文档库 最新最全的文档下载
当前位置:文档库 › 三相三线电能表误接线对计量的影响

三相三线电能表误接线对计量的影响

三相三线电能表误接线对计量的影响
三相三线电能表误接线对计量的影响

三相三线电能表误接线对计量的影响

来源:岁月联盟作者:王竞时间:2010-08-25

摘要:在新装计量装置中由于电流互感器相序、极性的错误导致电能表的误接线,造成电能计量的不准确。本文列举了几种三相三线电能表常见的误接线,通过向量分析推导出电能表误接线时所反映的有功、无功功率表达式,进而求出其对计量的影响。

关键词:三相三线制电能表误接线更正系数

电能计量是电力商品交易中的"一杆秤",它的准确与否直接涉及到供用电双方的利益。同时供电单位将计量管理,列为线损率管理的先决条件。

由于一般10kV及以上的高压系统均采用三相三线的供电方式,所以高压系统大多采用三相两元件电能表计量电能。三相三线电能表的接线并不复杂,但由于疏忽,特别是附有电压互感器与电流互感器的电能表,错接的机会较多。三相三线电能表错接线时会产生许多怪现象:有的不转,有的反转,有的随负载功率因数角的变化有时正转,有时反转,有的虽然正转,但计量出的电量数与实际不相符。由于电压互感器的电压相序可由相序表判断,错误的可能性较小,本文着重讨论电流互感器错接线对电能计量的影响。如果将电流互感器的二次线接错,共有八种接线,其中1种可以正确计量电能,有2种电能表不走,有3种电能表反转,有2种电能表虽正转,但计量出的电能是错误的。假设三相负载是平衡对称的,即有如下关系:

U A=U B=U C=Uφ,I A=I B=I C=I,φa=φb=φc=φ,正确的接法为有功电能表第一元件接入U AB I A,第二元件接入U CB I C。相角差为60°的无功电能表第一元件接入U BC I A,第二元件接入U AC I C,有功功率为,无功功率为

。下面分别列出在负载对称时,不同接线方式下的三相三线有功电能表,和60°接线无功电能表的计量功率表达式及更正系数。

1A、C两相元件接错时

(1)第一元件接入I C,第二元件接入I A:

根据向量图1(a)得出:

有功计量功率为:P I=U AB I C cos(90°-φ)

PⅡ=U CB I A cos(90°+φ)

P'=PⅠ+PⅡ=UIcos(90°-φ )+UIcos(90°+φ)=0

式中PⅠ-第一元件所计有功功率

PⅡ-第二元件所计有功功率

P'-表计计量总功率

(2)第一元件接入-I C,第二元件接入-I A时,根据向量图1(b)得出有功计量功率为:

PⅠ=U AB I C cos(90°+φ)

PⅡ=U CB I A cos(90°-φ)

P'=PⅠ+PⅡ=UIcos(90°+φ)+UIcos(90°-φ)=0

以上两种接法,计得有功功率为零,有功电能表不走,无法计量有功电量。由此也不考虑无功电能表的计量。

图1向量图

(3)第一元件接入I C,第二元件接入-I A,根据向量图分析,可知:

有功计量功率为:P I=U ABⅠC cos(90°-φ)

PⅡ=U cB I A cos(90°-φ)

P'=PⅠ+PⅡ=UIcos(90°-φ)+UIcos(90°-φ)=2UIsinφ

无功电能表中第一元件通入电压U BC、电流I C;第二元件通入电压U AC、电流-I A,且由于电压线圈回路中电阻R的作用,使电压磁通向量与电压向量由原来的90°变为60°,相当于各相元件相应电压相位超前30°角,所以无功功率可以写成:

QⅠ=U BC I C cos(150°+30°+φ)=-UIcosφ

QⅡ=U AC I a cos(150°+30°+φ)=-UIcosφ

Q'=QⅠ+QⅡ=-2UIcosφ

式中QⅠ-第一元件所计无功功率

QⅡ-第二元件所计无功功率

Q'-表计计量总无功功率

无功表反转

(4)第一元件接入-I C,第二元件接入I A

根据向量图分析

有功计量功率为:PⅠ=U AB I C cos(90°+φ)

PⅡ=U CB I A cos(90°+φ)

P'=PⅠ+PⅡ=2UIcos(90°+φ)=-2UIsinφ

无功计量功率为:

QⅠ=U BC I C cos(30°-φ-30°)=UIcosφ

QⅡ=U AC I A cos(30°-φ-30°)=UIcosφ

Q'=QⅠ+QⅡ=2UIcosφ

这种情况下有功电能表反转,无功表正转。

2A、C两相元件极性分别接反时

(1)第一元件接入-I A,第二元件接入I C

根据向量图分析可知:

有功计量功率为:PⅠ=U AB I A cos(150°-φ)

PⅡ=U CB I C cos(30°-φ)

P'=PⅠ+PⅡ=UI×[(cos150°cosφ+sin150°sinφ)+(cos30°cosφ+sin150°sinφ)]=UIsinφ

无功计量功率为:

QⅠ=U BC I C cos(90°+30°+φ)=UIcos(120°+φ)

QⅡ=U AC I A cos(150°-30°-φ)=UIcos(120°-φ)

此时,无功表反转。

(2)第一元件接入I A,第二元件接入-I C为:

根据向量图分析可知:

有功计量功率为:PⅠ=U AB I A cos(30°+φ)

PⅡ=U CB I C cos(150°+φ)

P'=PⅠ+PⅡ=UI×[(cos30°cosφ-sin30°sinφ)+(cos150°cosφ-sin150°sinφ)]=-UIsin 无功计量功率为:

QⅠ=U BC I A cos(90°-30°-φ)=UIcos(60°-φ)

QⅡ=U AC I C cos(30°+30°+φ)=UIcos(60°+φ)

此时,有功表反转,无功表正转。

(3)第一元件接入-I A,第二元件接入-I C为:

根据向量图分析可知:

有功计量功率为:PⅠ=PⅠ=U AB I A cos(150°-φ)

PⅡ=U CB I C cos(150°+φ)

无功计量功率为:

QⅠ=U BC I A cos(90°+30°+φ)=UIcos(120°+φ)

QⅡ=U AC I C cos(30°+30°+φ)=UIcos(60°+φ)

这种情况下有功表和无功表皆反转。

根据以上分析,可以归纳出如下结果,见表1。

表1三相三线电能表误接线对应的功率查对表

当然,电能表的错接线除了上述几种外还有电压相序错误、电压断线、电流断线等情况,但只要能根据实际的接线进行向量分析,得出实际的有功功率与无功功率的表达式,也就可得知计量失误的影响。

三相三线电能表正确接线的简易判别法

三相三线有功电能表计量三相三线有功电能,有两种非标准正确接线方式:(1)元件1采用线电压UBC和相电流ib,元件2采用线电压UAC和相电流iA,这种接线方式的瞬间功率表达式为P=UBCib+UACiA;(2)元件1采用线电压UCA和相电流ic,元件2采用线电压UBA和相电流ib,这种接线方式的瞬间功率表达式为P=UCAic+UBAib。在三相三线系统中,如果B相接地,则这两种非标准接线方式就可能漏计电度。比如:高压两线一地输电方式或低压三相三线供电方式,B相在电能表外的电源侧和负荷侧若同时接地运行,则三相三线有功电能表必然漏计电度,因此通常不采用这两种接线方式。而常用的标准正确接线只有一种(如图1),错误接线却有许多种。为了迅速地判别电能表接线是否正确,可采用下述简易方法: (1)首先对任何正转的电能表,如果原电能表接线正确,通过三次对调任意两根电压进线后,三次电能表都应停转,如不停转或有一次不停转,则证明原电能表接线肯定有错误。因为原电能表接线如果正确,对调任意两根电压进线后,其功率计算如下: ①对调A、B两相电压(矢量图如图2a所示)其功率为: -φA)=-U Icos(30°+φ) ②对调B、C两相电压(矢量图如图2b所示),其功率为: -φA)=UIcos(30°-φ) -UIcos(30°-φ) ③对调A、C两相电压(矢量图如图2c所示),其功率为: -UIcos(90°-φ) -φC)=UIcos(90°-φ) 三次对调电压进线后,从电能表的功率计算说明,如果原接线正确,在对调电压进线后都应停转(或有微动)。 (2)通过三次对调电压进线,如果电能表三次都停转,只能说明原电能表接线可能正确。电能表对调电压进线停转,只是电能表原接线正确的必要条件,还不是充分条件。为此还必须进一步进行判断。方法是:首先断开B相电压,此时电能表每分钟转数应为原接线电能表每分钟转数的一半。因为在原接线正确情况下,断开B相电压进线(参看图1虚线处断开),其功率为: -φA)=UIcos(30°-φ) UIcosφ 从功率计算说明,在电能表正确接线时,断开B相电压电能表正转速度应降低一半。然后再把A、C两相电压进线对调,使电能表停转,继续进行断开电压进线的试验。先断开A相电源进线,则电能表的功率为: -UIsinφ 再断开C相电源的电压进线,则电能表的功率为: -φC)=-UIcos(90°-φ)=UIsinφ 功率值P1和P2大小相等,方向相反。说明无论用户的功率因数如何,两次断线后,电能表的转数都应一样,但转向相反。

关于三相三线智能表错接线的判断

关于三相三线智能表错 接线的判断 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

关于三相三线智能表错接线的判断与纠正 一、了解三相三线正确接线的几种情况 图1U ab*I a与U cb*I c两组电能和 图2U ca*I c与U ba*I b两组电能和 图3U bc*I b与U ac*I a两组电能和 说明:图2和图3在实际情况下和图1是完全一样的。仔细看一下就会发现图2是图1中把母排的A相移到了内侧,可以把电压看成是图1的B、C、A排列。图3是图1中把母排的C相移到了外侧,可以看成是图1的C、A、B排列,其他均没有任何改变,并且从左到右都是正相序。由于习惯,我们总是认为母排是A、B、C顺序排列的,所以,图2和图3的电能表达式就和图1有点区别,但对于计量来说,三者没有任何差别。了解这一点,就会发现A、B、C实际是我们人为定义的。 二、三相三线接线中,几个特点需了解 1、正常接线情况下,如果电压电流均以U ab作为参考方向的 话,那么A相(U ab)电压角为0°,C相(U cb)电压角为300°,A相电流角(Ia与U ab)为30°附近,C相电流角(Ic 与U ab)为270°附近。 2、A相电流角与C相电流角的差大约为240°(或120°), 如果两者差为60°,则一定有一相电流是接反的。 3、错接线时,既可以通过电压线调整,也可以通过电流线来 调整,因为所谓的A、B、C只是一个参考的方向。目的是要通过接线调整,满足上述3个条件的情况。 4、三相三线中,作为参考零线的这个相上(如图1中的B 相)是没有电流采样的。通过向量图,调整电压接线,把没有电流的这个相,确定为参考零线,接入电表B相的位置。

关于三相三线智能表错接线的判断

关于三相三线智能表错接 线的判断 This manuscript was revised on November 28, 2020

关于三相三线智能表错接线的判断与纠正一、了解三相三线正确接线的几种情况 图1U ab*I a与U cb*I c两组电能和 图2U ca*I c与U ba*I b两组电能和 图3U bc*I b与U ac*I a两组电能和 说明:图2和图3在实际情况下和图1是完全一样的。仔细看一下就会发现图2是图1中把母排的A相移到了内侧,可以把电压看成是图1的B、C、A排列。图3是图1中把母排的C相移到了外侧,可以看成是图1的C、A、B排列,其他均没有任何改变,并且从左到右都是正相序。由于习惯,我们总是认为母排是A、B、C顺序排列的,所以,图2和图3的电能表达式就和图1有点区别,但对于计量来说,三者没有任何差别。了解这一点,就会发现A、B、C 实际是我们人为定义的。 二、三相三线接线中,几个特点需了解 1、正常接线情况下,如果电压电流均以U ab 作为参考方向的话,那么A相 (U ab )电压角为0°,C相(U cb )电压角为300°,A相电流角(Ia与U ab )为 30°附近,C相电流角(Ic与U ab )为270°附近。 2、A相电流角与C相电流角的差大约为240°(或120°),如果两者差为 60°,则一定有一相电流是接反的。 3、错接线时,既可以通过电压线调整,也可以通过电流线来调整,因为所 谓的A、B、C只是一个参考的方向。目的是要通过接线调整,满足上述3个条件的情况。 4、三相三线中,作为参考零线的这个相上(如图1中的B相)是没有电流 采样的。通过向量图,调整电压接线,把没有电流的这个相,确定为参考零线,接入电表B相的位置。 三、案例分析 案例1:已知三相三线智能表如下信息,表计提示逆相序,请画出向量图并提供正确接线的方法。 通过遥控器显示:A相电压角0;C相电压角300;A相电流角275;C相电流角330

三相三线电度表正确接线的简易别法

三相三线电度表正确接线的简易别法 三相三线有功电能表计量三相三线有功电能,有两种非标准正确接线方式:(1)元件1采用线电压UBC和相电流ib,元件2采用线电压UAC和相电流iA,这种接线方式的瞬间功率表达式为P=UBCib+UACiA; (2)元件1采用线电压UCA和相电流ic,元件2采用线电压UBA和相电流ib,这种接线方式的瞬间功率表达式为P=UCAic+UBAib。在三相三线系统中,如果B 相接地,则这两种非标准接线方式就可能漏计电度。 比如:高压两线一地输电方式或低压三相三线供电方式,B相在电能表外的电源侧和负荷侧若同时接地运行,则三相三线有功电能表必然漏计电度,因此通常不采用这两种接线方式。而常用的标准正确接线只有一种(如图1),错误接线却有许多种。为了迅速地判别电能表接线是否正确,可采用下述简易方法:

(1)首先对任何正转的电能表,如果原电能表接线正确,通过三次对调任意两根电压进线后,三次电能表都应停转,如不停转或有一次不停转,则证明原电能表接线肯定有错误。因为原电能表接线如果正确,对调任意两根电压进线后,其功率计算如下:

①对调A、B两相电压(矢量图如图2a所示)其功率为: P1=UBAIAcos(150-φA)=-UIcos(30+φ) P2=UCAICcos(30+φC)=UIcos(30+φ) P=P1+P2=0 ②对调B、C两相电压(矢量图如图2b所示),其功率为: P1=UACIAcos(30-φA)=UIcos(30-φ) P2=UBCICcos(150+φC)=-UIcos(30-φ) P=P1+P2=0 ③对调A、C两相电压(矢量图如图2c所示),其功率为: P1=UCBIAcos(90+φA)=-UIcos(90-φ) P2=UABICcos(90-φC)=UIcos(90-φ) P=P1+P2=0 (1)首先对任何正转的电能表,如果原电能表接线正确,通过三次对调任意两根电压进线后,三次电能表都应停转,如不停转或有一次不停转,则证明原电能表接线肯定有错误。因为原电能表接线如果正确,对调任意两根电压进线后,其功率计算如下: ①对调A、B两相电压(矢量图如图2a所示)其功率为: P1=UBAIAcos(150-φA)=-UIcos(30+φ)

三相三线电能表错误接线的判断方法分析

三相三线电能表错误接线的判断方法分析 发表时间:2018-07-02T15:50:34.547Z 来源:《科技新时代》2018年4期作者:洪登宇1 洪卫星2 刘继红2 [导读] 摘要:电能计量的准确性直接关系到供电企业和广大电力用户的经济利益。文章简述了三相三线电能表错误接线的判断原理,然后进一步分析三相三线电能表错误接线的判断方法。以三相三线制两元件有功电能表、电压互感器 V/V 接线B 相接地为例, 摘要:电能计量的准确性直接关系到供电企业和广大电力用户的经济利益。文章简述了三相三线电能表错误接线的判断原理,然后进一步分析三相三线电能表错误接线的判断方法。以三相三线制两元件有功电能表、电压互感器 V/V 接线B 相接地为例,介绍了测量和判断的方法,通过现场测量接入电能表的电压、电流及其相互间的相位、相序,即可判断出电能表的接线方式。 关键词:三相三线电能表;接线错误;判断方法 电能计量装置的正常运作是供电企业抄核收工作开展的前提,能否科学精准地进行电能计量,在一定程度上影响到抄核收工作的质量。对于高压线路的高供高计用户来说计量装置选择的是三相三线电能表,然而在实际计量中经常出现错接线问题,影响电能计量装置的精准计量,且三相三线电能表错误接线问题不易被察觉,对此有必要掌握科学的计量技术和方法。只有掌握科学的技术和方法,根据电能表错误接线的具体情况进行科学地预测、判断,才能确保及时发现问题,纠正计量表的错误接线。 1.三相三线电能表错误接线的判断原理 确保相关电能计量工作开展的目的在于三相三线电能表需处于正常的接线状态,但由于电能表接线较为复杂,若工作人员专业性不强、操作能力较低,则出现错误接线的可能性极大,不利于相关电能计量工作的高效、顺利开展,故需对其错误接线的判断方法进行研究。 三相三线有功电能表存在三种电压,即Ua 、Ub 、Uc ,共有六种对应的接线方法。可见,在日常工作中 相三线电能表出现错误接线的几率大、种类多,对电能计量效果造成严重影响,而对错误接线的判断具体可从以下几点入手:通过电压测试的方式对电压相序、PT极性等是否存在反接现象进行明确;通过电流测试的方式对CT极性是否存在反接现象进行明确;通过相角与功率测试可得出电流与电压之间的夹角,并对二者之间的矢量相别进行明确,以最终明确得出电能表不同构件在实际运行中其电压与电流的相别。 (1)若利用相位表进行角度测量,则电能表电压Ua 、Ub 、Uc ,所对应的电流分别为 I1 、 I3 ,若是逆相序,相位角则呈逆时针旋转;若利用功率表进行功率测量,得出 I1 、 I3 ,再结合电能表电压端的相别,参照Coscp的数值和电流值,可准确确定I1 、 I3 的相别。(2)明确电压端的电压相别。将Ua 、Ub 、Uc作为主要测量依据,在对应的六角图中准确定位 I1 、 I3 ,并添加错误电压,参照Coscp 值和测量得出的电流值,即可得出电流相别。 2.错误接线的判断方法分析 2.1电压回路的判断方法 2.1.1测量电压值(指线电压) 用万能表或相位伏安表的电压档,测量电能表进线盒电压端子 2、4、6(A、B、C)间的线电压并做好记录。三个线电压如接近相等,约为 100V,则说明电压互感器(TV)极性正确或均接反;如各线电压相差较大,且有某线间电压明显小于 100V,则说明电压回路存在断线或接触不良故障;当有某线电压接近(173V),则说明有一只 TV 极性接反。 2.1.2判断B相 检查时将电压表一端接地,另一端依次分别触及电能表电压端子2、4、6,对地无电压者即为B相,并做好记录。如皆有电压,则说明电压互感器(TV)不是 V/V 接线 B 相接地的接线方式,其可能原因是 TV 为 Y/Y0 接线或 V/V 接线而未将 B 相接地。 2.1.3测定三相电压的排列顺序(相序) 用相位伏安表或相序表都行,目前相序表使用普遍又方便。以相序表为例,对应电能表电压端子2、4、6 测出相序,结合上述已测出 B 相的基础上,确定三相电压的排列顺序。如所测相序为正相序,且已测定电能表接线盒 4 号端子为接地 B 相,则可认为三相电压时 A、 B、C 排列。如有姨 U 出现后,测得的相序与实际情况相反。 2.2电流回路的判断方法 (1)用一根临时导线,先将其一端良好接地,而另一端接触电能表电流出线端,观察铝盘的转向及转速,若电流回路接线正确无误,临时导线接触前后铝盘转速应无明显变化。 (2)用电流表或相位伏安表的电流档,测量由电流互感器(TA)引至电能表接线盒三根导线的电流值。如三相电流值接近相等,则说明电流互感器(TA)接线正确完好,或者全部极性反接;如三相差别较大甚至有的接近为零,则说明有断线或短路故障;当有某线电流是其他两相电流的姨3 倍,则说明有一只电流互感器(TA)一次侧或二次侧反接,而具体是哪一相电流互感器(TA)反接则通过下一步检查相位确定。 (3)核对“电流互感器(TA)变比”,如对于 380V供电的低压用户,可用钳形电流表直接测量一次电流值进行比较即可;如对于 10kV 供电的高压用户,高供低计的可用钳形电流表直接测量一次电流值加以比较,高供高计的则用钳形电流表测量变压器出口总电流通过换算后加以比较。 2.3检查电压、电流间的相位关系 (1)测量电能表进线电压、电流间的相位差角。用相位表或相位伏安表测量电表进线 UAB 与电流互感器引至电能表接线盒三根导线中 IA、IB、IC 之间的相位差,或者分别测量 UAB 与 IA 及 UBC 与 IC 的相位差。 (2)作向量图,判断电表外部电流回路接线。根据实测电压、电流值及相位关系,按一定比例作向量图,并参考正确接线时的向量区间图进行分析判断。 (3)画错误接线图,导出功率表达式。根据检查电压、电流做的记录,并结合向量图分析结果,对照正确接线图和已知的外部接线核对电表端子接线,然后作出完整的错误接线图,导出相应的功率表达式,以便得出更正系数,并与所观察到的电表转动情况比较核实。 3.结束语 综上所述,电能计量是现代电力营销系统的一个重要环节,一旦发生计量接线错误则会造成计量故障,且其计量误差值通常较大,而三

三相三线两元件电能表48种接线功率对3

三相三线两元件电能表48种接线功率对照 解:此接线的相量图,如图3—1(b )所示。从相量图3—1(b )可看出,电能表第I 元件所加电压为BC U ? 通过电流为A I ? ,BC U ? 与 A I ?的夹角为φ′I=90°-φ; 第II 元件所加为AC U ?,通过电流为C I ?,AC U ? 与C I ? 的夹角为φ′II=150°-φ,所以可列出如下计量有功功率表达式。 第I 元件计量功率为: P ′I =U BC I A cos φ′I=UI cos (90°-φ) 第II 元件计量功率为: P ′II=U AC I C cos φ′II=UI cos (150°-φ) 电能表计量出的功率为: P ′= P ′I+ P ′II= UI cos (90°-φ)+ UI cos (150°-φ) =UI ) sin cos (sin 212 3???+-UI =UI (? ?sin cos 232 3 +- ) 实际三相负荷所消耗的有功功率为P=3UIcos φ电能表计量出的功率为UI (??sin cos - 232 3 +),应按 εP = 1-)sin cos -(cos 333??? +UI UI = 1333 2-- -?tg =1312---? tg = 11 32--?tg 计量功率。 ? BC U (a ).接线图

解:此接线的相量图,如图3—2(b )所示。从相量图3—2(b )可看出,电能表第I 元件所加电压为BC U ?通过电流为C I ? ,BC U ? 与 C I ? 的夹角为φ′I=150°+φ;第II 元件所加为AC U ? ,通过电流为A I ?,AC U ?与A I ? 的夹角为φ′II=30°-φ,所以可列出如下计量有功功率表达式。 第I 元件计量功率为: P ′I =U BC I A cos φ′I=UI cos (150°+φ) 第II 元件计量功率为: P ′II=U AC I C cos φ′II=UI cos (30°-φ) 电能表计量出的功率为: P ′= P ′I+ P ′II= UI cos (150°+φ)+ UI cos (30°-φ) = -UI cos (30°-φ)+ UI cos (30°-φ) =0 实际三相负荷所消耗的有功功率为 P=3UIcos φ 电能表计量出的功率为0,电能表不转,应按P=3UIcos φ计量功率。 (a ).接线图 BC U ?

三相三线有功电能表错误接线的判断方法分析

三相三线有功电能表错误接线的判断方法分析 当今电力工业发展速度迅猛,为了保证电力工业工作能够安全、可靠、准确的运行,我们必须依靠安装在电力生产场所的电能测量电压、电流和功率等参数的仪器仪表来保证。三相三线有功电能表一般有着五根到七根接线,并不复杂的结构,往往在接线时候会误接和漏接,特别是配有电流电压传感器的时候,电能表的接线往往就会出现错乱现象,接错的情况下,有可能指针不动或者倒转,这种接错方式很容易发现,接线人员可以及时的发现,给予重接。但是如果指针正常转动,粗心的接线人员很容易忽视,那个时候测量出来的数据偏差将会非常大,这也是计量不准的主要原因之一。 1 对于三相三线有功电能表的介绍 交流的能表的正确接线是保证电能表的正常工作的基本条件,因此要准确的计量电能,不仅仅要对电能表本身的精确度进行调整,对于外在的接线也要注意,并且接线引起来的误差往往很大。研究人员在测量的时候,如果对于数据的大小有所怀疑,首先要对电能表的接线进行检查。相对于三相四线有功电能表而言三相三线有功电能表接线比较复杂,更加容易接错,并且不容易被判断出来,因此对于三相三线有功电能表的研究有一定的代表意义。分析电能表的接线错误的方法有很多种,当前采用的典型方法为向量图法,所谓的向量图法就是利用计量仪器对于流经电能表的电流电压的研究,绘出相应的电流电压向量图,然后在结合电路中的负载情况判断三相电能表的接线对错。如若有误,可以再表中找到相应改进的途径。 2 电能表错误接线判断方法造成哪几种后果 1)电压回路的判断方法:首先确定PT及二次回路的运行状态是否正确,测量电压表的三个电压端间的电压高低正常是电能表的电压值应该在接近100伏特,如果一个电压值明显高于100伏特,那么就说明有一根线接错了,电压互感器的极性接反。相关人员应该及时的

三相四线及三相三线错误接线向量图分析及更正

三相四线测量常识———————————————第一步:测三相电压测量U1n接线图如下: 测量U2n、U3n方法与上面图类似,移动红线到第二、第三元件电压端,零线不动。(注意选择交流500) 不带电压互感器时220V为正常,且三相电压数值相接近为正常。如果有某相为0,说明该相电压断线。 能够测出U1=_____V U2=_____V U3=_____V 第二步:测量各元件对参考点Ua的电压测量方法如下图: 测量方法与上类似,移动红线到第二、第三元件电压端,接参考点的连线不动。 目的:测出对参考点电压为0的该相确定为A相 能够测出U1a=_____V U2a=_____V U3a=_____V

第三步:测量三个元件的相电流测量I1的方法如下图: 测量其它相与上图类似,移动黑线到第二、第三元件电流进线端。 目的:判断各元件电流是否正常,正常是三相相电流相接近,如果有某相为0,说明该相电流开路或短路。 能测出I1=_____A I2=_____A I3=_____A 第四步:测量第一元件电压与各元件电流的相位角测量

第五步:测量第一元件与第二元件电压间的相位角 按照上图可以测出

感性负载下三相三线错误接线快速判断

感性负载下三相三线错误接线快速判断 摘要:感性负载下三相三线的错误接线有46种,但每种错误接线的误差利用传统方法进行判断至少需要15~20 min。本文通过对46中错误接线的规律进行总结,能够在5 min内迅速判断并计算出错误接线的误差值,大大提高了电能表错误接线判断的速度。对于感性负载下电能表三相三线错误接线判断的比赛有一定的帮助作用,但该方法用于现场错误接线却存在着一定的局限性。 关键词:感性三相三线快速判断 Abstract:The perceptual load of three-phase wrong wiring three line 46,the error of each error wiring using traditional methods to determine needs at least 15~20 minutes.This paper summarizes the wrong wiring of 46 rules,can be in 5 minutes to quickly judge and calculate the error wiring,greatly improving the energy meter wiring error judgment rate.Is helpful for energy meter three-phase three wire wrong wiring judgment under inductive load game,but the method is used for wiring has certain limitation. Key Words:Emotional;Three-phase Three-wire;Quick;Judge 近些年电力公司举办了各类职工技能竞赛,其中电能表故障判断为众多竞赛项目之一,比赛中要取得较好的成绩除了判断正确,加快判断速度已然成为首要解决的问题。针对该项目,我们在比赛中总结了

三相三线电能计量装置错误接线的判断和预防

三相三线电能计量装置错误接线的判断和预防 【摘要】电能计量装置错误接线会给现场运行的设备带来计量误差,使得统计的数据不准确,影响系统工作。文章介绍了电能计量装置电能表错误接线产生的原因,同时陈述了如何判断电能表是否存在错误接线,并简单给出了如何预防接线错误。 【关键词】电能计量装置;错误接线;电能表;预防措施 1.引言 为保证电能计量装置计量数据的准确性,必须保证其中的电能表接线正确。电能表本身的计量的误差通常只有百分之几,可是一旦其计量回路的接线错误,所造成的误差可能就会激增到百分之几百。这样,一旦计量出现几分误差,会造成几百几千分的误差量,导致大量的用电量差错,给企业和用户带来极大的经济损失和不便。因此,对现场电能计量装置等设备的接线问题一定要有足够重视,确保电能表在正常的接线状态下计量电能。 电能表出现接线错误的种类数量很多,通常有:电流、电压互感器接反;电流、电压回路断路或断路;电能表的电流元件、电压元件不是接入对应相别的电流、电压等。在这里,因为三相三线的高压计量装置是广泛应用于电力用户和电力系统的电能计量装置,因此,这里只分析三相三线电能计量装置错误接线的相关内容。 2.三相三线电能计量装置错误接线的判断方法 为保证计量内容的准确性,电能计量装置的接线步骤是关键,必须保证电能计量装置的接线正确,并在其运行前和运行中进行定期检修,保证接线情况良好。接线检查分为带电检查和停电检查。 以下情况需要停电检查:新装的电流、电压互感器;更换的电流、电压互感器;投入运行前的二次回路电能计量装置。还有,在无法判断接线是否正确时已经投入使用的电能计量装置或需要进一步核实带电检查的结果时同样需进行停电检查,这里需要检查的内容是:核对电流、电压互感器的极性、变比、接线组别;进行二次电缆的导通和接线端子的检查。在对计量装置进行停电检查结束后,投入运用时要进行带电检查,同时进行周期检查时也需进行带电检查,从而确保电能计量装置的正确接线。 2.1 有功电能计量装置的计量 无论电能表所接负载是容性还是感性,只要其接线正确,有功功率的传输方向保持不变,则计量表都是处于正转状态。也就是说,不能因为观察到电能表处于正转状态就判断其接线一定正确。当然,若是电能表不转、反转或着随着(功

单相电表接线图和三相电表接线图解

电表的接线形式很多,有单相电表的接法,也有三相电表的接法;有直接接线式,也有经过电流互感器和电压互感器接线的。但是总的来说,只有两种回路:电压回路和电流回路。电表接线的一般原则是:电流线圈与负载串联,或接在电流互感器的二次侧,电压线圈与负载并联或接在电压互感器的二次侧。 单相电表接线图 单相电表的接线相对简单明了。在低电压小电流线路中,电表可直接接在线路上,如图(A)所示。电表端盖(即图中标有1、2、3、4的那一排方框)都画有接线图,对于低电压大电流中的线路中,电表电流线圈经电流互感器与负载相连,如图(B)所示。国产DD862系列单相电表。 三相电表接线图

三相电表有三相三线有功电表和三相四线有功电表之分。 1.三相三线有功电表的接线:三相三线有功电表(机械表)有两个驱动部件组 成,两个铝盘固定在一个转轴上,称二元件电表。对外共有8个接线端。其接线图如右图所示,(a)为直接接入,(b)为经过电流互感器接入的接线 方法; 2.三相四线有功电表的接线:三相四线有功电表由三个驱动部件组成,称三元 件电表,和单相及三相三线电表外观上最大的不同是其共有11个这么多接 线端,此电表常用在动力和照明混合的供电电路。接线图如下: 上图(左)为三相四线有功电表直接接入,火线U、V、W分别接在1、4、7端,3、6、9端接负载,零线接10号端,11号端接负载另一端。

上图(右)为三相四线有功电表经电流互感器接入,火线U、V、W分别接电流互感器一次侧首端L1,一次侧末端L2端接负载,电度表1、4、7端分别接电流互感器二次侧首端K1,3、6、9端分别接二次侧末端K2,电表2、5、8端分别接电流互感器一次侧L1端,其连片应拆下。为保证安全,电流互感器二次侧末端K2应分别接地。右图为接线图的模拟演示,大家注意电流互感器与电表的接线。

三相三线电能表误接线对计量的影响分析

【摘要】三相三线电能表是在电力计量需求发展以及计量技术进步的条件下,在电力系统运行中应用的一种新计量装置。应用三相三线电能表在进行电能情况的计量过程中,由于电力系统中的电流互感器的相序以及极性错误问题,会容易造成三相三线电能表在进行接线计量应用中,出现误接线问题,从而对于电能表计量装置的计量结果造成一定的不利影响。本文将结合计量装置的计量准确性的重要作用意义,根据三相三线电能表误接线问题的具体情况,对于三相三线电能表误接线问题的计量影响进行分析论述,以提高三相三线电能表计量准确性。 【关键词】三相三线;电能表;误接线;计量结果;准确性 在电力运营中,电能计量装置的计量准确性对于电力企业以及电力用户的利益都有很大的影响,并且在一定程度上电能计量装置的电能计量结果准确性还对于电力能源的合理利用也具有一定的影响和作用。三相三线电能表是一种新型的电能计量装置,它多应用于10千伏以及以上的电压系统供电计量中。通常情况下,进行三相三线电能表的接线计量方法相对比较简单,但是在进行三相三线电能表接线过程中,由于电能计量装置中还带有电压互感器以及电流互感器,因此,在进行三相三线电能表安装接线过程中,就容易因为安装接线上的疏忽造成电能表误接线问题出现。通常情况下,三相三线电能表安装接线过程中,一旦出现误接线问题就容易导致电能表的电能计量结果存在误差和不准确情况,对于电能表的正常计量运转也会存在一定的影响,会出现不转动或者是反转情况。本文将结合三相三线电能表安装接线中可能发生的误接线问题与情况,对于电能表误接线问题的计量影响进行分析论述。 1.三相三线电能表误接线问题分析 通常情况下,在进行三相三线电能表等电能计量装置的安装过程中,电能表的安装接线过程比较简单,但是由于三相三线电能表是与电压互感器、电流互感器等连接在一起的,因此,在进行电能表的安装接线过程中,就会由于安装接线过程中疏忽问题,或者是对于电压互感器以及电流互感器的安装接线错误,直接影响到三相三线电能表的安装接线问题,导致误接线问题出现。三相三线电能表安装接线过程中,一旦出现误接线问题,就会表现为电能表运转过程中出现不转动或者是反转动情况,甚至会随着电压功率变化一会反转一会正转,但是不管是哪种情况的电能表转动,其转动计量的结果都是不准确的,具有较大的误差性。 其次,三相三线电能表在计量运转过程中,是与电压互感器以及电流互感器连接在一起的,而电压互感器的电压相序可以根据相序表进行判断,因此计量运转过程中出现错误的几率比较小,进行电力互感器安装接线过程中,一旦将电流互感器的二次接线连接错误,也容易造成电能表不转动或者是反向转动,但是,即使是电能表进行正方向的转动,转动计量的结果也是不准确的。 2.三相三线电能表误接线的计量影响分析 根据上示的三相三线电能表计量装置系统中的电流以及电压关系情况,在进行三相三线电能计量装置安装接线过程中,正确的线路连接方法为:首先,将有功电能表的第一元件线路接入到ua、ub和ia中,同时将有功电能表的第二元件接入到uc、ub和ic中;但是如果进行电能表的安装接线过程中,角度差额为60度时,对于无功电能表的线路连接正确的方法为,电能表的第一元件接入到ub、uc和ia中,第二元件接入到ua、uc和ic中,并且根据电能表的这一接线方式,就可以对于电力线路系统中电能表的有功功率p以及无功功率q进行计算求得。 根据上述三相三线电能表的安装接线原理以及公式结论,就可以对于不同安装接线环境下,电能表的安装接线正确方式以及电能表功率结果进行分析计算出,以用于对于电能表误接线情况下对于计量结果的影响分析。 2.1 电能表ac两相元件误接线影响分析

电能表正确接线

电能表正确接线与错误接线 221.试绘出单相、三相电能表的正确接线和注意事项。 答:(1)绘出单相电能表的正确接线,如图7—1所示。 负荷 单相电能表接线应注意事项如下: 1)用验电笔确认相线和零线; 2)相线接单相电能表第一个接线孔,如图7—1所示; 3)零线接单相电能表第三个接线孔,如图7—1所示; 4)负荷线接第二和第四个出线孔,如图7—1所示。 (2)绘出三相三线有功电能表的正确接线图,如图7—2所示。 222.试画出三相四线有功电能表正确接线图和注意事项。 答:三相四线有功电能表的接线图,如图7—3所示。 三相四线有功电能表接线应注意事项如下: 豪? W T接零线上 负荷 图7—3

(1)三相四线有功电能表的零线T接到电源的零线上; (2)电源的零线不能剪断直接接入用户的负荷开关,以防止断零线和烧坏用户的设备; (3)注意电压的连接片要上紧以防止松脱,造成断压故障。 223.试画出单相电能表相线和零线接反的错误接线图,有何缺点? 答:单相电能表相线和零线接反的错误接线图,如图7—4 所示。 电零线源相线 这种错误接线的缺点有如下几点: (1)其错误是将相线和零线接错,造成相线没有通过电能表的电流线圈,方便了用电户偷电。 (2)相线接在零线的接线孔,容易误碰造成触电人身事故。 (3)这种接错线容易使电能表计量不准。 224.试画出三相三线有功电能表第一相电流极性接反的错误接线图,并求更正系数。 答:三相三线有功电能表接错线是电能表第一相电流的极性反接,其接线如图7—5所示。 图7—5 三相三线有功电能表的第一相电流极性接反造成电能表慢转,产生负误差。其负误差计算公式如下 即三相三线有功电能表正转,但是产生负误差。当cos∮=0.866时.电能表变慢66.6%。 225.试绘出单相电能表的相线进出线接反的错误接线图,有何问题? 答:单相电能表的相线进出线接反的错误接线图,如图7—6所示。

电表接线及工作原理

电度表接线及工作原理 单相有功电度表/三相四线制有功电度表/电子式电能表的工作原理及接线 一、机械式电度表的型号及其含义 电度表型号是用字母和数字的排列来表示的,容如下: 类别代号+组别代号+设计序号+派生号。如我们常用的家用单相电度表:DD862-4型、DDS97l型、DDSY97l型等。 1、类别代号: D--电度表 2、组别代号 表示相线:D--单相;S--三相三线;T--三相四线。 表示用途的分类:D--多功能;S--电子式;X--无功;Y--预付费;F--复费率。 3、设计序号用阿拉伯数字表示。 每个制造厂的设计序号不同,如长纱希麦特电子科技发展设计生产的电度表产品备案的序列号为971,正泰公司的为666等。 综合上面几点: DD--表示单相电度表:如DD971型DD862型 DS--表示三相三线有功电度表:如DS862,DS97l型 DT--表示三相四线有功电度表:如DT862、DT971型 DX--表示无功电度表:如DX97l、DX864型 DDS--表示单相电子式电度表:如DDS97l型 D丅S--表示三相四线电子式有功电度表:如DTS97l型 DDSY--表示单相电子式预付费电度表:如DDSY97l型 DTSF--表示三相四线电子式复费率有功电度表:如DTSF97l型 DSSD--表示三相三线多功能电度表:如DSSD97l型 4、基本电流和额定最大电流 基本电流是确定电度表有关特性的电流值,额定最大电流是仪表能满足其制造标准规定的准确度的最大电流值。 如5(20)A 即表示电度表的基本电流为5A,额定最大电流为20A,对于三相电度表还应在前面乘以相数,如3x5(20)A。 5、参比电压 指的是确定电度表有关特性的电压值 对于三相三线电度表以相数乘以线电压表示,如3x380V。 对于三相四线电度表则以相数乘以相电压或线电压表示,如3x220/380V。 对于单相电度表则以电压线路接线端上的电压表示,如220V。 二、机械式三相四线电度表的读法 1、如果您的三相四线电度表是最右边没有红色读数框的,那黑色读数框的都是整数,只是在最右边(即个位数)的"计数轮"的右边带有刻度,而这个刻度就是小数点后的读数;如果是带有红色读数框的,那红色读数框所显示的就是小数。 2、如果您的表输出是不带电流互感器的,那表上显示的读数就是您实际用电的计量读数,如果是计量带有互感器的,那要看互感器的规格了,比如用的是100/5的互感器,那它的倍率为20(即100除以5),如果是200/5的即倍率为40,如果是500/5的,那倍率就是100。以此类推,把表上显示的读数,再乘以这个倍率,就是您实际使用的电量数,单位为

单相电表和三相四线电表接线图

单相电表和三相四线电表接线图 3|来自: 电工学网 摘要: 电表的接线形式很多,有单相电表的接法,也有三相电表的接法;有直接接线式,也有经过电流互感器和电压互感器接线的。但是总的来说,只有两种回路:电压回路和电流回路。电表接线的一般原则是:电流线圈与负载串联,... 电表的接线形式很多,有单相电表的接法,也有三相电表的接法;有直接接线式,也有经过电流互感器和电压互感器接线的。但是总的来说,只有两种回路:电压回路和电流回路。电表接线的一般原则是:电流线圈与负载串联,或接在电流互感器的二次侧,电压线圈与负载并联或接在电压互感器的二次侧。单相电表接线图 单相电表的接线相对简单明了。在低电压小电流线路中,电表可直接接在线路上,如图(A)所示。电表端盖(即图中标有1、2、3、4的那一排方框)都画有接线图,对于低电压大电流中的线路中,电表电流线圈经电流互感器与负载相连,如图(B)所示。国产DD862系列单相电表。

三相电表接线图 三相电表有三相三线有功电表和三相四线有功电表之分。 1.三相三线有功电表的接线:三相三线有功电表(机械表)有两个驱动部件组成,两个铝盘固定在 一个转轴上,称二元件电表。对外共有8个接线端。其接线图如右图所示,(a)为直接接入,(b)为经过电流互感器接入的接线方法; 2.三相四线有功电表的接线:三相四线有功电表由三个驱动部件组成,称三元件电表,和单相及三 相三线电表外观上最大的不同是其共有11个这么多接线端,此电表常用在动力和照明混合的供电电路。接线图如下:

上图(左)为三相四线有功电表直接接入,火线U、V、W分别接在1、4、7端,3、6、9端接负载,零线接10号端,11号端接负载另一端。 上图(右)为三相四线有功电表经电流互感器接入,火线U、V、W分别接电流互感器一次侧首端L1,一次侧末端L2端接负载,电度表1、4、7端分别接电流互感器二次侧首端K1,3、6、9端分别接二次侧末端K2,电表2、5、8端分别接电流互感器一次侧L1端,其连片应拆下。为保证安全,电流互感器二次侧末端K2应分别接地。右图为接线图的模拟演示,大家注意电流互感器与电表的接线。

详解三相电表接线图

详解三相电表接线图 三相电表是新居装修过程中必须安装的一个东西,三相电表是我们平常用的三相四线电表的简称。每家每户都有电表。电表的更换对于平常人家和新手电工来说都是一件常事与麻烦事,今天装修界小编就为大家详解三相四线电表接线图,教你快速安装三相电表。三相电表总共 有十一个接线口。这十一个接线口对应着三相电表的三个功能。一二三接线口,四五六接线

口,七八九接线口,分别对应一个电流线圈,这三个电流线圈可以完成测量功能,分别是测量电流,测量电压和测量电功率,也就是我们常说的用了几度电。十号和十一号接线口分别是两根总线,用来完成一个闭合的回路。下面就对照接线图,为大家具体讲解一下应该怎么连接。首先看一下图中的几个图例。接线口我们用阿拉伯数字标记了出来,分别是一到十一。三根火线我们用三个不同的字母,U,V,W来表示,零线用N来表示。那我们一根一根来接,一个个接线口来接。首先,拿起第一根火线U。然后接接口一,然后接接口二。接口三空置,将电线拉长备用。然后拿起第二根火线V,接接口四,然后接接口五。接口六空置,将电线拉长备用。W火线与七八九接口的连接方法跟上面一样。火线分别接了三个输入接口,也就是一四七三个借口,用于将电流接入三个电流线圈,只有有电流通过,电流线圈才可以发挥作用计算各个参数。为了实现闭合回路,我们将负载(就是家里的灯泡,冰箱,电磁炉等用电器,叫负载。)接入三相电表。将我们之前拉长备用的三根电线,也就是接口三,六,九三个接线口,都接入负载端,可以分别接入三个控制负载的电闸,这也就是我们家中有不同的几个电闸的原因。然后我们将零线接入。零线需要接入第十个接线口,作为闭合回路的最末端。最后一个接线口接的是负载的另一端。控制负载的电闸有左右两个端口,之前

三相四线电度表错误接线分析

三相四线电度表错误接线分析 1 前言 三相四线有功电度表在低压系统电能计量中应用较为普遍,其接线方式主要有直接接入和经过电流互感器 间接接入两种方式,直接接入法主要用于负荷电流较小的用户,负荷较大的用户一般采用经电流互感器接 入法。采用电流互感器间接接入时,在实际接线中经常会出现电流互感器接反、电流电压不同相、电压回 路断线等造成电度表不能准确计量等现象,本文针对以上几种现象进行了分析,并给出了判断依据。 2 三相四线有功电度表经电流互感器间接接入正确接线 正确接线图及向量图如图 1 所示, 此时三相有功功率的计算式为: P=U a I a COS(180°-Φa)+ U b I b COSΦb+U c I c COSΦc 假设三相负载对称,则此时有功功率为:P=UICOSΦ,是正确接线计量值的1/3, 此时电度表明显走慢。B、C 相CT接反与 A 相接反结果相同。 3.1.2 2CT 接反

3 个CT中2 个CT接反,假设为A、B 相CT接反,其接线图及向量图如图 3 所示: 此时三相有功功率的计算式为: P=U a I a COS(180°-Φa)+ U b I b COS(180°-Φb)+U c I c COS(180°-Φc) 假设三相负载对称,则此时有功功率为:P=-3UICOSΦ,是正确接线计量值的-1 倍, 此时电度表反转。 3.2 电压、电流回路不同相 3.2.1 两元件电压、电流不同相 假设 A 相电压、电流同相,其它两相电压、电流不同相,其接线图、向量图如图 5 所示。

图 6 所示接法中有功功率的计算式为 P=U a I b COS(120°+Φb)+ U b I c COS(120°+Φc)+U c I a COS(120°+Φa)

电能计量接线图演示教学

低压计量基础知识与查处窃电 作者:张立华 2010年张立华独立编写《低压电能计量知识和查处窃电》培训教材一书,作为本单位抄表员及所站长的技能培训教材,培训10期,每期35人-40人,学员技能水平明显提高.特此证明(内容见复印件) 廊坊供电公司客服中心廊坊供电公司培训中心 签字:签字: 2011年9月9日2011年9月9日

在现代化的建设与人民生活中谁都离不开电,电力的建设与发展与国民经济和人民生活质量息息相关,但是,电能作为一商品,在社会主义市场经济交换过程中,窃电的现象也就相伴而生。窃电者为了达到目的,往往是千方百计使窃电的手法更加隐蔽和更加巧妙,并随着科技知识的普及,窃电行为的手段、窃电的方法也在发生变化。对此,作为供电行业的用电管理人员一定要时刻警惕和高度重视,针对各种窃电行为进行深入的调查研究和分析,同时应采取相应的对策。就象公安人员研究犯罪分之的作案手法一样,只有掌握了犯罪分子的作案规律、共性案例和特殊性案例及其手法才能做好如何防范,而且要比窃电者棋高一酬,掌握工作的主动权,使国家的财产损失减少到最小。 窃电的手法虽然五花八门,但万变不离其宗,最常见的是从电能计量的基本入手。我们知道,一个电能表计量电量的多少,主要决定于电压、电流、功率因数三要素和时间的乘积,因此,只要想办法改变三要素中的任何一个要素都可以使电表慢转、停转甚至反转,从而达到窃电的目的(例如:矢压、矢流、短接(分流)、改变电能表进出线或极性等);另外,通过采用改变电表本身的结构性能的手法,使电表慢转(例如:改变电流线圈匝数、倒转表码、更换传动齿轮损坏传动齿轮等),也可以达到窃电的目的;各私拉乱接、无表用电的行为则属于更加明目张胆的窃电行为。下面介绍电能计量基础知识和如何查处窃电。

相关文档
相关文档 最新文档