文档库 最新最全的文档下载
当前位置:文档库 › 空天信息技术基础 2013 - C07 卫星链路及组网

空天信息技术基础 2013 - C07 卫星链路及组网

卫星链路计算软件Satmaster帮助(精)

上下行部分 Site Name / Location Enter the literal name of the site where the earth station is located up to a maximum of 40 characters (18 for country data files Example input for country data files (18 characters maximum "Liverpool" Example input for all other forms (40 characters maximum "Liverpool, Merseyside, England." 基站名称 输入基站所处位置的名称,最多 40个字母。 国家数据文件名举例(最多 18个字母 :liverpool 其他格式输入举例:"Liverpool, Merseyside, England." Site Latitude Enter the latitude of the site where the earth station is located. This must be entered in decimal degrees with the suffix N for north and S for South. No spaces are allowed. Examples 53.33N or 27.89S Important Note: When entering data into country data files latitudes are required in degrees and minutes format as obtained from maps and atlases. In this case the fractional part represents the number of minutes and cannot exceed 59. In all other cases input in decimal degrees are assumed. A conversion facility is provided under the calculate menu.

低轨道卫星移动通信系统

摘要 作为一种国家关键的基础通信设施,以及全球移动通信的有机组成部分,卫星移动通信系统在国家安全、紧急救援、互联网、远程教学、卫星电视广播以及个人移动通信等方面得到了广泛的应用。新一代宽带卫星通信系统可以提供个人电信业务、多信道广播、互联网的远程传送,是全球无缝个人通信、互联网空中高速通道的必要手段。近年来卫星通信新技术不断发展,特别是低轨道卫星移动通信系统受到了人们的广泛关注,其研究与应用已成为各国的战略发展重点。无线资源管理是低轨卫星移动通信系统研究中的一项重要内容,这主要是由于卫星系统的资源是非常昂贵的,因此如何合理而有效地管理并利用卫星系统的资源已成为关键。 通过对低轨道卫星无线通信信道的基本特点的研究,文章具体从无线信道的缺点进行分析,并进行了matlab仿真模拟,得出信号经过多径信道的幅频特性,多径信道对不同频率信号的衰减情况不同,即具有频率选择性,以及信号经过多径信道的衰减情况,以及码元间隔对传输信号的影响,信号的码元间隔必须远大于信号的时延差,才能尽量的减小码间干扰。 关键词:低轨卫星通信,信道,信道特性

Abstract As a national key infrastructure communication, as well as an organic part of the global mobile communications, Star mobile communication system in national security,emergency rescue, Internet, satellite TV broadcasting, remote teaching and personal mobile communication has been widely used in such aspects. A new generation of broadband satellite communication system can provide personal telecommunication business, multicasting, remote transmission, the Internet is a global seamless personal communications, high-speed Internet air passage means necessary. Satellite communication technology development in recent years, especially in low orbit satellite mobile communication system has received the widespread attention, its research and application has become a national strategic priorities. Wireless resource management is the study of Leo satellite mobile communication system is an important content, this is mainly due to the satellite system resources is very expensive, therefore how to reasonable and effective management and use of the resources of satellite system has become a key. Through the low orbit satellite studies the basic characteristics of wireless channel, the article specifically from wireless channel faults is analyzed, and the matlab simulation, it is concluded that the signal after a multipath channel amplitude frequency characteristics, multipath channel attenuation is different on different frequency signal, which has the frequency selectivity, as well as the attenuation of the signal through the multipath channel, and the influence of element spacing to transmission signal, the signal of the symbol interval must be greater than the signal delay is poor, can try to reduce intersymbol interference. KEY WORDS: LEO satellite, Channel,Channel characteristics

光纤组网的基础知识

光纤组网基础知识 一、光纤的构造、种类、接线、规格 光纤的构造 通讯用光纤是由通过内部全反射来传输光信号的玻璃构成的。玻璃光纤的标准直径为125微米(0.125毫米),表面覆盖有直径250微米或900微米的树脂保护涂敷层。玻璃光纤的传送光的中心部分称为“纤芯”,其周围的包层的折射率比纤芯低,从而限制了光的流失。 石英玻璃非常脆弱,因此覆有保护涂层。通常有三种典型的光纤涂敷层。 一次涂敷光纤 覆有直径为0.25毫米紫外线固化丙烯酸树脂涂敷层的光纤。其直径非常小,增加了光缆内可容纳光纤的密度,使用非常普遍。 二次涂敷光纤 亦称为紧包缓冲层光纤或半紧包缓冲层光纤。光纤表面覆有直径为0.9毫米的热塑性树脂。与0.25毫米的光纤相比,其具有更坚固,易操作的优点。广泛应用于局域网布线及光纤数量较少的光缆。

带状光纤 带状光纤提高了连接器组装的效率,有利于多芯融接,从而提高了作业效率。 带状光纤由4根、8根或12根不同颜色的光纤组成,芯纤数最大可达1,000根。光纤表层覆有紫外线固化丙烯酸脂材料,使用标准光纤剥套钳便可轻松去除涂敷层,方便多芯融接或取出单个光纤。使用多芯融接机,带状光纤可一次性融接,在光纤数量多的光缆中能轻易识别出来。 光纤种类 以下是对最常用的通信光纤种类的描述。 MMF(多模光纤) - OM1光纤或多模光纤(62.5?125) - OM2?OM3光纤(G.651光纤或多模光纤(50?125)) SMF(单模光纤) - G.652(色散非位移单模光纤) - G.653(色散位移光纤) - G.654(截止波长位移光纤) - G.655(非零色散位移光纤) - G.656(低斜率非零色散位移光纤) - G.657(耐弯光纤) 只要光预算允许,技术上来讲,任何合适的光纤都可应用于FTTx技术,但FTTx技术最常用的光纤为G.652和G.657。 G.651(多模光纤) G.651主要应用于局域网,不适用于长距离传输,但在300至500米的范围内,G.651是成本较低的多模传输光纤。

卫星通信信道链路参数计算与模拟

综合课程设计 卫星通信信道链路参数计算与模拟 姓名: 学号: 一、课程设计内容及基本参数

1、 设计目的 近年来互联网和移动通信飞速发展,使得网络终端用户数量不断扩大、新业务不断增加,这对通信技术的发展提出了新的挑战。卫星通信系统以其全球覆盖性、固定的广播能力、按需灵活分配带宽以及支持移动终端等优点,逐渐成为一种向全球用户提供互联网络和移动通信网络服务的补充方案。 本学期我们学习了《微波与卫星通信技术》这门课程,对于卫星通信技术有了基本的了解。本课程设计基于已学的的基本理论,对卫星通信信道链路参数进行计算和模拟,从而掌握卫星通信信道链路参数计算的基本方法,了解影响卫星通信信道性能的因素。同时熟悉Matlab 编程仿真过程,利于今后的学习和研究。 2、 基本参数列表 表1 根据学号得到的系统参数3、 涉及公式 1) ITU 法计算雨衰值: ),()(βα p p R L R K A =(dB) (1) 其中,p R 为降雨率,单位为mm/h ,β为仰角,可以通过以下经验公式获得 0779.041.1-?=f α (255.0≤≤f ) (2) 42 .251021.4f K ??=- (549.0≤≤f ) (3)

上式中频率f 的计算单位为GHz 。 雨衰距离: 14766.03]sin )108.1232.0(1041.7[),(---?-+?=ββp p p R R R L (km) (4) 2)ITU 法计算氧、水蒸气分子吸收损耗值: 氧分子损耗率,对于57GHZ 以下的频段,可以按下式近似计算 3230226.09 4.81[7.1910]100.227(57) 1.50 f f f γ--=?++??+-+(dB/km) (5) 对流层氧气的等效高度0h 和水蒸气的等效高度可分别按如下公式确定: 06(57)h km f GHz =< 因此,对于氧分子的吸收损耗为: 002h R O γ= (dB) (6) 水蒸气分子损耗率与频率和水蒸气密度 )/(3m g p w 有关,对于350GHz 以下频段,都可以用下式计算(dB/km): 242223.610.68.9[0.050.0021]10(22.7)8.5(183.3)9.0(325.4)26.3 w w w p f p f f f γ-=++++???-+-+-+ (7) 对流层水蒸气等效高度w h 可按如下公式确定: ]4 )4.325(5.26)3.183(0.55)2.22(0.31[2220+-++-++-+=f f f h h w w (km) (350f GHz <) (8) 其中,0w h 取2.1km 。 同样,对于水蒸气分子的吸收损耗为: w w O H h R γ=2 (dB) (9) 3)给出经纬度,计算卫星于地面距离及仰角β; 同步卫星的经度s θ,地心角θ定义为从地心点看卫星与卫星终端之间的夹角,卫星终端所在地的经度和纬度(L L φθ,),卫星距地球中心的距离近似为42164.2r km =,地球的平均赤道半径为6378.155e R km =。 )cos(cos cos S L L θθφθ-= (10) θcos 222r R r R d e e -+= (11) 如图1所示,A 为卫星,B 为地心,C 为地球站,仰角为地球站与卫星连线与水平 C

低轨卫星组网设计

1概述 卫星星座是指由多颗卫星按照一定规则和形状构成的可提供一定覆盖性能的卫星网络,是多颗卫星进行协同工作的基本形式。卫星星座结构会影响网络覆盖区域、网络时延和系统成本等。传统的同步轨道卫星轨道高、链路损耗大,对地面终端的EIRP和接收天线的G/T值要求过高,难以实现手持机与卫星直接进行通信;而低轨卫星由于链路损耗小,降低了对用户终端EIRP和G/T值的要求,可支持地面小型终端与卫星的直接通信,有利于信息的实时传输。现代通信的发展要求卫星通信系统应具有全球通信能力。低轨卫星实现全球覆盖所需的卫星数目较多(Iridium系统66颗星),系统实现成本很高,对于我国这样的发展中国家要在短期构建全球性低轨卫星通信系统,无论是在经济上还是在技术上都存在较大困难。因此,在预期星座的整体构型下,通过设计和筛选,合理部署少数卫星以满足当前任务和需求,并在今后发展过不断发射新卫星进行补网,最终实现星座的预期覆盖和通信能力,是我国卫星通信发展的一条可行之路。 2星座参数设计 2.1轨道设计 椭圆轨道多用于区域性覆盖,但轨道倾斜角必须为63.4°(为了避免拱点漂移),这对中低纬度地区的覆盖十分不利,而圆轨道的倾斜角可在0°~90°。之间任意选择。考虑我国所处纬度围为北纬4°~54°之间,星座设计宜应采用倾斜圆轨道。轨道高度选择主要是系统所需卫星数目与地面终端EIRP和G/T值的折衷。同时,轨道高度的选择还需考虑地球大气层和·阿伦带两个因素的影响,

通常认为LEO 卫星的可用轨道高度为700~2 000 km 。 2.2卫星周期设计 为了便于卫星轨道控制,通常选择使用回归轨道,即卫星运行周期与地球自转周期成整数比。卫 星运行周期与地球自转周期关系如下式所示: n k Ts =Te (1) 式中,k 、n 为整数,Ts 为卫星运行周期,Te 为地球自转周期,且Te=86 164 s 。根据开普勒定理,可得卫星周期Ts(单位s)与轨道高度h 关系如下: ()μπ3 Re 2h T s += (2) 式中,地球半径Re=6 378.137 km ,开普勒常数 23s m 98.398601K =μ。取k=2,n=25,可得卫星周期 Ts=6893 s ,轨道高度h=1450 km 。 2.3星座相位关系设计 星座相位关系的确定是指确定卫星在星群中的位置,它包括轨道倾角、轨道平面的布置、同一平面 卫星的位置和相邻轨道卫星的相对位置关系。通常,为了使卫星具有最大的均匀覆盖特性,同一轨道 平面的卫星应均匀分布,即相邻卫星的相位差应 满足360/m ,m 为该轨道平面的卫星数量。对于不同轨道平面卫星,相对相位角的不同会使星座 的覆盖特性相差甚远。 根据立体几何的关系,推导出两个星下点(卫星与 地心连线和地面的交点)之间的距离d 的公式如下: ()()[]2cos sin 2sin 2sin cos sin 2arccos 212212122θθθθθ?+---=e R d 式中,1θ、2θ为两星下点的纬度,妒为两星下点经度差的绝对值。相对相角优化算法准则是使星下点间的最小距离最大化。

卫星链路计算公式

星通信载波的链路计算方法为,先分别计算上行和下行链路的载波功率与等效噪声温度比C/T或者载波与噪声功率比C/N、以及载波与干扰功率比C/I,再求出考虑干扰因素的系统载噪比C/(N+I) 和载波的系统余量。 上下行C/T 上行和下行C/T 的计算公式分别为 C/T U=EIRP E - Loss U + G/T sat C/T D = EIRP s —Loss D + G/T E/S 式中的EIRF E和EIRF S分别为载波的上行和下行EIRP, Loss u和L OSS D分别为总的上行和下行传输衰耗,G/T sat和G/T E/S分别为卫星转发器和地球站的接收系统品质因数。上式中的数据均为对数形式。 C/N 与C/T 的关系 C/N 与C/T 的关系式为 C/N = C/T - k - BW N = C/T + 228.6 - BW N 式中的k 为波兹曼常数,BW N 为载波噪声带宽。式中的数据均为对数形式。 C/I 与C/IM 卫星通信载波需要考虑的干扰因素主要有,上行和下行反极化干扰C/I XP_U^n C/I XP_D、以及上行和下行邻星干扰C/I AS_U和C/I AS_Do此外,还需考虑转发器在多载波工作条件下的交调干扰C/IM 。 C/N 与C/I 的合成 由多项C/N 和C/I 求取总的C/N、C/I 、以及C/(N+I) 的算式为 (C/N Total ) -1 = (C/N U ) -1 + (C/N D ) -1 - 1 -1 -1 -1 -1 -1 (C/I Total ) = (C/I XP_U) + (C/I AS_U) + (C/IM) + (C/I XP_D) + (C/I AS_D) (C/(N+I)) -1 = (C/N Total ) -1 + (C/I Total ) 上述三个算式中的数据均为真数形式。 由多项C/N 和C/I 求取总的C/(N+I) 的步骤也可为 (C/(N+I) u ) -1 = (C/N u ) -1 + (C/I XP_u) -1 + (C/I As_u) -1

北斗卫星发展历程

中国北斗卫星导航系统发展历程 相信在座的大部分都只知道北斗时中国的导航系统,但并没有深入的了解,那中国北斗卫星导航系统是如何发展到如今的地步呢? 中国北斗卫星导航系统(BeiDouNavigationSatelliteSystem,BDS)是中国自行研制的全球卫星导航系统。是继美国全球定位系统(GPS)、俄罗斯格洛纳斯卫星导航系统(GLONASS)之后第三个成熟的卫星导航系统。北斗卫星导航系统(BDS)和美国GPS、俄罗斯GLONASS、欧盟GALILEO,是联合国卫星导航委员会已认定的供应商。 北斗卫星导航系统由空间段、地面段和用户段三部分组成,可在全球范围内全天候、全天时为各类用户提供高精度、高可靠定位、导航、授时服务,并具短报文通信能力,已经初步具备区域导航、定位和授时能力,定位精度10米,测速精度0.2米/秒,授时精度10纳秒。 2017年11月5日,中国第三代导航卫星顺利升空,它标志着中国正式开始建造“北斗”全球卫星导航系统。 卫星导航系统是重要的空间信息基础设施。中国高度重视卫星导航系统的建设,一直在努力探索和发展拥有自主知识产权的卫星导航系统。2000年,首先建成北斗导航试验系统,使我国成为继美、俄之后的世界上第三个拥有自主卫星导航系统的国家。该系统已成功应用于测绘、电信、水利、渔业、交通运输、森林防火、减灾救灾和公共安全等诸多领域,产生显着的经济效益和社会效益。特别是在2008年北京奥运会、汶川抗震救灾中发挥了重要作用。为了更好地服务于国家建设与发展,满足全球应用需求,我国启动实施了北斗卫星导航系统建设。 2012年12月27日,北斗系统空间信号接口控制文件正式版1.0正式公布,北斗导航业务正式对亚太地提供无源定位、导航、授时服务。 2013年12月27日,北斗卫星导航系统正式提供区域服务一周年新闻发布会在国务院新闻办公室新闻发布厅召开,正式发布了《北斗系统公开服务性能规

光纤组网基础知识

光纤组网基础知识 以下是有关光纤的一些小常识 光纤的构造 通讯用光纤是由通过内部全反射来传输光信号的玻璃构成的。玻璃光纤的标准直径为125微米(0.125毫米),表面覆盖有直径250微米或900微米的树脂保护涂敷层。玻璃光纤的传送光的中心部分称为“纤芯”,其周围的包层的折射率比纤芯低,从而限制了光的流失。 石英玻璃非常脆弱,因此覆有保护涂层。通常有三种典型的光纤涂敷层。 一次涂敷光纤 覆有直径为0.25毫米紫外线固化丙烯酸树脂涂敷层的光纤。其直径非常小,增加了光缆内可容纳光纤的密度,使用非常普遍。 二次涂敷光纤 亦称为紧包缓冲层光纤或半紧包缓冲层光纤。光纤表面覆有直径为0.9毫米的热塑性树脂。与0.25毫米的光纤相比,其具有更坚固,易操作的优点。广泛应用于局域网布线及光纤数量较少的光缆。 带状光纤 带状光纤提高了连接器组装的效率,有利于多芯融接,从而提高了作业效率。 带状光纤由4根、8根或12根不同颜色的光纤组成,芯纤数最大可达1,000根。光纤表层覆有紫外线固化丙烯酸脂材料,使用标准光纤剥套钳便可轻松去除涂敷层,方便多芯融接或取出单个光纤。使用多芯融接机,带状光纤可一次性融接,在光纤数量多的光缆中能轻易识别出来。

光纤种类 以下是对最常用的通信光纤种类的描述。 MMF(多模光纤) - OM1光纤或多模光纤(62.5?125) - OM2?OM3光纤(G.651光纤或多模光纤(50?125)) SMF(单模光纤) - G.652(色散非位移单模光纤) - G.653(色散位移光纤) - G.654(截止波长位移光纤) - G.655(非零色散位移光纤) - G.656(低斜率非零色散位移光纤) - G.657(耐弯光纤) 只要光预算允许,技术上来讲,任何合适的光纤都可应用于FTTx技术,但FTTx技术最常用的光纤为G.652和G.657。 G.651(多模光纤) G.651主要应用于局域网,不适用于长距离传输,但在300至500米的范围内,G.651是成本较低的多模传输光纤。 ITU-T G.651光纤即OM2?OM3光纤或多模光纤(50?125)。ITU-T推荐光纤中并没有OM1光纤或多模光(62.5?125),但它们在美国的使用仍非常普遍。 多模光纤(50?125)纤芯的反射率从中心到包层逐渐改变,使得多路光传输可以在同一速度下进行。

低轨卫星网络协议的仿真模拟

低轨卫星网络协议的仿真模拟 引言 未来全球通信系统的重要组成部分就是低轨卫星网络通信系统。由于低轨卫星通信系统的建立周期长、投资巨大,一旦建成不易对系统更改等特点,必须在系统实现前进行精确的仿真验证。OPNET是一款性能优良的网络仿真软件,能够对网络结构、设备和应用进行设计、建模、分析和管理,能够满足大型复杂网络的仿真需求,在网络层协议仿真方面具有一定的优势。然而,尽管OPNET 提供了丰富的标准节点模型、链路模型、协议模块等等,但并没有提供任何低轨卫星标准模块,给低轨卫星网络协议仿真带来一定的困难。当前一些基于OPNET 的低轨卫星仿真,大多数是将陆地网络节点利用有线链路连接,通过离散化有线链路的通断,近似模拟低轨卫星网络中的切换以及拓扑结构变化。这种方法需要针对特定低轨卫星网络在仿真之前进行复杂的运算,而且不具有通用性。文章通过分析低轨卫星协议体系结构,简化协议体系中的某些部分,在OPNET 上实现了低轨卫星网络协议仿真平台。这个平台支持非面相连接网络的路由协议的开发。最后在该仿真平台上加载动态路由协议,对仿真平台进行了验证。 1 卫星通信系统协议体系结构 根据卫星通信系统设计不同(轨道类型,星上处理或者弯管,ISL 的设计方式)采取的网络结构有许多种。根据低轨卫星通信当前发展趋势,本文主要研究具有星上处理/星上交换(OBP /OBS)以及星间链路(ISL)支持的低轨卫星网络,其协议体系结构。 由图1 可以看出星上协议中ATM与IP 之间的关系。早期的宽带IP 卫星系统大多采用基于ATM的传输技术。但是一些研究人员认为IP over Satellite 方案与IP over ATM方案相比具有更大的好处: (1)开销小。Bell 实验室仿真表明如果采用IP over ATM over SONET 的结构,大约有22%~29%的开销,而在其中SONET的开销大约是4%。因此,将ATM层去掉,将会使星上资源得到更充分的利用。 (2)易于实现千兆分组网络。目前,采用ATM 技术的多媒体卫星的实验干线速率已达622Mbps。但是在提升到吉比特时,ATM的开销大这一缺点制约了线速的继续提高。 (3)降低系统复杂度。在RS 块状编码、交织和FEC 等技术支持下,卫星链路可达准光纤质量。因此无需采用ATM复杂的QoS 保证机制便能抵御无线信道的误码。 本文将根据图1的协议框架图建立无连接的IP over Satellite网络协议仿真平台。 2 OPNET 节点模型 低轨卫星网络通信系统由空中卫星网络和地面网关两部分组成。空中卫星网络的主要特点有: (1)由于卫星之间存在相对运动导致空中卫星网络拓扑结构快速持续变化。 (2)卫星网络与地面网关之间存在高速的运动,为确保通信的持续必须进行频繁的切换。 整个卫星网络的协议划分。OPNET 提供的标准节点模块对涉及到的协议进行了细致的模拟,修改起来的工作量巨大,为了避免修改OPNET 标准节点模块,把Gateway节点拆分为两个节点:OPNET标准路由器和低轨卫星网关,这两个节点用PPP 链路直接连接,可以省去链路层协议的设计。低轨卫星网关的切换管理模块实时检测天线的俯仰角,以及信号功率,决定是否切换到另一颗卫星。此外为了把精力都放在网络层协议的设计上,对位置注册管理功能进行了简化,由一个全局独立节点来实现。例如网关可达网络列表应该由低轨卫星网关实现,每个网关都应该保存一个列表,这个列表中包括各个网关及其连接到的Internet 子网地址。网关与卫星映射关系应该由Satellite节点实现,实时向其他卫星节点通告自己当前

中国北斗卫星导航系统(全文)

中国北斗卫星导航系统 (2016年6月) 中华人民共和国 国务院新闻办公室 目录 前言 一、发展目标与原则 二、持续建设和发展北斗系统 三、提供可靠安全的卫星导航服务 四、推动北斗系统应用与产业化发展 五、积极促进国际合作与交流 结束语

前言 北斗卫星导航系统(以下简称北斗系统)是中国着眼于国家安全和经济社会发展需要,自主建设、独立运行的卫星导航系统,是为全球用户提供全天候、全天时、高精度的定位、导航和授时服务的国家重要空间基础设施。 20世纪后期,中国开始探索适合国情的卫星导航系统发展道路,逐步形成了三步走发展战略:2000年年底,建成北斗一号系统,向中国提供服务;2012年年底,建成北斗二号系统,向亚太地区提供服务;计划在2020年前后,建成北斗全球系统,向全球提供服务。 随着北斗系统建设和服务能力的发展,相关产品已广泛应用于交通运输、海洋渔业、水文监测、气象预报、测绘地理信息、森林防火、通信时统、电力调度、救灾减灾、应急搜救等领域,逐步渗透到人类社会生产和人们生活的方方面面,为全球经济和社会发展注入新的活力。 卫星导航系统是全球性公共资源,多系统兼容与互操作已成为发展趋势。中国始终秉持和践行“中国的北斗,世界的北斗”的发展理念,服务“一带一路”建设发展,积极推进北斗系统国际合作。与其他卫星导航系统携手,与各个国家、地区和国际组织一起,共同推动全球卫星导航事业发展,让北斗系统更好地服务全球、造福人类。 一、发展目标与原则 中国高度重视北斗系统建设,将北斗系统列为国家科技重大专项,支撑国家创新发展战略。 (一)发展目标 建设世界一流的卫星导航系统,满足国家安全与经济社会发展需求,为全球用户提供连续、稳定、可靠的服务;发展北斗产业,服务经济社会发展和民生改善;深化国际合作,共享卫星导航发展成果,提高全球卫星导航系统的综合应用效益。 (二)发展原则 中国坚持“自主、开放、兼容、渐进”的原则建设和发展北斗系统。 ——自主。坚持自主建设、发展和运行北斗系统,具备向全球用户独立提供卫星导航服务的能力。 ——开放。免费提供公开的卫星导航服务,鼓励开展全方位、多层次、高水平的国际合作与交流。 ——兼容。提倡与其他卫星导航系统开展兼容与互操作,鼓励国际合作与交流,致力于为用户提供更好的服务。

《企业网络组网技术》课程标准

枯藤老树昏鸦,小桥流水人家,古道西风瘦马。夕阳西下,断肠人在天涯。 《企业网组网技术》课程标准 执笔人:耿家礼主审人: 一、课程定位与目标 (一)课程定位 《企业网组网技术》是计算机应用技术专业的一门核心课程,在计算机应用技术专业课程体系中,属于“专业能力”模块。 与该课程相关的前序课程有《计算机网络技术基础》后续课程有《网络安全技术》、《综合布线与网络规划》等课程,为计算机应用技术专业专业课程的学习打好理论与专业基础。 (二)课程目标 通过本课程的学习与训练,让学生完成对VLAN技术,动态生成树,GVRP、Smart_link、VRRP 等知识的学习,达到掌握组建企业网组建基本原理和企业网组建基本技能,提高学生动手组建高性能企业网能力等目标,满足网络工程师职业资格考试的相关要求,为学生学习和掌握网络技术方面专业课程理论知识和职业能力、适应网络工程师岗位工作打下良好的基础。 二、课程性质、任务和要求 (一)设计理念 《企业网组网技术》是我系计算机网络技术专业课程体系中的核心课程之一。是学生取得职业资格证书的必修课程,是在明确计算机网络技术专业发展方向的前提下,通过对网络管理员职业岗位进行系统化(社会、企业、毕业生)的调研与分析,采用以行动为导向,基于工作过程系统化的课程开发,所形成的一门教学做一体化课程。 (二)课程任务 《企业网组网技术》是与思科、华为3COM知名企业合作建立了行业认证课程平台。根据企业对网络管理员职业岗位工作的人才需求,课程定位于中小企业网络的组建、设备的选型、设备的调试、管理维护以及技术支持等职业岗位任务。 (三)课程要求 学生必需掌握计算机网络技术、通信技术、局域网组网技术、路由交换技术等的应用开发、调试和维护的基本理论、基本知识和基本技能与方法,能熟练运用路由交换技术解决工程实际问题,具有扎实的基础知识和基本技能。在使学生获得“路由交换技术”的基本理论、基础知识的同时,着重培养学生的技能,提高他们分析问题、解决应用问题以及应用路由交换技术的能力,为顶岗实

北斗卫星导航系统常识简介

北斗卫星导航系统常识 简介 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

北斗卫星导航系统常识简介一、北斗卫星导航系统现状 中国北斗卫星导航系统(BeiDouNavigationSatelliteSystem,BDS)是中国自行研制的全球卫星导航系统。是继美国全球定位系统(GPS)、俄罗斯格洛纳斯卫星导航系统(GLONASS)之后第三个成熟的卫星导航系统。北斗卫星导航系统(BDS)和美国GPS、俄罗斯GLONASS、欧盟GALILEO,是联合国卫星导航委员会已认定的供应商。 北斗卫星导航系统由空间段、地面段和用户段三部分组成,可在全球范围内全天候、全天时为各类用户提供高精度、高可靠定位、导航、授时服务,并具短报文通信能力,已经初步具备区域导航、定位和授时能力,定位精度10米,测速精度0.2米/秒,授时精度10纳秒。 北斗卫星导航系统空间段由5颗静止轨道卫星(又称24小时轨道,指轨道平面与赤道平面重合,卫星的轨道周期等于地球在惯性空间中的自转周期,且方向亦与之一致,即卫星与地面的位置相对保持不变,故这种轨道又称为静止卫星轨道。一般用作通讯、气象等方面)和30颗非静止轨道卫星组成,2012年左右,“北斗”系统将覆盖亚太地区,2020年左右覆盖全球。中国正在实施北斗卫星导航系统建设,截止2016年10月已成功发射16颗北斗导航卫星。 2000年,首先建成北斗导航试验系统,使我国成为继美、俄之后的世界上第三个拥有自主卫星导航系统的国家。北斗导航系统是覆盖中国本土的区域导航系统,覆盖范围东经约70°-140°,北纬5°-55°。北斗

布线及组网专业技术方案

计算机网络解决方案 二零零二年四月十六日 一、综合布线设计依据 1、标准 ﹒IEEE 802.3I 10Base-T ﹒IEEE 802.3u 100Base-T ﹒IEEE 802.12 100VG Any-LAN ﹒EIA/TIA 568 工业标准及国际商务建筑标准 ﹒ISO/IEC JTC1/SC25/WG3 ﹒ANSI X3T9.5 FDDI/CDDI 2、安装与设计规范 A 中国电器设计规范 B 工业企业通信设计规范 C AT&T SYSTIMAX 结构化布线系统设计总则 二、综合布线环境论述 在本次方案论证中我们要解决好的问题是整个局域网的组建,所谓局域网在本次方案中就是把整个银海恒基中所有的计算机通过一种手段连在一起,然后再通过国际互联网使这些计算机

和整个世界接轨,以此来实现资源共享。 局域网系统大体可以划分为六个子系统: *建筑群(Compus)子系统 *垂直干线(Backbone/Riser)子系统 *水平干线(Horizontal)子系统 *工作区(Work Area)子系统 *设备间(Equipment)子系统 *配线管理(Administration)子系统 在本次案例中我们可以根据实际情况来做两个解决方案,所谓两个方案其实基本上都是一样的,区别在于主体网络的解决手段,因为我们必须充分考虑到网络的安全问题,因此主体网络的选择是最重要的,方案一我们选择用光缆走主干线,每四层设一个子系统直接用光纤跟主交换机相联,这样可以直接把各个子系统进行最简单的级联,这个方案的优点是可以充分的保证网络的安全问题,但是弊端是费用太高。方案二是通过用五类线走主干线,这个方案的优点是成本不会太高,但是缺点是不能充分保证网络的安全问题,因此我们必须选择高性能的防火墙。 三、综合布线方案论证 由于本次方案我们只提供硬件方案设计,因此我们对软件问题就暂不涉及,考虑到网络的使用成本以及我们的使用效率问题,我们对本次方案进行详细的方案论证,其实网络只是一种手段,

我国电信天翼智能组网产品规范方案

附件1 中国电信天翼智能组网产品规范 中国电信股份有限公司

目录 1、总则 (1) 1.1本规范的内容和适用范围 (1) 2、产品描述 (2) 2.1产品定义 (2) 2.2目标客户 (2) 2.3产品形态 (2) 2.4产品功能 (3) 3、产品功能及流程 (4) 3.1受理开通流程 (4) 3.2上门服务流程 (4) 3.3 E-L INK组网终端产品 (7) 4、E-LINK组网终端管理要求 (8) 4.1 E-L INK认证及设备标签管理 (8)

1、总则 1.1本规范的内容和适用范围 本规范定义了中国电信家庭天翼智能组网产品的相关描述、产品形态、功能、业务流程及相关管理要求等内容,适用于指导中国电信各省公司开展天翼智能组网产品的推广和部署。

2、产品描述 2.1产品定义 为家庭客户提供标准化网络评测服务,家庭有线无线组网方案设计、安装部署及持续的保障服务,并可按客户需求提供组网终端产品。 2.2目标客户 面向所有家庭客户,提供智慧家庭天翼智能组网服务,优化家庭网络环境,提升大带宽业务用户体验感知。 2.3产品形态 天翼智能组网服务根据功能类型分为服务型产品和终端型产品两大类。 1)服务型产品 服务型产品包括家庭网络评测、家庭组网设计、设备安装调优及日常保障服务。具体内容如下: ●网络评测 装维人员通过专业的家庭Wi-Fi测评软件(或手机APP),在用户现场实现对场强、同邻频干扰、下载速率、网站链接、网络数据包等项目检测,并生成评测报告,让用户、装维人员可以了解到当前家庭Wi-Fi信号、网络质量、Wi-Fi 接入等Wi-Fi网络质量。 ●组网设计 排摸勘测用户现有组网情况,根据用户家庭Wi-Fi网络评测报告,综合考虑用户需求以及用户家庭布线的情况,进行个性化组网方案定制,确定信息点的设置,包括信息点部署数量、部署位置及采用的组网终端形态等。 ●安装调优 组网方案经过和用户沟通、确认之后,按照组网方案进行施工安装,包括进行网络布线和优化(整理信息汇聚点、布线部署、标注对应线路等)、组网设备安装调测(试通信息点、安装终端等)以及室内WiFi信号调优。

低轨卫星定轨综述

低轨卫星定轨综述 摘要: 本文首先介绍了卫星轨道的分类标准,随后简述了星载GPS低轨卫星定位系统的体系结构以及星载GPS定轨研究进展。最后重点分析了星载GPS低轨卫星的几种定轨方法 关键词: 低轨卫星定轨GPS接收机几何法运动法约化动力法 卫星运行轨道的分类标准 人造卫星的运行轨道按形状分类可以分为椭圆轨道和圆轨道: 椭圆轨道:偏心率不等于0的卫星轨道,卫星在轨道上做非匀速运动,适合高纬度地区通信。圆轨道:具有相对恒定的运动速度,可以提供较均匀的覆盖特性,适合均匀覆盖的卫星系统 按倾角(卫星轨道平面与赤道平面的夹角,称为卫星轨道平面的倾角) 赤道轨道。i=0°,轨道面与赤道面重合;静止通信卫星就位于此轨道平面。 极地轨道。i=90°,轨道面穿过地球南北极。 倾斜轨道。轨道面倾斜于赤道。根据卫星运动方向和地球自转方向的差别分为顺行倾斜轨道,0°< i<90° 逆行倾斜轨道,90°< i<180°

图1 按高度分类 根据卫星运行轨道距离地面的高度h,可分为 低轨道(LEO):50020000km,椭圆轨道,远地点可达40000km 地球同步轨道是运行周期与地球自转周期相同的顺行轨道。但其中有一种十分特殊的轨道,叫地球静止轨道。这种轨道的倾角为零,在地球赤道上空35786千米。地面上的人看来,在这条轨道上运行的卫星是静止不动的。一般通信卫星,广播卫星,气象卫星选用这种轨道比较有利。地球同步轨道有无数条,而地球静止轨道只有一条。 太阳同步轨道是轨道平面绕地球自转轴旋转的,方向与地球公转方向相同,旋转角速度等于地球公转的平均角速度(360度/年)的轨道,它距地球的高度不超过6000千米。在这条轨道上运行的卫星以相同的方向经过同一纬度的当地时间是相同的。气象卫星、地球资源卫星一般采用这种轨道。 极地轨道是倾角为90度的轨道,在这条轨道上运行的卫星每圈都要经过地球两极上空,可以俯视整个地球表面。气象卫星、地球资源卫星、侦察卫星常采用此轨道。

卫星通信链路计算过程

卫星通信链路计算过程 星通信载波的链路计算方法为,先分别计算上行和下行链路的载波功率与等效噪声温度比CrT或者载波与噪声功率比C/N、以及载波与干扰功率比CzI ,再求出考虑干扰因素的系统载噪比C/(N+I) 和载波的系统余量。 上下行C/T 上行和下行C/T 的计算公式分别为 CZT u= EIRP E - LOSS U + G/T Sat C/T D = EIRP S - Loss D + GZT E/S 式中的EIRF E和EIRF S分别为载波的上行和下行EIRP, Loss u和L OSS D分别为总的上行和下行传输衰耗,G/T sat和G/T E/S分别为卫星转发器和地球站的接收系统品质因数。上式中的数据均为对数形式。 C/N 与C/T 的关系 C/N 与C/T 的关系式为 C/N = C/T - k - BW N = CZT + 228.6 - BW N 式中的k 为波兹曼常数, BW N 为载波噪声带宽。式中的数据均为对数形式。 C/I 与C/IM 卫星通信载波需要考虑的干扰因素主要有,上行和下行反极化干扰C/I XP_U^n C/I XP_D、以及上行和下行邻星干扰C/I ASJU和C/I AS_Do此外,还需考虑转发器在多载波工作条件下的交调干扰C/IM 。 C/N 与C/I 的合成 由多项C/N 和C/I 求取总的C/N、C/I 、以及C/(N+I) 的算式为 (C/N Total ) -1 = (C/N U ) -1 + (C/N D ) T (C/I Total ) -1 = (C/I XPJU) -1 + (C/I ASJU) -1 + (C∕IM) -1 + (C/I XPJD)-I + (C/I ASJD)-I -1 -1 - 1 (C/(N+I)) -1 = (C/N Total ) -1 + (C/I Total ) 上述三个算式中的数据均为真数形式。 由多项C/N 和C/I 求取总的C/(N+I) 的步骤也可为

光纤组网的基础知识

一、光纤的构造、种类、接线、规格 光纤的构造 通讯用光纤是由通过内部全反射来传输光信号的玻璃构成的。玻璃光纤的标准直径为125微米(0.125毫米),表面覆盖有直径250微米或900微米的树脂保护涂敷层。玻璃光纤的传送光的中心部分称为“纤芯”,其周围的包层的折射率比纤芯低,从而限制了光的流失。 石英玻璃非常脆弱,因此覆有保护涂层。通常有三种典型的光纤涂敷层。 一次涂敷光纤 覆有直径为0.25毫米紫外线固化丙烯酸树脂涂敷层的光纤。其直径非常小,增加了光缆内可容纳光纤的密度,使用非常普遍。 二次涂敷光纤 亦称为紧包缓冲层光纤或半紧包缓冲层光纤。光纤表面覆有直径为0.9毫米的热塑性树脂。与0.25毫米的光纤相比,其具有更坚固,易操作的优点。广泛应用于局域网布线及光纤数量较少的光缆。 带状光纤 带状光纤提高了连接器组装的效率,有利于多芯融接,从而提高了作业效率。 带状光纤由4根、8根或12根不同颜色的光纤组成,芯纤数最大可达1,000根。光纤表层覆有紫外线固化丙烯酸脂材料,使用标准光纤剥套钳便可轻松去除涂敷层,方便多芯融接或取出单个光纤。使用多芯融接机,带状光纤可一次性融接,在光纤数量多的光缆中能轻易识别出来。 光纤种类 以下是对最常用的通信光纤种类的描述。 MMF(多模光纤) - OM1光纤或多模光纤(?125)

- OM2?OM3光纤(光纤或多模光纤(50?125)) SMF(单模光纤) - (色散非位移单模光纤) - (色散位移光纤) - (截止波长位移光纤) - (非零色散位移光纤) - (低斜率非零色散位移光纤) - (耐弯光纤) 只要光预算允许,技术上来讲,任何合适的光纤都可应用于FTTx技术,但FTTx技术最常用的光纤为和。 (多模光纤) 主要应用于局域网,不适用于长距离传输,但在300至500米的范围内,是成本较低的多模传输光纤。 ITU-T 光纤即OM2?OM3光纤或多模光纤(50?125)。ITU-T推荐光纤中并没有OM1光纤或多模光(?125),但它们在美国的使用仍非常普遍。 多模光纤(50?125)纤芯的反射率从中心到包层逐渐改变,使得多路光传输可以在同一速度下进行。 光纤(色散非位移单模光纤) 世界上最普遍的单模光纤。可以将波长在1,310nm左右的使信号变形的色散降至最低。您可将1550nm波长的工作窗口用于短距离传输或与色散补偿光纤或与模块共同使用。 G.652A?B是基本的单模光纤,G.652C?D是低水峰单模光纤 (色散位移光纤) 此光纤可将在1,550nm波长左右的色散降至最低,从而使光损失降至最低。 (截止波长位移光纤) 的正式名称为截止波长位移光纤,但普通称为低衰减光纤。住友的Z光纤创造了15xxnm 波长范围内每千米衰减为分贝的世界纪录。可在400千米的范围内无需转发器传输。低衰减的特性使得光纤主要应用于海底或地面长距离传输,比如400千米无转发器的线路。 (非零色散位移光纤) 光纤在1,550nm波长时色散为零,而光纤则具有集中的或正或负的色散,这样就减少了DWDM系统中与相邻波长相互干扰的非线性现象的不良影响。

相关文档
相关文档 最新文档