文档库 最新最全的文档下载
当前位置:文档库 › 参数范围(求恒成立问题)

参数范围(求恒成立问题)

参数范围(求恒成立问题)
参数范围(求恒成立问题)

专题——求参数取值范围一般方法

概念与用法

恒成立问题是数学中常见问题,也是历年高考的一个热点。题型特点大多以已知一个变量的取值范围,求另一个变量的取值范围的形式出现。这样的题型会出现于代数中的不等式里也会出现在几何里。就常考题型的一般题型以及解题方法,我在这里做了个小结。

题型以及解题方法

一,分离参数

在给出的不等式中,如果能通过恒等变形分离出参数,即:若()a f x ≥恒成立,只须求出()max f x ,则()max a f x ≥;若()a f x ≤恒成立,只须求出()min f x ,则()min a f x ≤,转化为函数求最值。

例1、已知函数()lg 2a f x x x ??=+

- ???,若对任意[)2,x ∈+∞恒有()0f x >,试确定a 的取值范围。 解:根据题意得:21a x x +

->在[)2,x ∈+∞上恒成立, 即:23a x x >-+在[)2,x ∈+∞上恒成立,

设()23f x x x =-+,则()2

3924f x x ??=--+ ??? 当2x =时,()max 2f x = 所以2a >

例2.已知当x ∈R 时,不等式a+cos2x<5-4sinx+45-a 恒成立,求实数a 的取值范围。

分析:在不等式中含有两个变量a 及x ,其中x 的范围已知(x ∈R ),另一变量a 的范围即为所求,故可考虑将a 及x 分离。

解:原不等式即:4sinx+cos2x<45-a -a+5 要使上式恒成立,只需45-a -a+5大于4sinx+cos2x 的最大值,故上述问题转化成求f(x)=4sinx+cos2x 的最值问题。

f(x)= 4sinx+cos2x=-2sin 2x+4sinx+1=-2(sinx -1)2+3≤3, ∴45-a -a+5>3即45-a >a+2

上式等价于??

???->-≥-≥-2)2(4504502a a a a 或???≥-<-04502a a ,解得≤54a<8. 说明:注意到题目中出现了sinx 及cos2x ,而cos2x=1-2sin 2x,故若把sinx 换元成t,则可把原不等式转化成关于t 的二次函数类型。

二,变主换元

在给出的含有两个变量的不等式中,学生习惯把变量x 看成是主元(未知数),而把另一个变量a 看成参数,在有些问题中这样的解题过程繁琐。如果把已知取值范围的变量作为主元,把要求取值范围的变量看作参数,则可简化解题过程。 例3.对于满足|p|≤2的所有实数p,求使不等式x 2+px+1>2p+x 恒成立的x 的取值范围。

分析:在不等式中出现了两个字母:x 及P,关键在于该把哪个字母看成是一个变量,另一个作为常数。显然可将p 视作自变量,则上述问题即可转化为在[-2,2]内关于p 的一次函数大于0恒成立的问题。

解:不等式即(x -1)p+x 2-2x+1>0,设f(p)= (x -1)p+x 2-2x+1,则f(p)在[-2,2]上恒大于0,故有:

???>>-)2(0)2(f f 即?????>->+-0

103422x x x 解得:???-<><>1113x x x x 或或 ∴x<-1或x>3.

例4、若不等式()2211x m x ->-对满足2m ≤的所有m 都成立,求x 的取值范围。

解:设()()

()2121f m m x x =---,对满足2m ≤的m ,()0f m <恒成立, ()()()()()()2221210202021210

x x f f x x ?----<-

例5.设f(x)=x 2-2ax+2,当x ∈[-1,+∞)时,都有f(x)≥a 恒成立,求a 的取值范围。

分析:题目中要证明f(x)≥a 恒成立,若把a 移到等号的左边,则把原题转化成左边二次函数在区间[-1,+∞)时恒大于0的问题。

解:设F(x)= f(x)-a=x 2-2ax+2-a.

ⅰ)当?=4(a -1)(a+2)<0时,即-2

ⅱ)当?=4(a -1)(a+2) ≥0时由图可得以下充要条件:

???

????-≤--≥-≥?,1220)1(0a f 即??

???-≤≥+≥+-,10

30)2)(1(a a a a 得-3≤a ≤-2;

综合可得a 的取值范围为[-3,1]

四,利用集合与几何之间的关系 在给出的不等式中,若能解出已知取值范围的变量,就可利用集合与集合之间的包含关系来求解,即:[]()(),,m n f a g a ?????,则()f a m ≤且()g a n ≥,不等式的解即为实数a 的取值范围。

例6、当1,33x ??∈ ???时,log 1a x <恒成立,求实数a 的取值范围。

解:1log 1a x -<<

(1) 当1a >时,1x a a <<,则问题转化为11,3,3a a ????? ? ????? 3113

a a ≥??∴?≤?? 3a ∴≥ (2) 当01a <<时,1a x a <<,则问题转化为11,3,3a a ????? ? ?????1313a a

?≤??∴??≥??103a ∴<≤ 综上所得:103

a <≤

或3a ≥ 五,几何中的求参 要确定变量k 的范围,可先建立以k 为函数的目标函数)(t f k =,从而使这种具有函数背景的范围问题迎刃而解。

的范围。

轴上截得在求若若两点相交于与的直线的焦点,过点是给定抛物线一个参数的范围)

、(双参数且已知其中例m y l ],9,4[,AF FB .

B ,A

C l F C F ,4x y :C 72∈==λλ-1 o x

y

].34,43[]43,34[k m ].916,169[214k 1y y (y y y y y y )1(y y y y ,y y x 1(1x )y ,x 1()y ,1x (AF FB ,

k m )1x (k y l 22212121

21121121

2121122 --∈-=∈-+=-+-=????-=-=+?-=???-=-=-?--=-=-=?-=所求得:,由韦达定理代入整理)由)得由方程为:解:(略解)设直线λ

λλλλλλλλλλ 小练一下

1.已知函数]4,0(,4)(2∈--=x x x ax x f 时0)(

2.已知不等式(1)21x m x -<-对()0,3x ∈恒成立,求实数m 的取值范围。

3.已知不等式(1)21x m x -<-对()0,3m ∈恒成立,求实数x 的取值范围。

4.已知不等式2220x ax -+>对x ∈R 恒成立,求实数a 的取值范围。

5.已知不等式2220x ax -+>对[]1,2x ∈恒成立,求实数a 的取值范围。

6.已知不等式2220x ax -+>对[]1,2x ∈-恒成立,求实数a 的取值范围。

7.对任意]1,1[-∈a ,不等式024)4(2

>-+-+a x a x 恒成立,求x 的取值范围。

含参不等式恒成立问题中求参数取值范围一般方法(教师版)

恒成立问题是数学中常见问题,也是历年高考的一个热点。大多是在不等式中,已知一个变量的取值范围,求另一个变量的取值范围的形式出现。下面介绍几种常用的处理方法。 一、分离参数 在给出的不等式中,如果能通过恒等变形分离出参数,即:若()a f x ≥恒成立,只须求出()max f x ,则()m ax a f x ≥;若()a f x ≤恒成立,只须求出()min f x ,则()m in a f x ≤,转化为函数求最值。 例1、已知函数()lg 2a f x x x ??=+ - ???,若对任意[)2,x ∈+∞恒有()0f x >,试确定a 的取值范围。 解:根据题意得:21a x x + ->在[)2,x ∈+∞上恒成立, 即:23a x x >-+在[)2,x ∈+∞上恒成立, 设()23f x x x =-+,则()2 3924f x x ??=--+ ??? 当2x =时,()max 2f x = 所以2a > 例2、已知(],1x ∈-∞时,不等式() 21240x x a a ++-?>恒成立,求a 的取值范围。 解:令2x t =,(],1x ∈-∞ (]0,2t ∴∈ 所以原不等式可化为:22 1t a a t +-<, 要使上式在(]0,2t ∈上恒成立,只须求出()2 1t f t t +=在(]0,2t ∈上的最小值即可。 ()22211111124t f t t t t t +????==+=+- ? ? ???? 11,2t ??∈+∞???? ()()min 324f t f ∴== 234a a ∴-< 1322 a ∴-<< 二、分类讨论 在给出的不等式中,如果两变量不能通过恒等变形分别置于不等式的两边,则可利用分类讨论的思想来解决。 例3、若[]2,2x ∈-时,不等式2 3x ax a ++≥恒成立,求a 的取值范围。 解:设()2 3f x x ax a =++-,则问题转化为当[]2,2x ∈-时,()f x 的最小值非负。 (1) 当22a -<-即:4a >时,()()min 2730f x f a =-=-≥ 73 a ∴≤又4a >所以a 不存在;

含参数的一元二次不等式的解法以及含参不等式恒成立问题(专题复习)

含参数的一元二次不等式的解法 解含参数的一元二次不等式,通常情况下,均需分类讨论,那么如何讨论呢?对含参一元 二次不等式常用的分类方法有三种: 一、按 x 2项的系数 a 的符号分类,即 a 0,a 0,a 0; 例 1 解不等式: ax 2 a 2 x 1 0 分析: 本题二次项系数含有参数, a 2 2 4a a 2 4 0 ,故只需对二次项 系数进行分类讨论。 2 解 :∵ a 2 2 4a a 2 4 0 a 2 a 2 4 a 2 a 2 4 ∴当 a 0时,解集为 x|x a 2 a 4 或x a 2 a 4 2a 2a 当 a 0 时,不等式为 2x 1 0, 解集为 x| x 1 例 2 解不等式 ax 2 5ax 6a 0a 0 分析 因为 a 0, 0 ,所以我们只要讨论二次项系数的正负。 解 a(x 2 5x 6) a x 2 x 3 0 当 a 0时,解集为 x|x 2或x 3 ;当 a 0时,解集为 x|2 x 3 、按判别式 的符号分类,即 0, 0, 0 ; 例 3 解不等式 x 2 ax 4 0 分析 本题中由于 x 2 的系数大于 0, 故只需考虑 与根的情况。 解: ∵ a 2 16 ∴当 a 4,4 即 0 时,解集为 R ; 解得方程 2 ax 2 a 2 x 1 0 两根 x 1 a 2 a 2 4 2a , x 2 a 2 a 2 4 2a 当 a 0时 , 解集为 x| a 2 a 2 4 2a x a 2 a 2 4 2a

当 a 4即Δ=0时,解集为 x x R 且x a ; 当 a 4 或 a 4 即 0, 此时两根分别为 x 1 a a 16 , x 2 2 x 1 x 2 , a a 2 16 a a 2 16 x 或 x 〈 22 例 4 解不等式 m 2 1 x 2 4x 1 0 m R 2 2 2 2 解 因 m 2 1 0, ( 4)2 4 m 2 1 4 3 m 2 当 m 3或 m 3 ,即 0 时,解集为 R 。 2 三、按方程 ax bx c 0 的根 x 1 , x 2的大小来分类,即 x 1 x 2,x 1 x 2 ,x 1 x 2; 1 例 5 解不等式 x 2 (a )x 1 0 (a 0) a 1 分析: 此不等式可以分解为: x a (x ) 0 ,故对应的方程必有两解。本题 a 只需讨论两根的大小即可。 11 解: 原不等式可化为: x a (x ) 0 ,令 a ,可得: a 1 aa 11 ∴当 a 1或 0 a 1时, a ,故原不等式的解集为 x |a x ; a 1 当 a 1 或 a 1 时, a , 可得其解集为 ; a 11 当 1 a 0或a 1时, a ,解集为 x| x a a 例 6 解不等式 x 2 5ax 6a 2 0 , a 0 分析 此不等式 5a 2 24a 2 a 2 0 ,又不等式可分解为 x 2a (x 3a) 0 ,故 所以当 m 3 ,即 0 时,解集为 x| x 1 2 当 3 m 3 ,即 0 时,解集为 2 3 m 2 x 或 x m 2 1 2 m 2 1 3 m 2 ; ; a a 2 16 a a 16 ,显然 ∴不等式的解集为

不等式恒成立求参数的取值范围

不等式恒成立求参数的取值范围 武汉市第四十九中学 李清华 邮政编码;430080 一、 教学目标 1、 知识目标;掌握不等式恒成立问题求参数的范围的求解方法并会运用 2、 能力目标;培养学生分析问题解决问题的能力 3、 情感目标;优化学生的思维品质 二、 教学重难点 1、教学的重点;不等式恒成立问题求参数的范围的求解方法并会运用 2、教学的难点;不等式恒成立问题求参数的范围的求解方法的选择 三、 教学方法:高三复习探究课:学生研讨探究----学生归纳小结-----学生巩固 练习----学生变式探究---学生总结 四、 教学过程 1、 引人 高三数学复习中的不等式恒成立问题,涉及到函数的性质、图象, 渗透着换元、化归、数形结合、函数方程等思想方法,有利于考查学生的综合解题能力,因此备受命题者的青睐,也成为历年高考的一个热点。我们今天这堂课来研究不等式恒成立求参数的取值范围问题的求解方法。引入课题 2、新课 下面我们来看例1例1、对一切实数x ]1,1[-∈,不等式 a x a x 24)4(2-+-+>0恒成立,求实数a 的取值范围(由学生完成) 由一个基本题得到不等式恒成立问题求参数的范围的求解方法 解法一;分离参数 由原不等式可得:a(x-2) > -x 2+4x-4 , 又因为x ∈[-1,1] ,x-2∈[-3,-1] a<2-x

又因为x∈[-1,1],所以a<1. 解法二;分类讨论、解不等式 (x-2)[x-(2-a)]>0 当a=0时不等式恒成立 当a<0 时x>2-a 或x<2 不等式恒成立 当a>0时x>2 或x<2-a 所以2-a>1 即a<1 所以a<1时不等式恒成立 解法三;构造函数求最值 设f(x)=x2+(a-4)x+4-2a 当(4-a)/2∈[-1,1],即a∈[2,6]时 -a2<0 不成立,舍弃; 当a>6时,f(-1)=1-a+4+4-2a>0 a<3 不成立,舍弃; 当a<2时,f(1)=1+a-4+4-2a=1-a>0 a<1 综上得:a<1 解法四;构造方程用判别式韦达定理根的分布 设x2+(a-4)x+4-2a=0 方程无实根或有两实根两根小于-1或两根大于1 △=(a-4)2-4(4-2a)=a2≥0 所以1-(a-4)+4-2a>0且(4-a)/2<-1 或1+(a-4)+4-2a>0 且(4-a)/2>16且a<3 或a<1且a<2, 所以a<1 解法五;数形结合(用动画来演示

7-2分离参数法解决不等式恒成立问题

分离参数法解决不等式恒成立问题 [典例] (2014·天津调研)设函数f (x )=x 2 -1,对任意x ∈[32,+∞),f (x m )-4m 2f (x )≤f (x -1)+4f (m )恒成立,则实数m 的取值范围是________. [审题视角] 本题把函数问题与恒成立问题巧妙的结合起来,解题时先把参数分离,从而把恒成立问题转化为函数最值问题. [解析] 依据题意得x 2 m 2-1-4m 2(x 2-1)≤(x -1)2-1+4(m 2-1)在x ∈[32,+∞)上恒成立, 即1m 2-4m 2≤-3x 2-2x +1在x ∈[32,+∞)上恒成立. 即(1m 2-4m 2)≤(-3x 2-2x +1)min , 当x =32时函数y =-3x 2-2x +1取得最小值-53, 所以1m 2-4m 2≤-53,即(3m 2+1)(4m 2-3)≥0, 解得m ≤-32或m ≥32. [答案] (-∞,-32]∪[32,+∞) 对于给定区间上的不等式恒成立问题,一般可根据以下几步求解: 第一步:整理不等式,分离参数; 第二步:构造函数g (x ); 第三步:求函数g (x )在给定区间上的最大值或最小值;

第四步:根据最值构造不等式求参数; 第五步:反思回顾,查看关键点,易错点,完善解题步骤.该题需注意两点:①分离参数时一定要搞清谁是参数;②求g (x )最值的常用方法有:二次函数、均值不等式、单调性等. 1.(2014·广州模拟)若关于x 的不等式4x -2x +1-a ≥0在[1,2]上恒成立,求a 的取值范围. 解:由4x -2x +1-a ≥0可得a ≤4x -2x +1 令2x =t ,则4x =t 2,∵x ∈[1,2],∴t ∈[2,4] ∴a ≤t 2-2t ,要使关于x 的不等式4x -2x +1-a ≥0在[1,2]上恒成立 只需a ≤(t 2-2t )min ,而t 2-2t =(t -1)2-1 ∵t ∈[2,4] ∴t 2-2t ∈[0,8],∴a ≤0. 2.(2014·淄博模拟)若不等式(a -a 2)(x 2+1)+x ≤0对一切x ∈(0,2]恒成立,则a 的取值范围为( ) A .(-∞,1-32) B .[1+32,+∞) C .(-∞,1-32]∪[1+32,+∞) D .[1-32,1+32] 解析:∵x ∈(0,2],∵a 2 -a ≥x x 2+1=1x +1x .要使a 2-a ≥1x +1x 在x

含参不等式恒成立问题学考压轴题(函数专题)

个性化教案 学生姓名 年级 科目 数学 授课教师 日期 时间段 课时 2 授课类型 新课/复习课/作业讲解课 教学目标 教学内容 函数专题:含参不等式恒成立问题 个性化学习问题解决 “含参不等式恒成立问题”把不等式、函数、三角、几何等内容有机地结合起来,知识点多,综合性强,解法灵活等。在解决这类问题的过程中涉及的“函数与方程”、“化归与转化”、“数形结合”、“分类讨论”等数学思想对锻炼学生的综合解题能力,培养其思维的灵活性、创造性都有着独到的作用 恒成立问题的基本类型: 类型1:若所求问题可转化为二次不等式,则可考虑应用判别式法解题。一般地,对于二次函数 ),0()(2R x a c bx ax x f ∈≠++=,有 1)0)(>x f 对R x ∈恒成立?? ??00a ; 2)0)(对x ∈R 恒成立,求实数a 的取值范围。 例2:若不等式02)1()1(2>+-+-x m x m 的解集是R ,求m 的范围。 类型2:设)0()(2 ≠++=a c bx ax x f (1)当0>a 时,],[0)(βα∈>x x f 在上恒成立?????>>-?????<- ?0 )(2020)(2βββαααf a b a b f a b 或或, ],[0)(βα∈x x f 在上恒成立? ??>>?0)(0 )(βαf f ],[0)(βα∈-?????对[]1,2x ∈恒成立,求实数a 的取值范围。

含参数不等式恒成立问题的解题策略

解决“含参数不等式的恒成立”问题的基本方法 “含参数不等式的恒成立”的问题,是近几年高考的热点,它往往以函数、数列、三角函数、解析几何为载体具有一定的综合性,解决这类问题,主要是运用等价转化的数学思想: 即一般地,若函数()x f 的定义域为D ,则当x ∈D 时,有()M x f ≥恒成立()M x f ≥?min (()M x f ≥有解?M max )(x f ≤);()M x f ≤恒成立()M x f ≤?m a x (()M x f ≤有解?M x f ≤m i n )().因而,含参数不等式的恒成立问题常根据不等式的结构特征,恰当地构造函数,等价转化为含参数的函数的最值讨论. 例一 定义在R 上的函数()x f 既是奇函数,又是减函数,且当?? ? ??∈2,0πθ时,有 () ()022s in 2c o s 2 >--++m f m f θθ恒成立,求实数m 的取值范围. 分析: 利用函数的单调性和奇偶性去掉映射符号f ,将“抽象函数”问题转化为常见的含参的二次函数在区间(0,1)上恒为正的问题.而对于()≥x f 0在给定区间[a ,b]上恒成立问题可以转化成为()x f 在[a ,b]上的最小值问题,若()x f 中含有参数,则要求对参数进行讨论。 【解析】由()()022sin 2cos 2>--++m f m f θθ得到:()()22sin 2cos 2--->+m f m f θθ 因为()x f 为奇函数, 故有()()22sin 2cos 2+>+m f m f θθ恒成立, 又因为()x f 为R 减函数, 从而有22sin 2cos 2+<+m m θθ对?? ? ??∈2,0πθ 设t =θsin ,则01222>++-m mt t 对于( )1,0∈t 恒成立, 在设函数()1222 ++-=m mt t t g ,对称轴为m t =. ①当0<=m t 时,()0120≥+=m g , 即21-≥m ,又0

导数中含参数问题与恒成立问题的解题技巧

函数、导数中含参数问题与恒成立问题的解题技巧与方法 含参数问题及恒成立问题方法小结: 1、分类讨论思想 2、判别法 3、分离参数法 4、构造新函数法 一、分离讨论思想: 例题1: 讨论下列函数单调性: 1、()x f =();1,0,≠>-a a a a x 2、()x f =)0,11(1 2≠<<--b x x bx 二、判别法 例2:已知不等式04)2(2)2(2 <--+-x a x a 对于x ∈R恒成立,求参数a 的取值范围. 解:要使04)2(2)2(2<--+-x a x a 对于x ∈R恒成立,则只须满足: (1)???<-+-<-0)2(16)2(4022a a a 或 (2)?? ???<-=-=-040)2(202a a 解(1)得???<<-<2 22a a ,解(2)a =2 ∴参数a 的取值范围是-2<a ≤2. 练习1. 已知函数])1(lg[22a x a x y +-+=的定义域为R ,求实数a 的取值范围。 三、分离法参数: 分离参数法是求参数的取值范围的一种常用方法,通过分离参数,用函数观点讨论主变量的变化情况,由此我们可以确定参数的变化范围.这种方法可以避免分类讨论的麻烦,从而使问题得以顺利解决.分离参数法在解决有关不等式恒成立、不等式有解、函数有零点、函数单调性中参数的取值范围问题时经常用到. 解题的关键是分离出参数之后将原问题转化为求函数的最值或值域问题.即: (1) 对任意x 都成立()min x f m ≤ (2)对任意x 都成立。 例3.已知函数]4,0(,4)(2∈--=x x x ax x f 时0)(

(完整word)高中数学恒成立问题.doc

高中数学不等式的恒成立问题 不等式恒成立的问题既含参数又含变量,往往与函数、数列、方程、几何有机结 合起来,具有形式灵活、思维性强、不同知识交汇等特点 . 考题通常有两种设计方式: 一是证明某个不等式恒成立,二是已知某个不等式恒成立,求其中的参数的取 值范围 . 解决这类问题的方法关键是转化化归,通过等价转化可以把问题顺利解 决,下面我就结合自己记得教学经验谈谈不等式的恒成立问题的处理方法。一、构 造函数法 在解决不等式恒成立问题时,一种最重要的思想方法就是构造适当的函数,即构 造函数法,然后利用相关函数的图象和性质解决问题,同时注意在一个含多个变量 的数学问题中,需要确定合适的变量和参数,从而揭示函数关系,使问题更加面目 更加清晰明了,一般来说,已知存在范围的量视为变量,而待求范围的量视为参数. 例 1已知不等式对任意的都成立,求的取值范围. 解:由移项得 :. 不等式左侧与二次函数非常相 的似,于是我们可以设则不等式对满足 一切实数恒成立对恒成立.当时, 即 解得故的取值范围是. 注:此类问题常因思维定势,学生易把它看成关于的不等式讨论,从而因计算繁琐出错或者中途夭折;若转换一下思路,把待求的x 为参数,以为变量,令 则问题转化为求一次函数(或常数函数)的值在内恒为负的问题,再来求解参数应满足的条件这样问题就轻而易举的得到解决了。

二、分离参数法 在不等式中求含参数范围过程中,当不等式中的参数(或关于参数的代数式) 能够与其它变量完全分离出来并,且分离后不等式其中一边的函数(或代数式)的 最值或范围可求时,常用分离参数法. 例2已知函数(为常数)是实数集上的奇函数,函数在区间上是减函数 . 都有在上恒成立,求实数的(Ⅰ)若对(Ⅰ)中的任意实数 取值范围 . 解:由题意知,函数在区间上是减函数. 在上恒成立 注:此类问题可把要求的参变量分离出来,单独放在不等式的一侧,将另一侧 看成新函数,于是将问题转化成新函数的最值问题:若对于取值范围内的任一个数都有恒成立,则;若对于取值范围内的任一个数都有恒成立,则. 三、数形结合法 如果不等式中涉及的函数、代数式对应的图象、图形较易画出时,可通过图象、 图形的位置关系建立不等式求得参数范围 . 例 3已知函数若不等式恒成立,则实数的取值范围是.

高考备考——深度总结函数恒成立求参数范围的解题秘笈

高考备考——深度总结函数恒成立求参数范围的解题秘笈 对于函数恒成立问题,是当今高考数学的主旋律。恒成立问题便是一个考察学生综合素质的很好途径,它主要涉及到一次函数、二次函数等函数的性质、图象,渗透着换元、化归、数形结合、函数与方程等思想方法。对于这类问题,都与函数、导数知识密不可分。 一般的解法是分析含有参数的函数在定义域内的单调性,且涉及到参数分情况讨论,这种解法计算量比较大,而且解题步骤比较复杂。本文给大家总结出解含参数恒成立问题的常用方法。解决高考数学中的恒成立问题常用以下几种方法:①函数性质法;②分离参数法;③主参换位法;④利用线性规划。下面我就以近两年高考试题为例加以剖析: 一、函数性质法 1、二次函数: ①.若二次函数2()(0)0f x ax bx c a =++≠>(或0<)在R 上恒成立,则有00a >???(或0<)在指定区间上恒成立,可以利用韦达定理以及根的分布等知识求解。 例1.设函数3 2 9()62 f x x x x a =- +-. (1)对于任意实数,()f x m '≥恒成立,求的最大值; (2)若方程()0f x =有且仅有一个实根,求的取值范围. 【分析】对于(1)中()f x m '≥恒成立,可转化为 恒成立,即为二次函数大 于等于0在R 上恒成立,则有0 a >?? ?;当12x <<时, '()0f x <;当2x >时, '()0f x >; 所以 当1x =时,()f x 取极大值 5 (1)2 f a = -; 当2x =时,()f x 取极小值 (2)2f a =-; 故当(2)0f > 或(1)0f <时, 方程()0f x =仅有一个实根. 解得 2a <或52 a >. 例2. 设函数432()2()f x x ax x b x =+++∈R ,其中a b ∈R ,.

含参数的一元二次不等式的解法以及含参不等式恒成立问题

含参数的一元二次不等式的解法 解含参数的一元二次不等式,通常情况下,均需分类讨论,那么如何讨论呢?对含参一元 二次不等式常用的分类方法有三种: 一、按2 x 项的系数a 的符号分类,即0,0,0<=>a a a ; 例1 解不等式:()0122 >+++x a ax 分析:本题二次项系数含有参数,()04422 2 >+=-+=?a a a ,故只需对二次项 系数进行分类讨论。 解:∵()04422 2 >+=-+=?a a a 解得方程 ()0122 =+++x a ax 两根,24221a a a x +---=a a a x 24 222++--= ∴当0>a 时,解集为?? ????????+---<++-->a a a x a a a x x 242242|22或 当0=a 时,不等式为012>+x ,解集为? ?????> 21|x x 当0?,所以我们只要讨论二次项系数的正负。 解 ()()032)65(2 >--=+-x x a x x a Θ ∴当0>a 时,解集为{}32|>?; 例3 解不等式042 >++ax x 分析 本题中由于2 x 的系数大于0,故只需考虑?与根的情况。 解:∵162 -=?a ∴当()4,4-∈a 即0

证明含参数的不等式恒成立解题模板

如何证明含参数的不等式恒成立 题型:已知含参数的函数()f x ,证明在某区间上()()()(x)f x g x f x g ><或恒成立(()g x 不含参数) 解题步骤: 第一步:构造函数()()()F x f x g x =-,将问题转化为()0()0F x F x ><或恒成立的问题,如果这里的()g x 不明显,我们先对含参函数进行讨论,找到合适的()g x 。 第二步:求出'()F x ,令'()0F x =,求出()F x 在区间上的最小值或最大值。 第三步:证明最小值大于0,或最大值小于0。 【例题】 1、(浙江高考)已知a R ∈,函数3()42f x x ax a =-+. (1)求()f x 的单调区间. (2)证明:当01x ≤≤时,()20f x a +->. 思路分析:()20f x a +->中含有绝对值,不方便求导,因此可考虑寻找函数()g x ,使 ()2()0f x a g x +-≥>. 解(1)由题意的' 2 ()122f x x a =- ①当0a ≤时,' ()0f x ≥恒成立,此时()f x 的单调增区间为(,)-∞+∞. ②当0a >时,' ()12()()f x x x =,此时函数()f x 的单调递增区间为 (,)-∞+∞和,单调递减区间为???. (2)证明:由于01x ≤≤,当2a ≤时,33 ()2=4x 224x 42f x a ax x +--+≥-+. 当2a >时,333 ()2=4x 2(1)24x 4(1)24x 42f x a a x x x +-+--≥+--=-+.

设3()221,01g x x x x =-+≤≤,则()2()f x g x ≥,要证()20f x a +->,只要证明 ()0g x >即可。 '2()626(g x x x x =-=- +则有 所以min ()10g x g ==>, 当01x ≤≤时,32210x x -+>,故3 ()24420f x a x x +-≥-+>,即证。 【练习】 1、已知函数21()2 x f x ae x =- . (1)若()f x 在R 上为增,求a 的取值范围; (2)若1a =,求证0x >时,()1f x x >+。 2、已知函数()ln(1),()ln f x x x g x x x =+-= (1)求函数()f x 的最大值; (2)设0a b <<,证明:0()()2()()ln 22 a b g a g b g b a +<+-<-

教案高中含参不等式的恒成立问题整理版.doc

高中数学不等式的恒成立问题 一、用一元二次方程根的判别式 有关含有参数的一元二次不等式问题,若能把不等式转化成二次函数或二次方程,通过根的判别式或数形结合思想,可使问题得到顺利解决。 基本结论总结 例1 对于x ∈R ,不等式恒成立,求实数m 的取值范围。 例2:已知不等式04)2(2)2(2 <--+-x a x a 对于x ∈R恒成立,求参数a 的取值范围. 解:要使04)2(2)2(2 <--+-x a x a 对于x ∈R恒成立,则只须满足: (1)???<-+-<-0)2(16)2(4022 a a a 或 (2)?? ? ??<-=-=-0 40)2(20 2a a 解(1)得?? ?<<-<2 22 a a ,解(2)a =2 ∴参数a 的取值范围是-2<a ≤2. 练习 1. 已知函数])1(lg[2 2 a x a x y +-+=的定义域为R ,求实数a 的取值范围。 2.若对于x ∈R ,不等式恒成立,求实数m 的取值范围。 3.若不等式的解集是R ,求m 的范围。 4.x 取一切实数时,使3 47 2+++kx kx kx 恒有意义,求实数k 的取值范围.

例3.设22)(2 +-=mx x x f ,当),1[+∞-∈x 时,m x f ≥)(恒成立,求实数m 的取值范围。 关键点拨:为了使 在 恒成立,构造一个新函数 是解题的关键,再利用二次 函数的图象性质进行分类讨论,使问题得到圆满解决。若二次不等式中x 的取值范围有限制,则可利用根的分布解决问题。 解:m mx x x F -+-=22)(2 ,则当),1[+∞-∈x 时,0)(≥x F 恒成立 当120)2)(1(4<<-<+-=?m m m 即时,0)(>x F 显然成立; 当0≥?时,如图,0)(≥x F 恒成立的充要条件为: ??? ? ??? -≤--≥-≥?1 220)1(0m F 解得23-≤≤-m 。综上可得实数m 的取值范围为)1,3[-。 例4 。已知1ax x )x (f 2+-=,求使不等式0)x (f <对任意]2,1[x ∈恒成立的a 的取值范围。 解法1:数形结合 结合函数)x (f 的草图可知]2,1[x ,0)x (f ∈<时恒成立? 25a 0 a 25)2(f 0a 2)1(f >?? ?<-=<-=得。所以a 的取值范围是),25 (+∞。 解法2:转化为最值研究 4a 1)2a x ()x (f 22- +-= 1. 若]2,1[)x (f ,3a 232a 在时即≤≤上的最大值,25a ,0a 25)2(f )x (f max ><-==得3a 25 ≤<所以。 2. 若0a 2)1(f )x (f ]2,1[)x (f ,3a 2 3 2a max <-==>>上的最大值在时即,得2a >,所以3a >。 综上:a 的取值范围是),2 5 (+∞。 注:1. 此处是对参a 进行分类讨论,每一类中求得的a 的范围均合题意,故对每一类中所求得的a 的范围求并集。 2. I x ,m )x (f ∈<恒成立)m (m )x (f max 为常数?∈> 解法3:分离参数 ]2,1[x ,x 1x a ]2,1[x ,01ax x 2∈+ >?∈<+-。设x 1 x )x (g +=, 注:1. 运用此法最终仍归结为求函数)x (g 的最值,但由于将参数a 与变量x 分离,因此在求最值时避免了分类讨论,使问题相对简化。 2. 本题若将“]2,1[x ∈”改为“)2,1(x ∈”可类似上述三种方法完成。 仿解法1:?∈<)2,1(x ,0)x (f 25a 0 )2(f 0)1(f ≥?? ?≤≤得即),25 [:a +∞的范围是 读者可仿解法2,解法3类似完成,但应注意等号问题,即此处2 5 a = 也合题。 O x y x -1

高中数学解题方法系列:函数中缩小参数范围,优化“恒成立问题”的处理策略

高中数学解题方法系列: 函数中缩小参数范围,优化“恒成立问题”的处理策略 含参数不等式恒成立问题,在处理此类问题时所采取的解题方法和方向基本上是没有问题的,但是由于在解题的过程中,解题策略不优化,导致不能够顺利得出正确结果,下面就恒成立问题处理的优化策略,笔者谈一下看法,与大家交流。 一.试题呈现 已知函数()()()1ln a f x x a x a R x =--+∈(I )当01a <≤时,求函数()f x 的单调区间 (II )是否存在实数a ,使()f x x ≤恒成立,若存在,求实数a 的取值范围;若不存在,说明理由。 限于篇幅,本文只考虑第(II )小题的作答。 阅卷中发现,学生的处理方法主要有以下两种: 1.直接构造函数()()()1ln a g x x f x a x x =-=++,把问题转化为()0g x ≥恒成立,但是在接下来利用导数求解函数()y g x =的单调性时,分类讨论出现了重复或者遗漏,从而没有顺利的解决问题。 2.先采取分离参数的方法将不等式转化为()1ln ln a x x x x +≥-,大部分学生此时直接把上述不等式转化为ln 1ln x x a x x ≥- +(应该先验证1ln 0x x +>),然后构造函数()ln 1ln x x g x x x =-+,但是由于所构造的函数形式上过于复杂从而出现了以下两个问题:一是学生根本不敢继续利用导数判断函数的单调性,二是对函数()y g x =进行求导,但是不能准确地判断导函数的正负号,从而没有顺利得解决问题。

通过以上解法基本上可以发现,学生在处理含参数不等式恒成立问题时所采取的方法基本上是正确的,即转化为求函数最值加以处理,并且求函数最值的手段有两种:一是直接求含有参数的函数最值,二是通过分离参数转化为求一个具体的函数的最值,通过这两种解法的对比不难发现,第一种转化的函数里面因为含有参数,所以在求其最值时可能会需要分类讨论,而第二种转化的函数虽然是个具体的函数,相比较容易求出其最值,但是这种方法也有其局限性,可能有些时候是不可以进行参数分离的,或者分离后所构造的函数虽然具体但形式过于复杂,同样导致解题的失败。 命题人给出的参考答案: (II )()f x x ≤恒成立可转化为()1ln 0a a x x ++≥恒成立, 令()()1ln x a a x x ?=++,()0,x ∈+∞,则()()() 11ln x a x ?'=++当10a +>时,在10,x e ??∈ ???时,()0x ?'<,在1,x e ??∈+∞ ??? 时,()0x ?'>即函数()y x ?=在10,x e ??∈ ???上单调递减,在1,x e ??∈+∞ ??? 上单调递增。()x ?的最小值为1e ??? ???,由10e ???≥ ???得11a e ≥-当10a +=时,()1x ?=-,()0x ?≥在()0,x ∈+∞不能恒成立, 当10a +<时,在10,x e ??∈ ???时,()0x ?'>,在1,x e ??∈+∞ ??? 时,()0x ?'<函数()y x ?=在在10,x e ??∈ ???上单调递增,在1,x e ??∈+∞ ??? 上单调递减,所以函数()y x ?=在()0,x ∈+∞无最小值,不符合题意,综上所述当11 a e ≥-时,使()f x x ≤恒成立参考答案采取的是直接求含有参数的函数最小值进行处理,就是因为参数的

不等式恒成立求参数的范围

不等式恒成立求参数的范围 一、最值的直接应用 例1、已知函数2()()x k f x x k e =-。 ⑴求()f x 的单调区间; ⑵若对于任意的(0,)x ∈+∞,都有()f x ≤ 1e ,求k 的取值范围. 例2、已知函数()()0≠++=x b x a x x f ,其中R b a ∈,. ⑴若曲线()x f y =在点()()2,2f P 处切线方程为13+=x y ,求函数()x f 的解析式; ⑵讨论函数()x f 的单调性; ⑶若对于任意的??????∈2,21a ,不等式()10≤x f 在?? ????1,41上恒成立,求b 的取值范围.

例3、已知函数2()()x f x x a e =-. ⑴若3a =,求()f x 的单调区间; ⑵已知12,x x 是()f x 的两个不同的极值点,且1212||||x x x x +≥,若 3233()32 f a a a a b <+-+恒成立,求实数b 的取值范围。 二、恒成立之分离常数 例4、已知函数()ln 1,.a f x x a R x =+-∈ (1) 若()y f x =在0(1,)P y 处的切线平行于直线1y x =-+,求函数()y f x =的单调区间; (2) 若0a >,且对(0,2]x e ∈时,()0f x >恒成立,求实数a 的取值范围.

例5、已知函数12)(2 ---=ax x e x f x ,(其中∈a R ,e 为自然对数的底数). (1)当0=a 时,求曲线)(x f y =在))0(,0(f 处的切线方程; (2)当x ≥1时,若关于x 的不等式)(x f ≥0恒成立,求实数a 的取值范围. 例6、设函数1()(1(1)ln(1) f x x x x =>-++且0x ≠) (1)求()f x 的单调区间; (2)求()f x 的取值范围; (3)已知1 12(1)m x x +>+对任意(1,0)x ∈-恒成立,求实数m 的取值范围。

恒成立问题的分离参数解法

“恒成立”问题的分离参数解法 参数讨论是高中数学教学的一个重点,难点。同时也是高考试题的热点。参数讨论的方法多种多样,本人认为其中分离参数,因其具有思路清晰,有章可循,操作性强,易于掌握的特点,所以在解答某些恒成立条件下参数取值范围问题时,不失为一种较好的方法。 一、曲线恒过定点的问题。 有关含有参数的曲线方程的恒成立问题是学生普遍感到困难的问题。参数与主变元交错 在一起,目标不明确,将参数分离出来,可使问题明朗化。 例:已知132=-b a 证明:直线5=+by ax 恒过定点 证明:由132=-b a 得 )13(2 1+=b a 代入直线方程后分离参数b 得 0)23()10(=++-y x b x 由方程组 ???=+=-023010y x x 解得 ???-==15 10y x ∴方程0)23()10(=++-y x b x 表示经过两直线010=-x 与 023=+y x 的交点)15,10(-的直线系方程 故直线5=+by ax 在132=-b a 时,恒过定点)15,10(- 例:已知动圆R a a ay ax y x C ∈=-++-+,0202024:221 定圆4:222=+y x C 证明:不论a 取任何实数值,动圆2C 恒过一个定点 证法一:020202422=-++-+a ay ax y x 可化为 a ax ay y x 20422022-+-=-+① 可以把①式左边看作圆的方程,其圆心为(0,0),半径为20;右边看作直线。根据点到直线的距离公式,圆心到直线距离)0(2020201642022≠==+-=a a a a a a d 易知,无论a 为任何不为零 的实数,圆和直线都相切(因为圆心到直线的距离为圆的半径)。不妨设1=a ,易求出圆和直线的切 点为(4,-2),而当0=a 时,原方程为2022=+y x 也过(4,-2)。所以,无论a 取任何实数,动 圆1C 恒过定点(4,-2). 证法二:将圆2C 中的a 参数分离出来,得( 0)2042()202 2=+-+-+x y a y x (☆) 方程组???=+-=-+020*******x y y x 有一解 ? ??-==24y x ∴(☆)式表示直线02042=+-x y 与圆202 2=+y x 的交点(4,-2)的圆系方程.

不等式恒成立,求参数的取值范围——洛必达法则

洛必达法则简介 法则1 若函数f(x) 和g(x)满足下列条件: (1) ()lim 0x a f x →= 及()lim 0x a g x →=; (2)在点a 的去心邻域内,f(x) 与g(x) 可导且g '(x)≠0; (3)()()lim x a f x l g x →'=',那么 ()()lim x a f x g x →=() () lim x a f x l g x →'='。 法则2 若函数f(x) 和g(x)满足下列条件: (1)()lim 0x f x →∞ = 及()lim 0x g x →∞ =; (2)0A ? ,f(x) 和g(x)在(),A -∞-与(),A +∞上可导,且g '(x)≠0; (3)()() lim x f x l g x →∞ '=',那么 ()() lim x f x g x →∞ =()() lim x f x l g x →∞ ' ='。 法则3 若函数f(x) 和g(x)满足下列条件: (1) ()lim x a f x →=∞及()lim x a g x →=∞; (2)在点a 的去心邻域内,f(x) 与g(x) 可导且g '(x)≠0; (3)()() lim x a f x l g x →'=',那么 ()() lim x a f x g x →=()() lim x a f x l g x →' ='。 利用洛必达法在解题中应注意: ○ 1将上面公式中的x→a,x→∞换成x→+∞,x→-∞,x a + →,x a - →洛必达法则也成立。 ○2洛必达法则可处理00,∞ ∞ ,0?∞,1∞ ,0 ∞,0 0,∞-∞型。

含参不等式恒成立问题

不等式中恒成立问题的解法研究 在不等式的综合题中,经常会遇到当一个结论对于某一个字母的某一个取值范围内所有值都成立的恒成立问题。 恒成立问题的基本类型: 类型1:设)0()(2≠++=a c bx ax x f ,(1)R x x f ∈>在0)(上恒成立 00?且a ; (2)R x x f ∈<在0)(上恒成立00a 时,],[0)(βα∈>x x f 在上恒成立 ?????>>- ?????<-?0 )(2020)(2βββαααf a b a b f a b 或或, ],[0)(βα∈x x f 在上恒成立???>>?0)(0 )(βαf f ],[0)(βα∈-?????<- ?0 )(2020)(2βββαααf a b a b f a b 或或 类型3: αα>?∈>min )()(x f I x x f 恒成立对一切αα>?∈?∈>的图象的上方或的图象在恒成立对一切 恒成立问题的解题的基本思路是:根据已知条件将恒成立问题向基本类型转化,正确选用函数法、最小值法、数形结合等解题方法求解。 一、用一次函数的性质 对于一次函数],[,)(n m x b kx x f ∈+=有: ?? ?<>?>0)(0 )(0)(,0)(0)(0)(n f m f x f n f m f x f 恒成立恒成立 例1:若不等式)1(122->-x m x 对满足22≤≤-m 的所有m 都成立,求x 的范围。 解析:我们可以用改变主元的办法,将m 视为主变元,即将元不等式化为:0)12()1(2<---x x m ,;令)12()1()(2---=x x m m f ,则22≤≤-m 时,

专题——求恒成立问题参数范围

专题——求恒成立问题参数范围

————————————————————————————————作者:————————————————————————————————日期:

专题——求参数取值范围一般方法 概念与用法 恒成立问题是数学中常见问题,也是历年高考的一个热点。题型特点大多以已知一个变量的取值范围,求另一个变量的取值范围的形式出现。这样的题型会出现于代数中的不等式里也会出现在几何里。就常考题型的一般题型以及解题方法,我在这里做了个小结。 题型以及解题方法 一,分离参数 在给出的不等式中,如果能通过恒等变形分离出参数,即:若()a f x ≥恒成立,只须求出()max f x ,则()max a f x ≥;若()a f x ≤恒成立,只须求出()min f x ,则()min a f x ≤,转化为函数求最值。 例1、已知函数()lg 2a f x x x ??=+ - ???,若对任意[)2,x ∈+∞恒有()0f x >,试确定a 的取值范围。 解:根据题意得:21a x x + ->在[)2,x ∈+∞上恒成立, 即:23a x x >-+在[)2,x ∈+∞上恒成立, 设()23f x x x =-+,则()2 3924f x x ??=--+ ?? ? 当2x =时,()max 2f x = 所以2a > 例2.已知当x ∈R 时,不等式a+cos2x<5-4sinx+45-a 恒成立,求实数a 的取值范围。 分析:在不等式中含有两个变量a 及x ,其中x 的范围已知(x ∈R ),另一变量a 的范围即为所求,故可考虑将a 及x 分离。 解:原不等式即:4sinx+cos2x<45-a -a+5 要使上式恒成立,只需45-a -a+5大于4sinx+cos2x 的最大值,故上述问题转化成求f(x)=4sinx+cos2x 的最值问题。 f(x)= 4sinx+cos2x=-2sin 2x+4sinx+1=-2(sinx -1)2+3≤3, ∴45-a -a+5>3即45-a >a+2 上式等价于?? ???->-≥-≥-2)2(4504502a a a a 或???≥-<-0 4502a a ,解得≤54a<8. 说明:注意到题目中出现了sinx 及cos2x ,而cos2x=1-2sin 2x,故若把sinx 换元成t,则可把原不等式转化成关于t 的二次函数类型。

相关文档
相关文档 最新文档