文档库 最新最全的文档下载
当前位置:文档库 › 分形理论和股票价格秘密

分形理论和股票价格秘密






被誉为大自然的几何学的分形(Fractal)理论,是现代数学的一个新分支,但其本质却是一种新的世界观和方法论。它与动力系统的混沌理论交叉结合,相辅相成。它承认世界的局部可能在一定条件下、过程中、在某一方面(形态,结构,信息,功能,时间,能量等)表现出与整体的相似性,它承认空间维数的变既可以是离散的也可以是连续的,因而拓展了视野。





一、分形几何的概念是美籍法国数学家曼德尔布罗特(B.B.Mandelbrot)1975年首先提出的,但最早的工作可追朔到1875年,德国数学家维尔斯特拉斯(K.Weierestrass)构造了处处连续但处处不可微的函数,集合论创始人康托(G.Cantor,德国数学家)构造了有许多奇异性质的三分康托集。1890年,意大利数学家皮亚诺(G.Peano)构造了填充空间的曲线。1904年,瑞典数学家科赫(H.von Koch)设计出类似雪花和岛屿边缘的一类曲线。1915年,波兰数学家谢尔宾斯基(W.Sierpinski)设计了像地毯和海绵一样的几何图形。这些都是为解决分析与拓扑学中的问题而提出的反例,但它们正是分形几何思想的源泉。1910年,德国数学家豪斯道夫(F.Hausdorff)开始了奇异集合性质与量的研究,提出分数维概念。1928年布利干(G.Bouligand)将闵可夫斯基容度应用于非整数维,由此能将螺线作很好的分类。1932年庞特里亚金(L.S.Pontryagin)等引入盒维数。1934年,贝塞考维奇(A.S.Besicovitch)更深刻地提示了豪斯道夫测度的性质和奇异集的分数维,他在豪斯道夫测度及其几何的研究领域中做出了主要贡献,从而产生了豪斯道夫-贝塞考维奇维数概念。以后,这一领域的研究工作没有引起更多人的注意,先驱们的工作只是作为分析与拓扑学教科书中的反例而流传开来。




二、1960年,曼德尔布罗特在研究棉价变化的长期性态时,发现了价格在大小尺度间的对称性。同年在研究信号的传输误差时,发现误差传输与无误差传输在时间上按康托集排列。在对尼罗河水位和英国海岸线的数学分析中,发现类似规律。他总结自然界中很多现象从标度变换角度表现出的对称性。他将这类集合称作自相似集,其严格定义可由相似映射给出。他认为,欧氏测度不能刻画这类集的本质,转向维数的研究,发现维数是尺度变换下的不变量,主张用维数来刻画这类集合。1975年,曼德尔布罗特用法文出版了分形几何第一部著作《分开:形状、机遇和维数》。1977年该书再次用英文出版。它集中了1975年以前曼德尔布罗特关于分形几何的主要思想,它将分形定义为豪斯道夫维数严格大于其拓扑维数的集合,总结了根据自相似性计算实验维数的方法,由于相似维数只对严

格自相似这一小类集有意义,豪斯道夫维数虽然广泛,但在很多情形下难以用计算方法求得,因此分形几何的应用受到局限。1982年,曼德尔布罗特的新著《自然界的分形几何》出版,将分形定义为局部以某种方式与整体相似的集,重新讨论盒维数,它比豪斯道夫维数容易计算,但是稠密可列集盒维数与集所在空间维数相等。为避免这一缺陷,1982年特里科特(C.Tricot)引入填充维数,1983年格拉斯伯格(P.Grassberger)和普罗克西娅(I.Procaccia)提出根据观测记录的时间数据列直接计算动力系统吸引子维数的算法。1985年,曼德尔布罗特提出并研究自然界中广泛存在的自仿射集,它包括自相似集并可通过仿射映射严格定义。1982年德金(F.M.Dekking)研究递归集,这类分形集由迭代过程和嵌入方法生成,范围更广泛,但维数研究非常困难。德金获得维数上界。1989年,钟红柳等人解决了德金猜想,确定了一大类递归集的维数。随着分形理论的发展和维数计算方法的逐步提出与改进,1982年以后,分形理论逐渐在很多领域得到应用并越来越广泛。建立简便盛行的维数计算方法,以满足应用发展的需要,还是一项艰巨的任务。





自然界中的分形,与概率统计、随机过程关系密切。确定性的古典分形集加入随机性,就会产生出随机康托集、随机科契曲线等各种随机分形。1968年,曼德尔布罗特研究布朗运动这一随机过程时,将其推广到与分形有关的分数布朗运动。1974年他又提出了分形渗流模型。1988年,柴叶斯(j.T.Chayes)给出了详细的数学分析。1984年,扎乐(U.Zahle)通过随机删除而得到十分有趣的分形构造,随机分形能更真实地描述和模拟自然现象。


分形理论和股票价格秘密二
自相似原则和迭代生成原则是分形理论的重要原则。它表征分形在通常的几何变换下具有不变性,即标度无关性。由自相似性是从不同尺度的对称出发,也就意味着递归。分形形体中的自相似性可以是完全相同,也可以是统计意义上的相似。标准的自相似分形是数学上的抽象,迭代生成无限精细的结构,如科契(Koch)雪花曲线、谢尔宾斯基(Sierpinski)地毯曲线等。这种有规分形只是少数,绝大部分分形是统计意义上的无规分形。

分维,作为分形的定量表征和基本参数,是分形理论的又一重要原则。分维,又称分形维或分数维,通常用分数或带小数点的数表示。长期以来人们习惯于将点定义为零维,直线为一维,平面为二维,空间为三维,爱因斯坦在相对论中引入时间维,就形成四维时空。对某一问题给予多方面的考虑,可建立高维空间,但都是整数维。在数学上,把欧氏空间的几何对象连续地拉伸

、压缩、扭曲,维数也不变,这就是拓扑维数。然而,这种传统的维数观受到了挑战。曼德布罗特曾描述过一个绳球的维数:从很远的距离观察这个绳球,可看作一点(零维);从较近的距离观察,它充满了一个球形空间(三维);再近一些,就看到了绳子(一维);再向微观深入,绳子又变成了三维的柱,三维的柱又可分解成一维的纤维。那么,介于这些观察点之间的中间状态又如何呢?

显然,并没有绳球从三维对象变成一维对象的确切界限。数学家豪斯道夫(Hausdoff)在1919年提出了连续空间的概念,也就是空间维数是可以连续变化的,它可以是整数也可以是分数,称为豪斯道夫维数。记作Df,一般的表达式为:K=LDf,也作K=(1/L)-Df,取对数并整理得Df=lnK/lnL,其中L为某客体沿其每个独立方向皆扩大的倍数,K为得到的新客体是原客体的倍数。显然,Df在一般情况下是一个分数。因此,曼德布罗特也把分形定义为豪斯道夫维数大于或等于拓扑维数的集合。英国的海岸线为什么测不准?因为欧氏一维测度与海岸线的维数不一致。根据曼德布罗特的计算,英国海岸线的维数为1.26。有了分维,海岸线的长度就确定了。


分形理论和股票价格秘密三
周期性是自然界发展变化的基本之一, 经济发展周期性表现为描述经济发展的数量指标“时好时坏”波浪式变化, 并不是简单的重复; 总体上讲人类社会的经济发展是波浪式前进的, 历史是不会逆转的。与经济发展密切相关的证券价格指数的走势变化也是如此,传统技术派基本假设之一 “历史是会重演的”是不确切的。

用分形理论来分析, 价格的随机波动曲线具有“自相似性”。价格波动曲线的分形,与海岸线同类, 都具有1.618(左右)的分形维特性,其分形形态不可能象科赫曲线一样表现为精确的几何图形,随机性是这种曲线走势的基本特征;曲线自相似性的意义是突出随机过程中的关联效应, 抽象地谈分形对分析价格曲线的未来走势是无意义,我将在后面专门阐明价格走势的分形。传统技术派的经验论断是值得怀疑的,R.N.ELLIOT的8波理论只是众多抽象化分形中的一个形态,由此发展起来的所谓‘波浪理论’的实际价值不大;对同一种价格波动曲线不同的‘波浪理论’使用者往往得出不同的甚至是相反的结论即很好的说明了这一点。

传统图表分析派认为, 市场的价格(指数)走势波动曲线, 包融了一切影响价格变动的因素。 在逐利竞争交易的市场中, 价格的升降成为交易者追求的直接目的, 加上交易手段及信息传播的化, 市场的投机性增强, 往往许多价格曲线的短期波动走势与基本的“供求关系”不一致; 换句话说, 供求关系的决

定作用可能在某些特殊的交易过程中没有意义, 市场价格走势并不总是“合理”。另一方面,市场的价格变动反过来又影响市场本来要反映的因素。图表走势包融的一切因素, 应该融在整个过程中。既然交易者对市场所包融的一切没有确定的认识,或者说对市场中所发生的和将要发生的一切都存在上认识的不确定性, 这种假设是无短线意义的。

黄金分割率与分形的关系及其在客观现实世界中的存在机理

黄金分割率 0.618 是一个比率数, 其几何意义是一个线段按黄金率分割成的两条线段之比是两条线段中较长的一条与原线段之比, 都是 0.618。
假设线段长度为 1 个单位, 分成 A 和 B 两段, 则 A + B = 1
令 A = 0.382 , B = 0.618 , 则 A/B = B/1 , B*B = A , B/A = 1/B
简单的运算可知: 0.618*0.618=0.382, 0.618*1.618=1, 0.618/0.382=1.618
1/.382=1.618/0.618=2.618, 1.618*1.618=2.618. 黄金率主要是指0.618或其倒数1.618, 0.382或其倒数2.618则次之, 其它数字如0.191, 0.236等都不是“黄金率”。

同样,维度D=0.618空间是对D=1的一维空间的‘黄金分割’,维度D=1.618空间是D=0.618空间与D=1空间的(垂直)叠加;维度D=2.618空间是D=1.618空间与D=1空间的(垂直)叠加。可以认为,维度D=1.618空间是二维空间的一个特殊子空间,该子空间在二维空间中的“表现”就是一个完整的分形!分形维是决定分形的内在机理。表明,D=0.618分形维是最重要的,(当然也是1.618与2.618分形维的逻辑基础)。从空间的概念来讲,维度D=0.618的逻辑空间是由无穷多的、不连续的、分布不均匀的(“点的密度”与一维空间的测量尺度呈0.618的指数关系)“点域”组成的“实数空间”,所谓“点域”可简单理解为一个数及其最临近数组成的数集。分数维“空间”这种离散性(不连续性)与不均匀性决定了 1〈D〈2 分形维在二维空间的分形图案。现实世界中最有意义的分形维其D都在1.618(或0.618或2.618)附近,其分形图案最具代表性的:一是呈一定中心对称性的向外发散型如闪电、粒子的扩散置限聚集(模型)、细菌的繁衍生长模型、树枝等;二是平面展开型如海岸线、白云的平面轮廓等。不平滑性、不相交性、一定程度上形状的相似性是这些图示分形(图案)的共同特点。


相关文档