文档库 最新最全的文档下载
当前位置:文档库 › Comparison of Simulated Ovary Training over Different Skill Levels

Comparison of Simulated Ovary Training over Different Skill Levels

Comparison of Simulated Ovary Training Over Different Skill Levels

Andrew Crossan, Stephen Brewster

Glasgow Interactive Systems Group

Department of Computing Science University of Glasgow, Glasgow, G12 8QQ, UK

Tel: (0141) 330 3541

Email: {ac, stephen}@https://www.wendangku.net/doc/dc5735077.html,

Web: https://www.wendangku.net/doc/dc5735077.html,/~stephen

Stuart Reid, Dominic Mellor

Faculty of Veterinary Medicine University of Glasgow, Glasgow, UK

Tel: (0141) 330 3541

Email: {s.w.j.reid, d.mellor}@https://www.wendangku.net/doc/dc5735077.html,

Abstract

This paper describes an initial attempt to compare performance levels of users of different skill levels on the Glasgow Horse Ovary Palpation Simulator (HOPS). Experimental participants were asked to identify the position and size of follicles on the surface of virtual horse ovaries. The two experimental groups were made up of expert and novice users. Experienced large animal veterinarians were chosen as expert users, and second year veterinary students were chosen as novice users. The initial results of the study suggest that novice users perform better than expected. Some possible reasons for this are discussed.

Keywords

Haptic, force feedback, medical simulation, virtual reality training.

Introduction

Virtual Reality is increasingly being recognised as a potential tool for providing training in medical procedures. It offers a safe controllable, environment for medical personnel to practice and learn new skills with no risk to patients. However, validation of a medical simulation proves difficult. Ethical considerations often prevent doctors who are trained using untried methods from working on patients. Particularly as a simulator may provide no training, or may even have a negative effect on training. Studies have shown that simulators can be used to improve performance on the simulator, as well as psychomotor skills [8], but there is little evidence to suggest that these improvements carry over to actual surgical procedures. O’Toole et al. [10] describe an experiment where experienced surgeons perform significantly better than medical students on a surgical simulator. They conclude that their simulator may be useful in quantifying surgical skill.

Although Virtual Reality simulation is a relatively young area in medical training, simulation is already a well established method of providing training in medicine. Students gain experience in certain techniques through use of plastic or rubber models, but these often lack realism and provide no useful feedback to the trainee. Surgical and diagnostic skills can also be improved in the anatomy labs that are incorporated into the medicine and veterinary medicine courses. Again, there are problems since cadavers are a scarce resource, and are not generally reusable. Living tissue can also have noticeably different haptic properties than cadaver tissue. VR medical simulators have the potential to present anatomical and physiological information to the user simultaneously on reusable models. Simulations currently developed can be divided into those that provide training for minimally invasive surgery (MIS), surgery, or palpation procedures. MIS simulators are by far the most common. In a MIS procedure, surgeons view their interaction with the patient through a monitor, and hence, it lends itself to a virtual simulation. The Preop endoscopic simulator [4] developed by HT Medical Systems is one example of a system combining a force feedback MIS training system with anatomical and physiological models. Other systems exist to simulate other MIS procedures such as arthroscopy or laparoscopy. SKATS [1] and VE-KATS [11] present knee arthroscopy training systems.

Surgery simulations cover a wide range of techniques using different surgical instruments. Cathsim [2] is an example of a commercially available training system for venipuncture. Berkley et al. [3] present a simulation for training in wound suturing.

The development of a palpation simulation presents different problems than development of a surgery simulation. During surgery, a medical practitioner interacts with the patient through surgical instruments, so the haptic feedback from the tissue to the surgeon is mediated by the instruments. In palpation procedures, the doctor is in direct contact with the patient. Burdea et al. [5] describe one of the few examples in the literature of simulation of a procedure involving palpation. Their comparison of rubber and virtual prostate models indicated that although rubber models provided better recognition, the virtual tumour models were also recognisable by experienced doctors. Dinsmore et al. [7] also describe the development of a palpation simulator for training in detection of sub surface tumours.

This report describes an ongoing experiment that uses the Horse Ovary Palpation Simulator (HOPS) developed at Glasgow University to compare the performance of experienced and novice veterinarians in horse ovary palpation.

Ovary Palpation

Traditionally, students are taught horse ovary palpation through books, lectures, and practical experience. However, the high cost of keeping horses often leads to a large ratio of students to horses. As ovary palpation is a stressful procedure for the horse, ethical considerations limit a student’s opportunity to gain experience. A horse ovary examination can be difficult for a veterinary student to perform, but can also be fatal to the horse if performed incorrectly. Students are only exposed to conditions that occur during their training, and may not get experience in diagnosing rare or unusual cases. Virtual Reality offers a method of providing training for any condition that has been modelled. Access can also increased for seasonal examinations, like pregnancy diagnosis, as the simulator can be used all year round.

During an ovary examination, the veterinarian inserts a gloved hand into the pelvic area of the horse through the rectum. The veterinarian must search through the pelvic region of the horse for the uterus. The ovaries are attached to the uterus, and each can be found by following either the left or right uterine horn. This is difficult in itself, since the veterinarian must perform this search through touch alone while wearing gloves. It usually requires several attempts before an inexperienced student can locate an ovary. Once located, the veterinarian will cup the ovary with one or more fingers, and palpate it using his/her thumb. In particular (s)he will look for any abnormalities in the shape or surface properties of the ovary, and through training and experience, will be able diagnose different conditions through touch alone.

For the purposes of HOPS, follicles of different sizes could be placed on the ovary models. A follicle is a spherical fluid filled sac that grows on the surface of an ovary with some of the sac existing under the surface of the ovary. It will typically grow from very small – a few millimetres – to a few centimetres in diameter. As the follicle grows, it will also tend to move towards the centre of the ovary. Depending on the size, position and feel of the follicle a veterinarian can diagnose the stage of ovulation of the horse. There may be many follicles on an ovary, but only one active follicle exists at the one time. The Glasgow Horse Ovary Palpation Simulator (HOPS) HOPS consists of a left and right ovary model fixed in space. The two skills that are important in ovary palpation are locating and identifying the ovaries, and palpating the ovaries. HOPS attempts to provide training to veterinary students in the palpation stage of a horse ovary examination. The left and right virtual horse ovaries can

be seen in figure 1.

A user can interact with HOPS through the PHANToM force feedback device from Sensable Technologies [9]. The haptic properties of the models have been developed in conjunction with experienced horse veterinarians at Glasgow University Veterinary School. A selection of veterinarians were asked to set softness, friction and damping properties for the models. Using this method a “good approximation” of actual ovary properties was achieved.

A previous study using HOPS has shown that over one training session, participants trained using the HOPS simulator perform similarly on specimen ovaries than participants trained using traditional methods [6]. Participants in this experiment were veterinary students with little or no horse rectalling experience. In this case, performance was based on the correct location and sizing of a single follicle on the virtual ovaries. This study also showed that there was a low percentage of correct identification in both cases (~11% correct), which suggests Figure 1: The Horse Ovary Palpation Simulator. This environment consists of a left and right ovary. On the bottom half of the left ovary, a spherical follicle can be seen. The user’s cursor is shown as the yellow sphere in

the centre.

current methods can be improved upon. This experiment will build on the previous work with the HOPS simulator. Overview of Experiment

Training

The experiment was split into training and task stages. As none of the participants had any previous experience in using the PHANToM, they were initially presented with the standard ‘Blocks’ demo developed by Sensable Technologies to familiarise them with the device. The training stage focussed on training users to locate and distinguish objects by size and softness using touch alone. The training environment consisted of two spheres (shown

in Figure 2).

In the initial training stage, the spheres had identical surface properties but varied in size. Participants had to locate these spheres in the environment, and answer whether the left or right sphere was larger or whether they were the same size. Once a participant answered, (s)he was presented with the next case. Participants had to provide five correct answers before moving on to the next training stage.

The participants were next presented with a similar training environment. In this stage, the spheres remained the same diameter, but the softness was varied. Participants were asked to judge which sphere was softer. This training stage was completed once the participant provided five correct answers.

Next participants were introduced to the HOPS environment. They were shown the models, then allowed to explore them through touch alone for five minutes. A small follicle was present on the front of the bottom left ovary. The training stage of the experiment was then complete.

All users were able to complete the training stage. The time taken in completing the training varied between 18 and 25 minutes.

The Task

The experimental task involved identifying follicles on the surface of the virtual ovaries through touch alone. Participants were presented with the same eight cases but in a random order. In each case, zero, one or more follicles were present on either ovary up to a maximum of five follicles in total. Each participant was given up to five minutes to explore the environment while identifying all follicles. Identification of a follicle involved identifying its position - either left or right ovary, front or back of the ovary, and top or bottom of the ovary - and its size. Participants were told that a follicle could be 2cm, 3cm or 3.5cm in diameter. Timing information for each case was calculated for analysis. Workload measurements were collected from all participants with a NASA TLX workload evaluation form.

There were two subject groups involved in the experiment.?Group A consisted of second year veterinary students from Glasgow University Veterinary School. At this stage in the course, students have some knowledge of horse ovary palpation through lectures, but have no practical ovary palpation experience.

?Group B consisted of experienced large animal veterinarians. Each participant has years of experience and practice in large animal ovary palpation.

In this initial study, group A contained 10 participants and group B contained 3 participants.

Experimental Apparatus

During the experiment, users interacted with the virtual environments using a PHANToM 1.0 with the standard thimble attachment. The equipment was set up as shown in figure 3 such that a participant received no visual feedback. Participants also wore headphones to obscure noises produced by the PHANToM motors. Hypotheses

1.The measured performance on the simulator of

experts group would be significantly better than the performance of the novice group. This performance is measured in accuracy of identifying follicles.

2.The expert group will perform examinations

significantly faster than the novice group.

Figure 2: The training environment consisting of 2

spheres.

Figure 3: Experimental setup during haptic training. The

screen is pointed away from the user so he/she receives

no graphical feedback to feel the ovaries.

3.The measured workload of the expert group A would

be significantly lower than the workload of the novice group. The expert group will show a significantly higher confidence rating.

Results

Performance on the Simulator

Initial results suggest that hypothesis 1 will not be supported. Of the 22 follicles present in the experiment, both groups reported identifying similar numbers of follicles. However differences are noticed in the percentage of follicles correctly placed. Group A placed 70.9% of follicles correctly, where as group B placed 40.9% correctly. The expert group reported problems in placing a follicle on the ovary once found. In a real examination, the veterinarian will hold the follicle while palpating, and will therefore have an idea of the position of any follicle found with respect to the ovary in their hand. This is not the case in the virtual model since users are restricted to one point of contact with the environment.

Number found per trial % Correctly

Positioned

% Correctly

positioned &

sized

Group A18.870.9%36.4% Group B1740.9%13.6%

Differences were also observed in the techniques used by group A and group B in the trials. Participants from group A tended to maintain contact with the ovary being search, and maintain a steady force to trace the shape of the ovary. Participants from group B tended to move across the ovary surface, repeatedly prodding it and therefore varying force. Comparison of Timing Data

Figure 4 shows the comparison of timing data between the two groups. There are suggestions from Cases 6, 7, and 8 that the experienced veterinarians may complete their examination more quickly, however, a larger expert group is required before any significant results can be detected.Workload Analysis

Figure 5 shows the comparison of workload between the two subject groups.

Although the expert group is small, it is important to note that the ‘Performance Achieved’ and the ‘Confidence’ratings are low. This is possibly down to the fact that locating follicles on an ovary is performed differently in the simulator and in the real examination. Both groups found the task very mentally demanding.

Future Work

The next stage of the experiment will be to continue with a larger number of expert users. The expert user group just now is too small to be able to draw any conclusions about the significance of results.

During the experiment cursor path and user force information were collected. Further analysis will be performed on this data. Initial aims will be to analyse the path information to detect any differences in techniques between the user groups, and look for similarities within the expert group. Information, such as force used to palpate an ovary will be examined.

We will also investigate techniques for addressing the problems raised by the expert group in positioning follicles on an ovary. Initial tests will involve incorporating two PHANToMs into the workspace. One PHANToM can therefore be used to palpate, the while the other can control the movements of the ovary. This would provide a means of reference to position the follicle on the ovary. References

1.Arthur, J.G., McCarthy, A.D., Wynn, H.P., Harley,

P.J. and Barber, C. Weak at the knees? Arthroscopy Surgery Simulation User Requirements, Capturing the psychological impact of VR Innovation Through risk

Table 1: Results from both groups of performance in

identifying follicles on the ovary surface.

Figure 4: Comparison of the average time to complete each examination

Figure 5: Comparison between the expert and novice groups of subjective workload for the task

based design. In Proceedings of Interact 99 (Edinburgh UK) IOS Press, 1999, pp. 360-366.

2.Barker, V.L. Cathsim. In Proceedings of Medicine

Meets Virtual Reality (San Francisco, USA) IOS Press, 1999, pp. 36-37.

3.Berkley, J., Weghorst, S., Gladstone, H., Raugi, G.,

Berg, D. and Ganter, M. Fast Finite Element Modeling for Surgical Simulation. In Proceedings of Medicine Meets Virtual Reality (San Francisco, USA) IOS Press, 1999, pp. 55-61.

4.Bro-Nielsen, M., Tasto, J.L., Cunningham, R. and

Merril, G.L. Preop Endoscopic Simulator: A PC-Based Imersive Training System for Bronchoscopy. In Proceedings of Medicine Meets Virtual Reality (San Francisco, USA) IOS Press, 1999, pp. 76-82.

5.Burdea, G., Patounakis, G., Popescu, V. and E., W.R.

Virtual Reality-Based Training for the Diagnosis of Prostate Cancer. IEEE Transactions on Biomedical Engineering 46, 10 (1999), 1253-1260.

6.Crossan, A., Brewster, S.A. and Glendye, A. A Horse

Ovary Palpation Simulator for Veterinary Training. In Proceedings of PURS 2000 (Zurich) Hartung-Gorre, 2000, pp. 79-86.

7.Dinsmore, M., Langrana, N., Burdea, G. and Ladeji, J.

Virtual Reality Training Simulation of Palpation of

Subsurface Tumors. In Proceedings of Virtual Reality Annual International Symposium (Albuquerque, USA) IEEE Computer Society Press, 1997, pp. 54-60.

8.Gorman, P.J., Lieser, J.D., Morray, W.B., Haluck,

R.S. and Krummel, T.M. Assessment and Validation of a Force Feedback Virtual Reality Based Surgical Simulator. In Proceedings of Phantom User Group 98 (Dedham, Massachusetts), 1998, pp. 27-29.

9.Massie, T.H. and Salisbury, K. The Phantom Haptic

Interface: A Device for Probing Virtual Objects. In Proceedings of the ASME Winter Annual Meeting, Symposium on Haptic Interface for Virtual Environments and Teleoperator Systems (Chicago, IL), 1994.

10.O’Toole, R., Playter, R., Blank, W., Cornelius, N.,

Roberts, W. and Raibert, M. A Novel Virtual Reality Surgical Trainer with Force Feedback Surgeon Vs Medical Student performance. In proceedings of Phantom User Group 97, 1997.

11.Sherman, K.P., Ward, J.W., Wills, D.P.M. and

Mohsen, A.M.M.A. A Portable Virtual Environment Knee Arthroscopy Training System with Objective Scoring. In Proceedings of Medicine Meets Virtual Reality (San Francisco, USA) IOS Press, 1999, pp.

335-336.

matlab上机作业

第四次 上机作业 1、 从键盘输入一个4位整数,按照如下规则加密后输出。加密规则:每位数字 都加上7,然后用和除以10的余数取代该数字;再把第一位与第三位交换,第二位与第四位交换。 Clear X=ones(1,4); X (1)=input(’输入第一位:‘); X (2)=input(’输入第二位:‘); X (3)=input(’输入第三位:‘); X (4)=input(’输入第四位:‘); X=rem(7+x,10); Y=1000.*x(3)+100.*x(4)+10.*x(1)+x(2) 2、 分别用if 和switch 语句实现以下计算,其中a 、b 、c 的值从键盘输入。 ??? ? ??? <≤+<≤+<≤++=5 .55.3, ln 5.35.1, sin 5.15.0,2x x c b x x b a x c bx ax y c a=input(‘请输入a :’); b=input(‘请输入b :’); c=input(‘请输入c :’); If(x>=0.5&&x<=1.5) y=a.*x^2+b.*x+c Elseif(x>=1.5&&x<=3.5) y=a.*(sin(b))^c+x

Elseif(x>=3.5&&x<=5.5) y=log(abs(b+c./x)) end a=input(‘请输入a:’); b=input(‘请输入b:’); c=input(‘请输入c:’); Switch x case(x>=0.5&&x<=1.5) y=a.*x^2+b.*x+c case(x>=1.5&&x<=3.5) y=a.*(sin(b))^c+x case(x>=3.5&&x<=5.5) y=log(abs(b+c./x)) end 3、产生20个两位随机整数,输出其中小于平均值的偶数。Clear al ;close all ;clc; X=fix(rand(1,20)*89)+10; Disp([‘20个随机数是:’,num2str(x)]); X1=mean(x); Disp([‘平均值为:’,num2str(x1)]); N=find(rem(x,2)==0&x

matlab中常见函数功用

⊙在matlab中clear,clc,clf,hold作用介绍 clear是清变量, clc只清屏, clf清除图形窗口上的旧图形, hold on是为了显示多幅图像时,防止新的窗口替代旧的窗口。 ①format:设置输出格式 对浮点性变量,缺省为format short. format并不影响matlab如何计算和存储变量的值。对浮点型变量的计算,即单精度或双精度,按合适的浮点精度进行,而不论变量是如何显示的。对整型变量采用整型数据。整型变量总是根据不同的类(class)以合适的数据位显示,例如,3位数字显示显示int8范围-128:127。 format short, long不影响整型变量的显示。 format long 显示15位双精度,7为单精度(scaled fixed point) format short 显示5位(scaled fixed point format with 5 digits) format short eng 至少5位加3位指数 format long eng 16位加至少3位指数 format hex 十六进制 format bank 2个十进制位 format + 正、负或零 format rat 有理数近似 format short 缺省显示 format long g 对双精度,显示15位定点或浮点格式,对单精度,显示7位定点或浮点格式。 format short g 5位定点或浮点格式 format short e 5位浮点格式 format long e 双精度为15位浮点格式,单精度为7为浮点格式 ②plot函数 基本形式 >> y=[0 0.58 0.70 0.95 0.83 0.25]; >> plot(y) 生成的图形是以序号为横坐标、数组y的数值为纵坐标画出的折线。 >> x=linspace(0,2*pi,30); % 生成一组线性等距的数值 >> y=sin(x); >> plot(x,y) 生成的图形是上30个点连成的光滑的正弦曲线。 多重线 在同一个画面上可以画许多条曲线,只需多给出几个数组,例如 >> x=0:pi/15:2*pi; >> y=sin(x); >> w=cos(x);

美国历史与文化

《美国历史与文化》 结课论文 专业:化学工程与工艺 学号:041114116 姓名:杨乐

Columbo's influence on the American continent Columbo is a famous Spanish navigator, is a pioneer of the great geographical discovery. Columbus young is garden said believers, he so haunting had in Genoa made prison of Marco Polo, determined to be a navigator.1502 he crossed the Atlantic four times in 1492, discovered the American continent, he also became a famous navigator. On August 3, 1492, Columbus by the king of Spain dispatch, with credentials of Indian monarchs and emperors of China, led the three tons of Baishi of sailing, from Spain Palos Yang Fan of the Atlantic, straight towards to the West. After seventy days and nights of hard sailing, in the early morning of October 12, 1492 finally found the land. Columbo thought he had arrived in India. Later know that Columbus landed on a piece of land belonging to the now Balak America than the sea in the Bahamas, he was it named San Salvador. Columbo's discovery has changed the course of world history. It opens up a new era of development and colonization in the new world. At that time, the European population was expanding, with this discovery, the Europeans have settled in two new continents, there will be able to make a difference in the European economy and the resources of the mineral resources and raw materials. This discovery led to the destruction of the American Indian civilization. From a long-term point of view, there have been a number of new countries in the Western

(完整版)MATLAB常用函数大全

一、MATLAB常用的基本数学函数 abs(x):纯量的绝对值或向量的长度 angle(z):复数z的相角(Phase angle) sqrt(x):开平方 real(z):复数z的实部 imag(z):复数z的虚部 conj(z):复数z的共轭复数 round(x):四舍五入至最近整数 fix(x):无论正负,舍去小数至最近整数 floor(x):地板函数,即舍去正小数至最近整数ceil(x):天花板函数,即加入正小数至最近整数rat(x):将实数x化为分数表示 rats(x):将实数x化为多项分数展开 sign(x):符号函数(Signum function)。 当x<0时,sign(x)=-1; 当x=0时,sign(x)=0; 当x>0时,sign(x)=1。 rem(x,y):求x除以y的馀数 gcd(x,y):整数x和y的最大公因数 lcm(x,y):整数x和y的最小公倍数 exp(x):自然指数 pow2(x):2的指数 log(x):以e为底的对数,即自然对数或 log2(x):以2为底的对数 log10(x):以10为底的对数 二、MATLAB常用的三角函数 sin(x):正弦函数 cos(x):余弦函数

tan(x):正切函数 asin(x):反正弦函数 acos(x):反馀弦函数 atan(x):反正切函数 atan2(x,y):四象限的反正切函数 sinh(x):超越正弦函数 cosh(x):超越馀弦函数 tanh(x):超越正切函数 asinh(x):反超越正弦函数 acosh(x):反超越馀弦函数 atanh(x):反超越正切函数 三、适用於向量的常用函数有: min(x): 向量x的元素的最小值 max(x): 向量x的元素的最大值 mean(x): 向量x的元素的平均值 median(x): 向量x的元素的中位数 std(x): 向量x的元素的标准差 diff(x): 向量x的相邻元素的差 sort(x): 对向量x的元素进行排序(Sorting)length(x): 向量x的元素个数 norm(x): 向量x的欧氏(Euclidean)长度sum(x): 向量x的元素总和 prod(x): 向量x的元素总乘积 cumsum(x): 向量x的累计元素总和cumprod(x): 向量x的累计元素总乘积 dot(x, y): 向量x和y的内积 cross(x, y): 向量x和y的外积 四、MATLAB的永久常数

美国历史与文化

浅谈美国历史 ——见证从蚂蚁到大象历程 引导语:中华文化源远流长,五千年的华夏文明留给我们太多的回忆。分久必合、合久必分;从繁荣昌盛到民族衰落;从压迫受辱到当家作主、从璀璨奇葩到复兴中华……可是,跨过大洋的彼岸,初出茅庐的美国却在近两百多年的历史跨度下完成了从蚂蚁到大象的历程,创造出美国独特的发展文化。今天的世界,“汤姆大叔”在全球“维护着世界和平”;好莱坞大片充斥着各大荧屏;NBA回荡在茶前饭后的娱乐中……两百多年来,美国历史一直都是民主制度的试验。早年被提出的问题如今持续被提出并获得解决;强大政府对抗弱小政府、个人权利对抗群体权利、自有资本主义对抗受到管理的商业与劳工以及参与世界对抗孤独主义。美国对于民主制度有很高的期待,而现实又是不如人意。然而国家经过妥协,已见成长与繁荣。在今天的发展过程中笔者认为有必要借鉴美国蚂蚁变大象的历程。 自从哥伦布发现新大陆之后,这片土地上开始了她不平凡的发展。十七世纪初,英国开始向北美殖民。最初的北美移民主要是一些失去土地的农民,生活艰难的工人以及受宗教迫害的清教徒。在殖民地时代,伴随着与北美洲原住民印第安人的长期战争,对当地印第安人的肆意屠杀,严重的劳力缺乏产生了像奴隶和契约奴隶这类的非自由劳力。万恶的黑奴贸易盛行起来。从1607年到1733年,英国殖民者先后在北美洲东岸建立了十三个殖民地。由于英国移民北美是为了追求自由和财富,如被迫害的清教徒和贫农。地方政府享受自治权。殖民地居民有比英人更广泛参与政治的机会和权利,培养了自治的意识和能力,所以他们相信社会契约中,政府是人民需要保护而得人民支持才组成的。在十八世纪中期,殖民地的经济,文化,政治相对成熟,殖民地议会仍信奉英王乔治三世,不过他们追求与英国国会同等的地位,并不想成为英国的次等公民,但是此时英法的七年战争结束,急于巩固领土,使向北美殖民地人民征租重税及英王乔治三世一改放任政策,主张高压手段。因此引发殖民地人民反抗,如“没有代表就不纳税”宣言、“波士顿惨案”、“不可容忍的法案”等。1775年4月在来克星顿和康科特打响“来克星顿的枪声”揭开美国独立战争的前奏。后来,这些殖民地便成为美国北美独立十三州最初的十三个州。 1774年, 来自12州的代表,聚集在费城, 召开所谓第一次大陆会议,希望能寻出一条合理的途径, 与英国和平解决问题,然而英王却坚持殖民地必须无条件臣服于英国国王, 并接受处分。 1775年,在麻州点燃战火, 5月,召开第二次大陆会议, 坚定了战争与独立的决心,并起草有名的独立宣言, 提出充分的理由来打这场仗,这也是最后致胜的要素. 1776年7月4日,宣告了美国的独立,1776年7月4日大陆会议在费城乔治·华盛顿发表了《独立宣言》。《独立宣言》开宗明义地阐明,一切人生而平等,具有追求幸福与自由的天赋权利;淋漓尽致地历数了英国殖民主义者在美洲大陆犯下的罪行;最后庄严宣告美利坚合众国脱离英国而独立。《独立宣言》是具有世界历史意义的伟大文献。完全脱离英国,目的是为‘图生存、求自由、谋幸福’,实现启蒙运动的理想。 1781年, 美军赢得了决定性的胜利, 1783年, 美英签订巴黎条约,结束了独立战争。这也充分展现出

宗教对美国社会的影响

宗教对美国社会的影响 梁子毓英语学院英语137班 摘要:美国是当今世界上最发达的资本主义国家,同时又是发达国家中最具宗教色彩的国家,可以说美国的发展与宗教有着密不可分的关系。宗教从美国建国伊始至今对人们思想的影响是根本性的,这种影响绝不仅仅只是停留在道德方面,在政体的确立、民主制度的促进等方面都有着同样深远的作用。如今,宗教在美国的影响力有增无减,信仰上帝的人越来越多了,宗教在美国国家社会生活中的作用也越来越大。因此,研究宗教对美国发展的影响更有助于我们了解美国的社会现实和文化特征,可以使我们对宗教在美国社会的影响有更深刻的认识。 关键词:宗教美国社会影响 引言 美国文化的一大特征就是其宗教性。来自世界各地不同国家不同种族的移民带来了他们自己的宗教,使美国成为多宗教的国家。各种不同的宗教必然会对美国的社会产生影响,同样也融入了美国的文化。在众多宗教中,影响最大的是新教众多教派中的清教,清教在发展过程中,其影响超越了宗教领域,渐渐渗透到了美国宗教以外的政治、经济、文化领域,使美国政治、经济、文化都带有明显的清教主义特征。清教主义因而成为美国文化和社会形成过程中的重要因素。美国的文明都刻有明显的清教主义印记,清教主义文化也造就了独特的美利坚精神与文化。 一、基督教新教对美国历史的影响 美国虽然只有四百多年的历史,但却从一个英属殖民地逐渐成为世界上的头号强国。在这片土地上诞生了世界上第一部成文宪法,产生了世界上第一个民选总统,建立了三权分立的民主政体,这些都对世界历史产生了深远的影响。然而这些都与基督新教及其伦理道德有着密不可分的关系,这种关系甚至是决定性的。 早期殖民北美的新教1徒的新教信仰,构成了北美早期社会思想风潮的主调,也构成了以后美利坚的民族精神以及国家意识形态的基础。美国独立战争的发生,是因为早期移民北美的多数人都是新教教徒的缘故。由逃亡的清教徒们建立的美洲殖民地,在宗教上,一直与英国本土的宗教处于对立状态。美洲大陆的宗教主流为清教徒,英国的国教则为天主教与新教的混合体圣公会安力甘宗,安力甘宗作为英国国教一直是清教徒改革的对象。在美国独立战争及18世纪二十年代,英国本土和美洲殖民地发生了一场轰轰烈烈的宗教“伟大复兴”运动,这场运动在美国是新教教义的普及和强化运动,是一场彻头彻尾的新教教义在新大陆被强化的运动,这场运动最后导致了新教的进一步振兴,从而在思想上与英国国教彻底脱离了关系。宗教运动进一步促进了北美殖民地人群的主体意识,进一步加强了殖民地与英国本土的在宗教上和政治上的离心力,为独立战争做了思想和意识形态的准备。北美殖民地与英国本土上的宗教对立,对美国独立战争的爆发有着深远的影响。 对美国近代发展奠定基础的南北战争,实际上也有着深刻的宗教原因——美国清教对南方奴隶制的憎恶而引起的南北方对立。废奴主义一直是基督教教义的传统。在新教中这被理解为上帝爱世上的每一个人。这种思想成为西方人权思想的源头。既然上帝爱每一个人,个 1新教:新教(Protestantism)是由16世纪宗教改革运动中脱离罗马天主教的一系列新教派的统称,主流教派有路德宗、加尔文宗和圣公会。

MATLAB实验:运算基础,并且附有答案

实验二、MATLAB运算基础 一、实验目的 掌握MATLAB各种表达式的书写规则及常用函数的使用。 掌握MATLAB中字符串、元胞数组和结构的常用函数的使用。 二、实验内容及步骤 1、设有矩阵A和B,A=[1 2 3 4 5;6 7 8 9 10;11 12 13 14 15;16 17 18 19 20;21 22 23 24 25],B=[3 0 16;17 -6 9;0 23 -4;9 7 0;4 13 11] 1)求它们的乘积C >>C=A*B 2)将矩阵C的右下角3x2子矩阵赋给 D >>I=[3 4 5];J=[2 3];D=C(I,J)也可以 用>>D=C([3 4 5],[2 3]) D = 520 397 705 557 890 717 2、完成下列操作 1)求[100,999]之间能被61整除的数及其个数(提示:先利用冒号表达式,再利用find和length函数。) >> a=100:999;find(rem(a,61)==0) ans = 23 84 145 206 267 328 389 450 511

572 633 694 755 816 877 >> b=a(ans) b = 122 183 244 305 366 427 488 549 610 671 732 793 854 915 976 >> length(b) ans = 15 2)建立一个字符串向量,删除其中的大写字母(提示:利用find函数和空矩阵。)a=’I am maying’; a( find(a>’A’&a<’Z’))=[] 3、已知A=[23 10 -78 0;41 -45 65 5;32 5 0 32; 6 -54 92 14],取出其前3行构成矩阵B,其前两列构成 矩阵C,其左下角3x2子矩阵构成矩阵D,B与C的乘积构成矩阵E,分别求E>B=A([1 2 3 ],:)>> C=A(:,[1 2])>> D=A([2 3 4 ],[1 2 ])>> E=B*C >> E

4. 美国的宗教历史-清教徒

Puritans and Harvard 清教徒和哈佛 Puritans played a very important role in Harvard history as well as in American history. 清教徒不仅在美国历史中扮演过重要角色,同样在哈佛大学的历史中也起到了重要作用。 In the 16th and 17th century, a series of religious reforms took place in England Finally, the Church of England was established as the Established Church. People did not have religious freedom. Those people who did not agree with the Church of England were regarded as Separatists and were persecuted. To escape religious persecution, many people fled from England to other countries. Many Puritans chose to go to the New World. 在16和17世纪的英国发生了一系列宗教改革,最终圣公会被定为英国国教。人们没有宗教自由。那些不同意英国国教观点的人被视为宗教分裂者,并遭到迫害。为了逃脱宗教迫害,许多人逃离英国,前往其他国家。很多清教徒选择移民到新大陆。 In 1620, a ship named Mayflower left England. It transported the English Separatists, better known as Pilgrims, from Plymouth, England to Plymouth, Massachusetts, the United States. There were 102 passengers, more than one third of whom were Puritans. During the following decade, the number of Puritans grew. Then in 1628 these Puritans established the Massachusetts Bay Colony. 1620年,一艘名为“五月花号”的船离开了英国,它载着英国宗教分离派——更熟悉的称号是“清教徒前辈移民”,离开了英国的普利茅斯前往美国马萨诸塞州的普利茅斯。船上有102名乘客,其中1/3多的人是清教徒。在接下来的10年中,清教徒队伍逐渐壮大起来,并于1628年建立了马萨诸塞湾殖民地。 Many Puritans had received classic style of higher education in Oxford University and Cambridge University in England. They wanted to pass on to their descendants this kind of education. Besides, these colonists saw colleges as an effective way to disperse religious belief. Therefore, in 1636 the first and oldest institution of higher learning in the United States was established by vote of the Great and General Court of Massachusetts Bay Colony, 140 years earlier than the foundation of the United States. 许多清教徒都曾在英国的牛津和剑桥大学接受过古典式的高等教育,他们想把这种教育传给子孙后代。此外,这些殖民者把大学看做是传播宗教信仰的有效途径。所以,1636年马萨诸塞湾殖民地法院投票通过并建立了美国第一所也是最古老的一所高等教育机构,比美国建国早了140年。 The institution was initially named “New College” or “the College at New Towne"(or “Cambridge College”). The town where the college located was named Cambridge, becau se many Puritans had studied in Cambridge University. The name of the town demonstrated that many people still cherished their memory of life in England. Although they had been persecuted in England, many people still saw England as their motherland. The college followed the style of English universities as well. Then in 1639 the college was renamed Harvard College after a benefactor called John Harvard who was a clergyman. Therefore, in a sense, Harvard University was the product of religious activities.

MATLAB相关函数

第6章MATLAB数据分析与多项式计算 6.1 数据统计处理 6.1.1 最大值和最小值 MATLAB提供的求数据序列的最大值和最小值的函数分别为max和min,两个函数的调用格式和操作过程类似。 1.求向量的最大值和最小值 求一个向量X的最大值的函数有两种调用格式,分别是: (1) y=max(X):返回向量X的最大值存入y,如果X中包含复数元素,则按模取最大值。 (2) [y,I]=max(X):返回向量X的最大值存入y,最大值的序号存入I,如果X中包含复数元素,则按模取最大值。 求向量X的最小值的函数是min(X),用法和max(X)完全相同。 例6-1 求向量x的最大值。 命令如下: x=[-43,72,9,16,23,47]; y=max(x) %求向量x中的最大值 [y,l]=max(x) %求向量x中的最大值及其该元素的位置 2.求矩阵的最大值和最小值 求矩阵A的最大值的函数有3种调用格式,分别是: (1) max(A):返回一个行向量,向量的第i个元素是矩阵A的第i列上的最大值。

(2) [Y,U]=max(A):返回行向量Y和U,Y向量记录A的每列的最大值,U向量记录每列最大值的行号。 (3) max(A,[],dim):dim取1或2。dim取1时,该函数和max(A)完全相同;dim取2时,该函数返回一个列向量,其第i个元素是A 矩阵的第i行上的最大值。 求最小值的函数是min,其用法和max完全相同。 例6-2 分别求3×4矩阵x中各列和各行元素中的最大值,并求整个矩阵的最大值和最小值。 3.两个向量或矩阵对应元素的比较 函数max和min还能对两个同型的向量或矩阵进行比较,调用格式为: (1) U=max(A,B):A,B是两个同型的向量或矩阵,结果U是与A,B同型的向量或矩阵,U的每个元素等于A,B对应元素的较大者。(2) U=max(A,n):n是一个标量,结果U是与A同型的向量或矩阵,U的每个元素等于A对应元素和n中的较大者。 min函数的用法和max完全相同。 例6-3 求两个2×3矩阵x, y所有同一位置上的较大元素构成的新矩阵p。 6.1.2 求和与求积

matlab__function非常全的_matlab_函数

一、常用对象操作:除了一般windows窗口的常用功能键外。 1、!dir 可以查看当前工作目录的文件。!dir& 可以在dos状态下查看。 2、who 可以查看当前工作空间变量名,whos 可以查看变量名细节。 3、功能键: 功能键快捷键说明 方向上键Ctrl+P 返回前一行输入 方向下键Ctrl+N 返回下一行输入 方向左键Ctrl+B 光标向后移一个字符 方向右键Ctrl+F 光标向前移一个字符 Ctrl+方向右键Ctrl+R 光标向右移一个字符 Ctrl+方向左键Ctrl+L 光标向左移一个字符 home Ctrl+A 光标移到行首 End Ctrl+E 光标移到行尾 Esc Ctrl+U 清除一行 Del Ctrl+D 清除光标所在的字符 Backspace Ctrl+H 删除光标前一个字符 Ctrl+K 删除到行尾 Ctrl+C 中断正在执行的命令 4、clc可以命令窗口显示的内容,但并不清除工作空间。 二、函数及运算 1、运算符: +:加,-:减,*:乘,/:除,\:左除^:幂,‘:复数的共轭转置,():制定运算顺序。 2、常用函数表: sin( ) 正弦(变量为弧度) Cot( ) 余切(变量为弧度) sind( ) 正弦(变量为度数) Cotd( ) 余切(变量为度数) asin( ) 反正弦(返回弧度) acot( ) 反余切(返回弧度) Asind( ) 反正弦(返回度数) acotd( ) 反余切(返回度数) cos( ) 余弦(变量为弧度) exp( ) 指数 cosd( ) 余弦(变量为度数) log( ) 对数 acos( ) 余正弦(返回弧度) log10( ) 以10为底对数 acosd( ) 余正弦(返回度数) sqrt( ) 开方 tan( ) 正切(变量为弧度) realsqrt( ) 返回非负根 tand( ) 正切(变量为度数)

美国历史与文化第五讲 二战中的美国

第五讲二战中的美国 一、摆脱孤立主义 孤立主义也有不同的意见:自由主义者强烈反对美国卷入任何欧洲战争,包括亨利福特和飞行英雄查尔斯林白。 罗斯福作为政治家的最艰难的功绩,就是使全国确信必须抱起孤立主义,把国家的力量投入反侵略的斗争。 这些对美国意味着什么?美国人只想躲避风雨,20世纪30年代,美国再次孤立主义盛行。 各个方面都主张,美国参加第一次世界大战时错误的,是英国的宣传和银行家与军火商的阴谋欺骗了我们,我们坚持中立国的权利是有勇有谋的。 1,1935年8月31日,国会在这种普遍的情绪中,通过了《中立法》,禁止在未来的冲突中给与交战双方贷款,禁止出售武器给任何一方。由于对侵略者和被侵略者同等对待,新的中立法鼓励了独裁者,使其相信他们可以继续他们征服而不用担心美国的干涉。 2,1937年10月,罗斯福在芝加哥演讲——“隔离演说”:“当某种传染性疾病开始蔓延的时候,为了保护居民的健康,防止疾病的流行,社会许可并且对患者实行隔离。”“战争都会蔓延。战争可以席卷远离原来战场的国家和人民。我们决心置于战争之外,然而我们并不能保证我们不受战争灾难的影响和避免卷入战争的危机。” 但隔离开演讲遭到了猛烈的抨击,但他向美国公众指出战争恐怖的存在。 3,1939年9月,德波战争爆发,第二次世界大战全面爆发,战争的胜负已直接关系到美国的安危,美国舆论和人民转向同情英法,罗斯福政府抓住时机为废除中立法进行宣传,他对国会说,援助英国就是帮助自己,他强调指出废除武器禁运能更好地保护国家不卷入战争,还可以为成千上万的人提供就业机会,这种就业又会自动地帮助建设美国的国防。罗斯福的宣传获得了成功。1939年11月4日,美国国会通过了对交战国解除军火禁运的新中立法,但仍须"现购自运"。尽管从原则上讲,"'现购自运'原则对欧洲所有交战国,也包括德国在内,都是有效的,但由于只有英国和法国才拥有制海权,因而只要他们有美元现金,就能自由自在地运输。"因此,这无疑是对英法作战的巨大支持。同时,也为美国借助英法军事订货,摆脱1937年以来新的经济萧条,加速扩军备战提供了有利条件。 4,1940年5月,1940年5-6月,德国闪击西北欧和法国,打破了欧洲力量的平衡,法兰西败局已定,不列颠前途难卜,被美国视为根本利益的安全线--莱茵河边界已被德国越过。罗斯福要求国会追加国防拨款加强战备。国会批准了陆海军的扩充计划。 5,1940年9月2日,英美两国达成协议:美国用50艘旧驱逐舰交换英国在加勒比海8个岛屿的军事基地,美国租用99年,这是第二次世界大战爆发以后,美国首次向英国进行租借。这项协定意味着中立的结束,标志着美国有限参战的开始。 6,1940年12月9日,丘吉尔致信罗斯福,声称英国国库已经空虚,而军用物资极为短缺,希望美国能给与帮助。12月16日,罗斯福在记者招待会上说了一条美国历史上那个最不平凡的新闻:假如我的邻居失火,…… "保卫美国的最好的直接办法就是英国能够保卫其本身。""历史上还没有一

matlab基础练习题(带)

Matlab 基础练习题 常量、变量、表达式 1、 MATLAB 中,下面哪些变量名是合法的?( ) (A )_num (B )num_ (C )num- (D )-num 2、 在MA TLAB 中,要给出一个复数z 的模,应该使用( )函数。 (A )mod(z) (B )abs(z) (C )double(z) (D )angle(z) 3、 下面属于MATLAB 的预定义特殊变量的是?( ) (A )eps (B )none (C )zero (D )exp 4、 判断:在MA TLAB 的内存工作区中,存放一个英文字符 'a' 需要占用1个字节,存放 一个中文字符‘啊’需要占用2个字节。( 错,都是2个字节 ) 5、 判断:MA TLAB 中,i 和j ( 对 ) 6、 判断:MA TLAB 中,pi 代表圆周率,它等于3.14。( 错,后面还有很多位小数 ) 7、 在MA TLAB 中,若想计算的5 1)3.0sin(21+= πy 值,那么应该在MA TLAB 的指令窗中 输入的MA TLAB 指令是__y1=2*sin(0.3*pi)/(1+sqrt(5))_。 8、 在MA TLAB 中,a = 1,b = i ,则a 占_8__个字节,b 占_16_个字节,c 占________字 节。 9、 在MA TLAB 中,inf 的含义是__无穷大__,nan 的含义是__非数(结果不定)___。 数组 1、 在MA TLAB 中,X 是一个一维数值数组,现在要把数组X 中的所有元素按原来次序 的逆序排列输出,应该使用下面的( )指令。 (A )X[end:1] (B )X[end:-1:1] (C )X (end:-1:1) (D )X(end:1) 2、 在MA TLAB 中,A 是一个字二维数组,要获取A 的行数和列数,应该使用的MATLAB 的命令是( )。 (A )class(A) (B )sizeof(A) (C )size(A) (D )isa(A) 3、 在MATLAB 中,用指令x=1:9生成数组x 。现在要把x 数组的第二和第七个元素都 赋值为0,应该在指令窗中输入( ) (A )x([2 7])=(0 0) (B )x([2,7])=[0,0] (C )x[(2,7)]=[0 0] (D )x[(2 7)]=(0 0) 4、 在MA TLAB 中,依次执行以下指令:clear;A=ones(3,4); A(:)=[-6:5];这时, 若在指令窗中输入指令b=A(:,2)',那么,MATLAB 输出的结果应该是( ) (A )b = -3 -2 -1 (B )b = -2 -1 0 1 (C )b = -5 -1 3 (D )b = -5 -2 1 4 5、 在MA TLAB 中,A = 1:9,现在执行如下指令L1 = ~(A>5),则MATLAB 的执行结果应 该是L1 =___ 1 1 1 1 1 0 0 0 0___。

MATLAB一些函数实例

1.三角波产生器 t=-3:0.01:3; f1=tripuls(t); subplot(3,1,1); plot(t,f1); axis([-3,3,-0.2,1.2]) set(gcf,'color','w'); f2=tripuls(t,4); subplot(3,1,2); plot(t,f2); axis([-3,3,-0.2,1.2]) %set(gcf,'color','w'); f3=tripuls(t,4,-1); subplot(3,1,3); plot(t,f3); axis([-3,3,-0.2,1.2]) 2.离散序列的相加与相乘 function[x,n]=jxl(x1,x2,n1,n2) n=min(min(n1),min(n2)):max(max(n1),max(n2)); s1=zeros(1,length(n));s2=s1; s1(find((n>=min(n1))&(n<=max(n1))==1))=x1; s2(find((n>=min(n2))&(n<=max(n2))==1))=x2; x=s1+s2;//x=s1.*s2:%序列乘 axis([(min(min(n1),min(n2))-1),(max(max(n1),max(n2))+1),(min(x)-0.5), (max(x)+0.5)]) 3.序列的反摺 function[x,n]=xlfz(x1,n1) x=fliplr(x1);n=fliplr(n1); stem(n,x,'filled') axis([min(n)-1,max(n)+1,min(x)-0.5,max(x)+0.5]) 4.序列的卷积 function[x,n]=gghconv(x1,x2,n1,n2) x=conv(x1,x2) ns=n1(1)+n2(1); leg=length(x1)+length(x2)-2; n=ns:(ns+leg) subplot(2,2,1) stem(n1,x1,'filled') title('x1(n)') xlabel('n') subplot(2,2,2)

MatLab常用函数大全

1、求组合数 C,则输入: 求k n nchoosek(n,k) 例:nchoosek(4,2) = 6. 2、求阶乘 求n!.则输入: Factorial(n). 例:factorial(5) = 120. 3、求全排列 perms(x). 例:求x = [1,2,3]; Perms(x),输出结果为: ans = 3 2 1 3 1 2 2 3 1 2 1 3 1 2 3 1 3 2 4、求指数 求a^b:Power(a,b) ; 例:求2^3 ; Ans = pow(2,3) ; 5、求行列式 求矩阵A的行列式:det(A); 例:A=[1 2;3 4] ; 则det(A) = -2 ; 6、求矩阵的转置 求矩阵A的转置矩阵:A’ 转置符号为单引号. 7、求向量的指数 求向量p=[1 2 3 4]'的三次方:p.^3 例: p=[1 2 3 4]' A=[p,p.^2,p.^3,p.^4] 结果为:

注意:在p 与符号”^”之间的”.”不可少. 8、求自然对数 求ln(x):Log(x) 例:log(2) = 0.6931 9、求矩阵的逆矩阵 求矩阵A 的逆矩阵:inv(A) 例:a= [1 2;3 4]; 则 10、多项式的乘法运算 函数conv(p1,p2)用于求多项式p1和p2的乘积。这里,p1、p2是两个多项式系数向量。 例2-2 求多项式43810x x +-和2 23x x -+的乘积。 命令如下: p1=[1,8,0,0,-10]; p2=[2,-1,3]; c=conv(p1,p2) 11、多项式除法 函数[q ,r]=deconv(p1,p2)用于多项式p1和p2作除法运算,其中q 返回多项式p1除以p2的商式,r 返回p1除以p2的余式。这里,q 和r 仍是多项式系数向量。 例2-3 求多项式43810x x +-除以多项式2 23x x -+的结果。 命令如下: p1=[1,8,0,0,-10]; p2=[2,-1,3]; [q,r]=deconv(p1,p2) 12、求一个向量的最大值 求一个向量x 的最大值的函数有两种调用格式,分别是:

MATLAB常用函数

数字信号处理与MATLAB 实现 1. n1=[ns:nf]; x1=[zeros(1,n0-ns),1,zeros (1,nf-n0)]; %单位抽样序列的产生 2. subplot(2,2,4) 画2行2列的第4个图 3. stem(n,x) %输出离散序列,(plot 连续) 4. 编写子程序可调用 4.1 单位抽样序列)(0n n -δ生成函数impseq.m [x,m]=impseq(n0,ns,nf); %序列的起点为ns ,终点为nf ,在n=n0点处生成一个单位脉冲 n=[-5:5];x1=3*impseq(2,-5,5)-impseq(-4,-5,5) x1 = 0 -1 0 0 0 0 0 3 0 0 0 n=[-5:5];x1=3*impseq(2,-4,5)-impseq(-4,-5,4) %起点到终点长度要一致 x1 = 0 -1 0 0 0 0 3 0 0 0 4.2 单位阶跃序列)(0n n u -生成函数stepseq.m [x,n]=stepseq(no,ns,nf) %序列的起点为ns ,终点为nf ,在n=n0点处生成一个单位阶跃 4.3 两个信号相加的生成函数sigadd.m [y,n]=sigadd(x1,n1,x2,n2) 4.4 两个信号相乘的生成函数sigmult.m [y,n]=sigmult(x1,n1,x2,n2) 4.5 序列移位y(n)=x(n-n0)的生成函数sigshift.m [y,n]=sigshift(x,m,n0) 4.6 序列翻褶y(n)=x(-n)的生成函数sigfold.m [y,n]=sigfold(x,n) 4.7 evenodd.m 函数可以将任一给定的序列x(n)分解为xe(n)和xo(n)两部分 [xe,xo,m]=evenodd(x,n) 4.8 序列从负值开始的卷积conv_m, conv 默认从0开始 function [y,ny]=conv_m(x,nx,h,nh) 有{x(n):nx1≤n ≤nx2},{h(n):nh1≤n ≤nh2}, 卷积结果序列为 {y(n):nx1+nh1≤n ≤nx2+nh2} 例. 设1132)(-++=z z z X ,1225342)(-+++=z z z z X ,求)()()(21z X z X z Y += 程序: x1=[1,2,3];n1=-1:1; x2=[2,4,3,5];n2=-2:1; [y,n]=conv_m(x1,n1,x2,n2)

American Religion 美国宗教发展历程

Religion in America In a Christian world, many countries in the West have experienced declines in religious observance and increases in secularization in the twentieth century. This is often attributed to the influences of industrialization, consumerism, materialism, hedonism, mass culture, and universal education. The United States, however, seems to be an exception. Despite its materialistic image and intense worship of “mighty dollars”, the U. S. still remains the most religious country in the Western countries. In comparison with European countries, America not only has a greater number of religious believers, but also enjoys a much higher church survey, The Economist reported that about 95 percent of Americans believed in God; four out of five believed in miracles, life after death and the Virgin Mary birth; 6.5 percent believed in the devil; 75 percent believed in angels; and nine out of ten owned a bible. Similarly, surveys by the Gallup Organization in the early 1990s indicated that among Americans under 30 years old, about 36 percent attended church on regular basis, while close to 47 percent of the people at or over 50 went to church once in a week. Is America a religious culture, shaped by men who sought freedom of worship, with God constantly present in their minds even when the Church has become formalized? Or is it a secular culture with religion playing only a marginal role in men’s daily lives since the Untied States long time ago separated Church and

相关文档