文档库 最新最全的文档下载
当前位置:文档库 › 求解VRPSDP 问题的改进模拟退火遗传算法

求解VRPSDP 问题的改进模拟退火遗传算法

求解VRPSDP 问题的改进模拟退火遗传算法
求解VRPSDP 问题的改进模拟退火遗传算法

遗传算法模拟退火matlab编程

单钻头退火算法matlab编程 clear clc a = 0.999; % 温度衰减函数的参数 t0 = 97; tf = 3; t = t0; Markov_length = 2800; % Markov链长度 coordinates = [ ]; coordinates(:,1) = []; amount = size(coordinates,1); % 城市的数目 % 通过向量化的方法计算距离矩阵 dist_matrix = zeros(amount, amount); coor_x_tmp1 = coordinates(:,1) * ones(1,amount); coor_x_tmp2 = coor_x_tmp1'; coor_y_tmp1 = coordinates(:,2) * ones(1,amount); coor_y_tmp2 = coor_y_tmp1'; dist_matrix = sqrt((coor_x_tmp1-coor_x_tmp2).^2 + ... (coor_y_tmp1-coor_y_tmp2).^2); sol_new = 1:amount; % 产生初始解 % sol_new是每次产生的新解;sol_current是当前解;sol_best是冷却中的最好解; E_current = inf;E_best = inf; % E_current是当前解对应的回路距离; % E_new是新解的回路距离; % E_best是最优解的 sol_current = sol_new; sol_best = sol_new; p = 1; while t>=tf for r=1:Markov_length % Markov链长度 % 产生随机扰动 if (rand < 0.5) % 随机决定是进行两交换还是三交换 % 两交换 ind1 = 0; ind2 = 0; while (ind1 == ind2) ind1 = ceil(rand.*amount); ind2 = ceil(rand.*amount); end tmp1 = sol_new(ind1); sol_new(ind1) = sol_new(ind2);

遗传-模拟退火-蚁群三个算法求解TSP的对比讲解

数学与统计学院 智能计算及应用课程设计 设计题目:智能计算解决旅行商问题 摘要 本文以遗传算法、模拟退火、蚁群算法三个算法解决旅行商问题,将三个算法进行比较分析。目前这三个算法广泛应用于各个领域中,本文以31个城市为例,运用遗传算法、模拟退火、蚁群算法分别进行了计算,将他们的计算结果进行了比较分析。 关键词:遗传算法模拟退火蚁群算法旅行商问题 背景: 遗传算法: 20世纪60年代初,美国Michigan大学的John Holland教授开始研究自然和人工系统的自适应行为,在从事如何建立能学习的机器的研究过程中,受达尔文进化论的启发,逐渐意识到为获得一个好的算法仅靠单个策略建立和改进是不够的,还要依赖于一个包含许多候选策略的群体的繁殖,从而提出了遗传算法的基本思想。 20世纪60年代中期,基于语言智能和逻辑数学智能的传统人工智能十分兴盛,而基于自然进化思想的模拟进化算法则遭到怀疑与反对,但Holland及其指导的博士仍坚持这一领域的研究。Bagley发表了第一篇有关遗传算法应用的论文,并首先提出“遗传算法”这一术语,在其博士论文中采用双倍体编码,发展了复制、交叉、变异、显性、倒位等基因操作算子,并敏锐地察觉到防止早熟的机理,发展了自组织遗传算法的概念。与此同时,Rosenberg在其博士论文中进行了单细胞生物群体的计算机仿真研究,对以后函数优化颇有启发,并发展了自适应交换策略,在遗传操作方面提出了许多独特的设想。Hollistien在其1971年发表的《计算机控制系统的人工遗传自适应方法》论文中首次将遗传算法应用于函数优化,并对优势基因控制、交叉、变异以及编码技术进行了深入的研究。 人们经过长期的研究,在20世纪}o年代初形成了遗传算法的基本框架。1975年Holland 出版了经典著作“Adaptation in Nature and Artificial System",该书详细阐述了遗传算

爬山算法、模拟退火算法、遗传算法

一.爬山算法( Hill Climbing ) 介绍模拟退火前,先介绍爬山算法。爬山算法是一种简单的贪心搜索算 法,该算法每次从当前解的临近解空间中选择一个最优解作为当前解,直到 达到一个局部最优解。 爬山算法实现很简单,其主要缺点是会陷入局部最优解,而不一定能搜 索到全局最优解。如图1所示:假设C点为当前解,爬山算法搜索到A点 这个局部最优解就会停止搜索,因为在A点无论向那个方向小幅度移动都不 能得到更优的解。 二.模拟退火(SA,Simulated Annealing)思想(跟人一样找不 到最优解就最产生疑惑,我到底需不需要坚持,随着时间的推移,逐渐的慢慢的放弃去追寻最优解的念头) 爬山法是完完全全的贪心法,每次都鼠目寸光的选择一个当前最优解,因此只能搜索到局部的最优值。模拟退火其实也是一种贪心算法,但是它的搜索过程引入了随机因素。模拟退火算法以一定的概率来接受一个比当前解要差的解,因此有可能会跳出这个局部的最优解,达到全局的最优解。 以图1为例,模拟退火算法在搜索到局部最优解A后,会以一定的概率接受到E的移动。也许经过几次这样的不是局部最优的移动后会到达D点,于是就跳出了局部最大值A。 若J( Y(i+1) )>= J( Y(i) ) (即移动后得到更优解),则总是接受该移动 若J( Y(i+1) )< J( Y(i) ) (即移动后的解比当前解要差),则以一定的概率接受移动,而且这个概率随着时间推移逐渐降低(逐渐降低才能趋向稳定) 这里的“一定的概率”的计算参考了金属冶炼的退火过程,这也是模拟退火算法名称的由来。 根据热力学的原理,在温度为T时,出现能量差为dE的降温的概率为P(dE),表示为: P(dE) = exp( dE/(kT) ) 其中k是一个常数,exp表示自然指数,且dE<0。这条公式说白了就是:温度越高,出现一次能量差为dE的降温的概率就越大;温度越低,则出现降温的概率就越小。又由于dE总是小于0(否则就不叫退火了),因此dE/kT < 0 ,所以P(dE)的函数取值范围是(0,1) 。 随着温度T的降低,P(dE)会逐渐降低。 我们将一次向较差解的移动看做一次温度跳变过程,我们以概率P(dE)来接受这样的移动。 关于爬山算法与模拟退火,有一个有趣的比喻:(有点意思)

模拟退火算法原理及改进

作者简介:李香平(1978 ̄),男,湖北监利人,中国地质大学计算机学院硕士研究生,研究方向为科学研究与可视化;张红阳(1982 ̄),男,湖北咸宁 人,中国地质大学计算机学院硕士研究生,研究方向为数据挖掘与数据仓库。 模拟退火算法原理及改进 李香平,张红阳 (中国地质大学计算机学院,湖北武汉430074) 摘 要:模拟退火算法是一种强大的随机搜索算法,能应用于许多前提信息很少的问题,能渐进地收敛于最优值。对 SA算法进行了介绍,论述了SA算法的原理并对算法进行了改进,展示了计算实验的结果。 关键词:模拟退火;全局优化中图分类号:TP312 文献标识码:A 文章编号:1672-7800(2008)04-0047-02 0引言 近年来,传统的单一算法越来越不适应大规模非线性规划 问题。它们要求目标函数是可微的和收敛的。SA能很好地弥补它们的缺陷。 从用于统计力学的MonteCarlo方法上受到启发,SA算法在 1983被Kirkpatrick提出来。对比传统局部搜索算法,SA在搜索 时会在搜索空间上下移动而不依赖初始条件,擅长解决多维问题。此外,它能处理任意程度的非线性、 不连续和随机的问题。能处理任意边界和约束的评估函数。因此,它能轻易处理有脊背和高地的函数。只要初温高、退火表适当,它就能得到全局最优。SA成功应用于组合优化、神经网络、图像处理和代码设计。 1模拟退火算法原理 组合优化问题是在给定的约束条件下,求目标函数的最值 的问题。设(S,f)是组合优化问题的一个实例,iopt∈S若对所有 i∈S,都有f(iopt)≥f(i),则称f(iopt)≤f(i)为minf(i)的最优解。 SA来源于物理热力学原理,综合了固体退火与组合优化 之间的类似性。类似固体的复杂系统,先被加热到一个物质粒子能自由移动的很高的温度,当它慢慢冷却时,它的能量减少。如果“冷却”过程足够慢,系统将忽略局部稳定构造,到达能量最低状态,即基态。 在模拟的每一步中,新解的产生按照Metropolistransition法则,一个新的状态从现有的状态中产生,这个法则能以一定的概率接受能量上升(即产生劣解)的新状态,而能量下降是优化的总目的。法则如下所示: p(x=>y)= 1, f$%y≤f$%xexp-f$% xf$%y $ % , otherwis&e f是系统能量,t是温度。SA的一般框架: Generatedinitialstateatrandom;Generatedinitialtemperature;REPEATREPEAT y=generate(,); IFaccept(,y,)THEN=y UNTIL'innerloopstopcriterion'satisfied 为了提高SA的性能,我们应该仔细处理控制参数的协调。(1)初始温度的选择。初始温度太高会花费高昂的计算时间,太低会拒绝劣解的接受,会丢失SA全局优化的优点。本文提出了一个初始温度的公式: t0=’f+ lnx -1 ’f+ 是函数增量的平均值,χ 是初始的接受概率。(2)温度降低策略。温度降低越快,陷入局部的概率就越大。然而,温度降低太慢会导致算法速度慢得不能接受。本文采用了一种快速的非线性降低法: tk= t0 1+k k=1,2,3,…… (3)适当的邻域结构。在退火期间,步长太小导致算法在探索相位空间效率低,太大新解总被拒绝。在持续优化时,新的等价值均一地按间距分布在以xi的坐标为中心的邻域中,沿轴的间距的一半被看作步长向量ξ。当点落在f的定义域内时,就随机产生新解。 (4)终止标准。内循环是单一温度下在各种条件下Marcov链的一种渐进接近全局最优的模拟实现,即循环Marcov链长次数结束。外循环取某个温度t作为算法终止标准,或者是迭代若 软件导刊 SoftwareGuide 第7卷第4期 2008年4月Vol.7No.4Apr.2008

遗传模拟退火算法及其应用

本科毕业设计(论文)外文参考文献译文及原文 学院轻工化工学院 专业制药工程 (天然药物方向)年级班别20 09级(2)班 学号3109002300 学生姓名黄学润 指导教师魏关锋 2013年6月

遗传/模拟退火算法及其应用 Guangming Lv, Xiaomeng Sun, Jian Wang College of Mechanical and Electronic Engineering, Harbin Institute of Technology, Harbin Heilongjiang, China lgmhit@https://www.wendangku.net/doc/d14357238.html, 摘要:本文将模拟退火算法和遗传算法相结合,提出了一种新的算法。遗传算法(GA)中嵌入模拟退火算法(SA),结合成一个新的全局优化算法。SA的使用降低了GA的参数选择的困难。此外,新算法可以缩减组合的搜索区域,并避免了遗传算法中存在的“过早收敛”问题,提高了算法的收敛性。遗传操作的交叉算子在该算法中发挥着重要作用。通过计算机仿真,我们可以看到新的算法相对于传统的遗传算法和模拟退火算法更具优势。 关键词:模拟退火法;遗传算法;过早收敛;交叉算子 I.引言 遗传算法(GA)首先由密歇根大学教授J.Holland提出,源于对自然和人工系统的自适应行为的研究。GA是模拟生物在自然环境中的遗传和进化过程而形成的一种基于达尔文的进化论和孟德尔的遗传学说的自适应全局优化概率搜索算法。对于复杂的优化问题,没有必要使用GA的建模和复杂操作[1]。与传统的搜索算法相比,GA将优化问题的解空间转换成遗传空间。它从一个种群中产生问题的一个解,并根据“优胜劣汰”的原则,一代又一代的达到问题的最优解或最近解。 遗传算法的主要特点是:处理对象不是参数本身,而是参数集的编码操作;GA同时处理的几个群体中个体,即同时估计在搜索空间中的几个解;GA只利用问题的目标函数,不需要任何其他条件或辅助信息;GA不采取一定的角色,而采用概率的变化规律来指导搜索方法;GA可以在较大的解空间快速搜索。 GA通过选择复制的行为和遗传因素保持优化种群的进化使得他们最终收敛到最优解。选择复制给予个体更大的适应性和函数值更大的复制概率,并能加速

模拟退火算法报告

模 拟退火算法 一 定义 1 概念 什么是退火?在热力学上,退火现象指物体逐渐降温的物理现象,温度愈低,物体的能量状态会低;够低后,液体开始冷凝与结晶,在结晶状态时,系统的能量状态最低。大自然在缓慢降温(亦即,退火)时,可“找到”最低能量状态:结晶。但是,如果过程过急过快,快速降温(亦称「淬炼」)时,会导致不是最低能态的非晶形。如下图所示,首先(左图)物体处于非晶体状态。我们将固体加温至充分高(中图),再让其徐徐冷却,也就退火(右图)。加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小(此时物体以晶体形态呈现)。 似乎,大自然知道慢工出细活:缓缓降温,使得物体分子在每一温度时,能够有足够时间找到安顿位置,则逐渐地,到最后可得到最低能态,系统最安稳。 模拟退火算法(SA)最早的思想是由N. Metropolis 等人于1953年提出。1983 年,S. Kirkpatrick 等成功地将退火思想引入到组合优化领域。它是基于Monte-Carlo 迭代求解策略的一种随机寻优算法,其出发点是基于物理中固体物质的退火过程与一般组合优化问题之间的相似性。模拟退火算法从某一较高初温出发,伴随温度参数的不断下降,结合概率突跳特性在解空间中随机寻找目标函数的全局最优解,即在局部最优解能概率性地跳出并最终趋于全局最优。 模拟退火其实也是一种贪心算法,但是它的搜索过程引入了随机因素。在迭代更新可行解时,以一定的概率来接受一个比当前解要差的解,因此有可能会跳出这个局部的最优解,达到全局的最优解。以下图为例,假定初始解为左边蓝色点A ,模拟退火算法会快速搜索到局部最优解B ,但在搜索到局部最优解后,不是就此结束,而是会以一定的概率接受到左边的移动。也许经过几次这样的不是局部最优的移动后会到达全局最优点D ,于是就跳出了局部最小值。 根据热力学的原理,在温度为T 时,出现能量差dE 的降温的概率为P(dE),表示 为: ()?? ? ??=kT dE E P ex p d 。其中k 是波尔兹曼常数,值为-2310×13)1.3806488(=k ,exp 表示自然指数,且dE<0。因此dE/kT<0,所以P(dE)函数的取值范围是(0,1)。满足概率密度函数的定义。其实这条公式更直观意思就是:温度越高,出现一次能量差为P(dE)的降温的概率就越大;温度越低,则

基于遗传模拟退火算法优化的BP神经网络_吕琼帅

计算机与现代化 2011年第6期 JIS UAN JI YU X IAN DA I H UA 总第190期 文章编号:1006-2475(2011)06-0091-04 收稿日期:2011-03-03 作者简介:吕琼帅(1985-),男,河南平顶山人,郑州大学信息工程学院硕士研究生,研究方向:神经网络;王世卿(1951-),男,河南郾城人,教授,博士生导师,研究方向:数据挖掘,并行计算。 基于遗传模拟退火算法优化的BP 神经网络 吕琼帅,王世卿 (郑州大学信息工程学院,河南郑州450002) 摘要:在研究标准BP 神经网络的基础上,针对其存在的收敛速度慢、且容易陷入局部极小值等问题进行分析,设计实现一种采用数值优化的方法来改进BP 网络性能的新的混合神经网络模型。通过引入遗传模拟退火算法扩大了网络的权值更新空间,把得到最优权值赋予BP 神经网络,从而使优化后的神经网络具有泛化性好,不易陷入局部极小值等优点。与标准BP 神经网络进行比较,仿真结果表明,该网络模型能够达到比较高的分类精度。关键词:数值优化;遗传模拟退火算法;BP 神经网络;权值;泛化性 中图分类号:T P183 文献标识码:A do:i 10.3969/.j i ssn .1006-2475.2011.06.026 BP N eural N et work Opti m ization A lgorit h m Based on G enetic -sti m ulated Annealing L B Q iong -shua,i WANG Sh-i qi n g (Schoo l of Infor m ation Eng i neeri ng ,Zhengzhou U niversity ,Zhengzhou 450002,Chi na) Ab stract :A fter study ing t he d i sadvantage o f BP neura l ne t w ork wh i ch has lo w convergent speed and trap i nto l oca lm ini m a eas il y ,an idea o f desi gn i ng a new hybr i d neura l net w ork modelw hich adopts t he m ethod o f nu m er i ca l opti m iza tion is presented .By usi ng G enetic -Sti m u lated A nneali ng a l go rith m (GSA ),expands t he updated space o fw eigh t .On the bas i s ,itm akes the acqu i red be tter va l ue as the we i ght o f BP neura l net wo rk ,and t he opti m ized BP net w ork i s no t easy to trap i nto t he local m i ni m a and has good genera lization characteristic .M ak i ng the comparati on G S A net work w ith standard BP net wo rk ,si m ulati on analysis demonstra tes that t h is net w ork m ode l can attain h i gher ca tego ries o f prec i sion . K ey w ords :nu m er i ca l opti m izati on ;geneti c -sti m u lated annea li ng a l gor ith m;BP neura l net w ork ;w e i ght ;genera li zati on 0 引 言 近几年,BP 神经网路是在人工智能领域应用最 为广泛的关键技术之一。它是一种多层前馈人工神经网络模型,能够学习大量的模式映射关系,并从仿生学的角度模拟人脑的智能行为,广泛应用于模式识 别、分类、预测[1-4] 等领域,具有很强的自适应能力。但是,BP 神经网络也存在易于陷入局部极小值、收敛速度慢且易引起震荡等缺陷,为此人们提出了许多优 化算法来改进标准的BP 神经网络[5-7] 。由于目前提出的优化算法大都采用诸如可变的学习速率、弹性算法等启发式信息技术,优化后的算法虽在收敛速度方面有所改善,但仍难以满足人们的应用需求。因此,本文在研究分析BP 网络和遗传模拟退火算法的基础上,引入寻优能力较强的遗传模拟退火算法(GSA ) 对BP 网络在训练过程中的参数进行优化。因模拟退火算法利用了群体智能行为的优点扩大了参数搜索的空间,并在多变量函数优化问题上比其它的群体 智能算法有更强的优化能力[8] ,同时利用适应度函数来确定最优的权值,所以基于遗传模拟退火算法的这些优点,本文给出一种新的混合神经网络模型,使优化后的BP 网络具有泛化性好、不易陷入局部极小值、分类精度较高等优点。 1 BP 神经网络 基于梯度下降法的BP(Back Propagation)网络是1986年由Rum e l h art 和M cC lelland 提出的一种多层 网络模型,其核心是误差反向传播算法[9] 。该标准做法可以实现从输入到输出的任意非线性映射,并具有信号正向传播、误差反向传播等特点。其网络结构

遗传模拟退火算法matlab通用源程序

% maxpop给定群体规模% pop群体 % newpop种群 %t0初始温度 function [codmin,finmin]=fc0(cc,v0,t0) N=length(cc(1,:)); %定群体规模 if N>50 maxpop=2*N-20; end if N<=40 maxpop=2*N; end %产生初始群体 pop=zeros(maxpop,N); pop(:,1)=v0; finmin=inf; codmin=0; for i=1:maxpop Ra=randperm(N); Ra(find(Ra==v0))=Ra(1);

pop(i,:)=Ra; end t=t0; while t>0 %用模拟退火产生新的群体pop=fc1(maxpop,pop,N,cc,v0,t); %转轮赌选择种群 f=zeros(1,maxpop); for i=1:maxpop for j=1:N-1 x=pop(i,j); y=pop(i,j+1); fo1=cc(pop(i,j),pop(i,j+1)); f(i)=f(i)+fo1; end f(i)=f(i)+cc(pop(i,1),pop(i,N)); end fmin=min(f); for i=1:maxpop if fmin==inf&f(i)==inf

end if fmin~=inf|f(i)~=inf dd=fmin-f(i); end ftk(i)=exp(dd/t); end [fin1,cod]=sort(-ftk); fin=abs(fin1); %f(cod(1)) if f(cod(1))=RR); % cod newpop(i,:)=pop(cod(cod2(end)),:); end %单亲繁殖

遗传模拟退火算法matlab通用源程序

% maxpop 给定群体规模 % pop 群体 % newpop 种群 %t0 初始温度 function [codmin,finmin]=fc0(cc,v0,t0) N=length(cc(1,:)); %定群体规模 if N>50 maxpop=2*N-20; end if N<=40 maxpop=2*N; end %产生初始群体 pop=zeros(maxpop,N); pop(:,1)=v0; finmin=inf; codmin=0; for i=1:maxpop Ra=randperm(N); Ra(find(Ra==v0))=Ra(1); Ra(1)=v0; pop(i,:)=Ra; end t=t0; while t>0 %用模拟退火产生新的群体 pop=fc1(maxpop,pop,N,cc,v0,t); %转轮赌选择种群 f=zeros(1,maxpop); for i=1:maxpop for j=1:N-1 x=pop(i,j); y=pop(i,j+1); fo1=cc(pop(i,j),pop(i,j+1)); f(i)=f(i)+fo1; end f(i)=f(i)+cc(pop(i,1),pop(i,N)); end fmin=min(f); for i=1:maxpop if fmin==inf&f(i)==inf dd=inf; end

if fmin~=inf|f(i)~=inf dd=fmin-f(i); end ftk(i)=exp(dd/t); end [fin1,cod]=sort(-ftk); fin=abs(fin1); %f(cod(1)) if f(cod(1))=RR); % cod newpop(i,:)=pop(cod(cod2(end)),:); end %单亲繁殖 if N>32 jmax=round(N/9); end if N<=32 jmax=2; end if mod(jmax,2) jmax=jmax-1; end for i=1:maxpop for j=1:2:jmax nn=randperm(N); x=nn(j); y=nn(j+1); if newpop(i,x)==v0|newpop(i,y)==v0 continue; end box1=newpop(i,x); newpop(i,x)=newpop(i,y); newpop(i,y)=box1; end end %变异 Pc Pc=0.02; for i=1:maxpop

遗传算法与模拟退火算法比较

一、遗传算法与模拟退火算法比较 分析模拟退火算法的基本原理可以看出,模拟退火算法是通过温度的不断下降渐进产生出最优解的过程,是一个列马尔科夫链序列,在一定温度下不断重复Metropolis过程,目标函数值满足Boltzmann概率分布。在温度下降足够慢的条件下,Boltzmann分布收敛于全局最小状态的均匀分布,从而保证模拟退火算法以概率为1收敛到全局最优。另外,不难看出,模拟退火算法还存在计算结构简单、通用性好以及鲁棒性强等优点。但是,模拟退火算法存在如下缺陷: 1. 尽管温度参数下降缓慢时理论上可以保证算法以概率为1地收敛到最优值,但是需要的时间过长加之误差积累与时间长度的限制,难以保证计算结果为最优; 2.如果降温过程加快,很可能得不到全局最优解,因此,温度的控制是一个需要解决的问题; 3.在每一种温度下什么时候系统达到平衡状态,即需要多少次Metropolis过程不易把握,从而影响模拟退火算法的最终结果。 与模拟退火算法相比较,遗传算法具有如下典型特征: 这两种算法的相同点是都采用进化控制优化的过程。主要不同点是模拟退火是采用单个个体进行进化,遗传算法是采用种群进行进化。模拟退火一般新解优于当前解才接受新解,并且还需要通过温度参数进行选择,并通过变异操作产生新个体。而遗传算法新解是通过选择操作进行选择个体,并通过交叉和变异产生新个体。具体说来,遗传算法具有如下特点: (1)与自然界相似,遗传算法对求解问题的本身一无所知,对搜索空间没有任何要求(如函数可导、光滑性、连通性等),只以决策编码变量作为运算对象并对算法所产生的染色体进行 评价,可用于求解无数值概念或很难有数值概念的优化问题,应用范围广泛; (2)搜索过程不直接作用到变量上,直接对参数集进行编码操作,操作对象可以是集合、序列、矩阵、树、图、链和表等; (3)搜索过程是一组解迭代到另一组解,采用同时处理群体中多个个体的方法,因此,算法具有并行特性;

模拟退火算法及其改进_蒋龙聪

第4卷第2期2007年4月  工程地球物理学报 CHIN ESE J OU RNAL OF EN GIN EERIN G GEOP H YSICS Vol 14,No 12Apr 1,2007 文章编号:1672—7940(2007)02—0135—06 模拟退火算法及其改进 蒋龙聪,刘江平 (中国地质大学地球物理与空间信息学院,武汉430074) 作者简介:蒋龙聪(1983— ),男,硕士研究生,现在主要从事地震数据处理和反演理论方法研究。E 2mail :longcja @https://www.wendangku.net/doc/d14357238.html, 刘江平(1957— ),男,教授,博士生导师,主要从事地震勘探的科研与教学工作。E 2mail :liujp @https://www.wendangku.net/doc/d14357238.html, 摘 要:借鉴遗传算法中的非均匀变异思想,用非均匀变异策略对当前模型扰动产生新的模型,对传统的模 拟退火算法提出了改进,通过多峰值函数数值优化测试结果表明,该算法在高温的时候能够进行大范围的搜索,随着温度的降低,逐渐缩小解的搜索范围,大大加快了收敛速度,证实了该改进算法的有效性和高效性。 关键词:模拟退火算法;非均匀变异;数值最优化;反演 中图分类号:P631文献标识码:A 收稿日期:2006— 12—07R evised Simulated Annealing Algorithm Jiang Longcong ,Liu Jiangping (I nstitute of Geop hysics and Geomatics ,China Universit y of Geosciences ,W uhan 430074,China ) Abstract :Based on t he idea of non 2uniform mutation in genetic algorit hm ,we present a novel revised simulated annealing (RSA ),which used t he non 2uniform mutation to generate a new model f rom current model.Tested by some numerical f unctions ,RSA can search in t he large area for t he solutions in high temperat ure.Wit h t he lowering of t he temperat ure ,t he area of searching t he solutions will be gradually reduced and convergence will speed up.So t he re 2sult s p rove t he effectiveness of RSA. K ey w ords :simulate annealing ;non 2uniform mutation ;numerical optimal ;inversion 1 引 言 人类对地球内部物理性质(包括速度、密度、电导率、温度等)以及矿产资源分布的了解,大多来自地表地质和地球物理、地球化学资料的反演和解释[1]。反演方法可以分为线性反演和非线性反演两种,线性反演已成为一套科学的反演理论,然而,绝大部分地球物理问题都是非线性的,并且实践表明,线性反演方法有容易陷入局部极值和依赖于初始值等缺点。因此,地球物理学者们不 断的尝试开发非线性反演方法,比如人工神经网 络[2]、小波多尺度反演[3]、模拟退火算法[4]等。 模拟退火算法是近年发展起来的全局最优化算法,其主要优点是;不用求目标函数的偏导数及解大型矩阵方程组,即能找到一个全局最优解,而且易于加入约束条件,编写程序简单。目前此法已开始用于解决非线性地球物理反问题,如波形反演、静校正、叠前偏移速度分析等非线性反演中,并取得了较好的效果。 然而,由于模拟退火法是建立在随机搜寻方法的基础上,要达到一定的精度要求,每一模型参

遗传算法和模拟退火法在解决tsp问题上的对比分析

遗传算法和模拟退火法在解决TSP 问题上的 对比研究 邓朝丞 摘要:TSP 问题是组合优化领域的经典问题之一,旨在求出遍历若干个城市的最短路径。针对在用各种算法解决TSP 问题的不同点,本文分析比较了运用遗传算法,模拟退火法处理TSP 问题的优缺点,得出解决TSP 问题的最适宜算法。 关键词:TSP 问题,遗传算法,模拟退火法 1 引言: TSP 问题也称为巡回旅行商问题,是一个相当古老的优化问题,最早可以追溯到1759年Euler 提出的骑士旅行问题【1】。TSP 问题是一个典型的容易描述但是难以处理的NP 完全问题,是运筹学有代表性的组合优化问题,可简单描述为 有n 个城市.一位销售商从某个城市出发,不重复地走完其余n-1个城市并回到原出发点,在所有可能的路径中求出路径长度最短的一条。其实际模型在印刷电路板的钻孔路线方案、连锁店的货物配送、网络布线等优化问题中有着广泛的应用【2】。同时TSP 问题也是诸多领域内出现的多种复杂问题的集中概括和简化形式.所以,有效地解决TSP 问题在计算理论和实际应用上都有很高的价值。目前求解TSP 问题的主要方法有遗传算法,模拟退火算法,本文将该两种算法在解决TSP 问题时所存在的不同,通过实验对比,分析这两种算法在求解组合优化上的优劣性 ,同时提出改进的建议。 2.遗传算法简介 遗传算法(GA)是一种基于自然群体遗传演化机制的算法,它模拟自然界生物进化过程,采用人工进化的方式对目标空间进行随机化搜索。它将问题域中的可能解看作是群体的个体,并将个体编码成符号串形式(即染色体),模拟生物进化过程,对群体反复进行交叉、变异、选择等操作,根据预定的适应度函数对每个个体进行评价,依据优胜劣汰的进化规则,不断得到更优的群体,同时搜索优化群体中的最优个体,求得满足要求的最优解。 GA 采用一定的编码技术构造染色体(个体),而基因是组成染色体的单元,可以表示为一个二进制位,一个整数或一个字符等。染色体表示待求解问题的一个可能解,由若干个基因组成,是GA 操作的基本对象。而一定数量的个体组成了种群,表示GA 的搜索空间。在GA 的执行过程中,每一代有许多不同的种群个体同时存在。根据这些个体对环境的适应能力来决定下一代的个体,适应性强的有更多的机会被选择保留下来。适应性强弱是通过适应度函数)(x f 的值来判别的,适应度函数)(x f 的构成与目标函数有密切关系,往往是目标函数的变种【3】。 3 用遗传算法求解TSP 用遗传算法解Tsp 问题,采用十进制编码,基因定义为一个城市,染色体定义为到各城市顺序的一种组合,适应度为一条旅行路径对应的距离,路径越短的染色体适应度越高。例如,取N=10,城市代号为1,2,3,4,5,6,7,8,9,10,则种群中的染色体:2 8 4 10

模拟退火算法与遗传算法性能比较

模拟退火算法与遗传算法性能比较 摘要:模拟退火算法与遗传算法是两种非常重要的多目标优化算法。其原理简单,对优化目标函数解析性没有要求,因此在工程问题中被广泛应用。本文介绍了这两种优化算法的原理,并分析了两种算法的性能并讨论了应用过程中的关键问题,对两种算法的合理选取及改进具有参考价值。 关键字:模拟退火,遗传算法,优化 1.前言 对于多目标优化问题,传统的做法是全局搜索,即“穷举法”。这种通过搜索整个解空间的方法虽然能获得全局最优解,但运算量非常大,当优化空间的维度非常高时,该方法在计算上不可行。通过利用目标函数的解析性质以及借助实际问题的约束条件能部分降低搜索空间,但任不能解决高维问题优化。面对复杂问题,求得最优解是很困难的,在有限时间内求得满意解是可能的。获取高维优化问题满意解的常用方法是迭代运算,但通常迭代运算容易陷入局部最优陷阱,造成“死循环”。模拟退火算法及遗传算法是两种原理简单的启发式智能搜索算法,均具有逃离局部陷阱的能力,是工程应用中快速获取满意解的常用算法,对其性能比较对于正确使用这两种智能优化算法具有重要意义。 2.算法介绍 2.1.模拟退火算法 模拟退火算法是一种随机搜索算法,Kirkpatrick[1]于1983年首次将该算法应用于多目标优化。该算法模拟冶金上的退火过程而得名,其基本思想是:对当前合理解增加扰动产生新解,评价新解对目标函数的改进情况,若小于零,则接受新解为新的当前解,否则以概率接受新解为新的当前解。新的当前解将将继续优化,直到没有显著改进为止。 模拟退火算法使用过程中以下细节影响其全局搜索性能。初始温度T选择越高,则搜索到全局最优解的可能性也越大,但计算复杂度也显著增大。反之,能节省时间,但易于陷入局部最优。依据解的质量变化概率选择温度下降策略能增强算法性能。每次温度降低迭代次数及算法的终止可由给定迭代次数内获得更优解的概率而确定。 2.1.遗传算法 遗传算法最早由Holland等[2]提出,该算法模拟遗传变异与自然选择机制,是一种通过交换机制,重组基因串的概率搜索算法,其基本思想是:分析解空间大小及精度要求,确定合理解唯一编码形式。合理解转化成的编码即为染色体,随机选取的多个初始染色体构成初始种群。会依据评价函数计算种群中每个个体

数学建模案例新型遗传模拟退火算法求解物流配送路径问题

第24卷2004年6月 计算机应用 ComuterAlicationsppp Vol.24 June,2004 文章编号:()1001-9081200406Z-0261-03 新型遗传模拟退火算法求解物流配送路径问题 阎庆,鲍远律 (中国科学技术大学自动化系,安徽合肥2)30027 摘要:文中提出了将遗传算法和模拟退火算法结合,并加入了记忆装置。根据这种想法设计了一种有记忆功能的遗传模拟退火算法,并进行了试验计算。结果表明:用这种有记忆功能的遗传模拟退火算法求解物流配送路径优化问题,可以在一定程度上解决一些问题,从而得到较高质量的解。 关键词:物流配送;遗传模拟退火算法;遗传算法;模拟退火算法;路径优化中图分类号:TP301.6 文献标识码:A 1 引言 物流配送是现代化物流管理中的一个重要环节。它是指按用户的定货要求,在配送中心进行分货、配货,并将配好的存在许多货物及时送交收货人的活动。在物流配送业务中,优化决策的问题。本文只讨论物流配送路径优化问题。物流配送路径优化问题最早是在1959年由Dantmiamser首g和R [] 先提出的,即所谓的车辆路径问题VRP1。它也是目前在物 的车辆数: k m=[a+1q]Σgi/ i []表示取整,约束m为所需车辆数,a为参数,0

流系统中较受关注的一个方面。它是指在客户需求位置已知确定车辆在各个客户间的行程路线,使得运输路线的情况下, 最短或运输成本最低。VRP问题已经被证明是一个NP-很难得到全局最hard问题。也就是说当问题的规模较大时,算法的计算时间优解或满意解。而且随着问题规模的增大, 将以指数速度增加。因此研究的重点就转移到各种启发式算常用的有法上。求解物流配送路径优化问题的方法有很多, 旅行商法、动态规划法、节约法、扫描法、分区配送法、方案评价法等。而遗传算法的出现为求解物流配送路径优化问题提 2] 供了新的工具。遗传算法[作为一种非数值并行算法,其思 { { 点i的货动任务由s车完成1,否则0, k k m isjij 得到的数学模型如下所示:minZ= k i=0j=0s=1 ΣΣΣcx ()1()2()3()4()5 i=0m Σgy k iis …,2,m*q s=1, 想起源于生物遗传学适者生存的自然规律。它对优化对象既也不要求可微,尤其适合求解N不要求连续,P-hard问题。到目前为止,已经有很多人都曾利用遗传算法求解物流配送路径优化问题并取得了一些研究成果。 s=1 is=Σy { …,1 i=1,2,k m i=0

遗传模拟退火算法

改进遗传模拟退火算法在配电网络重构中的应用 刘扬, 杨建军, 魏立新 (大庆石油学院, 大庆 163318) 摘要:对遗传模拟退火算法中的交叉、变异操作进行了改进,并实施了最优保留策略,形成了改进遗传模拟退火算法。以网损最小为目标函数,以配电网电压降的限制、线路电流量的限制等为约束条件,建立了配电网络重构优化模型。在考虑配电网自身特点的基础上,利用改进遗传模拟退火算法求解。重构算例说明,该优化方法有效、实用。 关键词: 配电网络; 网络重构; 遗传算法; 模拟退火 Application of the Improved Genetic Simulated Annealing Algorithm in Distribution Network Reconfiguration LIU Yang, YANG Jianjun, WEI Lixin (Daqing Petroleum Institute, Daqing 163318,China) Abstract:In the paper, the crosser and mutation in the genetic simulated annea ling algorithm were improved, and the optimized reserved strategy was used to form the improved genetic simulated annealing algorithm. An optimization model of distri bution network reconfiguration is established, in which the minimum network loss is taken as objective function, the restrictions to the decline of voltage and curren t are taken as constraint conditions. Based on the features of distribution network, the improved genetic simulated annealing algorithm is used in network reconfigurat ion. Reconfiguration results show that the algorithm is efficient and practical.

遗传模拟退火算法在EXCEL上的编程实现

2009年第7期福建电脑 遗传模拟退火算法在EXCEL上的编程实现 廖方茵1,丁凰2,李晓英3 (1、延安大学,计算机学院陕西延安7160002、西安交通大学城市学院陕西西安710077 3、陕西延长石油(集团)有限责任公司陕西延安716000) 【摘要】:针对遗传算法和模拟退火算法的互补特点,提出用遗传模拟退火算法来求解最优化问题。使用Excel的VBA语言来编程实现该算法,将遗传模拟退火算法与Excel的数据处理相结合,方便用户在Excel上建立模型,解决最优化问题。最后给出一个实例,运行结果证实了遗传模拟退火算法在求解最优化问题上优于遗传算法。 【关键词】:遗传算法;遗传模拟退火算法;最优化;Excel 1、引言 遗传算法是一个通用的最优化算法,使用模拟生物和人类进化的方法求解复杂的优化问题,它对问题的处理采取的是对编码的操作,不依赖于问题的具体领域,对问题的种类有很强的鲁棒性,广泛应用于投资组合,油田开发规划,等社会科学的各个领域中[1]。 模拟退火算法是一种启发式搜索算法,来源于热力学和统计物理学,是模拟加热熔化的金属的退火过程来寻找全局最优解的有效优化算法之一。它的主要不足之处是,返回一个高质量近似解所用的CPU时间开销较大,当问题规模在实际应用中增大时,运行时间不可避免的增大,并让人无法忍受,使算法丧失了可行性。 遗传算法与模拟退火算法都是启发式随机搜索算法,所以它们在结构上通常互补,将这两种算法进行混合的效果通常比较好。因为遗传算法的局部搜索能力较差,爬山能力弱,容易陷入局部最优解,但把握搜索过程总体的能力较强。然而,模拟退火算法具有较强的局部搜索能力,并且采用Metropolis准则接收差的解,所以能使搜索过程避免陷入局部最优解,但模拟退火算法却对整个搜索空间的状况了解不多,不便于使搜索过程进入最有希望的搜索区域,从而使得模拟退火算法的运算效率不高。那么能不能把爬山性能好的模拟退火算法思想引入到把握总体性能强的遗传算法当中呢?回答是肯定的。将两者有机的结合在一起,构造新的算法,能提高算法的性能[2]。这样就设计出了遗传模拟退火算法(GSA),它综合两者的优点,提高了算法的性能。 2、遗传模拟退火算法流程 模拟退火算法采用Metropolis接受准则的复制策略,在遗传算法的初始群体经过交叉、变异操作后,要对群体中的个体进行模拟退火操作,即要运用基于Metropolis接受准则的复制策略,产生下一代群体。使用这一策略,不仅能保证群体中的最优个体进入下一代,又能让算法在接受优化解的同时,有限度的接受劣质解,从而保证了群体的多样性,避免陷入局部最优解。这种基于Metropolis接受准则的复制策略的具体操作是:第一步,对在交叉操作和变异操作之前的群体P(t)进行适应度评价。第二步,对这个群体P(t)进行交叉和变异操作。第三步,对这个群体中的个体进行随机扰动,计算与原来个体之间的差值△,如果△<0,则接受该新产生的最优点为当前最优点,如果△≥0,则以概率P=exp(-△/θ)接受该新产生的最优点为当前最优点。第四步,让新产生的群体P'(t)进行适应度评价,并进行选择操作形成下一代群体P(t+1)。遗传模拟退火算法框图如图1所示。 步骤1.设置初始参数,给定群体规模p,初始温度T0,进化代数t。 步骤2.随机产生初始化群体P(t)。 步骤3.评价群体P(t)的适应度。 步骤4.进行交叉操作产生群体P'(t)。 步骤5.进行变异操作产生群体P''(t)。 步骤6.进行个体模拟退火操作产生群体P'''(t)。 步骤7.评价群体的适应度。 步骤8.进行选择复制操作产生下一代新的群体P(t+1)←[P (t)∪p'''(t)]。 步骤9.终止条件判断。如果满足终止条件,则输出当前最优个体,算法结束;如果不满足终止条件,则t←t+1,转到步骤3。 图1遗传模拟退火算法流程图 4、算法的编程实现及仿真实例 采用EXCEL中的VBA语言来编程实现,可以方便用户在EXCEL上建立所要求解的最优化问题模型,也能方便用户使用EXCEL上的强大数据处理功能如统计函数等。下面是的遗传模拟退火算法的算子设计部分: (1)个体样本编码设计。根据De Jong提出的有意义积木块编码原则和最小字符集原则两条实用编码原则[3]。本文采用二进制编码方法。初始群体的产生如下: For i=1To populationSize For Bits=1To CodeBits Chromosome(i,Bits)=Round(Rnd) Next Bits Next i (2)交叉过程。本系统采用的交叉方式有三种:单点交叉、双点交叉和均匀交叉。交叉运算的步骤首先是从交配池中取出要交配的一对个体,即从染色体数组Chromosome(populationSize, CodeBits)中取出两个染色体Chromosome(i,CodeBits)和Chromo-some(j,CodeBits);然后将这一对个体在交叉概率P c的控制下,按选定的交叉方式在交叉位置相互交换各自的部分染色体内容。对于Chromosome(i,CodeBits)=10011,Chromosome(j,CodeB-its)=11101,如采用单点交叉方式,交叉位置随机选在第三位,则交叉后为Chromosome(i,CodeBits)=10001,Chromosome(j,CodeB-its)=11111。 (3)变异过程。本系统采用的变异方法是基本位变异和均匀变异。变异操作也是在Chromosome(populationSize,CodeBits)上进行的,用户只需要在算法设置的窗体上选择变异的方式,并输 )(t P?? ? 77

相关文档