积都是S ,间距为d (d 远小于金属板的线度),已知A 板带净电量+Q 1 ,B 板带尽电量+Q 2 ,且Q 2<Q 1 ,试求:(1)两板内外表面的电量分别是多少;(2)空间各处的场强;(3)两板间的电势差。

【模型分析】由于静电感应,A 、B 两板的四个平面的电量将呈现一定规律的分布(金属板虽然很薄,但内部合场强为零的结论还是存在的);这里应注意金

属板“很大”的前提条件,它事实上是指物理无穷大,因此,可以应用无限大平板的场强定式。

为方便解题,做图7-15,忽略边缘效应,四个面的电荷分布应是均匀的,设四个面的电荷面密度分别为σ1 、σ2 、σ3和σ4 ,显然

(σ1 + σ2)S = Q 1 (σ3 + σ4)S = Q 2

A 板内部空间场强为零,有 2πk (σ1 ? σ2 ? σ3 ? σ4)= 0 A 板内部空间场强为零,有 2πk (σ1 + σ2 + σ3 ? σ4)= 0 解以上四式易得 σ1 = σ4 = S 2Q Q 2

1+ σ2 = ?σ3 =

S

2Q Q 2

1- 有了四个面的电荷密度,Ⅰ、Ⅱ、Ⅲ空间的场强就好求了〔如E Ⅱ =2πk (σ1 + σ2 ? σ

3

? σ4)= 2πk

S

Q Q 2

1-〕。 最后,U AB = E Ⅱd

【答案】(1)A 板外侧电量2Q Q 21+、A 板内侧电量2Q Q 21-,B 板内侧电量?2

Q

Q 21-、B 板外侧电量

2Q Q 21+;(2)A 板外侧空间场强2πk S Q Q 2

1+,方向垂直A 板向外,A 、B 板之间空间场强2πk

S Q Q 21-,方向由A 垂直指向B ,B 板外侧空间场强2πk S

Q Q 2

1+,方向垂直B 板向外;(3)A 、B 两板的电势差为2πkd

S

Q Q 2

1-,A 板电势高。 〖学员思考〗如果两板带等量异号的净电荷,两板的外侧空间场强等于多少?(答:为

零。)

〖学员讨论〗(原模型中)作为一个电容器,它的“电量”是多少(答:

2

Q Q 2

1-)?如果在板间充满相对介电常数为εr 的电介质,是否会影响四个面的电荷分布(答:不会)?是否会影响三个空间的场强(答:只会影响Ⅱ空间的场强)?

〖学员讨论〗(原模型中)我们是否可以求出A 、B 两板之间的静电力?〔答:可以;以A 为对象,外侧受力

2Q Q 21+〃2E Ⅰ(方向相左),内侧受力2Q Q 21-〃2E

Ⅱ(方向向右),它们合成即可,结论为F =

S

k 2π

Q 1Q 2 ,排斥力。〕 【模型变换】如图7-16所示,一平行板电容器,极板面积为S ,其上半部为真空,而下半部充满相对介电常数为εr 的均匀电介质,当两极板分别带上+Q 和?Q 的电量后,试求:(1)板上自由电荷的分布;(2)两板之间的场强;(3)介质表面的极化电荷。

【解说】电介质的充入虽然不能改变内表面的电量总数,但由于改变了场强,故对电荷的分布情况肯定有影响。设真空部分电量为Q 1 ,介质部分电量为Q 2 ,显然有

Q 1 + Q 2 = Q

两板分别为等势体,将电容器看成上下两个电容器的并联,必有 U 1 = U 2 即

11C Q = 2

2C Q ,即 k d

42/S Q 1π = k d 42/S Q r 2

π?ε

解以上两式即可得Q 1和Q 2 。 场强可以根据E =

d

U

关系求解,比较常规(上下部分的场强相等)。 上下部分的电量是不等的,但场强居然相等,这怎么解释?从公式的角度看,E = 2πkσ(单面平板),当k 、σ同时改变,可以保持E 不变,但这是一种结论所展示的表象。从内在的角度看,k 的改变正是由于极化电荷的出现所致,也就是说,极化电荷的存在相当于在.真空中...形成了一个新的电场,正是这个电场与自由电荷(在真空中)形成的电场叠加成为E 2 ,所以

E 2 = 4πk (σ ? σ′)= 4πk (

2/S Q 2 ? 2

/S Q '

) 请注意:①这里的σ′和Q ′是指极化电荷的面密度和总量;② E = 4πkσ的关系是由两个带电面叠加的合效果。

【答案】(1)真空部分的电量为r 11ε+Q ,介质部分的电量为r

r 1ε+ε

Q ;(2)整个空间的场强均为

S )1(k Q 8r ε+π ;(3)1

1

r r +ε-εQ 。

〖思考应用〗一个带电量为Q 的金属小球,周围充满相对介电常数为εr 的均匀电介质,试求与与导体表面接触的介质表面的极化电荷量。

〖解〗略。 〖答〗Q ′=

r

r 1

ε-εQ 。 四、电容器的相关计算

【物理情形1】由许多个电容为C 的电容器组成一个如图7-17所示的多级网络,试问:(1)在最后一级的右边并联一个多大电容C ′,可使整个网络的A 、B 两端电容也为C ′?(2)不接C ′,但无限地增加网络的级数,整个网络A 、B 两端的总电容是多少?

【模型分析】这是一个练习电容电路简化基本事例。

第(1)问中,未给出具体级数,一般结论应适用特殊情形:令级数为1 ,于是

'+C C 1

+ C 1 = '

C 1 解C ′即可。 第(2)问中,因为“无限”,所以“无限加一级后仍为无限”,不难得出方程

总C C 1

+ + C 1 = 总

C 1

【答案】(1)

215- C ;(2)2

1

5- C 。 【相关模型】在图7-18所示的电路中,已知C 1 = C 2 =

C 3 = C 9 = 1μF ,C 4 = C 5 = C 6 = C 7 = 2μF ,C 8 = C 10 = 3μF ,试求A 、B 之间的等效电容。

【解说】对于既非串联也非并联的电路,需要用到一种“Δ→Y 型变换”,参见图7-19,根据三个端点之间的电容等效,容易得出定式——

Δ→Y 型:C a = 3

1

33221C C C C C C C ++

C b =

1

1

33221C C C C C C C ++

C c = 2

1

33221C C C C C C C ++

Y →Δ型:C 1 = c b a c

a C C C C C ++

C 2 = c b a b

a C C C C C ++

C 3 =

c

b a c

b C C C C C ++

有了这样的定式后,我们便可以进行如图7-20所示的四步电路简化(为了方便,电容不宜引进新的符号表达,而是直接将变换后的量值标示在图中)——

【答】约2.23μF 。

【物理情形2】如图7-21所示的电路中,三个电容器完全相同,电源电动势ε1 = 3.0V ,ε

2 = 4.5V ,开关K 1和K 2接通前电容器均未带电,试求K 1和K 2接通后三个电容器的电压U ao 、U bo 和U co 各为多少。

【解说】这是一个考查电容器电路的基本习题,解题的关键是要抓与o 相连的三块极板(俗称“孤岛”)的总电量为零。

电量关系:

C U ao +C U ao +C

U ao

= 0 电势关系:ε1 = U ao + U ob = U ao ? U bo ε2 = U bo + U oc = U bo ? U co

解以上三式即可。

【答】U ao = 3.5V ,U bo = 0.5V ,U co = ?4.0V 。

【伸展应用】如图7-22所示,由n 个单元组成的电容器网络,每一个单元由三个电容器连接而成,其中有两个的电容为3C ,另一个的电容为3C 。以a 、b 为网络的输入端,a ′、b ′为输出端,今在a 、b 间加一个恒定电压U ,而在a ′b ′间接一个电容为C 的电容器,试求:(1)从第k 单元输入端算起,后面所有电容器储存的总电能;(2)若把第一单元输出端与后面断开,再除去电源,并把它的输入端短路,则这个单元的三个电容器储存的总电能是多少?

【解说】这是一个结合网络计算和“孤岛现象”的典型事例。

(1)类似“物理情形1”的计算,可得 C 总 = C k = C

所以,从输入端...算起..,第k 单元后的电压的经验公式为 U k =

1

k 3U - 再算能量储存就不难了。

(2)断开前,可以算出第一单元的三个电容器、以及后面“系统”的电量分配如图7-23中的左图所示。这时,C

1的右板和C 2的左板(或C 2的下板和C 3的右板)形成“孤岛”。此后,电容器的相互充电过程(C 3类比为“电源”)满足——

电量关系:Q 1′= Q 3′ Q 2′+ Q 3′=

3

Q

电势关系:C 3Q 3'+ C

3Q 1' = C 2Q 2

'

从以上三式解得 Q 1′= Q 3′= 7Q ,Q 2′= 21Q 4 ,这样系统的储能就可以用21C

Q 2

得出了。

【答】(1)E k = 1

k 2232CU -?;(2)63CU 2

〖学员思考〗图7-23展示的过程中,始末状态的电容器储能是否一样?(答:不一样;在相互充电的过程中,导线消耗的焦耳热已不可忽略。)

高考必备:高中物理电场知识点总结大全

高中物理电场知识点总结大全 1. 深刻理解库仑定律和电荷守恒定律。 (1)库仑定律:真空中两个点电荷之间相互作用的电力,跟它们的电荷量的乘积成正比,跟它们的距离的二次方成反比,作用力的方向在它们的连线上。即: 其中k为静电力常量,k=9.0×10 9 N m2/c2 成立条件:①真空中(空气中也近似成立),②点电荷。即带电体的形状和大小对相互作用力的影响可以忽略不计。(这一点与万有引力很相似,但又有不同:对质量均匀分布的球,无论两球相距多近,r都等于球心距;而对带电导体球,距离近了以后,电荷会重新分布,不能再用球心间距代替r)。 (2)电荷守恒定律:系统与外界无电荷交换时,系统的电荷代数和守恒。 2. 深刻理解电场的力的性质。 电场的最基本的性质是对放入其中的电荷有力的作用。电场强度E是描述电场的力的性质的物理量。 (1)定义:放入电场中某点的电荷所受的电场力F跟它的电荷量q的比值,叫做该点 的电场强度,简称场强。这是电场强度的定义式,适用于任何电场。其中的q为试探电荷(以前称为检验电荷),是电荷量很小的点电荷(可正可负)。电场强度是矢量,规定其方向与正电荷在该点受的电场力方向相同。 (2)点电荷周围的场强公式是:,其中Q是产生该电场的电荷,叫场源电荷。 (3)匀强电场的场强公式是:,其中d是沿电场线方向上的距离。 3. 深刻理解电场的能的性质。 (1)电势φ:是描述电场能的性质的物理量。 ①电势定义为φ=,是一个没有方向意义的物理量,电势有高低之分,按规定:正电荷在电场中某点具有的电势能越大,该点电势越高。 ②电势的值与零电势的选取有关,通常取离电场无穷远处电势为零;实际应用中常取大地电势为零。

高中物理电场图像专题

场强图像 1.如图所示,两个带电荷量分别为2q和-q的点电 荷固定在x轴上,相距为2L。下列图象中,两个点电荷连线上场强大小E与x关系的图象可能是( ) 2.一带正电粒子在正点电荷的电场中仅受静电力作用,做初速度为零的直线运动。取该直线为x轴,起始点 O为坐标原点,则下列关于电场强度E、粒子动能E k、粒子电势能E p、粒子加速度a与位移x的关系图象可能的是( ) 3如图所示x轴上各点的电场强度如图所示,场强方 向与x轴平行,规定沿x轴正方向为正,一负点电荷从坐标原点O以一定的初速度沿x轴正方向运动,点电荷到达x2位置速度第一次为零,在x3位置第二次速度为零,不计粒子的重力。下列说法正确的是( ) A.O点与x2和O点与x3电势差U Ox2=U Ox3 B.点电荷从O点运动到x2,再运动到x3的过程中, 加速度先减小再增大,然后保持不变 C.点电荷从O点运动到x2,再运动到x3的过程中,速度先均匀减小再均匀增大,然后减小再增大D.点电荷在x2、x3位置的电势能最小 4.如图甲所示,两平行金属板MN、PQ的板长和板间距离相等,板间存在如图乙所示的随时间周期性变化的电场,电场方向与两板垂直,在t=0时刻,一不计重力的带电粒子沿板间中线垂直电场方向射入电场,粒子射入电场时的速度为v0,t=T时刻粒子刚好沿MN 板右边缘射出电场。则( ) A.该粒子射出电场时的速度方向一定是沿垂直电场方向的 B.在t= T 2 时刻,该粒子的速度大小为2v0 C.若该粒子在 T 2 时刻以速度v0进入电场,则粒子会打在板上 D.若该粒子的入射速度变为2v0,则该粒子仍在t=T 时刻射出电场 5.在x轴上关于原点对称的a、b两点处固定两个电荷量相等的点电荷,如图所示的E-x图象描绘了x轴上部分区域的电场强度(以x轴正方向为电场强度的正方向)。对于该电场中x轴上关于原点对称的c、d两点,下列结论正确的是( ) A.两点场强相同,c点电势更高 B.两点场强相同,d点电势更高 C.两点场强不同,两点电势相 等,均比O点电势高 D.两点场强不同,两点电势相等,均比O点电势低 6.(多选)静电场在x轴上的 场强E随x的变化关系如图所 示,x轴正方向为场强正方向, 带正电的点电荷沿x轴运动, 则点电荷( )

高中物理奥赛经典讲义全套资料

目录 中学生全国物理竞赛章程 (2) 全国中学生物理竞赛内容提要全国中学生物理竞赛内容提要 (5) 专题一力物体的平衡 (10) 专题二直线运动 (12) 专题三牛顿运动定律 (13) 专题四曲线运动 (16) 专题五万有引力定律 (18) 专题六动量 (19) 专题七机械能 (21) 专题八振动和波 (23) 专题九热、功和物态变化 (25) 专题十固体、液体和气体的性质 (27) 专题十一电场 (29) 专题十二恒定电流 (31) 专题十三磁场 (33) 专题十四电磁感应 (35) 专题十五几何光学 (37) 专题十六物理光学原子物理 (40)

中学生全国物理竞赛章程 第一章总则 第一条全国中学生物理竞赛(对外可以称中国物理奥林匹克,英文名为Chinese Physic Olympiad,缩写为CPhO)是在中国科协领导下,由中国物理学会主办,各省、自治区、直辖市自愿参加的群众性的课外学科竞赛活动,这项活动得到国家教育委员会基础教育司的正式批准。竞赛的目的是促使中学生提高学习物理的主动性和兴趣,改进学习方法,增强学习能力;帮助学校开展多样化的物理课外活动,活跃学习空气;发现具有突出才能的青少年,以便更好地对他们进行培养。 第二条全国中学生物理竞赛要贯彻“教育要面向现代化、面向世界、面向未来”的精神,竞赛内容的深度和广度可以比中学物理教学大纲和教材有所提高和扩展。 第三条参加全国中学生物理竞赛者主要是在物理学习方面比较优秀的学生,竞赛应坚持学生自愿参加的原则.竞赛活动主要应在课余时间进行,不要搞层层选拔,不要影响学校正常的教学秩序。 第四条学生参加竞赛主要依靠学生平时的课内外学习和个人努力,学校和教师不要为了准备参加竞赛而临时突击,不要组织“集训队”或搞“题海战术”,以免影响学生的正常学习和身体健康。学生在物理竞赛中的成绩只反映学生个人在这次活动中所表现出来的水平,不应当以此来衡量和评价学校的工作和教师的教学水平。 第二章组织领导 第五条全国中学生物理竞赛由中国物理学会全国中学生物理竞赛委员会(以下简称全国竞赛委员会)统一领导。全国竞赛委员会由主任1人、副主任和委员若干人组成。主任和副主任由中国物理学会常务理事会委任。委员的产生办法如下: 1.参加竞赛的省、自治区、直辖市各推选委员1人; 2.承办本届和下届决赛的省。自治区、直辖市各推选委员3人。 3.由中国物理学会根据需要聘请若干人任特邀委员。 在全国竞赛委员会全体会议闭会期间由主任和副主任组成常务委员会,行使全国竞赛委员会职权。 第六条在全国竞赛委员会领导下,设立命题小组、组织委员会和竞赛办公室等工作机构。命题小组成员由全国竞赛委员会聘请专家和高等院校教师担任。组织委员会由承办决赛的省、自治区、直辖市物理学会与有关方面协商组成,负责决赛期间各项活动的筹备与组织

高中物理选修3-1电势能和电势知识点总结

高中物理选修3-1电势能和电势知识点总结 一、电势差:电势差等于电场中两点电势的差值。电场中某点的电势,就是该点相对于零势点的电势差。 (1)计算式 (2)单位:伏特(V) (3)电势差是标量。其正负表示大小。 二、电场力的功 电场力做功的特点: 电场力做功与重力做功一样,只与始末位置有关,与路径无关。 注意:系统性、相对性 2.电势能的变化与电场力做功的关系 (1)电荷在电场中具有电势能。 (2)电场力对电荷做正功,电荷的电势能减小。 (3)电场力对电荷做负功,电荷的电势能增大。 (4)电场力做多少功,电荷电势能就变化多少。 (5)电势能是相对的,与零电势能面有关(通常把电荷在离场源电荷无限远处的电势能规定为零,或把电荷在大地表面上电势能规定为零。) (6)电势能是电荷和电场所共有的,具有系统性。 (7)电势能是标量。 3.电势能大小的确定

电荷在电场中某点的电势能在数值上等于把电荷从这点移到电势能为零处电场力所做的功。 三、电势 电势:置于电场中某点的试探电荷具有的电势能与其电量的比叫做该点的电势。是描述电场的能的性质的物理量。其大小与试探电荷的正负及电量q均无关,只与电场中该点在电场中的位置有关,故其可衡量电场的性质。 单位:伏特(V)标量 1.电势的相对性:某点电势的大小是相对于零点电势而言的。零电势的选择是任意的,一般选地面和无穷远为零势能面。 2.电势的固有性:电场中某点的电势的大小是由电场本身的性质决定的,与放不放电荷及放什么电荷无关。 3.电势是标量,只有大小,没有方向.(负电势表示该处的电势比零电势处电势低.) 4.计算时EP,q,都带正负号。 5.顺着电场线的方向,电势越来越低。 6.与电势能的情况相似,应先确定电场中某点的电势为零.(通常取离场源电荷无限远处或大地的电势为零.) 三、等势面 1.等势面:电场中电势相等的各点构成的面。 2.等势面的特点 ①等势面一定跟电场线垂直,在同一等势面的两点间移动电荷,电场力不做功; ②电场线总是由电势高的等势面指向电势低的等势面,任意两个等势面都不会相交; ③等差等势面越密的地方电场强度越大。

高中物理奥赛必看讲义——静电场

静电场 第一讲基本知识介绍 在奥赛考纲中,静电学知识点数目不算多,总数和高考考纲基本相同,但在个别知识点上,奥赛的要求显然更加深化了:如非匀强电场中电势的计算、电容器的连接和静电能计算、电介质的极化等。在处理物理问题的方法上,对无限分割和叠加原理提出了更高的要求。 如果把静电场的问题分为两部分,那就是电场本身的问题、和对场中带电体的研究,高考考纲比较注重第二部分中带电粒子的运动问题,而奥赛考纲更注重第一部分和第二部分中的静态问题。也就是说,奥赛关注的是电场中更本质的内容,关注的是纵向的深化和而非横向的综合。 一、电场强度 1、实验定律 a、库仑定律 内容; 条件:⑴点电荷,⑵真空,⑶点电荷静止或相对静止。事实上,条件⑴和⑵均不能视为对库仑定律的限制,因为叠加原理可以将点电荷之间的静电力应用到一般带电体,非真空介质可以通过介电常数将k进行修正(如果介质分布是均匀和“充分宽广”的,一般认为k′= k /εr)。只有条件⑶,它才是静电学的基本前提和出发点(但这一点又是常常被忽视和被不恰当地“综合应用”的)。 b、电荷守恒定律 c、叠加原理 2、电场强度 a、电场强度的定义 电场的概念;试探电荷(检验电荷);定义意味着一种适用于任何电场的对电场的检测手段;电场线是抽象而直观地描述电场有效工具(电场线的基本属性)。 b、不同电场中场强的计算 决定电场强弱的因素有两个:场源(带电量和带电体

的形状)和空间位置。这可以从不同电场的场强决定式看出—— ⑴点电荷:E = k 2 r Q 结合点电荷的场强和叠加原理,我们可以求出任何电场的场强,如—— ⑵均匀带电环,垂直环面轴线上的某点P :E = 2 322 ) R r (k Qr +,其中r 和R 的意义见图7-1。 ⑶均匀带电球壳 内部:E 内 = 0 外部:E 外 = k 2 r Q ,其中r 指考察点到球心的距离 如果球壳是有厚度的的(内径R 1 、外径R 2),在壳体中(R 1 <r <R 2): E = 2 3 1 3r R r k 34-πρ ,其中ρ为电荷体密度。这个式子的物理意义可以参照万有引力定律当中(条件部分)的“剥皮法则”理解〔)R r (3 433-πρ即为图7-2中虚线以内部分的总电量…〕。 ⑷无限长均匀带电直线(电荷线密度为λ):E = r k 2λ ⑸无限大均匀带电平面(电荷面密度为σ):E = 2πk σ 二、电势 1、电势:把一电荷从P 点移到参考点P 0时电场力所做的功W 与该电荷电量q 的比值,即 U = q W 参考点即电势为零的点,通常取无穷远或大地为参考点。 和场强一样,电势是属于场本身的物理量。W 则为电荷的电势能。 2、典型电场的电势 a 、点电荷 以无穷远为参考点,U = k r Q b 、均匀带电球壳 以无穷远为参考点,U 外 = k r Q ,U 内 = k R Q 3、电势的叠加 由于电势的是标量,所以电势的叠加服从代数加法。很显然,有了点电荷电势的表达式

高中物理奥赛讲义热学doc热学

热 学 热学知识在奥赛中的要求不以深度见长,但知识点却非常地多(考纲中罗列的知识点几乎和整个力学——前五部分——的知识点数目相等)。而且,由于高考要求对热学的要求逐年降低(本届尤其低得“离谱”,连理想气体状态方程都没有了),这就客观上给奥赛培训增加了负担。因此,本部分只能采新授课的培训模式,将知识点和例题讲解及时地结合,争取让学员学一点,就领会一点、巩固一点,然后再层叠式地往前推进。 一、分子动理论 1、物质是由大量分子组成的(注意分子体积和分子所占据空间的区别) 对于分子(单原子分子)间距的计算,气体和液体可直接用3分子占据的空间,对固体,则与分子的空间排列(晶体的点阵)有关。 【例题1】如图6-1所示,食盐(N a Cl )的晶体是由钠离子(图中的白色圆点表示)和氯离子(图中的黑色圆点表示)组成的,离子键两两垂直且键长相等。已知食盐的摩尔质量为58.5×10-3 kg/mol ,密度为2.2×103 kg/m 3 ,阿伏加德罗常数为6.0×1023 mol -1 ,求食盐晶体中两个距离最近的钠离子中心之间的距离。 【解说】题意所求即图中任意一个小立方块的变长(设为a )的2倍,所以求a 成为本题的焦点。 由于一摩尔的氯化钠含有N A 个氯化钠分子,事实上也含有2N A 个钠离子(或氯离子),所以每个钠离子占据空间为 v = A m ol N 2V 而由图不难看出,一个离子占据的空间就是小立方体的体积a 3 , 即 a 3 = A m ol N 2V = A m ol N 2/M ,最后,邻近钠离子之间的距离l = 2a 【答案】3.97×10-10 m 。 〖思考〗本题还有没有其它思路? 〖答案〗每个离子都被八个小立方体均分,故一个小立方体含有81 ×8个离子 = 2 1 分子,所以…(此法普遍适用于空间点阵比较复杂的晶体结构。) 2、物质内的分子永不停息地作无规则运动 固体分子在平衡位置附近做微小振动(振幅数量级为0.1A 0 ),少数可以脱离平衡位置运动。液体分子的运动则可以用“长时间的定居(振动)和短时间的迁移”来概括,这是由于液体分子间距较固体大的结果。气体分子基本“居无定所”,不停地迁移(常温下,速率数量级为102 m/s )。 无论是振动还是迁移,都具备两个特点:a 、偶然无序(杂乱无章)和统计有序(分子数比率和速率对应一定的规律——如麦克斯韦速率分布函数,如图6-2所示);b 、剧烈程度和温度相关。

高中物理电磁学和光学知识点公式总结大全

高中物理电磁学知识点公式总结大全 来源:网络作者:佚名点击:1524次 高中物理电磁学知识点公式总结大全 一、静电学 1.库仑定律,描述空间中两点电荷之间的电力 ,, 由库仑定律经过演算可推出电场的高斯定律。 2.点电荷或均匀带电球体在空间中形成之电场 , 导体表面电场方向与表面垂直。电力线的切线方向为电场方向,电力线越密集电场强度越大。 平行板间的电场 3.点电荷或均匀带电球体间之电位能。本式以以无限远为零位面。 4.点电荷或均匀带电球体在空间中形成之电位。 导体内部为等电位。接地之导体电位恒为零。 电位为零之处,电场未必等于零。电场为零之处,电位未必等于零。 均匀电场内,相距d之两点电位差。故平行板间的电位差。 5.电容,为储存电荷的组件,C越大,则固定电位差下可储存的电荷量就越大。电容本身为电中性,两极上各储存了+q与-q的电荷。电容同时储存电能,。 a.球状导体的电容,本电容之另一极在无限远,带有电荷-q。 b.平行板电容。故欲加大电容之值,必须增大极板面积A,减少板间距离d,或改变板间的介电质使k变小。 二、感应电动势与电磁波 1.法拉地定律:感应电动势。注意此处并非计算封闭曲面上之磁通量。 感应电动势造成的感应电流之方向,会使得线圈受到的磁力与外力方向相反。 2.长度的导线以速度v前进切割磁力线时,导线两端两端的感应电动势。若v、B、互相垂直,则 3.法拉地定律提供将机械能转换成电能的方法,也就是发电机的基本原理。以频率f 转动的发电机输出的电动势,最大感应电动势。 变压器,用来改变交流电之电压,通以直流电时输出端无电位差。 ,又理想变压器不会消耗能量,由能量守恒,故 4.十九世纪中马克士威整理电磁学,得到四大公式,分别为 a.电场的高斯定律 b.法拉地定律 c.磁场的高斯定律 d.安培定律 马克士威由法拉地定律中变动磁场会产生电场的概念,修正了安培定律,使得变动的电场会产生磁场。e.马克士威修正后的安培定律为 a.、 b.、 c.和修正后的e.称为马克士威方程式,为电磁学的基本方程式。由马克士威方程式,预测了电磁波的存在,且其传播速度。 。十九世纪末,由赫兹发现了电磁波的存在。 劳仑兹力。 右手定则:右手平展,使大拇指与其余四指垂直,并且都跟手掌在一个平面内。把右手放入磁场中,若磁力线垂直进入手心(当磁感线为直线时,相当于手心面向N极),大拇指指向导线运动方向,则四指所指方向

高三物理电场专题复习

电场复习指导意见 20XX 年课标版考试大纲本章特点 概念多、抽象、容易混淆。电场强度、电场力、电势、电势差、电势能、 电场力做功。 公式多。在帮助学生理解公式的来龙去脉、物理意义、适用条件的同时,可将其归类。 正负号含义多。在静电场中,物理量的正负号含义不同,要帮助学生正确理解物理量的正负值的含义。 知识综合性强。要把力学的所有知识、规律、解决问题的方法和能力应用 内 容要求说明 54.两种电荷.电荷守恒 55.真空中的库仑定律.电荷量 56.电场.电场强度.电场线.点电荷的场 强.匀强电场.电场强度的叠加 57.电势能.电势差.电势.等势面 58.匀强电场中电势差跟电场强度的关系 59.静电屏蔽 60.带电粒子在匀强电场中的运动 61.示波管.示波器及其应用 62.电容器的电容 63.平行板电容器的电容,常用的电容器 Ⅰ Ⅱ Ⅱ Ⅱ Ⅱ Ⅰ Ⅱ Ⅰ Ⅱ Ⅰ 带电粒子在匀强 电场中运动的计算,只 限于带电粒子进入电场时速度平行或垂直于场强的情况

到电场当中 具体复习建议 一.两种电荷,电荷守恒,电荷量(Ⅰ) 1.两种电荷的定义方式。(丝绸摩擦玻璃棒,定义玻璃棒带正点;毛皮 摩擦橡胶棒,定义橡胶棒带负电) 2.从物质的微观结构及物体带电方法 接触带电(所带电性与原带电体相同) 摩擦起电(两物体带等量异性电荷) 感应带电(两导体带等量异性电荷) 3.由于物体的带电过程就是电子的转移过程,所以带电过程中遵循电荷守恒。每个物体所带电量应为电子电量(基本电量)的整数倍。 4.知道相同的两金属球绝缘接触后将平分两球原来所带净电荷量。(注意电性)

二.真空中的库仑定律(Ⅱ)1.r r q kq F 2 2112 或 2 2121 12r q kq F F 方向在两点电荷连线上,满足同性相斥,异性相吸。2.规律在以下情况下可使用:(1)规定为点电荷;(2)可视为点电荷; (3)均匀带电球体可用点电荷等效处理,绝缘均匀带电球体间的库仑力可用库仑定律 2 21r q kq F 等效处理,但r 表示 两球心之间的距离。(其它形状的带电体不可用电荷中心等效) (4)用点电荷库仑定律定性分析绝缘带电金属球相互作用力的情况 两球带同性电荷时:2 21r q kq F r 表示两球心间距,方向在球心连线上 两球带异性电荷时:2 21r q kq F r 表示两球心间距,方向在球心连线上 3.点电荷库仑力参与下的平衡模型(两质量相同的带电通草球模型) 4.两相同的绝缘带电体相互接触后再放回原处 (1)相互作用力是斥力或为零(带等量异性电荷时为零) L mg F T α mgtg l q kq 2 2 1) sin 2(3 2 21sin 4cos l q kq mg T

高中物理 静电场 知识点归纳

静电场 第一讲 电场力的性质 一、 二、电荷及电荷守恒定律 1、 2、 自然界中只存在两种电荷,一种是正电,例如用丝绸摩擦玻璃棒,玻璃棒带正电;另一种带负电,用 毛皮摩擦橡胶棒,橡胶棒带负电。 3、 4、 电荷间存在着相互作用的引力或斥力(同性相吸,异性相斥)。 5、 6、 电荷在它的周围空间形成电场,电荷间的相互作用力就是通过电场发生的。电荷的多少叫电量。 元电荷e=×10-19 C ,所有带电体的电荷量都等于e的整数倍。点电荷 7、 8、 使物体带电叫做起电。使物体带电的方法有三种:(1)摩擦起电;(2)接触带电;(3)感应起电。 9、 10、 电荷既不能创造,也不能消灭,它只能从一个物体转移到另一个物体,或从物体的一部分转移到 另一部分,在转移的过程中,电荷的总量不变。这叫做电荷守恒定律。 【重点理解】(1)摩擦起电;(2)接触带电;(3)感应起电 当两个物体互相摩擦时,一些束缚得不紧的电子往往从一个物体转移到另一个物体,于是原来电中性的物体由于得到电子而带负电,失去电子的物体带正电,这就是摩擦起电. 当一个带电体靠近导体,由于电荷间相互吸引或排斥,导体中的自由电荷便会趋向或远离带电体,使导体靠近带电体的一端带异号电荷,远离带电体的一端带同号电荷,这就是感应起电,也叫静电感应. 接触起电指让不带电的物体接触带电的物体,则不带电的物体也带上了与带电物体相同的电荷,如把带负电的橡胶棒与不带电的验电器金属球接触,验电器就带上了负电,且金属箔片会张开;带正电的物体接触不带电的物体,则是不带电物体上的电子在库仑力的作用下转移到带正电的物体上,使原来不带电的物体由于失去电子而带正电。 实质:电子的得失或转移 二、库仑定律 1、内容:在真空中两个点电荷之间相互作用的电力,跟它们的电荷量的乘积成正比,跟它们的距离的平方成反比,作用力的方向在它们的连线上。 2、公式:2 2 1r Q Q k F ,F叫库仑力或静电力,也叫电场力,F可以是引力,也可以是斥力,K叫静电力常量,公式中各量均取国际单位制单位时,K=×109 N ·m 2 /C 2

高中物理 静电场及其应用精选测试卷专题练习(word版

高中物理 静电场及其应用精选测试卷专题练习(word 版 一、第九章 静电场及其应用选择题易错题培优(难) 1.如图,真空中x 轴上关于O 点对称的M 、N 两点分别固定两异种点电荷,其电荷量分别为1Q +、2Q -,且12Q Q >。取无穷远处电势为零,则( ) A .只有MN 区间的电场方向向右 B .在N 点右侧附近存在电场强度为零的点 C .在ON 之间存在电势为零的点 D .MO 之间的电势差小于ON 之间的电势差 【答案】BC 【解析】 【分析】 【详解】 AB .1Q +在N 点右侧产生的场强水平向右,2Q -在N 点右侧产生的场强水平向左,又因为 12Q Q >,根据2Q E k r =在N 点右侧附近存在电场强度为零的点,该点左右两侧场强方向相反,所以不仅只有MN 区间的电场方向向右,选项A 错误,B 正确; C .1Q +、2Q -为两异种点电荷,在ON 之间存在电势为零的点,选项C 正确; D .因为12Q Q >,MO 之间的电场强度大,所以MO 之间的电势差大于ON 之间的电势差,选项D 错误。 故选BC 。 2.如图所示,竖直平面内有半径为R 的半圆形光滑绝缘轨道ABC ,A 、C 两点为轨道的最高点,B 点为最低点,圆心处固定一电荷量为+q 1的点电荷.将另一质量为m 、电荷量为+q 2的带电小球从轨道A 处无初速度释放,已知重力加速度为g ,则() A .小球运动到 B 2gR B .小球运动到B 点时的加速度大小为3g C .小球从A 点运动到B 点过程中电势能减少mgR D .小球运动到B 点时对轨道的压力大小为3mg +k 12 2 q q R 【答案】AD 【解析】

高中物理奥赛必看讲义 直线运动

第一部分:直线运动 一、复习基础知识点 一、 考点内容 1.机械运动,参考系,质点,位移和路程。 2.匀速直线运动:速度,位移公式vt =x ,t x -图以及t v -图。 3.匀变速直线运动,加速度,平均速度,瞬时速度,速度公式at v v +=0,位移公式 202 1at t v x +=,推广式ax v v 22 2=-,t v -图。 二、 知识结构 ????????????? ??????? ???????? ? ? ? ?? ? ? ?=?????????=-+= -=? ??+=+== ?? ?? ? ???????? ?? ?????→ ??t v x ax v v t v v x at vt x at t v x at v v vt x 非匀变速匀变速匀速规律非匀变速直线运动匀减速直线运动匀加速直线运动 匀变速直线运动匀速直线运动种类竖直上抛运动自由落体运动匀变速直线运动匀速直线运动物理过程质点研究对象理想模型物理量参考系运动 名词概念直线运动2221212 0202200 三、 复习思路 本课时重点是瞬时速度和加速度概念,以及匀变速直线运动的规律,难点是加速度的理解。而匀变速直线运动规律与体育竞技、交通运输以及航空航天相结合是高考考查的热点。对匀变速直线运动规律要熟练掌握,同时学习研究物理的基本方法,如从简单问题入手的方法、运用图象研究物理问题和用数学公式表达物理规律的方法、实验的方法等等。 匀变速直线运动是高中阶段物理学习的重点内容之一,对匀变速直线运动的学习与研究要注意两方面的内容:一是如何描述物体的运动,匀变速直线运动的特点是什么;二是匀变速直线运动的基本规律是什么。在这一单元中,我们仅仅研究物体的运动规律而不涉及力与运动的关系,能否清楚正确的分析物体的运动过程是本单元要求的一个重要能力,分析运动过程是求解力学问题的主要环节,是正确运用各种知识的前提条件。能否正确运

镜像法-高中物理竞赛讲义

镜像法 思路 用假想的镜像电荷代替边界上的感应电荷。 保持求解区域中场方程和边界条件不变。 使用范围:界面几何形状较规范,电荷个数有限,且离散分布于有限区域。 使用范围 界面几何形状较规范,电荷个数有限,且离散分布于有限区域。 步骤 确定镜像电荷的大小和位置。 去掉界面,按原电荷和镜像电荷求解所求区域场。 求解边界上的感应电荷。 求解电场力。 平面镜像1 点电荷对平面的镜像 (a) 无限大接地导体平面上方有点电荷q (b)用镜像电荷-q代替导体平面上方的感应电荷 图4.4.1 点电荷的平面镜像 在无限大接地导体平面(YOZ平面)上方有一点电荷q,距离导体平面的高度为h。 用位于导体平面下方h处的镜像电荷-q代替导体平面上的感应电荷,边界条件维持不变,即YOZ平面为零电位面。 去掉导体平面,用原电荷和镜像电荷求解导体上方区域场,注意不能用原电荷和镜像电荷求解导体下方区域场。

电位: (4.4.2.1 ) 电场强度: (4.4.2.2) 其中, 感应电荷:=> (4.4.2.3) 电场力: (4.4.2.4) 图4.4.2 点电荷的平面镜像图4.4.3 单导线的平面镜像 无限长单导线对平面的镜像 与地面平行的极长的单导线,半径为a,离地高度为h。

用位于地面下方h处的镜像单导线代替地面上的感应电荷,边界条件维持不变。 将地面取消而代之以镜像单导线(所带电荷的电荷密度为) 电位: (4.4.2.5) 对地电容 : (4.4.2.6 平面镜像2 无限长均匀双线传输线对平面的镜 像 与地面平行的均匀双线传输线, 半径为a,离地高度为h,导线间距离为d, 导线一带正电荷+,导线二带负电荷-。 用位于地面下方h处的镜像双 导线代替地面上的感应电荷,边界条件维 持不变。 将地面取消而代之以镜像双导线。 图 4.4.4 无限长均匀传输线对地面的镜像 求解电位: (4.4.2.8) (4.4.2.9)

高二物理知识点总结

电场 库仑定律、电场强度、电势能、电势、电势差、电场中的导体、导体 知识要点: 1、电荷及电荷守恒定律 ⑴自然界中只存在正、负两中电荷,电荷在它的同围空间形成电场,电荷间 的相互作用力就是通过电场发生的。电荷的多少叫电量。基本电荷 e =?-1610 19 .C 。 ⑵使物体带电也叫起电。使物体带电的方法有三种:①摩擦起电 ②接触带 电 ③感应起电。 ⑶电荷既不能创造,也不能被消灭,它只能从一个物体转移到另一个物体,或从的体的这一部分转移到另一个部分,这叫做电荷守恒定律。 2、库仑定律 在真空中两个点电荷间的作用力跟它们的电量的乘积成正比,跟它们间的距 离的平方成反比,作用力的方向在它们的连线上,数学表达式为F K Q Q r =122 , 其中比例常数K 叫静电力常量,K =?90109.N m C 22·。 库仑定律的适用条件是(a)真空,(b)点电荷。点电荷是物理中的理想模型。当带电体间的距离远远大于带电体的线度时, 可以使用库仑定律,否则不能使用。例如半径均为r 的金属球如 图9—1所示放置,使两球边缘相距为r ,今使两球带上等量的异种电荷Q ,设两电荷Q 间的库仑力大小为F ,比较F 与K Q r 22 3() 的大小关系,显然,如果电荷 能全部集中在球心处,则两者相等。依题设条件,球心间距离3r 不是远大于r ,故不能把两带电体当作点电荷处理。实际上,由于异种电荷的相互吸引,使电荷分布在两球较靠近的球面处,这样电荷间距离小于3r ,故F K Q r >22 3() 。同理, 若两球带同种电荷Q ,则F K Q r <22 3() 。 3、电场强度 ⑴电场的最基本的性质之一,是对放入其中的电荷有电场力的作用。电场的这种性质用电场强度来描述。在电场中放入一个检验电荷q ,它所受到的电场力 F 跟它所带电量的比值F q 叫做这个位置上的电场强度,定义式是E F q = ,场强 是矢量,规定正电荷受电场力的方向为该点的场强方向,负电荷受电场力的方向与该点的场强方向相反。 由场强度E 的大小,方向是由电场本身决定的,是客观存在的,与放不放检

新版高一物理竞赛讲义

高中物理《竞赛辅导》力学部分 目录 :力学中的三种力 【知识要点】 (一)重力 重力大小G=mg,方向竖直向下。一般来说,重力是万有引力的一个分力,静止在地球表面的物体,其万有引力的另一个分力充当物体随地球自转的向心力,但向心力极小。 (二)弹力 1.弹力产生在直接接触又发生非永久性形变的物体之间(或发生非永久性形变的物体一部分和另一部分之间),两物体间的弹力的方向和接触面的法线方向平行,作用点在两物体的接触面上.2.弹力的方向确定要根据实际情况而定. 3.弹力的大小一般情况下不能计算,只能根据平衡法或动力学方法求得.但弹簧弹力的大小可用.f=kx(k 为弹簧劲度系数,x为弹簧的拉伸或压缩量)来计算. 在高考中,弹簧弹力的计算往往是一根弹簧,而竞赛中经常扩展到弹簧组.例如:当劲度系数分别为k1,k2,…的若干个弹簧串联使用时.等效弹簧的劲度系数的倒数为:,即弹簧变软;反之.若

以上弹簧并联使用时,弹簧的劲度系数为:k=k 1+…k n ,即弹簧变硬.(k=k 1+…k n 适用于所有并联弹簧的原长相等;弹簧原长不相等时,应具体考虑) 长为 的弹簧的劲度系数为k ,则剪去一半后,剩余 的弹簧的劲度系数为2k (三)摩擦力 1.摩擦力 一个物体在另一物体表面有相对运动或相对运动趋势时,产生的阻碍物体相对运动或相对运动趋势的力叫摩擦力。方向沿接触面的切线且阻碍物体间相对运动或相对运动趋势。 2.滑动摩擦力的大小由公式f=μN 计算。 3.静摩擦力的大小是可变化的,无特定计算式,一般根据物体运动性质和受力情况分析求解。其大小范围在0<f≤f m 之间,式中f m 为最大静摩擦力,其值为f m =μs N ,这里μs 为最大静摩擦因数,一般情况下μs 略大于μ,在没有特别指明的情况下可以认为μs =μ。 4.摩擦角 将摩擦力f 和接触面对物体的正压力N 合成一个力F ,合力F 称为全反力。在滑动摩擦情况下定义tgφ=μ=f/N ,则角φ为滑动摩擦角;在静摩擦力达到临界状态时,定义tgφ0=μs =f m /N ,则称φ0为静摩擦角。由于静摩擦力f 0属于范围0<f≤f m ,故接触面作用于物体的全反力同接触面法线 的夹角≤φ0,这就是判断物体不发生滑动的条件。换句话说,只要全反力的作用线落在(0,φ0)范围时,无穷大的力也不能推动木块,这种现象称为自锁。 本节主要内容是力学中常见三种力的性质。在竞赛中以弹力和摩擦力尤为重要,且易出错。弹力和摩擦力都是被动力,其大小和方向是不确定的,总是随物体运动性质变化而变化。弹力中特别注意轻绳、轻杆及胡克弹力特点;摩擦力方向总是与物体发生相对运动或相对运动趋势方向相反。另外很重要的一点是关于摩擦角的概念,及由摩擦角表述的物体平衡条件在竞赛中应用很多,充分利用摩擦角及几何知识的关系是处理有摩擦力存在平衡问题的一种典型方法。 【典型例题】 【例题1】如图所示,一质量为m 的小木块静止在滑动摩擦因数为μ=的水平面上,用一个与水平方 向成θ角度的力F 拉着小木块做匀速直线运动,当θ角为多大时力F 最小? 【例题2】如图所示,有四块相同的滑块叠放起来置于水平桌面上,通过细绳和定滑轮相互联接起来.如果所有的接触面间的摩擦系数均为μ,每一滑块的质量均为 m ,不计滑轮的摩擦.那么要拉动最上面一块滑块至少需要多大的水平拉力?如果有n 块这样的滑块叠放起 来,那么要拉动最上面的滑块,至少需多大的拉力? 【例题3】如图所示,一质量为m=1㎏的小物块P 静止在倾角为θ=30°的斜面 上,用平行于斜面底边的力F=5N 推小物块,使小物块恰好在斜面上匀速运动,试求小物块与斜面间的滑 动摩擦因数(g 取10m/s 2 )。 【练习】 1、如图所示,C 是水平地面,A 、B 是两个长方形物块,F 是作用在物块B 上沿水平方向的力,物块A 和B 以相同的速度作匀速直线运动,由此可知, A 、 B 间的滑动 θ F P θ F A B F C N F f m f 0 α φ

高一物理竞赛讲义第3讲.教师版

第3讲运动的关联 温馨寄语 前面我们讨论了物理量以及物理量之间的关系,尤其是变化率变化量的关系。我们还学习了非常牛的几个方法:相对运动法,微元法,图像法。 然而,物理抽象思想除了物理量之外,还有一大块就是模型,而各种模型都有自己的一些特点,根据这些特点,决定了这些模型的运动学性质。探究这些性质就成了我们今天的主要任务。 知识点睛 一、分速度和合速度 首先速度作为矢量是可以合成和分解的。但是同样的作为矢量,速度的合成和分解,和力这个矢量有一点不同。这个不同在于,两个作用在同一个物体上的力,可以直接合成。但是同一个物体,已经知道在两个方向上的速度,最后的总速度,并不一定是这两个速度的矢量和。 (CPhO选讲)例如: (这里面速度是通过两个速度各自从矢量末端做垂线相交得到的) 第二个原则就是:合速度=真实的这个物体的运动速度矢量。

这里力和速度的区别是:我们看到的多个力,不见得是“合力”在各个方向上的投影;但是我们看到的多个速度,就是“合速度”在各个方向上的分速度。所以,当且仅当两个分速度相互垂直的时候,合速度等于两个分速度的矢量和。 这个东西大家可以这样想。遛狗的时候,每个狗的力是作用在一起的,所以遛狗越多,需要的力越大。但是每个狗都有个速度,最后遛狗人的速度和狗的速度大小还是差不多的,不会因为遛狗个数越多就速度越快…… 二、体现关联关系的模型 1.绳(杆)两端运动的关联:实际运动时合运动,由伸缩运动与旋转运动合成。 实际运动=旋转运动+伸缩运动 【例】吊苹果逗小孩儿有两种逗法,一种是伸缩,一种是摆动。 不难总结: 一段不可伸长的细绳伸缩运动速度相等——沿绳(杆)速度相等,转速无论多大不可改变绳子长度。 2.叠加运动的关联 先举个例子:如图的定滑轮,两边重物都在竖直运动,并且滑轮也在竖直运动,设两边重物位移分别沃为x 1x 2,轮中心的位移为x 。 不难由绳子长度不变得位移关系: 12 2x x x += 对应的必然有速度关系: 12 2v v v += 加速度关系: 12 2 a a a += 我们用运动关联的目的是为了使未知量变少。 物理学中非常重要的思想就是把现实中的物体抽象成为理想的模型,然后用物理原理以及模型对应的牵连关系来解决问题.常见的模型有杆,绳,斜面,等等. 3.轻杆 杆两端,沿着杆方向的速度相同\ 4.轻绳 绳子的两端也是沿着绳子的方向速度相同\.绳子中的力是可以突变的,突变的条件是剪断或者是突然绷紧等等. 5.斜面

高中物理选修3-1静电场重点题型专题练习

静电场重点题型复习 题型一、利用电场线判断带电粒子运动情况 1.某静电场中的电场线如图所示,带电粒子在电场中仅受电场力作用,其运动轨迹如图中虚线所示,由M运动到N, 以下说法正确的是() A.粒子必定带正电荷 B.粒子在M点的电势能小于它在N点的电势能 C.粒子在M点的加速度小于它在N点的加速度 D.粒子在M点的动能小于它在N点的动能 2.如图所示,a、b带等量异种电荷,MN为a、b连线的中垂线,现有一个带电粒子从M点以一定的初速度v射出,开始时一段轨迹如图中实线所示,不考虑粒子的重力,则在飞越该电场的过程中() A.该粒子带正电 B.该粒子的动能先增大,后减小 C.该粒子的电势能先减小,后增大 D.该粒子运动到无穷远处后,速率大小一定仍为v 3.某电场的电场线分布如图所示,以下说法正确的是( ) A.c点场强大于b点场强 B.c点电势高于b点电势 C.若将一试电荷+q由a点释放,它将沿电场线运动到b点 D.若在d点再固定一点电荷-Q,将一试探电荷+q由a移至b的过程中,电 势能减小 4.如图所示,在竖直平面内,带等量同种电荷的小球A、B,带电荷量为-q(q>0),质量都为m,小球可当作质点处理.现固定B球,在B球正上方足够高的地方释放A球,则从释放A球开始到A球运动到最低点 的过程中() A小球的动能不断增加 B.小球的加速度不断减小 C.小球的机械能不断减小 D.小球的电势能不断减小 5.如图所示,平行的实线代表电场线,方向未知,电荷量为1×10-2C的正电荷在电场中只受电场力作用,该电荷由A点运动到B点,动能损失了0.1J,若A点电势为10V,则() A.B点电势为零 B.电场线方向向左 C.电荷运动的轨迹可能是图中曲线① D.电荷运动的轨迹可能是图中曲线②

人教版高中物理选修3-1静电场专题练习

高中物理学习材料 金戈铁骑整理制作 静电场专题练习 1.电子伏(eV)是电学中的一个重要单位,1eV=__________________J。 2.将一个电量为1×10-5C的正电荷从从无穷远处移到电场中的A点,需克服电场力做功6×10-3J,则A点的电势为φA=_________V;如果此电荷从无穷远处移到电场里的另一点B时,电场力做功0.02J,则A、B两点电势差为U AB=_________V;如果另一个电量是-0.2C的负电荷从A移到B,则电场做功为_____________J。 3.规定无穷远处电势为零,则负点电荷周围空间的电势为__________值;一正电荷位于某负点电荷产生的电场内,它的电势能为___________值;一负电荷位于某负点电荷产生的电场内,它的电势能为___________值。 4.在电场中A、B两点的电势分别为φA=300V,φB=200V,则A、B间的电势差U AB=___________,一个质子从A点运动到B点,电场力做功_____________,质子动能的增量为______________。 5.将一个电量-2×10-8C的点电荷,从零电势点O移到M点需克服电场力做功4×10-8J,则M点电势φM=___________;若将该电荷从M点再移至N点,电场力做功1.4×10-7J,则N 点电势φN=__________,M、N两点间的电势差U MN =_____________。 6.电场中A点电势φA=80V,B点电势φB= -20V,C点电势φC=80V,把q= -3×10-6C的电荷从B点移到C点的过程中电场力做功W BC=______________,从C点移到A点,电场力做功W CA=______________。 7.在电场中,A点的电势高于B点的电势,则 A.把负电荷从A点移到B点,电场力做负功 B.把负电荷从A点移到B点,电场力做正功 C.把正电荷从A点移到B点,电场力做负功 D.把正电荷从A点移到B点,电场力做正功 8.在静电场中,关于场强和电势的说法正确的是 A.电场强度大的地方电势一定高 B.电势为零的地方场强也一定为零 C.场强为零的地方电势也一定为零 D.场强大小相同的点电势不一定相同 9.关于电势差和电场力做功的说法中,正确的是 A.电势差的大小由电场力在两点间移动电荷做的功和电荷的电量决定 B.电场力在两点间移动电荷做功的多少由两点间的电势差和该电荷的电量决定 C.电势差是矢量,电场力做功是标量 D.在匀强电场中与电场线垂直方向上任意两点间的电势差均为零

高中物理竞赛讲义——微积分初步

高中物理竞赛讲义——微积分初步 一:引入 【例】问均匀带电的立方体角上一点的电势是中心的几 倍。 分析: ①根据对称性,可知立方体的八个角点电势相等;将原立 方体等分为八个等大的小立方体,原立方体的中心正位于个小立方体角点位置;而根据电势叠加原理,其电势即为八个小立方体角点位置的电势之和,即U 1=8U 2 ; ②立方体角点的电势与什么有关呢?电荷密度ρ;二立方体的边长a ;三立方体的形状; 根据点电荷的电势公式U=K Q r 及量纲知识,可猜想边长为a 的立方体角点电势为 U=CKQ a =Ck ρa 2 ;其中C 为常数,只与形状(立方体)及位置(角点)有关,Q 是总电量,ρ是电荷密度;其中Q=ρa 3 ③ 大立方体的角点电势:U 0= Ck ρa 2 ;小立方体的角点电势:U 2= Ck ρ(a 2 )2=CK ρa 2 4 大立方体的中心点电势:U 1=8U 2=2 Ck ρa 2 ;即U 0=12 U 1 【小结】我们发现,对于一个物理问题,其所求的物理量总是与其他已知物理量相关联,或者用数学语言来说,所求的物理量就是其他物理量(或者说是变量)的函数。如果我们能够把这个函数关系写出来,或者将其函数图像画出来,那么定量或定性地理解物理量的变化情况,帮助我们解决物理问题。 二:导数 ㈠ 物理量的变化率 我们经常对物理量函数关系的图像处理,比如v-t 图像,求其斜率可 以得出加速度a ,求其面积可以得出位移s ,而斜率和面积是几何意义上 的微积分。我们知道,过v-t 图像中某个点作出切线,其斜率即a= △v △t . 下面我们从代数上考察物理量的变化率: 【例】若某质点做直线运动,其位移与时间的函数关系为上s=3t+2t 2,试求其t 时刻的速度的表达式。(所有物理量都用国际制单位,以下同)

高二物理静电场知识点

高二物理静电场知识点 1.电荷电荷守恒定律点电荷 自然界中只存在正、负两中电荷,电荷在它的同围空间形成电场,电荷间的相互作用力就是通过电场发生的。电荷的多少叫电量。基本电荷e = 1.6*10^-19C。带电体电荷量等于元电荷的整数倍Q=ne 使物体带电也叫起电。使物体带电的方法有三种:①摩擦起电②接触带电③感应起电。 电荷既不能创造,也不能被消灭,它只能从一个物体转移到另一个物体,或从的体的这一部分转移到另一个部分,这叫做电荷守恒定律。 带电体的形状、大小及电荷分布状况对它们之间相互作用力的影响可以忽略不计时,这样的带电体就可以看做带电的点,叫做点电荷。 2.库仑定律 公式F = KQ1Q2/r^2真空中静止的两个点电荷 在真空中两个点电荷间的作用力跟它们的电量的乘积成正比,跟它们间的距离的平方成反比,作用力的方向在它们的连线上,其中比例常数K叫静电力常量,K = 9.0*10^9Nm^2/C^2。F:点电荷间的作用力N, Q1、Q2:两点电荷的电量C,r:两点电荷间的距离m,方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引 库仑定律的适用条件是1真空,2点电荷。点电荷是物理中的理想模型。当带电体间的距离远远大于带电体的线度时,可以使用库仑定律,否则不能使用。 3.静电场电场线 为了直观形象地描述电场中各点的强弱及方向,在电场中画出一系列曲线,曲线上各点的切线方向表示该点的场强方向,曲线的疏密表示电场的弱度。 电场线的特点: 1始于正电荷或无穷远,终止负电荷或无穷远; 2任意两条电场线都不相交。 电场线只能描述电场的方向及定性地描述电场的强弱,并不是带电粒子在电场中的运动轨迹。带电粒子的运动轨迹是由带电粒子受到的合外力情况和初速度共同决定。

相关文档
相关文档 最新文档