文档库 最新最全的文档下载
当前位置:文档库 › 膜片钳常见问题解答讲解

膜片钳常见问题解答讲解

膜片钳常见问题解答讲解
膜片钳常见问题解答讲解

膜片钳常见问题解答(一)

1.什么是电压钳与膜片钳,有什么区别?

答:电压钳技术是通过向细胞内注射一定的电流,抵消离子通道开放时所产生的离子流,从而将细胞膜电位固定在某一数值。由于注射电流的大小与离子流的大小相等、方向相反,因此它可以反映离子流的大小和方向。膜片钳技术钳制的是“膜片”,是指采用尖端经过处理的微电极与细胞膜发生紧密接触,使尖端下的这片细胞膜在电学上与其它细胞膜分离,这大大降低了背景噪声,使单通道微弱的电流得以分辨出来。采用电压钳技术将这片膜的电位钳制在某一数值,可记录到单通道电流。从这点上看,膜片钳技术是特殊的电压钳技术。随着膜片钳技术的发展,它已经不仅仅局限于“膜片”的概念,也不仅仅采用电压钳技术,还常采用电流钳技术。

2. 离子通道电导的单位是什么?如何换算?

答:离子通道电导的单位是西门子(Siemens, S),旧称姆欧,即安培/伏特。常用皮西门子(pS),1pS=10E-12 S,1,000 pS=1 pA/mV。

3. MultiClamp 700A中,在放大器和信号器的连接中,放大器的raw output是否需要连接信号器的 ANALOG IN 接口? scaled output,raw output有什么区别?

答:Raw output为原始信号输出,放大器输出的信号没有经过处理(如滤波、放大等),scaled output为定标输出,输出的信号经过了处理。后者的灵活度大,因此多采用。目前膜片钳放大器多设有scaled output,你可将其与数模转换器(你所说的信号器)的ANALOG IN连接,这样放大器的输出信号就能传送给计算机了,此时已经没有必要再使用Raw output了。若你想记录两个输出,则需要将Raw output与数模转换器的另一个ANALOG IN连接。

4. 在Clampex的Edit protocol/Wave中,Step和ramp各有什么适用范围?答:Ramp多用于电流衰减缓慢的离子通道以及失敏不明显的受体通道的I-V曲线制作,如多用于钾、钙离子通道。而像钠通道,其衰减非常迅速,在持续去极化的情况下,通道很快失活,无法使用ramp,另外诸如烟碱受体通道等具有明显失敏特征的受体通道也不宜采用ramp。

5. 什么是ramp?有什么作用?

答:与步阶(step)不同,ramp在pClamp软件中表示施加给细胞的一种逐渐变化的电压或电流,称为“斜坡电压或电流”,可用于作通道I-V曲线。

膜片钳常见问题解答(二)

6. input resistance是什么意思?如何测量?

答:在电生理学中,“input resistance”指“输入膜电阻(Rin)”。全细胞记录时,给细胞膜施加一系列刺激方波(一般为超极化),在离子通道没有开放的情况下测定跨膜电流,根据欧姆定律即可求出Rin。膜电阻(Rm)与膜输入阻抗Rin的关系为:Rm=4πr2 Rin,r为细胞半径。

7. 在一次电压钳全细胞记录中,是否每次一定要做电容消除、串连电阻补偿、漏减、和液接电位矫正?

答:在电压钳实验中,如果需要给予细胞电刺激来改变细胞膜电位(如超极化或去极化),则会出现膜的被动反应,产生电容电流与电阻电流,此时,前者需要用电容补偿消除,后者需要用漏减功能消除。全细胞记录中,串联电阻是必须要补偿的(至少要补偿80%),除非它很小而忽略不计。液接电位(一般在10mV左右)也需要校正,除非它很小。你可采用Clampex软件中的菜单Tools/ Junction Potential功能对其测算,然后决定是否需要校正。

8. Decay是什么意思?和inactivation有何区别?

答:Decay是“衰减”之意,inactivation是“失活”之意,但在文献中经常混用,decay也常常被说成失活,例如钙电流的衰减常被说成失活,这样用也没什么问题。但实际上,两者细分的话还是有区别的。可以将Inactivation分为稳态失活与非稳态失活。后者即Decay,是指在刺激因素(电位变化、施加药物等)持续存在下通道的失活,而稳态失活(Steady-state inactivation)一般是指将膜电位钳制在不同的水平,然后观察通道的失活情况,做出失活曲线。

9. 什么是尾电流,他主要反映通道的什么特性及用在那些方面?

答:在离子通道的激活因素(去极化或超级化)结束时通道的关闭过程叫做去激活(Deactivation),所记录到的电流称为尾电流(Tail current),主要反映通道的关闭特征。延迟整流性K+离子通道以及一些不同类型的Ca2+离子通道,它们的尾电流均具有电压依赖性,关闭过程呈指数分布,可用指数方程拟合而

获得通道关闭过程的时间常数。

尾电流的分析对研究电压门控性离子通道的激活、关闭、失活等动力学过程很有帮助。如研究尾电流幅度与脉冲电压的关系、脉冲电压的不同持续时间或尾电流不同的钳制电压对尾电流幅度、衰减时间常数的影响等等。通过这些研究可了解通道关闭过程中出现的不同关闭状态。药物可影响通道的关闭过程,表现为尾电流的衰减过程变快或变缓慢。

10. 如何理解steady state activation中的steady state 的意义?

答:“steady state”是“稳态”的意思。一般通过给予细胞持续一定时间的一系列去极化(多为去极化)脉冲来激活离子通道,记录通道电流峰值,再计算岀电导G,作出G-V曲线,该曲线称为稳态激活曲线,也就是我们常说的激活曲线。

膜片钳常见问题解答(三)

11. 电极拉制程序中具体应该如何控制。在参数设定的摸索中,是否需要每次都用显微镜检测,还是另有更易操作的方法.

答:不同的拉制仪拉制参数的设置不尽相同,你需要阅读说明书,参数中主要是设定拉力(对于P-97拉制仪,只需要设置Velocity,可不用设定Pull)与温度。一般第一步拉制电极颈部,温度要比第二步高(对于P-97拉制仪,温度的设定需要先测量Ramp值),拉力不要过大,以保证颈部较短;第二步拉制尖端,一般要使温度低些,拉力大些。一般都是通过显微镜查看电极尖端,这很简单,并不复杂!最好是抛光,这样就在抛光仪显微镜下查看。注意抛光后的电极尖端开口会变小,故在拉制电极时,尖端开口要大些。检查电极还有其它方法,如“气泡数法”,也可用放大器通过测量电阻来查看。

12. Rm=4πr2Rin?似乎Rin是一个用细胞大小标化的膜电阻,那为什么不用电容Cm来标化而用这个什么4πr2?细胞形状各异,Cm是个公认的膜面积的指标,电流密度不就是用Cm标化的吗?盼回答,同时希望能将Rin的意义再多讲一点,谢谢

答:(1)一定要注意不要拘泥于Rm和Rin这两个符号,文献中常混用,但实际上表示的大多是Rin。通常我们所说的“膜电阻”是指“膜输入阻抗Rin”,但也有人用来指Rm。(2)你可以用Cm来计算膜面积,实际上这也正是我们的

做法,用来估算细胞大小,用于对通道电流幅度进行标化,但我们从来不用它计算膜电阻Rm(也称为“固有膜电阻”)。Rm的计算公式是数学理论上的,并没有多少应用的价值,我们很少发现有使用Rm的(虽然符号用Rm)。(3)实际上,Rin反映的当然就是膜电阻,它被称为膜输入阻抗(或膜输入电阻),也时常被称为“膜电阻”(这正是使人们产生混淆的原因!),是膜的被动反应参数之一。所谓被动反应是指膜上离子通道没有开放时,膜所表现出的电缆特性。膜的被动反应参数还包括膜电容、轴浆电阻等。全细胞记录时,给细胞膜施加一系列刺激方波(多为超极化),在离子通道没有开放的情况下测定跨膜电流,根据欧姆定律可求出Rin。当大量离子通道开放时,膜对电流的阻力急剧降低,测试脉冲电压与通道电流之间不满足欧姆定律,无法测量Rin,也没有了测量的意义。

13. 请教什么是Channel availability?

答:Channel availability指在排除失活情况下,能够开放的某通道的多少,通过全细胞电流幅度的大小来反映。例如,海马神经元Na通道的channel availability可因乙酰胆碱M受体的激活而降低,表现为Na通道电流幅度的降低。

14. 什么是window current,我知道是激活曲线和失活曲线的重叠。但是我有一个疑问,比如电压依赖的T型钙通道,书上说在windonw current的时候有持续性的钙内流,但是T性钙通道不是有时间依赖性的失活吗?怎么会有不失活的电流呢?

答:如果将通道的稳态激活曲线与失活曲线作在一个图上,则激活曲线与失活曲线之间交叉部分的电流就是window current,在这个电压范围内,有一些通道并没有完全失活,仍能被打开,有一定的开放概率。T性钙通道是有时间依赖性的失活,但还有很小的部分失活非常缓慢,此即window current,它是一些快速失活通道的动力学特征。对于T型钙通道,其window current维持了一个紧张性去极化,对动作电位的连续发放产生影响,当然,不同细胞中的T通道其作用不尽相同。

15. 使用Clampex 8.0记录配体门控离子通道电流,protocol 如何设置? 答:需要事先在Lab Bench中设定好Channel序号和Signal名称。在Edit

Protocol中选择Gap-free模式,采样频率可用5kHz,选好Input和Output。先在Clampex中启动记录(Record),然后诱发电流,可用Time Tag作诱发标记。

膜片钳常见问题解答(四)

16. 电极内液中加入1mmol/L的EGTA和10mmol/L的EGTA有什么区别?

答:EGTA一般用10 mM左右(1 mM太低),促进封接,鳌和内钙。

17. 什么是漏电流,为什么要做Leak subtraction?

答:漏电流的概念比较混乱,可以指封接电流(封接时从封接处“漏掉”的电流),也可指放大器的系统偏差,还可指膜漏电流。一般来讲,膜漏电流是细胞膜的被动反应电流,是非离子通道电流,因此在记录离子通道电流时要将它去除。膜片钳放大器与采样分析软件都具有将其去除的漏减功能。

18. 请问动作电位是否一定要有越过0的超射,我在一篇文献中看到作者将一个没有超射的电位变化也称为动作电位,我觉得不对,应该是阈下反应才对吧?但又不敢下结论,觉得国外文献不该出错。

答:一般生理情况下动作电位都含有超射,超射与Na离子(或Ca离子)的平衡电位有关。但在具体实验中(或某些病理情况下),若细胞内外液的Na离子(或Ca离子)的浓度发生变化,则Na离子(或Ca离子)的平衡电位也随之变化,就可能不产生超射或超射值更大。

19. 我想请教一下为什么我们用培养的大鼠海马神经元记录NMDA电流,总是会出现电流的衰减,而且我们记录是选择的培养第10-14天的大鼠,可是电流大小不等,具体在100-1500pA间波动,这让我们很疑惑,注明一下,电极内液中我们用了CsCl和ATP、GTP。

答:电流大小不等与细胞大小、细胞状态等都有关,另外更重要的可能与你的给药方法有关,不知你采用的是哪种给药方法?正常情况下,连续诱发受体电流会存在失敏,表现为电流的衰减(幅度减小),但如果在记录过程中细胞状态逐渐不好,也会出现这种情况。我们认为你所选用的细胞培龄没有问题,内液也没问题。

20. 脑片实验中,ACSF的配方中的Mg离子,有的用的MgSO4,有的用的MgCl2,他们有什么区别?有关渗透压,有的配方是295 mOsm,有的300多mOsm,他们又有什么区别?如何调整ACSF的渗透压?

答:用MgSO4和用MgCl2没多大区别,但如果要记录Cl电流,就要有所考虑;另外若所需要的Mg浓度有大的变化,也要考虑到Cl和SO4离子所可能带来的问题。渗透压有个范围,一般在290-320之间都没有问题,精确地测量与调节渗透压需要特殊的渗透压仪,但一般都是通过离子强度进行计算,只要大体在上述范围就行。

膜片钳技术在神经药理方面的应用(1)

1976 年Neher 和Sakmann 建立了膜片钳技术(Patch clamp technique),这是一种以记录通过离子通道的离子电流来反映细胞膜上单一的或多数的离子通道分子活动的技术。1981 年Hamill, Neher 等人又对膜片钳实验方法和电子线路进行了改进,形成了当今广泛应用的膜片钳实验技术。该技术可应用于许多细胞系的研究,也是目前唯一可记录一个蛋白分子电活动的方法,膜片钳技术和克隆技术并驾齐驱给生命科学研究带来了巨大的前进动力,这一伟大的贡献,使Neher 和Sakmann 获得1991 年诺贝尔医学与生理学奖。

一膜片钳技术的基本原理

用一个尖端直径在1.5~3.0μm 的玻璃微电极接触细胞膜表面,通过负压吸引使电极尖端与细胞膜之间形成千兆欧姆以上的阻抗封接,此时电极尖端下的细胞膜小区域(膜片,patch)与其周围在电学上分隔,在此基础上固定(钳制,Clamp)电位,对此膜片上的离子通道的离子电流进行监测及记录。

基本的仪器设备有膜片钳放大器、计算机、倒置显微镜、示波器、双步电极拉制器、三轴液压显微操纵器、屏蔽防震实验台、恒温标本灌流槽、玻璃微电极研磨器。膜片钳放大器是离子单通道测定和全细胞记录的关键设备,具有高灵敏度、高增益、低噪音及高输入阻抗。膜片钳放大器是通过单根电极对细胞或膜片进行钳制的同时记录离子流经通道所产生的电流。膜片钳放大器的核心部分是以运算放大器和反馈电阻构成的电流-电压(I-V)转换器,运算放大器作为电压控制器自动控制,使钳制电位稳定在一定的水平上。

膜片钳技术在神经药理方面的应用(2)

二操作步骤

1.膜片钳微电极制作

(1) 玻璃毛细管的选择:有二种玻璃类型,一是软质的苏打玻璃,另一是硬质的硼硅酸盐玻璃。软质玻璃在拉制和抛光成弹头形尖端时锥度陡直,可降低电极的串联电阻,对膜片钳的全细胞记录模式很有利;硬质玻璃的噪声低,在单通道记录时多选用。玻璃毛细管的直径应符合电极支架的规格,一般外部直径在1.1~1.2mm。内径1mm。

(2) 电极的拉制:分二步拉制。第一部是使玻璃管中间拉长成一窄细状,第二次拉制窄细部位断成二根,其尖端直径一般在1~5μm,充入电极内液后电极电阻在1~5MΩ为宜。调节第一步和第二步拉制时加热线圈的电流强度,即可得到所需要的电极尖端直径。电极必须保持干净,应现用现拉制。

(3) 涂硅酮树酯:记录单通道电流时,为了克服热噪声、封接阻抗噪声及电极浸入溶液产生的浮游电容性噪声,需要在电极尖颈部(距离微电极尖端50mm)的表面薄薄地涂一层硅酮树酯(sylgard),它具有疏水性、与玻璃交融密切、非导电性的特性。涂完硅酮树酯的玻璃微电极须通过加热的镍铬电阻线圈烘干变固,以防硅酮树酯顺着电极流向尖端而影响千兆封接。烘干后才能进行热磨光。

(4) 热磨光(heat polish):一般在玻璃研磨器下对电极尖端进行热磨光,磨光后可使电极尖平滑并烧去过多的硅酮树酯薄膜,有利于千兆封接的形成。目前大多数实验室在作全细胞模式记录时,不涂硅酮树酯也不进行热磨光,也可形成很好的千兆封接。

(5) 电极液的充灌:目前最常应用的是用注射器反向充灌。用细长的注射器针头或拉细的聚乙烯胶管从电极尾端插入到电极尖端,再进行灌注。灌注后电极尖端有少许气泡,排除气泡的方法是用左手拿住电极,尖端向下,用右手轻轻弹击电极,可见气泡徐徐上升直至排除。电极液不要充灌太满,能与探头的银丝接触上即可,溶液过多会浸入探头支持架致使潮湿而影响实验记录。

膜片钳技术在神经药理方面的应用(3)

2.溶液的组成

(1) 电极液:根据记录的电流不同电极液的成分也不同。基本要求是等张的KCI 溶液,Ca2+ 浓度为10~100nmol (pCa 7~8),pH 值7~7.4。这里介绍一个在全细胞记录模式时,通过改变保持电位,能分别记录到Na+、K+、Ca2+ 电流的电极液成分(mmol/L):K Aspartic 49.89,KCI 30.37, KH2PO4 25,HEPES 20.12,EGTA 0.999,KOH 29.95,MgCI2 1,CaCI2 0.2,ATPNa2 6.8。用KOH 调pH 至7.4。如果要记录纯的Na+、K+、Ca2+ 电流,则需要使用相应的工具药。HEPES(N-2-hydroxyethyopiperazine-N’-2-ethanesulfonic acid,羟乙基哌嗪乙烷磺酸)

(2) 细胞外液(浴槽液):分离细胞和记录电流时应用。分离神经细胞主要用人工脑脊液(artificial cerebrospinal fluid solution,ACSF),成分(mmol/L):NaCI 124,KCI 2.5,NaH2PO4 1.25,MgSO4 2.0,CaCI2 2,NaHCO3 26,glucose 10。该液体需要通以95%O2+5%CO2 混合气体。如果用HEPES 作缓冲系,则ACSF 的成分如下(mmol/L):NaCI 140,KCI 2.5,MgCI2 1,CaCI2 1,glucose 25,HEPES 10。

上述溶液的配制均使用去离子水。

膜片钳技术在神经药理方面的应用(4)

3.神经细胞的分离

运用膜片钳技术进行电生理学研究需要制备合适的单个细胞作标本,细胞制备的好坏直接影响实验的成功率。膜片钳实验要求细胞标本具有呼吸活性、耐钙、细胞膜完整、平滑、清洁度高的条件,以利于微电极与细胞膜进行高阻封接。活性好的细胞在形成全细胞模式后可以保持活性很长时间,足以保证实验的顺利进行。因此制备好的细胞标本是膜片钳实验的关键第一步。

七十年代以来,出现了许多分离各类细胞的分离技术,但是进行电生理学研究尤其是膜片钳实验多应用酶解分离细胞的方法。我们实验室曾分离过豚鼠心室肌细胞、大鼠肝脏细胞、大鼠脑皮层神经细胞、家兔肺动脉平滑肌细胞和人脑皮层神经细胞及人心房肌细胞。

这里重点介绍大鼠脑皮层神经细胞的分离技术。

(1) 用30mg/kg 戊巴比妥钠ip 麻醉后,断头开颅取出大脑半球放入冷的人工脑脊液中,轻轻剥离脑膜和血管等纤维组织,然后取脑皮层在人工脑脊液中剪成2mm×2mm 的组织块静止1小时,并通以氧气。

(2) 将脑组织块放入含有protease 16unit/ml ( type Ⅹ, sigma )和protease 2unit/ml

(type ⅩⅣ, sigma)的人工脑脊液中,在36℃恒温震荡(60 次/min)水浴中孵育60 分钟左右。

(3) 将组织块取出,反复用人工脑脊液冲洗5次,以彻底清除消化酶,于室温下静止60 分钟并继续通氧,实验前将组织块轻柔吹打后即可分离出单一的神经细胞供实验使用。

膜片钳技术在神经药理方面的应用(5)

4.千兆欧姆封接

取一滴细胞液,滴入浴槽中,用人工脑脊液进行灌流,将浮游的死细胞冲走,待细胞贴壁后即可进行封接吸引。通过PCLAMP 软件或电子刺激器,给予一个20mV,10~50ms的矩形波刺激,当电极进入浴槽溶液时,记录电流的直线变成与矩形波电压脉冲相对应的矩形波曲线,将电极尖轻轻压在细胞膜表面,此时电流曲线的高度变低,给电极以负压吸引,由于电极尖与细胞膜逐渐密接,细胞膜与电极间的电阻逐渐增加,电流曲线逐渐减小

直至变成一条直线,则形成了千兆欧姆封接。

膜片钳技术在神经药理方面的应用(6)

5.记录模式

根据研究目的选择记录模式,主要有下面叙述的前4种,后3种是依据前4种变更而来的。

(1) 细胞贴附式 (cell-attached 或on-cell mode):千兆欧姆封接后的状态即为细胞贴附式模式,是在细胞内成分保持不变的情况下研究离子通道的活动,进行单通道电流记录。即使改变细胞外液对电极膜片也没有影响。

(2) 膜内面向外式 (inside-out mode):在细胞贴附式状态下将电极向上提,电极尖端的膜片被撕下与细胞分离,形成细胞膜内面向外模式。此时膜片内面直接接触浴槽液,灌流液成分的改变则相当于细胞内液的改变。可进行单通道电流记录。此模式下细胞质容易渗漏(washout),影响通道电流的变化,如Ca2+ 通道的run-down 现象。

(3) 全细胞式 (whole-cell mode) 记录:在细胞贴附式状态下增加负压吸引或者给予电压脉冲刺激 (zapping),使电极尖端膜片在管口内破裂,即形成全细胞记录模式。此时电极内液与细胞内液相通成为和细胞内电极记录同样的状态,不仅能记录一个整体细胞产生的电活动,并且通过电极进行膜电位固定,也可记录到全细胞膜离子电流。这种方式可研究直径小于20μm 以下的小细胞的电活动;也可在电流钳制 (current clamp)下测定细胞内电位。目前将这种方法形成的全细胞式记录称作常规全细胞模式 (conventional

whole-cell

mode 或hole cell mode)。

(4) 膜外面向外式 (outside-out mode):在全细胞模式状态下将电极向上提,使电极尖端的膜片与细胞分离后又粘合在一起,此时膜内面对电极内液,膜外接触的是灌流液。可在改变细胞外液的情况下记录单通道电流。

(5) 开放细胞贴附膜内面向外式 (open cell-attached inside-out mode):在细胞贴附式状态下,用机械方法将电极膜片以外的细胞膜破坏,从这个破坏孔调控细胞内液并在细胞贴附式状态下进行单通道电流记录。用这种方法时,细胞越大,破坏孔越小,距电极膜片越远,细胞因子的流出越慢。

穿孔膜片式 (perforated patch mode) 或缓慢全细胞式 (slow whole-cell mode):在全细胞式记录时由于电极液与细胞内液相通,胞内可动小分子能从细胞内渗漏到电极液中。为克服此缺点,可在膜片电极内注入制霉菌素 (nystatin) 或二性霉素B(amphotericin 使电极膜片形成多数导电性小孔,进行全细胞膜电流记录,故被称为穿孔膜片式或制霉菌素膜片式 (nystatin-patch mode)。又因胞质渗漏极慢,局部串联阻抗较常规全细胞记录模式高,钳制速度慢,故也称为缓慢全细胞式。

(7) 穿孔囊泡膜外面向外式 (perforated vesicle outside-out mode):在穿孔膜片式基础上,将电极向上提,使电极尖端的膜片与细胞分离后又粘合在一起形成一个膜囊泡。如果条件很好,在囊泡内可保留细胞质和线粒体等,能在比较接近正常的细胞内信号转导和代谢的条件下进行单通道记录。

6. 细胞内灌流方法:细胞内灌流是在全细胞式状态下利用电极内灌流法形成的。电极内灌流法的装置是由电极固定部、灌流液槽、注入管、流出管、电极记录用琼脂桥所组成。注入管是用直径2.5 mm 的塑料管经加热拉细制成,使其尖端能插到接近电极的尖顶部。灌流液槽注满实验用溶液,插入注入管,当千兆封接形成后,由于负压吸引的作用电极内液从流出管流入排液槽的同时,实验用溶液由流入管注入到电极内,电极充满实验用溶液

后关闭注入管,完成了液体的交换。

这种方法应用在“内面向外式”时,可同时改变细胞内液和细胞外液的组成;应用在“全细胞式”时就形成了细胞内灌流方法,直接改变了细胞内液。

膜片钳技术在神经药理方面的应用(7)

7. 全细胞记录模式离子通道电流记录

(1) 钠通道电流 (INa):灌流液即细胞外液同人工脑脊液液,也可加入CoCl2 3 mmol/L 或nifidipine 10μmol/L 以阻断钙电流。电极液成分(mmol/L):CsCl 150, EGTA 11, CaCl2 1,MgCl2 1, HEPES 10, 用CsOH 调pH 至7.4。

电压钳制方案,通常设保持电位 (holding potential) 为-80 mV,去极化电压为

-10~+40mV,步阶电压10 mV,去极化的保持时间(刺激脉冲宽度或钳制时间)10~40 ms。当全细胞记录方式形成后,利用上述电压钳制方案,即可记录出INa。根据实验数据制作电流-电压 (current-voltage, I-V) 关系曲线,从中找到Na+ 电流的激活电位、反转电位和最大电流的电压区域。

(2) 钙通道电流 (ICa):灌流液有两种方案,一是人工脑脊液中加入TTX 10μmol/L,另一是将人工脑脊液中的NaCl 换成N-methyl-D-glucamine 130μmol/L, pH 用CsOH 调至7.4。电极液的组成(mmol/L):Aspartic acid 60, CsOH 60, MgCl2 4, HEPES 10, EGTA 10, Na2ATP 3。用CsOH 调pH 至7.4。通常使用的电压钳制方案是设保持电位为-40 mV,去极化电压为10~110 mV,步阶电压10 mV, 钳制时间300 ms,此方案记录的是L 型Ca2+ 通道电流;但在此保持电位下记录到的Ca2+ 电流尚含有Na+ 通道电流或尚有T 型Ca2+ 通道电流。记录由于没有特异的T 型Ca2+ 通道阻滞剂,若想获得较纯净的L 型Ca2+ 通道电流,将保持电位抬高到-30 mV 即可。记录T 型Ca2+ 通道电流的电压钳制方案是设保持电位为-80 mV,仍以10 mV 的步阶电压去极,去极化电压为10~170 mV,应用L 型Ca2+ 通道阻滞剂,如:nitrendipine、nisodipine、nifedipine 等,即可得到较纯净的T 型Ca2+ 通道电流。两种方案得出的膜电流峰值,均可绘制I-V 曲线。

(3) 钾通道电流:神经细胞上亦存在多种K+ 通道,其研究也很复杂,通常最直观最容易观察和记录得到的K+ 通道电流不外乎几种。这里仅就延迟整流通道、内向整流通道及瞬间外向电流通道的电流记录加以介绍。

基本液体灌流液的组成 (mmol/L): N-methyl-D-glucamine 135, KCl 5.4, CaCl 1.8,

MgCl2 0.5, HEPES 10, Glucose 5.5。用HCl 调pH 至7.4。也可在灌流液中加入TTX

(10-6mol/L)和Cd+ (0.2~0.5mmol/L),以阻断Na+ 和Ca2+ 通道。电极溶液为通常的细胞内液。

①延迟外向整流电流 (delayed rectifier outward current, Ikr):设保持

电位为–80 mV,去极化电压为 -20~+170 mV,步阶电压10 mV, 钳制时间可这在100~400 ms,时间间隔为2~3ms 以上。有时可将保持电位设在–30 mV 或–40 mV,这样不仅可以使T 型Ca2+ 通道失活,记录出Ikr,而且也可以同时记录到尾电流 (Itail),尾电流也是延迟外向整流电流的一种表现形式,当钳制方波从 +70 mV 或 +90 mV 复极到保持电位时,这个电流并不紧随,而是延迟于复极的钳制方波,以指数衰减方式,逐渐回至电流基线。现认为Itail 和Ikr 使用

同一通道。Ikr 值的表示,通常是测定钳制方波就要结束时的外向电流幅值;Itail 的测定是在钳制初期上升的幅值。

②内向整流电流 (inward rectifier current, Ikir):在膜超极化时内向整流通道开放,K+流入细胞内,当膜电位近于静息电位或更正时,该通道趋于关闭。一般情况下保持电位的设置与细胞的静息电位相当,设在–80 mV,在这个电位下,膜电位为“零”,保持电位是“零”电流电位。然后令钳制电位从正于保持电位的方向,向超极化方向复极,超极化可达-140 mV 到–160 mV,过度超极化可能会损伤细胞,步阶电压仍为10 mV

在神经细胞,Ikir 于钳制初期可表现出一个瞬间内向电流,很快衰减,之后趋于平衡,形成时间不依赖性或称为持续性电流。测量电流幅度是测瞬间电流峰值和持续性电流峰值。分别绘制其I-V 曲线,再做分析。

③瞬间外向电流 (transient outward current, IA 或Ito):用于记录Ito 的电压钳制方案与延迟整流电流的方案基本一样,通常将保持电位设在–80 mV,但这种电压钳制方案在记录到的Ito 中,一定混有Ikir。目前可用两种方法将其分开。第一,设置两个电压钳制方案,

即:第一个方案中的保持电位为–80 mV,钳制电位为 +50 mV 或更高,时间为80~100ms,目的在于最大程度地记录到Ito。第二,如用改变保持电位的方法仍不能分开Ito 和Ikir,则可用某些阻断剂 (如E-4031、TEA 等) 阻断Ikir,然后利用方案一记录Ito。然而,实际上要得到较纯净的Ito 是相当不容易的,这其中包括:在某些细胞Ito 和Ikir 对膜电位的依赖性太接近,以及到目前为止尚未有十分特异的Ikir 阻断剂。由于TEA 这类阻断剂的特异性差,

所有应用时要格外小心,应使用特异性较好的阻断剂。在K+ 通道的研究中,也可应用斜坡(ramp) 钳制方案。其基本要点是膜电位斜坡除极

的速度不要太快。通常将膜电位从–110 mV 斜坡除极到 +70 mV 或更高,旨在使这一钳制方案覆盖整个生理电位活动范围。在神经细胞,斜坡钳制所得到的K+ 电流包含几种类型K+ 通道电流,其中有Ikr、Ito 、Ikir 等,也就是记录到的应是一条多类型的K+ 电流组成的电流轨迹。不同类型的K+ 通道阻滞剂可以分别阻断这一电流轨迹的不同部分。实验者可在上述原则基础上设计适用于不同K+ 通道研究的斜坡钳制方案。

膜片钳技术在神经药理方面的应用(8)

8. 单通道电流记录

(1) 钠通道电流 (INa):用“细胞贴附式”膜片时,细胞外液为人工脑脊液,电极液为无钙的人工脑脊液 (Na+ 140mmol/L) 保持电位与去极化电压的设置同全细胞记录方式,施加50ms 的去极化脉冲,可记录到单通道INa。为便于观察,使通道开闭的速度变慢,实验需在较低的温度(22~24℃)下进行。INa 表现为内向(向下)的矩形波状的变化。将保持电位从静息电位钳制到–130 mV,处于超极化状态下,给予10 mV 步阶电压的去极化脉冲,钠通道开放数逐渐增多,可得到一个近似于用全细胞模式记录出现的INa 波形。

(2) 钙通道电流 (ICa):为准确控制膜电位,在记录Ca2+ 电流时,应将灌流液换成高钾(K+ 浓度130mmol/L) 溶液,此时细胞静息电位约为0 mV,通过保持电位的设置可以较准确的控制细胞膜电位;也可用人工脑脊液灌流,但此时细胞的静息电位约为–80 mV,设置保持电位时应考虑到这一点。电极液与全细胞记录时应用的细胞外液类似。电压条件与全细胞记录相同。

用细胞贴附式或膜内面向外式记录单通道ICa 时,常用的高钾灌流液的组成(mmol/L):K-aspartate 90,KCI 30, KH2PO4 10,EGTA 1,MgCI2 0.5,CaCI2 0.5。用KOH 调pH 至7.4。电极液组成 (mmol/L):BaCl2 50, Choline Cl 或TEA Cl 70, HEPES 10, EGTA 0.5。用CsOH 调pH 至7.4。

应注意的是,并不是每次去极化都能使钙通道开放,常常见到钙通道全部不开的情况(blank trace),肾上腺素能神经激动剂、钙通道激动剂如Bay K 8644 能延长通道开放时间。(3) 钾通道电流:细胞K+ 在正常生理浓度时,钾通道的电导很小,K+ 电流也非常小,测定很困难,因此在记录钾通道电流时,应将电极内(膜片外)液的K+ 浓度增加到

140~150mmol/L。电压条件与全细胞模式记录时相同。

单通道电流记录的主要观察指标包括:单通道电导 (conductance),开放概率 (open probability),平均开放时间 (mean open time),平均关闭时间 (mean close time)。一般说来,单通道记录和分析均较全细胞电流的记录和分析的难度大且更复杂.

稳态激活曲线和稳态曲线:一般通过给予细胞持续一定时间的一系列去极化(多为去极化)脉冲来激活离子通道,记录通道电流峰值,再计算岀电导G,作出G-V曲线,该曲线称为稳态激活曲线,也就是我们常说的激活曲线。

膜片钳原理

膜片钳技术原理 可兴奋膜的电学模型 细胞膜由脂类双分子层和和蛋白质构成。脂质层的电导很低,由于双分子层的结构特点,形成了细胞的膜电容,通道蛋白的开闭状况主要决定了膜电导的数值。在细胞膜的电学模型中,膜电容和膜电导构成了一个并联回路。在细胞膜的电兴奋过程中,脂质层膜电容的反应是被动的,其电流电压曲线是线性的;而由通道蛋白介导的膜电导构成了膜反应的主动成分,它的电流电压关系是非线性的。 当改变跨膜电位时,膜电容和膜电导分别引发被动和主动电流:Im=Ii+CdV/dt,其中Im是流过膜的总电流,Ii是通道电流,CdV/dt是由膜电容介导的电容电流。为了考察通道电流就必须消除电容电流的影响,此时可以令dV/dt=0,即将膜电位钳制在一固定数值,使其不随时间变化,这就是电压钳技术的实质所在。 电压钳技术 离子通道的近代观念源于Hodgkin、Huxley、Katz等人在20世纪30—50年代的开创性研究。在1902年,Bernstein创造性地将Nernst的理论应用到生物膜上,提出了“膜学说”。他认为在静息状态下,细胞膜只对钾离子具有通透性;而当细胞兴奋的瞬间,膜的破裂使其丧失了选择通透性,所有的离子都可以自由通过。Cole等人在1939年进行的高频交变电流测量实验表明,当动作电位被触发时,虽然细胞的膜电导大为增加,但膜电容却只略有下降,这个事实表明膜学说所宣称的膜破裂的观点是不可靠的。1949年Cole在玻璃微电极技术的基础上发明了电压钳位(voltage clamp technique)技术,基本原理如下: 电压钳技术的核心在于将膜电位固定在指令电压的水平,这样才能研究在给定膜电位下膜电流随时间的变化关系。在上图中,膜电位Vm由高输入阻抗的电压跟随器所测量。钳制放大器在比较了膜电位和指令电位E之后,通过电阻Ra将电流注入膜内以控制膜电位。钳制放大器的输出:Vo=A(E-Vm),因为这个输出由电阻Ra和膜所分压,所以输出电流:I=(Vo-Vm)/Ra。由这两个关系可推出:Vm=EA/(1+A)-RaI/(1+A)。因此若钳制放大器的增益A极大,膜电位Vm和指令电位E之间的差别就可以忽略,即实现了电压钳制。 Hodgkin、Huxley和Katz应用电压钳技术研究枪乌贼巨轴突,结合同位素示踪和胞内灌流等技术发现:动作电位的初期,细胞膜主要对钠离子的通透性发生改变,胞外的钠离子迅速内流,并产生所谓的“超射”现象(overshoot);随后对钠的通透性的急剧减少并且对钾离子的通透性增加。兴奋期的膜电位存在“超射”现象也是膜学说所不能解释的。 根据这些实验,Hodgkin、Huxley和Katz在其1949—1952年的一系列论文中提出了“离子学说”或“钠学说”。认为当膜的去极化超过一个临界值时,就会触发动作电位的产生。在此期间,钠电导迅速上升,钠离子大量内流,使得膜电位接近钠的平衡电位;随后钠电导迅速失活,钾电导逐渐增加,引起膜电位的复极化。 Hodgkin和Huxley通过对电压钳位实验数据的分析,给出了所谓的Hodgkin—Huxley方程。他们将膜电位钳制在不同的水平,观察钾电导或钠电导随时间的变化,然后用一个常微分方程去逼近所得到的实验曲线,而这些微分方程中的参数则假定跟离子通道上的“粒子”相关。根据H—H方程,能够推导出动作电位的阈值、形状、幅度等性质。并且在去除电压钳制的条件下,可以得到一个以电压和时间为变量的偏微分方程,由它可以给出和真实状况相符合的神经冲动的传导。 膜噪声和噪声分析 Katz等人在1970年代初期研究了蛙神经肌肉接头处肌纤维膜电位的波动。他们根据对这种膜电位“噪声”的分析,提出了量子释放的概念,认为神经递质是以囊泡的形式从突触前膜释放到突触间隙中。并且Katz等人借助这种新的“噪声分析”方法(fluctuation analysis),能从突触后膜电位的“噪声”中推测出单位事件的幅度和时程。Anderson、Stevens、Colquhoun和Sigworth等人进一步发展了“噪声分析”。 “噪声分析”的实质在于二项分布期望和方差之间的关系。假定通道只有开和关两个状态,并且各个通道的开关是独立的。若N是通道的总数,p是通道的开放概率,i是单通道电流,I是膜电流的期望值。则有:I=Npi,var(I)=Np(1-p)i2,即:var(I)=iI-I2/N。用var(I)对I作图,这显然是一个开口朝下的抛物线。微分这个二次方程得到曲线的斜率:dvar(I)/dI=i-2I/N,当I=0时的斜率就是单通道电流,根据钳制电位和反转电位之间的差就可以算出单通道电导;在抛物线的顶点即当:dvar(I)/dI=0时,I=Ni/2,由此可算出

对话诺奖大师慕课答案

对话诺奖大师(更新版,有些人上传的答案有误) 1.11 【单选题】一些研究者认为,现代人类语言是何时产生的?(A) A 、旧石器时代初期B、旧石器时代晚期C、新石器时代初期 D 、新石器时代晚期 2 【多选题】下列不属于印欧语系的有(ABC )。 A 、匈牙利语 B 、芬兰语C、爱沙尼亚语 D 、英语 3【判断题】远古人类语言的研究在美国不太受欢迎。 (对) 4 【判断题】语言和 DNA 之间没有严格联系。 (对)●远古人类语言的研究使用了(比较语言学)的研究方法。 1.21 【单选题】研究两种语言是否有联系及联系紧密程度的方法是( C)。 A 、语言相较法 B 、语言核心法C、词汇统计学法 D 、词汇重构法 2 【多选题】盖尔曼认为追溯语言发展史可以使用的方法有(CD )。 A 、研究类人猿发音 B 、结合人类DNA C 、使用文献自己的语言 D 、重建始祖语言 3 【判断题】任何代表某种历史现象的语族都有一种原始语言。 (对) 1.31 【单选题】下列属于亚非超语系的是( A )。

A 、闪族语 B 、乌拉尔语系 C 、印欧语系 D 、汉藏语系 2 【多选题】下 列属于欧亚超语系的是(ABCD )。 A 、乌拉尔语系 B 、印欧语系C、阿尔泰语系 D 、闪族语 3 【判断题】 波伦语是包含四大超语系的超超语系。 (对) 4 【判断题】日耳曼语是印欧语系的一个分支。 (对) 1.41 【单选题】原始闪语中表示山丘的单词为( B )。 A 、tul B 、tall C 、tulv D 、twn 2 【单选题】 pidi 是表示( C) 的单词。 A 、河流 B 、山谷C、山丘 D 、海洋 3 【判断题】印欧语表示数字二的 单词为duwo 。 (对) 2.11 【单选题】马普学会最重要的研究部分是(C)。 A 、应用数学 B 、材料科学 C、基础科学研究 D 、应用技术研究 2 【单选题】克劳斯·冯·克利钦 是德国马普学会( B )所长 A 、智能系统研究所 B 、固体物理研究所C、生物物理研究所 D 、引力物理研究所 3 【单选题】克劳斯·冯·克利钦因发现 ( D )获得了诺贝尔物理学奖。 A 、相对论 B 、 X 射线 C、物质的拓扑相变和拓扑相 D 、量子霍尔效应 4【判断题】马普学会的研究所仅仅在德国才有。 (错) 5 【判断题】克劳斯·冯·克利钦是单独获得了诺贝尔物理学奖。

离子通道研究技术的最新进展_全自动膜片钳技术

离子通道研究技术的最新进展———全自动膜片钳技术 曹小于1 郑婉云2 鲁燕滨3 黄 超1 (1.达科为生物技术有限公司 深圳 518054) (2.厦门大学生命科学学院分子细胞神经科学实验室 厦门 361005) (3.南京善康医药科技发展公司 南京 210013) 摘 要 全自动膜片钳技术是离子通道检测技术的最新进展,它具有直接性、高信息量及高精确性的特点。近来在多个方面作出新的突破,如高的实验通量表现,较高的自动化程度、良好的封接质量、微量加样等。目前,该技术在以离子通道为靶标的药物研发,药物毒理测试以及虚拟药筛等方面有广阔的应用前景。本文对全自动膜片钳仪器的原理和技术细节作全面介绍。 关键词 全自动膜片钳 高通量药筛 hERG检测 虚拟筛选 引言 细胞是通过细胞膜与外界隔离的,在细胞膜上有很多种离子通道,细胞通过这些通道与外界进行离子交换。离子通道在许多细胞活动中都起关键作用,它是生物电活动的基础,在细胞内和细胞间信号传递中起着重要作用。随着基因组测序工作的完成,更多的离子通道基因被鉴定出来,离子通道基因约占1.5%,至少有400个基因编码离子通道。相应的由于离子通道功能改变所引起的中枢及外周疾病也越来越受到重视。以离子通道作为靶标的药物现占总靶标的5%,而潜在的离子通道靶标药物将占总靶标的25%,因此开发离子通道为靶标的药物将具有广阔的市场前景。已知与离子通道有关的疾病主要有:癫痫(ep ilep sy)、心律失常(Cardiac ar2 rhyth m ia)、糖尿病(diabetes)、高血压(hyperten2 si on)、舞蹈症(Huntingt on’s disease)、帕金森症(Par2 kins on’s disease)……。 离子通道的实验研究最初主要来源于生理学实验。1949~1952年,Hodgkin等发展的“电压钳技术”为离子通透性的研究提供技术条件。60年代中期,一些特异性通道抑制剂的发现为离子通道的研究提供有力武器。1976年Neher和Sak mann发展的膜片钳技术直接记录离子单通道电流,为从分子水平上研究离子通道提供直接手段。80年代中期,生化技术的进步,分子生物学以及基因重组技术的发展,使人们能够分离纯化许多不同的通道蛋白,直接研究离子通道的结构与功能关系(见表1)。 表1 传统膜片钳技术主要优缺点总结 优 点缺 点 A高信息量:能改变细胞膜电位,单细胞记录A需要受过良好训练的电生理学专家 B高灵敏性:能记录到pA级电流变化和单通道B通量很低,一天的实验数据量不超过10  开关状态C劳动力投入密集,试验操作过程复杂 C灵活性好:可以控制改变细胞膜内外的溶液成分D不适合药物粗筛/二次筛选 D应用范围广:可以分析检测所有的离子通道类型E技术自动化非常困难,且不能进行平行检测E相对于荧光标记和放射性标记等手段具有更高权  威性和精确性〔1〕 1 多款全自动膜片钳系统分析 1.1 技术实现原理 Nani on公司的PatchL iner NPCκ216,Molecular Devices公司的I on works HT和PatchXp ress7000A 全部采用的是平板微阵列技术。其技术特点如下:在平板电极上打磨或者使用金属离子轰击成孔,每孔都是大小均一的直径约1~2μm的小孔,每个小孔下面有电极连接到放大器,可对实验过程中的电流变化进行记录。将细胞悬浮液加载到平板玻璃孔上,通过调节压力和吸力,一个细胞便可以自动定位在小孔上(相当于微管电极的尖端),自动进行封接,自动判断封接并进一步施加负压破膜以进行全细胞模式实验〔4,5〕。

膜片钳技术的发展和应用

膜片钳的发展和应用 1.背景 细胞是生物的基本组成单元,细胞外围有一层薄膜,彼此分离又互相联系,细胞间与细胞内的通信、信号传递依靠其膜上的离子通道来进行,离子和离子通道是细胞兴奋性的基础,亦是产生生物电的基础。生物电信号通常是用电学或电子学的方法进行测量。早期多采用双电极电压钳技术作胞内记录,近年来逐渐被膜片钳所取代,这项技术为从细胞和分子水平了解生物膜离子单通道“开启”和“关闭”的门控动力学及各种不同离子通道的通透性和选择性等膜信息提供了最直接的手段。 膜片钳记录(patch clamp recording)是利用玻璃微电极吸引封接面积仅为几个um2的细胞膜片,在10-12A水平,记录单个或几个通道的离子电流,已达到当今电子测量的极限。此技术广泛用于细胞膜离子通道电流的测量和细胞分泌、药理学、病理生理学、神经科学、脑科学、植物细胞的生殖生理等领域的研究。从而点燃了细胞和分子水平的生理学研究的生命之火,并取得了丰硕的成果。 2.膜片钳技术简介 2.1 基本原理和记录方法 电压钳(V oltage-clamp)是由英国学者Huxley和Katz最先应用的[1]。其实质是通过负反馈微电流放大器在兴奋性细胞膜上外加电流,保持细胞跨膜电位不变,并迅速控制其数值,以观察在不同膜电位条件下膜电流的情况。膜电流的改变反映了膜电阻和膜电容的变化,因此电压钳可用来研究整个细胞膜或一大块细胞膜上所有离子通道的活动,但该技术由于在细胞内插人两根电扳,对细胞损伤很大,在小细胞中难以实现,又因细胞形态复杂,很难保持细胞膜各处生物特性的一致,而逐渐被膜片钳所取代。 膜片钳技术(patch-clamp)是在电压钳基础上发展起来一种新技术,与电压钳的主要区别有二:一是钳制膜电位的方法不同;二是电位固定的细胞膜面积不同,即所研究的离子通道数目不同。与电压钳一样,膜片钳也是利用负反馈电子线路,将微电板尖端所吸附的一个至几个平方微米的细胞膜电位固定在一定水平,观察流过通道的离子电流。其实现膜电位固定的关键是在玻璃微电极尖端边缘与细胞膜之间形成高阻封接,使电极尖开口处与相接的细胞膜小区域(膜片)形成无论是从机械上还是电学上都极为紧密地封接,从而可反映细胞上单一(或多数)离子通道的分子活动[2]。1976年,德国科学家Neher和Sakmann首先用此技术对蛙胸皮肌细胞膜上的己酰胆碱受体通道进行了研究,记录出了量值在皮安级(10-12 A)的微弱电流[3,4]。1981年,经Hamill等[5]后人的进一步完善,其电流测量灵敏度已达1pA,时间和空间分辨率达10 us和1 um。 随着膜片钳技术的出现,目前有几种不同的记录方式: (1)细胞吸附式(cell-attached patch)将两次拉制后,经热抛光的微管电极置于清洁的细胞膜表面, 形成高阻封接,在细胞膜表面隔离出一小片膜,即通过微管电极对膜片进行电压钳制,从而测量膜电流。 (2)内面向外模式(inside-out patch)高阻封接形成后,将微管电极轻轻提起,使其与细胞分离,电极端形成密封小泡,在空气中短暂暴露几秒钟后,小泡破裂再回到溶液中,使小泡的外半部分破裂即得。

中山大学生化真题专项整理(含答案)2脂类和生物膜3.doc

第二章脂类、生物膜、跨膜运输和信号转导

20.(")血浆脂蛋白中,低密度脂蛋白负责把胆固醇运送到肝外组织。(04年)

31.为什么说低密度脂蛋白(LDL)中的胆固醇是“bad cholesterol",而高密度脂蛋白(HDD 中的胆固醇是“good cholesterol" ? (07 年)

Microvilli Epithelial cell Glucose Bloo d Basal surface \ Apical surface Intestinal lumen - ?? 2IC 如?? C ATPase Glucose O —M 二.-. Glucose uniporter Na'gluE ^^ElUT2 symporter 到静息状态。 35. 根据下图说明葡萄糖在小肠被吸收进入血液循环的机制。(12年) 答:小肠肠壁细胞有两个面,其中一面作为肠内毛细血管的外壁,上有Na/K 泵及葡萄糖自由扩散 通道,而另一面面向小肠空间,上面有大量绒毛状的突起,在突起处有Na/葡萄糖协同转运载体。 首先,小肠肠壁细胞通过Na/K 泵,每运转一次将3个Na 离子泵出细胞,两个K 离子泵入细胞,建立起 细胞外正内负的膜电位,使得细胞内带负电荷,细胞外带正电荷且具有很高的Na 离子浓度。而处于 小肠空间…面上的Na/葡萄糖协同转运载体,结合小肠中的2个Na 离了及1个葡萄糖分子利用小肠 中与小肠肠壁细胞内的Na 离子浓度差,将Na 离子及葡萄糖分子转运进入小肠肠壁细胞,进入细胞中 的2离子很快又被血管壁面的Na/K 泵泵至血液中,而进入的葡萄糖亦很快由葡萄糖扩散通道进入血 液,细胞内回复到初始状态,开始下一轮循环。在这种机制下,葡萄糖由小肠进入血液循环。 36. 简述第二信使的主要类别及其作用机制。(12年) 答:细胞内有5种最重要的第二信使:cAMP 、cGMP 、DAG 、IP3及Ca2+。cAMP 由腺昔酸环化酶水解 细胞质中的ATP 产生,cAMP 通过蛋白激酶A 进行信号放大,蛋白激酶A 将ATP 上的磷酸基团转移到特定 蛋白质的丝氨酸或苏氨酸残基上进行磷酸化,调节靶蛋白的活性。鸟甘酸环化酶受体,受体本身就 是鸟昔酸环化酶,催化GTP 生成cGMP, cGMP 激活PKG,被激活的蛋白激酶G 可使特定蛋白质的幺幺.氨酸 或苏氨酸残基磷酸化,从而引起细胞反应。磷脂酶CB 水解质膜上的PIP2,产生IP3和DAG, IP3同质 膜上特异的IP3受体结合,使Ca 离了从内质网中释放出来,?方面协同DAG 激活蛋白激酶C,另?方 面与钙调蛋白结合引起其他反应。

膜片钳使用规则

膜片钳使用规则 一、工作原理: 1.膜片钳是一种可以直接观察单一的离子通道蛋白质分子对相应离子通透难易程度等特性的一种实验技术。其基本原理是用一个尖端光洁,直径约为0.5~3um 的玻璃微电极同神经或肌细胞的膜接触而不刺入,然后在微电极另一端开口处施加适当的负压,将与电极尖端接触的那一小片膜轻度吸入电极尖端的纤细开口,这样在这一小片膜周边与微电极开口处的玻璃边沿之间,会形成紧密的封接,其电阻可达数个或数十个千兆欧,这实际上把吸附在微电极尖端开口处的那一片膜同其余部分的膜在化学上完全隔离出来,由微电极记录到的电流变化只同该膜片中通道分子的功能状态有关。如果在这一小片膜中只包含了一个或少数几个通道蛋白分子,那么通过微电极测量出的电流,就是某种带电离子经由开放的单一通道蛋白质分子进行跨膜移动的结果。 二、操作步骤: 1.打开总电源。 2.依次打开电脑、显微镜、监视器、微操、放大器。 3.打开PULSE软件,在E盘建立自己的文件夹。 4.灌注玻璃电极并排空气体。 5.装上玻璃电极,浸入液面并调至视野范围。 6.点击set-up,将增益调为0.5,点Auto,记录电极电阻。

7.封接细胞,若上G,提起或吸破细胞。 8.依次点击on-cell,whole-cell补偿。 9.选定In-out或whole-cell模式进行实验。 10.用毕请关闭仪器,并切断总电源。 三、注意事项: 1.每天做实验前请用清水拖地,以防尘埃、静电伤害机器。 2.拉制仪使用前需预热15-30min。 3.银丝电极及地线发白时,请先用砂纸轻微打磨,再浸入新鲜的次 氯酸钠溶液镀氯化银,如果银丝电极30min未变黑,则考虑更换 次氯酸钠。 4.先开放大器,后开软件;先关软件,后关放大器。 5.非必须用到汞灯时请不要打开汞灯电源,打开后至少需1个小时 才可关闭。 6.在放大器打开时绝对不能用手、金属物品或其它导电的物品接触 电极丝(包括地线),在取放细胞片时请关闭放大器。 7.向玻璃微电极灌注内液时切勿灌太多(1cm左右为适),以防液 体进入银丝底部增加噪声。 8.安装玻璃微电极时,电极应与银丝平行,防止刮蹭银丝电极。 9.玻璃微电极需先用甲醇浸泡,再用酒精灯微烧两端,使其平滑。 10.换液时应时刻观察浴槽,防止液面过低或液体溢出污染镜头,最 适液面为微高于出液口。

生理学教学大纲(五年制临床)第七版

生理学教学大纲 (供五年制临床专业使用) (依据全国统编教材第七版修订) 生理学教研室修订 第一章绪论 【教学目标与要求】 掌握:内环境与稳态、反馈调节等基本概念。 熟悉:机体功能活动的调节方式。 了解:人体生理学的研究内容、研究方法,人体生理学与医学的关系。 【教学内容】 掌握: 1. 内环境与稳态;反馈调节(负反馈、正反馈、前馈)以及生理功能的自控原理。 熟悉: 1. 人体机能活动的调节:神经调节(非条件反射、条件反射),体液调节(激素、 局部体液因素),自身调节。 了解: 1. 人体生理学的研究内容、研究方法,人体生理学与医学的关系。 【教学方法】多媒体教学,课堂讲授,画图 【思考题】 1. 何谓内环境及其稳态?为何必须维持内环境相对稳定?机体将如何维持内环境相对稳定?(提示:如何维持内环境相对 稳定这一问题有待学完全书后解答) 2. 人体生理功能的调节主要有哪几种方式?它们是如何调节的? 3. 何谓正反馈和负反馈?试各举一例说明它们在生理功能调节中的作用及意义。 【授课时数】讲授2学时 第二章细胞的基本功能 【教学目标与要求】 掌握:细胞膜的物质转运功能,细胞的生物电现象,兴奋的产生和传导机制,神经-肌肉接头兴奋传递过程。 熟悉:肌肉收缩的外部表现、骨骼肌原理及肌肉收缩力学分析。 了解:细胞膜的基本结构。 【教学内容】 掌握: 1. 细胞膜的物质转运形式(单纯扩散、载体和通道中介的易化扩散、主动转运、 继发性主动转运、出胞和入胞)。 2. 静息电位:静息电位、极化,超极化的概念,静息电位的产生机制(静息电位 和K+平衡电位)及其研究手段。

3. 动作电位:动作电位、去极化、复极化、反极化、超射的概念;刺激引起兴奋 的条件:阈值、兴奋性和兴奋,阈电位与局部兴奋;组织兴奋及其恢复过程中兴奋性的变化(绝对不应期、相对不应期、超常期、低常期);动作电位的产生机制(锋电位与Na+平衡电位)及其研究手段(平衡电位、改变离子浓度;通道阻断剂;电压钳与膜片钳);兴奋的传播:兴奋在同一细胞上的传导,局部电流,跳跃式传导;动作电位的特点及其意义。 4. 局部电位:局部电位的概念、分类(去极化与超极化)、特点与产生机制。 5. 神经-肌接头的兴奋传递过程(终板电位的概念及产生机制)、特征。 (细胞的信号转导将在内分泌章讨论)。 熟悉: 1. 肌肉收缩的肌丝滑行理论;兴奋-收缩耦联、张力-速度关系曲线,长度-张力 关系曲线,最适初长度。 2. 肌肉收缩的外部表现和力学分析:单收缩、强直收缩;前负荷、后负荷;等长 收缩、等张收缩;V max,P0;肌肉的收缩能力。 3. 钙离子在耦联中的作用。 了解: 1. 了解单位膜的分子组成,液态镶嵌模型。 2. 骨骼肌的细微结构,肌小节,粗肌丝和细肌丝,肌管系统。 【教学方法】多媒体教学,课堂讲授,画图 【思考题】 1. 常见的跨膜物质转运形式有哪几种?各自的转运机制如何? 2. 何谓跨膜信号转导?细胞主要通过哪些方式进行跨膜信号转导?各自机制如何? 3. 何谓兴奋性?它与兴奋有何区别?组织兴奋及其恢复过程中兴奋性有何变化? 4. 神经纤维上的静息电位有何特点?它是怎样产生的?有何实验依据? 5. 何谓动作电位?试述神经纤维上动作电位的波形、特点和形成机制。 6. 试区别阈电位与阈强度的概念,以及各自对产生动作电位的作用。 7. 何谓局部兴奋?它有哪些特点?并指出在哪些方面与动作电位不同? 8. 兴奋如何引起?又如何在同一神经纤维上传导? 9. 神经-肌接头处的兴奋传递是如何进行的?如何加以证明? 10. 骨骼肌的收缩机制目前都用“肌丝滑行学说”加以解释,其依据是什么? 11. 何谓兴奋-收缩耦联?它包括哪些过程?其结构基础和耦联因子是什么? 12. 试区别骨骼肌的等长收缩和等张收缩,以及单收缩和单收缩的复合的概念。 13. 骨骼肌收缩受哪些因素的影响?如何影响? 【授课时数】讲授12学时 第三章血液 【教学目标与要求】 掌握:红细胞生成的调节,血液在内环境中的地位和作用、生理性止血与凝血的过程与机制;血量、输血与血型鉴定的生物学意义。

膜片钳记录和分析技术

膜片钳记录和分析技术 2010-12-15 16:41 来源:美国分子仪器点击次数:2186 关键词:膜片钳细胞信号 分享到: ?收藏夹 ?腾讯微博 ?新浪微博 ?开心网 细胞是动物和人体的基本组成单元,细胞与细胞内的通信,是依靠其膜上的离子通道进行的,离子和离子通道是细胞兴奋的基础,亦即产生生物电信号的基础,生物电信号通常用电学或电子学方法进行测量。由此形成了一门细胞学科-电生理学(electrophysiology),即是用电生理的方法来记录和分析细胞产生电的大小和规律的科学。 早期的研究多使用双电极电压钳技术作细胞内电活动的记录。现代膜片钳技术是在电压钳技术的基础上发展起来的。 1976年德国马普生物物理研究所Neher和Sakmann创建了膜片钳技术(patch clamp recording technique)。这是一种以记录通过离子通道的离子电流来反映细胞膜单一的(或多个的离子通道分子活动的技术)。以后由于吉欧姆阻抗封接(gigaohm seal, 109W)方法的确立和几种方法的创建。这种技术点燃了细胞和分子水平的生理学研究的革命之火,它和基因克隆技术(gene cloning)并架齐驱,给生命科学研究带来了巨大的前进动力。 这一伟大的贡献,使Neher和Sakmann获得1991年度的诺贝尔生理学与医学奖。 一、膜片钳技术发展历史 1976年德国马普生物物理化学研究所Neher和Sakmann首次在青蛙肌细胞上用双电极钳制膜电位

的同时,记录到ACh激活的单通道离子电流,从而产生了膜片钳技术。 1980年Sigworth等在记录电极内施加5-50 cmH2O的负压吸引,得到10-100GW10-100G?的高阻封接(Giga-seal),大大降低了记录时的噪声实现了单根电极既钳制膜片电位又记录单通道电流的突破。 1981年Hamill和Neher等对该技术进行了改进,引进了膜片游离技术和全细胞记录技术,从而使该技术更趋完善,具有1pA的电流灵敏度、1μm的空间分辨率和10μs的时间分辨率。 1983年10月,《Single-Channel Recording》一书问世,奠定了膜片钳技术的里程碑。Sakmann 和Neher也因其杰出的工作和突出贡献,荣获1991年诺贝尔医学和生理学奖。 二、膜片钳技术原理 膜片钳技术是用玻璃微电极吸管把只含1-3个离子通道、面积为几个平方微米的细胞膜通过负压吸引封接起来(见下图),由于电极尖端与细胞膜的高阻封接,在电极尖端笼罩下的那片膜事实上与膜的其他部分从电学上隔离,因此,此片膜内开放所产生的电流流进玻璃吸管,用一个极为敏感的电流监视器(膜片钳放大器)测量此电流强度,就代表单一离子通道电流。 膜片钳技术的建立,对生物学科学特别是神经科学是一资有重大意义的变革。这是一种以记录通过离子通道的离子电流来反映细胞膜单一的(或多个的离子通道分子活动的技术。些技术的出现自然将细胞水平和分子水平的生理学研究联系在一起,同时又将神经科学的不同分野必然地融汇在一起,改变了既往各个分野互不联系、互不渗透,阻碍人们全面认识能力的弊端。

膜片钳技术在药学研究中的应用

膜片钳技术在药学研究中的应用 前言 德国物理学家Neher和Sakmann[1.2]建立的膜片钳技术(patch clamp technique)是一种以记录通过离子通道的离子电流来反映细胞上单一的(或多数的)离子通道活动的技术,已被广泛应用。作为先进的细胞电生理技术,它一直被奉为研究离子通道的“金标准”。应用膜片钳技术可以证实细胞膜上离子通道的存在,并能对其电生理特性、分子结构、药物作用机制等进行深入的研究。基因组学、蛋白质组学研究表明,以离子通道为靶标的药物研究在未来具有很大的发展空间。 关键词膜片钳技术;药学研究;应用 Abstract [ ]The patch-clamp technique , a dominant technique in cellular electrophysiology , is always being regarded as the gold standard for ion channel research.. Application of the patch-clamp technique can demonstrate the existences of ion channels and provide valuable information for ion channels, including their electrophysiological properties , molecular structures and the mechanism of drug action .Genomics and proteomics research has showed that the development of drugs for ion channel target would be very promising in future. Key words Patch-clamp technique ; Study on Medicinal chemistry ; Application 80年代初发展起来的膜片钳技术(patch clamp technique)为了解生物膜离子单通道的门控动力学特征及通透性、选择性膜信息提供了最直接的手段,该技术的兴起与应用,使人们不仅对生物体的电现象和其它生物现象有更进一步的了解,而且基因组学、蛋白质组学研究表明,以离子通道为靶标的药物研究在未来具有很大的发展空间。为了突破由于筛选技术所造成的对离子通道为靶标的药物开发的瓶颈,近年来,对膜片钳技术进行了改进以适合药物高通量筛选的要求,由此产生了一些技术。 一、膜片钳技术原理及特点

膜片钳常见问题解答

膜片钳常见问题解答(一) 1.什么是电压钳与膜片钳,有什么区别? 答:电压钳技术是通过向细胞内注射一定的电流,抵消离子通道开放时所产生 的离子流,从而将细胞膜电位固定在某一数值。由于注射电流的大小与离子流 的大小相等、方向相反,因此它可以反映离子流的大小和方向。膜片钳技术钳 制的是“膜片”,是指采用尖端经过处理的微电极与细胞膜发生紧密接触,使 尖端下的这片细胞膜在电学上与其它细胞膜分离,这大大降低了背景噪声,使 单通道微弱的电流得以分辨出来。采用电压钳技术将这片膜的电位钳制在某一 数值,可记录到单通道电流。从这点上看,膜片钳技术是特殊的电压钳技术。 随着膜片钳技术的发展,它已经不仅仅局限于“膜片”的概念,也不仅仅采用 电压钳技术,还常采用电流钳技术。 2.离子通道电导的单位是什么?如何换算? 答:离子通道电导的单位是西门子( Siemens, S),旧称姆欧,即安培 /伏特。常用皮西门子( pS),1pS=10E-12 S, 1,000 pS=1 pA/mV。 3. MultiClamp 700A中,在放大器和信号器的连接中,放大器的raw output是否需要连接信号器的 ANALOG IN接口? scaled output,raw output有什么区别? 答:Raw output为原始信号输出,放大器输出的信号没有经过处理(如滤波、 放大等), scaled output为定标输出,输出的信号经过了处理。后者的灵活度大,因此多采用。目前膜片钳放大器多设有scaled output,你可将其与数模转换器(你所说的信号器)的 ANALOG IN连接,这样放大器的输出信号就能传送给计算机了,此时已经没有必要再使用 Raw output了。若你想记录两个输出, 则需要将 Raw output与数模转换器的另一个 ANALOG IN连接。 4.在 Clampex 的 Edit protocol/Wave 中,Step和 ramp各有什么适用范围? 答:Ramp多用于电流衰减缓慢的离子通道以及失敏不明显的受体通道的I-V曲线制作,如多用于钾、钙离子通道。而像钠通道,其衰减非常迅速,在持续去 极化的情况下,通道很快失活,无法使用 ramp,另外诸如烟碱受体通道等具有明显失敏特征的受体通道也不宜采用 ramp。 5.什么是 ramp?有什么作用?

膜片钳技术原理与基本操作

膜片钳技术原理与基本操作 1976 年Neher 和Sakmann 建立了膜片钳技术(Patch clamp technique),这是一种以记录通过离子通道的离子电流来反映细胞膜上单一的或多数的离子通道分子活动的技术。1981 年Hamill, Neher 等人又对膜片钳实验方法和电子线路进行了改进,形成了当今广泛应用的膜片钳实验技术。该技术可应用于许多细胞系的研究,也是目前唯一可记录一个蛋白分子电活动的方法,膜片钳技术和克隆技术并驾齐驱给生命科学研究带来了巨大的前进动力,这一伟大的贡献,使Neher 和Sakmann 获得1991 年诺贝尔医学与生理学奖。 一、膜片钳技术的基本原理 用一个尖端直径在1.5~3.0μm 的玻璃微电极接触细胞膜表面,通过负压吸引使电极尖端与细胞膜之间形成千兆欧姆以上的阻抗封接,此时电极尖端下的细胞膜小区域(膜片,patch)与其周围在电学上分隔,在此基础上固定(钳制,Clamp)电位,对此膜片上的离子通道的离子电流进行监测及记录。 基本的仪器设备有膜片钳放大器、计算机、倒置显微镜、示波器、双步电极拉制器、三轴液压显微操纵器、屏蔽防震实验台、恒温标本灌流槽、玻璃微电极研磨器。膜片钳放大器是离子单通道测定和全细胞记录的关键设备,具有高灵敏度、高增益、低噪音及高输入阻抗。膜片钳放大器是通过单根电极对细胞或膜片进行钳制的同时记录离子流经通道所产生的电流。膜片钳放大器的核心部分是以运算放大器和反馈电阻构成的电流-电压(I-V)转换器,运算放大器作为电压控制器自动控制,使钳制电位稳定在一定的水平上。 二、操作步骤 1.膜片钳微电极制作 (1) 玻璃毛细管的选择:有二种玻璃类型,一是软质的苏打玻璃,另一是硬质的硼硅酸盐玻璃。软质玻璃在拉制和抛光成弹头形尖端时锥度陡直,可降低电极的串联电阻,对膜片钳的全细胞记录模式很有利;硬质玻璃的噪声低,在单通道记录时多选用。玻璃毛细管的直径应符合电极支架的规格,一般外部直径在 1.1~1.2mm。内径1mm。 (2) 电极的拉制:分二步拉制。第一部是使玻璃管中间拉长成一窄细状,第二次拉制窄细部位断成二根,其尖端直径一般在1~5μm,充入电极内液后电极电阻在1~5MΩ为宜。调节第一步和第二步拉制时加热线圈的电流强度,即可得到所需要的电极尖端直径。电极必须保持干净,应现用现拉制。 (3) 涂硅酮树酯:记录单通道电流时,为了克服热噪声、封接阻抗噪声及电极浸入溶液产生的浮游电容性噪声,需要在电极尖颈部(距离微电极尖端50mm)的表面薄薄地涂一层硅酮树酯(sylgard),它具有疏水性、与玻璃交融密切、非导

LTP的机制的讨论

【讨论】LTP的机制的讨论(仅限于纸上谈兵的理论交流) 附几张图 screen.width-333)this.width=screen.width-333" width=640 height=393 title="Click to view full 4.JPG (718 X 441)" border=0 align=absmiddle> 附几张图 screen.width-333)this.width=screen.width-333" width=640 height=393 title="Click to view full 5.JPG (718 X 441)" border=0 align=absmiddle> xnbluesky wrote: 1、谢谢bluebacopa 2、的确是脑片上做的,感觉不对劲 3、附几张图,麻烦分析下! 从你画的这张图上看,记录电极不在CA1,而好像在CA2了,CA1应该在右方的下部,自己对照标准图谱再看看。当然,电位是肯定诱发出来了。 cma1954 wrote: 从你画的这张图上看,记录电极不在CA1,而好像在CA2了,CA1应该在右方的下部,自己对照标准图谱再看看。当然,电位是肯定诱发出来了。 谢谢!我是真的搞晕了,能不能给我发张图看看! xnbluesky wrote: 谢谢!我是真的搞晕了,能不能给我发张图看看! 你去查一查大鼠的脑定位图谱吧,会对你有帮助。 谢谢cma1954 。 谢谢cma1954 。 受益匪浅啊

计划从1-2周后开始更新 希望继续和大家交流 由于长时间疏于更新,还不能确定从哪里开始,想先谈一谈纹状体的突触可塑性,或者大家有什么好的建议? GOOD NEWS! 能否谈一谈mGluRs相关的对LTP和LTP的影响?特别是mGluR1.5对LTD的相关的?呵呵这一方面很欠缺,本来是学临床的,现在老板正想让我做这一方面的,一切都从零开始。 快乐的鸽子您写得很赞哦 非常喜欢你写的文章,感觉就像看一段段美文 哈哈 好,那就写一些关于mGluRs的,不过因为工作太忙了,只有周末才会过来更新,期望值不要太高了。 “mGluR1.5对LTD的相关的“可能太具体了,不知道能写多深,但是如果有什么问题我可以看看能不能帮忙 期待中! 我也作过一些有关LTP的工作, 很高兴bluebacopa战友能总结一些LTP的机制,看到了你的提纲,觉得不错,但我认为从诱导(induction) 和维持(maintain)两方面探讨似更好些. 为什么我做大鼠脑片的EPSP时,做不出来突触前排放。见下图。谢谢解答! screen.width-333)this.width=screen.width-333" width=214 height=196 title="Click to view full 图片1.jpg (214 X 196)" border=0 align=absmiddle> 请教一下,用HFS诱发LTP的时候,强度是怎么样选择的! 我的纪录的技术可能不是很好,用的仪器几年都很稳定没有遇到过什么问题,所以解决实际问题的能力差些,所以只能在理论交流方面做的多一些。 不过我觉得欧姆的presynaptic component 还是有的,不过是被过大的刺激伪迹掩盖了,可能和所用的电极有关。 HFS诱发LTP, 一般的情况下用诱发最大幅度EPSP所需刺激强度的1/3,但根据实验目的不同也有变化。

膜片钳技术SOP

膜片钳技术SOP 关键词:膜片钳 目的: 研究膜片上几个甚至一个离子通道的电流,对单个离子通道在各种电位状态及每种电位状态下对产生电流的离子作出定性、定量的分析,来反映细胞膜上离子通道活动,为研究离子通道结构与功能关系提供关于生物电特性的新资料。基本原理: 膜片钳制技术(patch clamp technique)是对一块单独的细胞膜片(或整个细胞)的电位进行钳制的一项电生理技术。 通过对膜电位的钳制可以观察通过离子通道的电流,膜片钳放大器正是通过维持电压的恒定而测出这种电流。运用膜片钳技术记到的最小电流可达到pA级(10-12 A)。膜片钳的本质属于电压钳范畴,其基本工作原理是:采用经典的负反馈放大技术作电压固定,但改用细胞外微吸管作电极,将微电极管尖端与细胞膜表面接触,经负压抽吸,形成具极高阻抗的紧密封接,其电阻值高达10-100千欧(即GΩ=109Ω)。只有在这种封接存在时,通过膜电极引导记录的电流才是通过该膜的离子通道电流。 膜片钳技术原理示意图 Rs是膜片阻抗相串联的局部串联电阻(输入阻抗),Rseal是封接阻抗。Rs通常为1~5MΩ,如果Rseal高达10GΩ(1010Ω)以上时,IP/I=Rseal/(Rs+ Rseal)-1。此Ip可为在I-V转换器(点线)内的高阻抗负反馈电阻(Rf)的电压降而被检测出。

药品和试剂: 根据不同的实验设计选择不同的药品和试剂。 主要仪器设备与材料: ①屏蔽防震实验台(TMC 63-544) ②数字式超级恒渐浴槽(HSS-1 CHENDU INSTRUMENT China) ③微管电极拉制器(PP-83 NARISHIGE Japan) ④微管电极抛光仪(ME-83 NAEISHIFE Japan) ⑤电子刺激器(SEN-2030, NIHON KOHDEN, Japan) ⑥膜片钳放大器(AXOPATCH 200B Axon Instruments U.S.A) ⑦倒置相差显微镜(AXIOVERT 135 ZEISS Germany) ⑧计算机(PⅢ 800) ⑨A/D、D/A转换器(DIGIDATA-1200 Axon Instruments U.S.A) ⑩pClamp软件(10.0)Axon Instruments U.S.A ) 实验对象: 兔、大鼠、猪、和人的组织细胞(直径小于30μm的细胞),都可用于膜片钳实验。动物由泸州医学院(许可证号:SYXK(川)2008-063)提供;人体组织来源于临床手术丢弃物。本SOP以猪冠状动脉平滑肌细胞为例,选取体重约120~150 Kg的猪,雌雄不拘,猪心脏购自泸州市屠宰场。 实验环境: 常温(22o C)下进行, 湿度(70-80%) 操作步骤: 1.液体配制 主要根据研究通道的不同,所用细胞的不同,配制相应的液体,可参考相应的文献进行调整。包括:电极液;细胞外液等。基本原则是保持2个平衡,渗透压平衡和酸碱平衡。另外,所有液体在使用前必须过滤,以保持液体洁净。(详见细胞的分离与培养SOP:L Y-XJD-SYJS-014/015) 2.标本制备 膜片钳实验一般是在单个细胞上进行。实验用单细胞主要来自培养细胞或急性酶分离的细胞,也可来自脑片细胞中的原位细胞。常用的酶是胶原酶和蛋白酶,

膜片钳

细胞是动植物和人体的基本组成单元,离子通道是细胞与外界以及与细胞内通信的重要手段。离子和离子通道是细胞兴奋的基础,亦即产生生物电信号的基础。生物电信号通常用电学方法进行测量,因而形成了一门学科—细胞电生理学。最近50年,三次主要的技术革命推动了细胞电生理学的进展:细胞内记录,电压钳技术和膜片钳技术。 膜片钳技术是在电压钳技术的基础上发展起来的。1976年德国马普生物物理化学研究所Neher和Sakmann首次在青蛙肌细胞上用双电极钳制膜电位的同时,记录到乙酰胆碱(Acetylcholine, ACh)激活的单通道离子电流,从而产生 O 了膜片钳(Patch Clamp)技术。1980年Sigworth等在记录电极内施加5-50cm H 2的负压吸引,得到10-100GΩ的高阻封接(Giga-seal),大大降低了记录时的噪声水平,实现了单根电极既钳制膜片电位又记录单通道电流的突破。1981年Hamill和Neher等对该技术进行了改进,引进了膜片游离技术和全细胞记录技术,从而使该技术更趋完善,具有1pA的电流灵敏度、1μm的空间分辨率和10μs 的时间分辨率。1983年10月,《Single-Channel Recording》一书的问世,奠定了膜片钳技术的里程碑,为细胞生理的研究带来了一场革命性的变化,膜片钳技术象基因克隆技术一样,给生命科学研究带来了巨大的动力。Sakmann 和Neher也因其杰出的工作和突出贡献,荣获1991年诺贝尔医学和生理学奖。 1995年,《Single-Channel Recording》一书再版,增添了大量膜片钳技术的新内容,几乎当时国际上所有的知名膜片钳专家都参与了编写,成为目前膜片钳技术研究领域的最经典著作。 膜片钳技术是用玻璃微电极吸管把只含1-3个离子通道、面积为几个平方微米的细胞膜通过负压吸引封接起来,由于电极尖端与细胞膜的高阻封接,在电极尖端笼罩下的那片膜事实上与膜的其他部分从电学上隔离,因此,此片膜内开放所产生的电流流进玻璃吸管,用一个极为敏感的电流监视器(膜片钳放大器)测量此电流强度,该电流强度就代表单一离子通道电流。 膜片钳记录技术自创立以来,经历了许多发展变化: (1)记录方式有很大变化。除了传统的单通道记录方式以及普通全细胞记录方式外,又陆续发展了膜穿孔记录方式(Perforated patch clamp)、巨膜片记录方式(Giant membrane patch)、松散封接记录方式(Loose patch clamp)等等。 (2)应用技术不断涌现。例如,为了更换电极内液和从电极内施加药物,发展了微电极内灌注技术(Micropipette perfusion technique);在研究细胞间的缝隙连接(Gap junction)通道时,发展了双膜片记录法(Double patch recording);将富含神经递质受体的游离膜片靠近突触部位,可检测递质释放和突触活动,这一技术称为膜片探针技术(Detector-patch technique);若将特异的膜片探针插入卵母细胞,可检测细胞内第二信使含量,此为膜片填塞技术(Patch cramming technique);为研究细胞的胞吞与胞吐机制,发展了膜电容测定法(Membrane capacitance measurement)。此外还有很多膜片钳应用技术,而且一些新的技术正不断涌现,膜片钳技术可以说是日新月异。

相关文档
相关文档 最新文档