文档库 最新最全的文档下载
当前位置:文档库 › 第3章第2课时牛顿第二定律-两类动力学问题

第3章第2课时牛顿第二定律-两类动力学问题

第3章第2课时牛顿第二定律-两类动力学问题
第3章第2课时牛顿第二定律-两类动力学问题

第2课时 牛顿第二定律 两类动力学问题

考纲解读 1.理解牛顿第二定律的内容、表达式及性质.2.应用牛顿第二定律解决瞬时问题和两类动力学问题.

1.[对力、加速度和速度关系的理解]关于速度、加速度、合外力之间的关系,正确的是( )

A .物体的速度越大,则加速度越大,所受的合外力也越大

B .物体的速度为零,则加速度为零,所受的合外力也为零

C .物体的速度为零,但加速度可能很大,所受的合外力也可能很大

D .物体的速度很大,但加速度可能为零,所受的合外力也可能为零 答案 CD

解析 物体的速度大小和加速度大小没有必然联系,一个很大,另一个可以很小,甚至为零.物体所受合外力的大小决定加速度的大小,同一物体所受合外力越大,加速度一定也越大,故选项C 、D 对.

2.[对牛顿第二定律内容和公式的理解]由牛顿第二定律表达式F =ma 可知

( )

A .质量m 与合外力F 成正比,与加速度a 成反比

B .合外力F 与质量m 和加速度a 都成正比

C .物体的加速度的方向总是跟它所受合外力的方向一致

D .物体的加速度a 跟其所受的合外力F 成正比,跟它的质量m 成反比 答案 CD

解析 对于给定的物体,其质量是不变的,合外力变化时,加速度也变化,合外力与加速度的比值不变,A 、B 错;加速度的方向总是跟合外力的方向相同,C 正确;由a =

F

m 可知D 正确.

3.[力学单位制的应用]在研究匀变速直线运动的实验中,取计数时间间隔为0.1 s ,测得相

邻相等时间间隔的位移差的平均值Δx =1.2 cm ,若还测出小车的质量为500 g ,则关于加速度、合外力的大小及单位,既正确又符合一般运算要求的是 ( )

A .a =1.2

0.12 m /s 2=120 m/s 2

B .a =1.2×10-

2

0.1

2

m /s 2=1.2 m/s 2

C .F =500×1.2 N =600 N

D .F =0.5×1.2 N =0.60 N 答案 BD

解析 在应用公式进行数量运算的同时,也要把单位带进运算.带单位运算时,单位换算要准确.可以把题中已知量的单位都用国际单位制表示,计算结果的单位就是国际单位制单位,这样在统一已知量的单位后,就不必一一写出各个量的单位,只在数字后面写出正确单位即可.选项A 中Δx =1.2 cm 没用国际单位制表示,C 项中的小车质量m =500 g 没用国际单位制表示,所以均错误;B 、D 正确.

4.[应用牛顿第二定律解决瞬时性问题]质量均为m 的A 、B 两个小球之间连接一个质量不计

的弹簧,放在光滑的台面上.A 紧靠墙壁,如图1所示,今用恒力F 将B 球向左挤压弹簧,达到平衡时,突然将力撤去,此瞬间

( )

图1

A .A 球的加速度为F 2m

B .A 球的加速度为零

C .B 球的加速度为F

2m

D .B 球的加速度为F

m

答案 BD

解析 撤去恒力F 前,A 和B 都平衡,它们的合力都为零,且弹簧弹力为F .突然将力F 撤去,对A 来说水平方向依然受弹簧弹力和墙壁的弹力,二力平衡,所以A 球的合力为零,加速度为零,A 项错,B 项对.而B 球在水平方向只受水平向右的弹簧的弹力作用,加速度a =F

m

,故C 项错,D 项对.

牛顿第二定律

1.内容:物体加速度的大小跟它受到的作用力成正比,跟它的质量成反比.加速度的方向

与作用力的方向相同.

2.表达式:F =ma ,F 与a 具有瞬时对应关系. 3.力学单位制

(1)单位制由基本单位和导出单位共同组成. (2)力学单位制中的基本单位有kg 、m 和s.

(3)导出单位有N、m/s、m/s2等.

考点一对牛顿第二定律的理解

例1一质点受多个力的作用,处于静止状态.现使其中一个力的大小逐渐减小到零,再沿原方向逐渐恢复到原来的大小.在此过程中,其他力保持不变,则质点的加速度大小a和速度大小v的变化情况是() A.a和v都始终增大

B.a和v都先增大后减小

C.a先增大后减小,v始终增大

D.a和v都先减小后增大

解析质点在多个力作用下处于静止状态时,其中一个力必与其余各力的合力等值反向.当该力大小逐渐减小到零的过程中,质点所受合力从零开始逐渐增大,做加速度逐渐增大的加速运动;当该力再沿原方向逐渐恢复到原来大小的过程中,质点所受合力方向仍不变,大小逐渐减小到零,质点沿原方向做加速度逐渐减小的加速运动,故C正确.

答案 C

力与运动的关系

(1)力是产生加速度的原因.

(2)作用于物体上的每一个力各自产生的加速度都遵从牛顿第二定律.

(3)速度的改变需经历一定的时间,不能突变;有力就一定有加速度,但有力不一定有

速度.

突破训练1质量为2 kg的物体静止在足够大的水平地面上,物体与地面间的动摩擦因数为0.2,最大静摩擦力与滑动摩擦力大小视为相等,从t=0时刻开始,物体受到方向不变、大小呈周期性变化的水平拉力F的作用,F随时间t的变化规律如图2所示.重力加速度g取10 m/s2,则物体在t=0至t=12 s这段时间的位移大小为()

图2

A .18 m

B .54 m

C .72 m

D .198 m

答案 B

解析 物体与地面间最大静摩擦力F f =μmg =0.2×2×10 N =4 N .由题给F —t 图象知0~3 s 内,F =4 N ,说明物体在这段时 间内保持静止.3 s ~6 s 内,F =8 N ,说明物体做匀加速运动,加

速度a =F -F f

m =2 m /s 2,6 s 末物体的速度v =at =2×3=6 m/s,6 s ~9 s 内物体以6 m /s 的

速度做匀速运动,9 s ~12 s 内又以2 m/s 2的加速度做匀加速运动,作v -t 图象如图所示,故0~12 s 内的位移x =(1

2×3×6)×2 m +6×6 m =54 m .故B 项正确.

考点二 牛顿第二定律的瞬时性分析

牛顿第二定律瞬时性的“两种”模型

(1)刚性绳(或接触面)——不发生明显形变就能产生弹力的物体,剪断(或脱离)后,其弹力立即消失,不需要形变恢复时间.

(2)弹簧(或橡皮绳)——两端同时连接(或附着)有物体的弹簧(或橡皮绳),特点是形变量大,其形变恢复需要较长时间,在瞬时性问题中,其弹力的大小往往可以看成保持不变. 例2 如图3所示,A 、B 两小球分别连在轻绳两端,B 球另一端用弹簧固定在倾角为30°

的光滑斜面上.A 、B 两小球的质量分别为m A 、m B ,重力加速度为g ,若不计弹簧质量,在绳被剪断瞬间,A 、B 两球的加速度大小分别为

( )

图3

A .都等于g 2

B.g 2和0

C.g 2和m A m B ·g 2

D.m A m B ·g 2和g 2

解析 当A 、B 球静止时,弹簧弹力F =(m A +m B )g sin θ,当绳被剪断的瞬间,弹簧弹力F 不变,对B 分析,则F -m B g sin θ=m B a B ,可解得a B =m A m B ·g

2,当绳被剪断后,球A 受

的合力为重力沿斜面向下的分力,F 合=m A g sin θ=m A a A ,所以a A =g

2

,综上所述选项C

正确. 答案 C

突破训练2 如图4所示,质量为m 的小球用水平轻弹簧系住,并用倾角为30°的光滑木

板AB 托住,小球恰好处于静止状态.当木板AB 突然向下撤离的瞬间,小球的加速度大小为

( )

图4

A .0 B.233

g

C .g

D.33

g 答案 B

解析 平衡时,小球受到三个力:重力mg 、木板AB 的支持力F N 和 弹簧拉力F T ,受力情况如图所示.突然撤离木板时,F N 突然消失而 其他力不变,因此F T 与重力mg 的合力F =mg cos 30°=23

3mg ,产生的

加速度a =F m =23

3g ,B 正确.

考点三 动力学两类基本问题

求解两类问题的思路,可用下面的框图来表示:

分析解决这两类问题的关键:应抓住受力情况和运动情况之间联系的桥梁——加速度. 例3 如图5所示,在足够大的粗糙水平面上,有一直角坐标系,在坐标原点处有一物体,

质量m =5 kg ,物体和水平面间的动摩擦因数为μ=0.08,物体受到沿坐标轴的三个恒力F 1、F 2、F 3的作用而静止于水平面.其中F 1=3 N ,方向沿x 轴正方向;F 2=4 N ,方向沿y 轴负方向;F 3沿x 轴负方向,大小未知,从t =0时刻起,F 1停止作用,到第2秒末,F 1再恢复作用,同时F 2停止作用.物体与水平面间的最大静摩擦力等于滑动摩擦力,重力加速度的大小g =10 m/s 2.

图5

(1)判断F 3的大小是否一定等于3 N ;(要求有必要的计算推理过程.) (2)求物体静止时受到的摩擦力的大小和方向; (3)求第2 s 末物体速度的大小; (4)求第4 s 末物体所处的位置坐标.

解析 (1)物体处于平衡状态时:物体受到的摩擦力为静摩擦,方向未知,大小范围为[0,4 N];最大静摩擦力为F fm =μmg =4 N .要确定摩擦力的大小方向,先确定F 3的大小;设F 3≠F 1,则F 1、F 2、F 3三个力的合力大于F fm =4 N ,则物体不可能平衡,故F 1=F 3是必然的;故F 3=3 N ,方向沿x 轴负方向.

(2)物体静止时沿y 轴受力平衡,则物体此时所受的静摩擦力的大小必为F f =F 2=4 N ;F f 的方向为沿y 轴正方向;

(3)撤除F 1后,物体的受力分析如图所示:撤除F 1后,物体受主动力F 2、F 3作用,F 2、

F 3的合力F 23=F 22+F 23=5 N>F fm =4 N ,

方向沿OA 方向,则物体立即有沿OA 运动的趋势,故摩擦力方向立即变为OA 的反方向,且摩擦力为滑动摩擦力,大小为4 N.

在0~2 s 内,物体所受合外力为F =1 N ,方向与-y 轴成37°角, 与-x 轴成53°角.

物体的加速度为a 1=F

m

=0.2 m/s 2;

物体的运动性质为:初速度为零的匀加速直线运动; 物体在0~2 s 内的位移为: x 1=12

a 1t 21=0.4 m ;

2 s 末的速度为:v =a 1t 1=0.4 m/s ;方向沿OA 方向;

(4)在2 s ~4 s 内,恢复F 1、撤除F 2,由于沿x 轴方向F 1-F 3=0,则物体所受的合外力就是滑动摩擦力F f ,方向与v 方向相反,故物体沿OA 方向做匀减速运动; 加速度大小为:a 2=F f

m

=0.8 m/s 2,方向与v 方向相反;

物体停下所需要的时间为:t 2=v

a 2=0.5 s ,即物体在2.5 s 末停下.(时间过量问题)

物体在t 2=0.5 s 内的位移:x 2=1

2v t 2=0.1 m ,方向沿OA 方向.

故:物体在4 s 内的总位移为:x =x 1+x 2=0.5 m ; 所以第4 s 末物体所处位置的坐标为: x =-0.3 m ,y =-0.4 m. 答案 见解析

1.解决两类动力学基本问题应把握的关键

(1)两类分析——物体的受力分析和物体的运动过程分析; (2)一个桥梁——物体运动的加速度是联系运动和力的桥梁. 2.解决动力学基本问题时对力的处理方法

(1)合成法:

在物体受力个数较少(2个或3个)时一般采用“合成法”. (2)正交分解法:

若物体的受力个数较多(3个或3个以上),则采用“正交分解法”. 3.解答动力学两类问题的基本程序

(1)明确题目中给出的物理现象和物理过程的特点.

(2)根据问题的要求和计算方法,确定研究对象,进行分析,并画出示意图. (3)应用牛顿运动定律和运动学公式求解.

突破训练3 如图6所示,在倾角θ=30°的固定斜面的底端有一静止的滑块,滑块可视为

质点,滑块的质量m =1 kg ,滑块与斜面间的动摩擦因数μ=

3

6

,斜面足够长.某时刻起,在滑块上作用一平行于斜面向上的恒力F =10 N ,恒力作用时间t 1=3 s 后撤去.求:从力F 开始作用时起至滑块返回斜面底端所经历的总时间t 及滑块返回底端时速度v 的大小(g =10 m/s 2).

图6

解析 设力F 作用的时间内滑块加速运动的加速度大小为a 1,则F -mg sin θ-μmg cos θ=ma 1

力F 撤去时,滑块的速度大小为v 1,则v 1=a 1t 1 t 1内滑块向上运动的位移大小设为x 1,则x 1=12a 1t 21

设力F 撤去后,滑块向上减速运动的加速度大小为a 2,则mg sin θ+μmg cos θ=ma 2 减速运动的时间设为t 2,位移大小设为x 2,则v 1=a 2t 2 v 21=2a 2x 2

设滑块向下加速运动的加速度大小为a 3,则 mg sin θ-μmg cos θ=ma 3

设滑块向下加速运动的位移为x ,时间为t 3,则

x =x 1+x 2 v 2=2a 3x v =a 3t 3 t =t 1+t 2+t 3

解得:t =(4+23) s ≈7.46 s v =5 3 m /s ≈8.66 m/s 答案 7.46 s 8.66 m/s

11.利用整体法与隔离法求解动力学中的 连接体问题

1.整体法的选取原则

若连接体内各物体具有相同的加速度,且不需要求物体之间的作用力,可以把它们看成一个整体,分析整体受到的合外力,应用牛顿第二定律求出加速度(或其他未知量). 2.隔离法的选取原则

若连接体内各物体的加速度不相同,或者要求出系统内各物体之间的作用力时,就需要把物体从系统中隔离出来,应用牛顿第二定律列方程求解. 3.整体法、隔离法的交替运用

若连接体内各物体具有相同的加速度,且要求物体之间的作用力时,可以先用整体法求出加速度,然后再用隔离法选取

合适的研究对象,应用牛顿第二定律求作用力.即“先整体求加速度,后隔离求内力”. 例4 如图7所示,在建筑工地,民工兄弟用两手对称水平使力将两长方体水泥制品夹紧

并以加速度a 竖直向上匀加速搬起,其中A 的质量为m ,B 的质量为3m ,水平作用力为F ,A 、B 之间的动摩擦因数为μ,在此过程中,A 、B 间的摩擦力为

( )

图7

A .μF

B .2μF C.3

2

m (g +a )

D .m (g +a )

解析 本题考查力和运动的关系,意在考查学生对牛顿第二定律、整体法和隔离法的应用.由于A 、B 相对静止,故A 、B 之间的摩擦力为静摩擦力,A 、B 错误.设民工兄弟一只手对A 、B 在竖直方向上的摩擦力为F f ,以A 、B 整体为研究对象可知在竖直方

向上有2F f-(m+3m)g=(m+3m)a,设B对A的摩擦力方向向下,大小为F f′,对A 由牛顿第二定律有F f-F f′-mg=ma,解得F f′=m(g+a),C错误,D正确.

答案 D

1.整体法与隔离法常涉及的问题类型

(1)涉及滑轮的问题:若要求绳的拉力,一般都采用隔离法.

(2)水平面上的连接体问题:①这类问题一般是连接体(系统)各物体保持相对静止,即具

有相同的加速度.解题时,一般采用先整体后隔离的方法.②建立直角坐标系时要考虑矢量正交分解越少越好的原则,或者正交分解力,或者正交分解加速度.

(3)斜面体与物体组成的连接体问题:当物体具有沿斜面方向的加速度,而斜面体相对

于地面静止时,一般采用隔离法分析.

2.解决这类问题的关键

正确地选取研究对象是解题的首要环节,弄清各物体之间哪些属于连接体,哪些物体应该单独分析,并分别确定出它们的加速度,然后根据牛顿运动定律列方程求解.

高考题组

1.(2013·课标Ⅱ·14)一物块静止在粗糙的水平桌面上.从某时刻开始,物块受到一方向不变的水平拉力作用.假设物块与桌面间的最大静摩擦力等于滑动摩擦力.以a表示物块的加速度大小,F表示水平拉力的大小.能正确描述F与a之间的关系的图象是()

答案 C

解析当拉力F小于最大静摩擦力时,物块静止不动,加速度为零,当F大于最大静摩擦力时,根据F-f=ma知:随F的增大,加速度a增大,故选C. 2.(2013·安徽·14)如图8所示,细线的一端系一质量为m的小球,另一端固定在倾角为θ的光滑斜面体顶端,细线与斜面平行.在斜面体以加速度a水平向右做匀加速直线运动的

过程中,小球始终静止在斜面上,小球受到细线的拉力T和斜面的支持力F N分别为(重力加速度为g) ()

图8

A.T=m(g sin θ+a cos θ)F N=m(g cos θ-a sin θ)

B.T=m(g cos θ+a sin θ)F N=m(g sin θ-a cos θ)

C.T=m(a cos θ-g sin θ)F N=m(g cos θ+a sin θ)

D.T=m(a sin θ-g cos θ)F N=m(g sin θ+a cos θ)

答案 A

解析小球受力如图所示,由牛顿第二定律得

水平方向:T cos θ-F N sin θ=ma

竖直方向:T sin θ+F N cos θ=mg

解以上两式得

T=m(g sin θ+a cos θ)

F N=m(g cos θ-a sin θ)

所以正确选项为A.

模拟题组

3.如图9所示,左右带有固定挡板的长木板放在水平桌面上,物体M放于长木板上静止,此时弹簧对物体的压力为3 N,物体的质量为0.5 kg,物体与木板之间无摩擦,现使木板与物体M一起以6 m/s2的加速度向左沿水平方向做匀加速运动时()

图9

A.物体对左侧挡板的压力等于零

B.物体对左侧挡板的压力等于3 N

C.物体受到4个力的作用

D.弹簧对物体的压力等于6 N

答案 A

解析当木板与M一起以6 m/s2的加速度向左做匀加速运动时,所以M的加速度为6 m/s2,且方向水平向左,故M所受合力F=Ma=3 N,方向水平向左,对M受力分析,M受竖直向下的重力Mg,支持力Mg,竖直方向达到平衡,又因物体与木板之间无摩擦,故水平方向合力只能由弹簧弹力和挡板弹力提供,当F弹=3 N时,恰好能提供合力,故M与挡板之间无弹力,物体只受3个力,故选A.

4.如图10所示,一质量为M =10 kg ,长为L =2 m 的木板放在水平地面上,已知木板与地

面间的动摩擦因数为μ1=0.1,在此木板的右端上还有一质量为m =4 kg 的小物块,且视小物块为质点,木板厚度不计.今对木板突然施加一个F =24 N 的水平向右的拉力,g =10 m/s 2.

图10

(1)若木板上表面光滑,则小物块经多长时间离开木板?

(2)若小物块与木板间的动摩擦因数为μ、小物块与地面间的动摩擦因数为2μ,小物块相对木板滑动一段时间后离开木板继续在地面上滑行,且对地面的总位移x =3 m 时停止滑行,求μ值. 答案 (1)2 s (2)0.042

解析 (1)对木板受力分析,由牛顿第二定律得: F -μ1(M +m )g =Ma 由运动学公式,得L =1

2at 2

解得t =2 s

(2)对物块:在木板上时μmg =ma 1 在地面上时2μmg =ma 2

设物块从木板上滑下时的速度为v 1,物块在木板上和地面上的位移分别为x 1、x 2,则: 2a 1x 1=v 21 2a 2x 2=v 21

并且满足x =x 1+x 2=3 m 解得x 1=2 m

设物块在木板上滑行时间为t 1,则 x 1=12

a 1t 21

对木板:F -μmg -μ1(M +m )g =Ma 3 木板对地面的位移x ′=1

2a 3t 21

x ′=x 1+L 解得μ=1

24

≈0.042

(限时:45分钟)

?题组1对牛顿第二定律的理解和简单应用

1.下列说法正确的是() A.物体所受到的合外力越大,其速度改变量也越大

B.物体所受到的合外力不变(F合≠0),其运动状态就不改变

C.物体所受到的合外力变化,其速度的变化率一定变化

D.物体所受到的合外力减小时,物体的速度可能正在增大

答案CD

解析物体所受到的合外力越大,物体的加速度(速度变化率)也越大,即速度变化得越快,但速度改变量还与时间有关,故选项A错误,C正确;物体所受的合外力不为零,就会迫使其运动状态(运动的快慢或方向)发生变化,选项B错误;合外力的大小与速度的大小之间没有直接关系,选项D正确.

2.一实验兴趣小组做了一次实验,实验时让某同学从桌子上跳下,自由下落H后双脚触地,他顺势弯曲双腿,他的重心又下降了h后停住,利用传感器和计算机显示该同学受到地面的支持力F随时间变化的图象如图1所示.根据图象提供的信息,以下判断正确的是()

图1

A.t2时刻该同学的脚刚接触地面

B.t3时刻该同学的加速度为零

C.在t2至t3时间内该同学处于下落阶段

D.在t3至t4时间内该同学处于加速下落阶段

答案 C

解析t1时刻,弹力从0开始增大,故该同学在t1时刻脚接触地面,A错误;t1~t2时间内,该同学受到地面对其向上的弹力,且重力大于地面对其向上的弹力,该同学向下做加速度减小的加速运动,t2时刻弹力等于重力,该同学所受合力为零,加速度为0,速度达到最大,t2到t4时间内,弹力大于重力,该同学继续向下做减速运动,t4时刻弹力等于重力,速度减为零,该同学处于静止状态,选项B、D错误,C正确.

3.如图2所示,在水平向右做匀加速直线运动的平板车上有一圆柱体,其质量为m且与竖直挡板及斜面间均无摩擦.当车的加速度a突然增大时,斜面对圆柱体的弹力F1和挡板对圆柱体的弹力F2的变化情况是(斜面倾角为θ) ()

图2

A.F1增大,F2不变B.F1增大,F2增大

C.F1不变,F2增大D.F1不变,F2减小

答案 C

解析对圆柱体受力分析,沿水平方向和竖直方向建坐标系,分别根据平衡条件和牛顿第二定律得F1cos θ=G,F2-F1sin θ=ma,故随着加速度的增大,F1不变,F2增大,C 正确,A、B、D错误.

?题组2应用牛顿第二定律分析瞬时问题

4.如图3所示,质量分别为m1=2 kg、m2=3 kg的两个物体置于光滑的水平面上,中间用轻质弹簧测力计连接.两个大小分别为F1=30 N、F2=20 N的水平拉力分别作用在m1、m2上,则()

图3

A.弹簧测力计的示数是10 N

B.弹簧测力计的示数是50 N

C.在突然撤去F2的瞬间,弹簧测力计的示数不变

D.在突然撤去F1的瞬间,m1的加速度不变

答案 C

解析设弹簧的弹力为F,加速度为a.对m1、m2和弹簧测力计组成的系统:F1-F2=(m1+m2)a,对m1:F1-F=m1a,联立两式解得:a=2 m/s2,F=26 N,故A、B两项都错误;在突然撤去F2的瞬间,由于弹簧测力计两端都有物体,而物体的位移不能发生突变,所以弹簧的长度在撤去F2的瞬间没有变化,弹簧上的弹力不变,故C项正确;

若突然撤去F1,物体m1所受的合外力方向向左,而没有撤去F1时合外力方向向右,所以m1的加速度发生变化,故D项错误.

5.水平面上有一个质量为m=2 kg的小球,小球与水平轻弹簧及与竖直方向成θ=45°角的不可伸长的轻绳一端相连,如图4所示,此时小球处于静止状态,且水平面对小球的弹力恰好为零.已知小球与水平面间的动摩擦因数μ=0.2,当剪断轻绳的瞬间,取g=10 m/s2,以下说法正确的是()

图4

A .此时轻弹簧的弹力大小为20 N

B .小球的加速度大小为8 m/s 2,方向向左

C .若剪断弹簧,则剪断的瞬间小球的加速度大小为10 m/s 2,方向向右

D .若剪断弹簧,则剪断的瞬间小球的加速度为0 答案 ABD

解析 因为未剪断轻绳时水平面对小球的弹力为零,故小球在绳没有断时受重力、轻绳的拉力F T 和弹簧的弹力F 作用而处于平衡状态.依据平衡条件得:竖直方向有F T cos θ=mg

水平方向有F T sin θ=F

解得轻弹簧的弹力为F =mg tan θ=20 N ,故选项A 正确.

剪断轻绳后小球在竖直方向仍平衡,水平面对它的支持力与小球所受重力平衡,即F N =mg ;由牛顿第二定律得小球的加速度为a =F -μF N m =20-0.2×202 m /s 2=8 m/s 2,方

向向左,选项B 正确.当剪断弹簧的瞬间,小球立即受水平面支持力和重力作用,且二力平衡,加速度为0,选项C 错误,D 正确.

6.细绳拴一个质量为m 的小球,小球将左端固定在墙上的轻弹簧压缩(小球与弹簧不连接),

小球静止时弹簧在水平位置,如图5所示.将细绳烧断后,下列说法中正确的是( )

图5

A .小球立即开始做自由落体运动

B .小球离开弹簧后做平抛运动

C .小球运动的加速度先比重力加速度小,后来和重力加速度相等

D .小球离开弹簧后做匀变速运动 答案 D

解析 小球静止时受重力、细绳的拉力和弹簧弹力,合外力为零.当烧断细绳后,弹簧弹力减小,小球的重力不变,在离开弹簧前,合力为弹力和重力的合力,加速度大于重力加速度,故A 、B 、C 错误;离开弹簧后,小球只受重力,做匀变速运动,选项D 正确.

?题组3 用整体法与隔离法处理连接体问题

7.如图6所示,质量分别为m 1、m 2的两个物体通过轻弹簧连接,在力F 的作用下一起沿

水平方向做匀加速直线运动(m 1在光滑地面上,m 2在空中).已知力F 与水平方向的夹角为θ.则m 1的加速度大小为

( )

图6

A.F cos θm 1+m 2

B.F sin θm 1+m 2

C.F cos θm 1

D.F sin θm 2

答案 A

解析 把m 1、m 2看做一个整体,在水平方向上加速度相同,由牛顿第二定律可得: F cos θ=(m 1+m 2)a ,所以a =F cos θ

m 1+m 2

,选项A 正确.

8.如图7所示,质量为m 2的物体2放在正沿平直轨道向右行驶的车厢底板上,并用竖直细

绳通过光滑定滑轮连接质量为m 1的物体1,与物体1相连接的绳与竖直方向成θ角,则

( )

图7

A .车厢的加速度为g sin θ

B .绳对物体1的拉力为m 1g

cos θ

C .底板对物体2的支持力为(m 2-m 1)g

D .物体2所受底板的摩擦力为0 答案 B

解析 物体1与车厢具有相同的加速度,对物体1受力分析,受重力和拉力,根据合成法知,F 合=m 1g tan θ,拉力F T =m 1g

cos θ.物体1的加速度a =g tan θ,所以车厢的加速度为

g tan θ.故A 错误,B 正确.物体2加速度为g tan θ,对物体2受力分析,受重力、支持力、拉力和摩擦力,支持力F N =m 2g -m 1g

cos θ,F f =m 2a =m 2g tan θ,故C 、D 错误.故选

B.

9.如图8所示,小车在外力作用下沿倾角为θ的斜面运动,小车的支架上用细线拴一个摆

球,悬点为O,现用过O的水平虚线MN和竖直虚线PQ将竖直平面空间分成四个区间,则下列说法正确的是()

图8

A.若小车沿斜面向上匀速运动,则稳定后细线可能在Ⅲ区与竖直方向成一定夹角

B.若小车沿斜面向下匀加速运动,则稳定后细线可能在Ⅳ区与竖直方向成一定夹角C.无论小车沿斜面向下的加速度多大,稳定后细线都不可能在Ⅰ区与水平方向成一定夹角

D.无论小车沿斜面向上的加速度多大,稳定后细线都不可能沿与ON重合的水平方向答案BD

解析若小车匀速运动,则小球所受的合力应为零,所以细线应处于竖直状态,选项A 错误;若小车沿斜面向下加速运动,由连接体知识可知,小球的加速度方向沿斜面向下,即小球所受合外力方向沿斜面向下,由此可知选项B正确,C错误;同理,选项D正确.

?题组4两类动力学问题的分析与计算

10.2013年冬天哈尔滨连降大雪,路面结冰严重,行驶汽车难以及时停车,经常出现事故.因此某些路段通过在道路上洒一些炉灰来增加轮胎与地面的摩擦.如图9所示,一辆运送炉灰的自卸卡车装满炉灰,灰粒之间的动摩擦因数为μ1,炉灰与车厢底板的动摩擦因数为μ2,卸灰时车厢的倾角用θ表示(已知μ2>μ1)(假设最大静摩擦力等于滑动摩擦力)下列说法正确的是()

图9

A.要顺利地卸干净全部炉灰,应满足tan θ>μ2

B.要顺利地卸干净全部炉灰,应满足sin θ>μ2

C.只卸去部分炉灰,车上还留有一部分炉灰,应满足μ1

D.只卸去部分炉灰,车上还留有一部分炉灰,应满足tan θ<μ1<μ2

答案AC

解析要使炉灰全部卸下,应有:mg sin θ>μ2mg cos θ,所以μ2tan θ,且炉灰之间有:m″g sin θ>μ1m″g cos

θ,得出μ1

11.质量m =2 kg 的滑块受到一个沿斜面方向的恒力F 作用,从斜面底端开始,以初速度

v 0=3.6 m /s 沿着倾角为θ=37°且足够长的斜面向上运动,滑块与斜面间的动摩擦因数为μ=0.5.滑块向上滑动过程的速度—时间(v -t )图象如图10所示.(取g =10 m/s 2,sin 37°=0.6,cos 37°=0.8)求:

图10

(1)滑块上滑过程的加速度大小和方向; (2)该恒力F 的大小和方向.

答案 (1)15 m/s 2,方向沿斜面向下 (2)10 N ,方向沿斜面向下 解析 (1)设沿斜面向上为正方向,滑块上滑过程中加速度 a =Δv Δt =1.2-3.60.16 m /s 2=-15 m/s 2

负号表示方向沿斜面向下.

(2)设F 沿斜面向上,则F -mg sin θ-μmg cos θ=ma F =mg sin θ+μmg cos θ+ma 代入数据解得F =-10 N , 负号表示方向沿斜面向下.

12.如图11甲所示,有一足够长的粗糙斜面,倾角θ=37°,一滑块以初速度v 0=16 m /s 从

底端A 点滑上斜面,滑至B 点后又返回到A 点.滑块运动的速度—时间图象如图乙所示,求:(已知:sin 37°=0.6,cos 37°=0.8,重力加速度g =10 m/s 2)

图11

(1)A 、B 之间的距离;

(2)滑块再次回到A 点时的速度; (3)滑块在整个运动过程中所用的时间. 答案 (1)16 m (2)8 2 m/s (3)(2+22) s 解析 (1)由v -t 图象知A 、B 之间的距离为:

x AB =

16×2

2

m =16 m. (2)设滑块从A 滑到B 过程的加速度大小为a 1,从B 返回到A 过程的加速度大小为a 2,滑块与斜面之间的动摩擦因数为μ,则有:a 1=g sin θ+μg cos θ=16-0

2 m /s 2=8 m/s 2

a 2=g sin θ-μg cos θ

设滑块返回到A 点时的速度为v t ,有v 2t -0=2a 2x AB 联立各式解得:a 2=4 m/s 2,v t =8 2 m/s.

(3)设滑块从A 到B 用时为t 1,从B 返回到A 用时为t 2,则有:t 1=2 s ,t 2=v t

a 2=2 2 s

则滑块在整个运动过程中所用的时间为 t =t 1+t 2=(2+22) s.

牛顿第二定律的应用-临界问题(附答案)

例1.如图所示,一质量为M=5 kg的斜面体放在水平地面上,斜面体与地面的动摩擦因数为μ1=0.5,斜面高度为h=0.45 m,斜面体右侧竖直面与小物块的动摩擦因数为μ2=0.8,小物块的质量为m=1 kg,起初小物块在斜面的竖直面上的最高点。现在从静止开始在M上作用一水平恒力F,并且同时释放m,取g=10 m/s2,设小物块与斜面体右侧竖直面间最大静摩擦力等于它们之间的滑动摩擦力,小物块可视为质点。问: (1)要使M、m保持相对静止一起向右做匀加速运动,加速度至少多大? (2)此过程中水平恒力至少为多少? 例1解析:(1)以m为研究对象,竖直方向有: mg-F f=0 水平方向有:F N=ma 又F f=μ2F N 得:a=12.5 m/s2。 (2)以小物块和斜面体为整体作为研究对象,由牛顿第二定律得:F-μ1(M+m)g=(M+m)a 水平恒力至少为:F=105 N。 答案:(1)12.5 m/s2(2)105 N 例2.如图所示,质量为m的光滑小球,用轻绳连接后,挂在三角劈的顶端,绳与斜面平行,劈置于光滑水平面上,求: (1)劈的加速度至少多大时小球对劈无压力?加速度方向如何? (2)劈以加速度a1= g/3水平向左加速运动时,绳的拉力多大? (3)当劈以加速度a3= 2g向左运动时,绳的拉力多大? 例2解:(1)恰无压力时,对球受力分析,得 (2),对球受力分析,得

(3),对球受力分析,得(无支持力) 练习: 1.如图所示,质量为M的木板上放着质量为m的木块,木块与木板间的动摩擦因数为μ1,木板与水平地面间的动摩擦因数为μ2,求加在木板上的力F为多大时,才能将木板从木块下抽出?(取最大静摩擦力与滑动摩擦力相等) 1解:只有当二者发生相对滑动时,才有可能将M从m下抽出,此时对应的临界状态是:M与m间的摩擦力必定是最大静摩擦力,且m运动的加速度必定是二者共同运动时的最大加速度 隔离受力较简单的物体m,则有:,a m就是系统在此临界状态的加速度 设此时作用于M的力为F min,再取M、m整体为研究对象,则有: F min-μ2(M+m)g=(M+m)a m,故F min=(μ1+μ2)(M+m)g 当F> F min时,才能将M抽出,故F>(μ1+μ2)(M+m)g 2.一条不可伸长的轻绳跨过质量可忽略不计的定滑轮,绳的一端系一质量M=15kg的重物,重物静止于地面上,有一质量m=10kg的猴从绳子另一端沿绳向上爬,如图所示,不计滑轮摩擦,在重物不离开地面条件下,猴子向上爬的最大加速度为(g=10m/s2)() A.25m/s2 B.5m/s2 C.10m/s2 D.15m/s2 2.分析:当小猴以最大加速度向上爬行时,重物对地压力为零,故小猴对细绳的拉力等于重物的重力,对 小猴受力分析,运用牛顿第二定律求解加速度. 解答:解:小猴以最大加速度向上爬行时,重物对地压力为零,故小猴对细绳的拉力等于重物的重力,即F=Mg; 小猴对细绳的拉力等于细绳对小猴的拉力F′=F; 对小猴受力分析,受重力和拉力,根据牛顿第二定律,有

牛顿第二定律的系统表达式及应用一中

牛顿第二定律的系统表达式 一、整体法和隔离法处理加速度相同的连接体问题 1.加速度相同的连接体的动力学方程: F 合 = (m 1 +m 2 +……)a 分量表达式:F x = (m 1 +m 2 +……)a x F y = (m 1 +m 2 +……)a y 2. 应用情境:已知加速度求整体所受外力或者已知整体受力求整体加速度。 例1、如图,在水平面上有一个质量为M的楔形木块A,其斜面倾角为α,一质量为m的木块B放在A的斜面上。现对A施以水平推力F, 恰使B与A不发生相对滑动,忽略一切摩擦,则B对 A的压力大小为( BD ) A 、 mgcosα B、mg/cosα C、FM/(M+m)cosα D、Fm/(M+m)sinα ★题型特点:隔离法与整体法的灵活应用。 ★解法特点:本题最佳方法是先对整体列牛顿第二定律求出整体加速度,再隔离B受力分析得出A、B之间的压力。省去了对木楔受力分析(受力较烦),达到了简化问题的目的。 例2.质量分别为m1、m2、m3、m4的四个物体彼此用轻绳连接,放在光滑的桌面上,拉力F1、F2分别水平地加在m1、m4上,如图所示。求物体系的加速度a和连接m2、m3轻绳的张力F。(F1>F2) 例3、两个物体A和B,质量分别为m1和m2,互相接触放在光滑水平面上,如图所示,对物体A施以水平的推力F,则物体A对B的作用力等于 ( ) A.F F F F 3、B 解析:首先确定研究对象,先选整体,求出A、B共同的加速度,再单独研究B,B 在A施加的弹力作用下加速运动,根据牛顿第二定律列方程求解. 将m1、m2看做一个整体,其合外力为F,由牛顿第二定律知,F=(m1+m2)a,再以m2为研究对象,受力分析如右图所示,由牛顿第二定律可得:F12=m2a,以上两式联立可得:F12= ,B正确. 例4、在粗糙水平面上有一个三角形木块a,在它的两个粗糙斜面上分别放有质量为m1和m2的两个木块b和c,如图1所示,已知m1>m2,三木块均处于静止, 则粗糙地面对于三角形木块( D ) A.有摩擦力作用,摩擦力的方向水平向右。B.有摩擦力作用,摩擦力的方向水平向左。C.有摩擦力作用,组摩擦力的方向不能确定。D.没有摩擦力的作用。 二、对加速度不同的连接体应用牛顿第二定律1.加速度不同的连接体的动力学方程:b c a

牛顿第二定律典型计算题精选

牛顿第二定律典型计算题精选 一、无相对运动的隔离法整体法(加速度是桥梁) 典例1:如图所示,bc 是固定在小车上的水平横杆,物块M中心穿过横杆,M通过细线悬吊着小物块m,小车在水平地面上运动的过程中,M始终未相对杆bc 移动,M、m与小车保持相对静止,悬线与竖直方向夹角为α,求M受到横杆的摩擦力的大小及方向。 二、有相对运动的隔离法整体法(12F ma Ma =+合) 典例2:如图所示,质量为M 的斜劈放置在粗糙的水平面上,质量为m 1的物块用一根不可伸长的轻绳挂起,并通过滑轮与在光滑斜面上放置的质量为m 2的滑块相连。斜面的倾角θ,在m 1、m 2的运动过程中,斜劈始终不动。若m 1=1kg ,m 2=3kg ,θ=37°,斜劈所受摩擦力大小及方向?(sin37°=0.6,g =10m/s 2)

三、传送带(共速后运动研判) 典例3:如图所示,传送带与水平方向成θ=30°角,皮带的AB部分长L=3.25m,皮带以v=2m/s的速率顺时针方向运转,在皮带的A端上方无初速地放上一个 μ=,求: 小物体,小物体与皮带间的滑动摩擦系数/5 (1)物体从A端运动到B端所需时间; (2)物体到达B端时的速度大小. 四、有动力滑板(最大静摩擦力决定分离点) 典例4:如图,质量M=1kg的木板静止在水平面上,质量m=1kg、大小可以忽略的铁块静止在木板的右端。设最大摩擦力等于滑动摩擦力,已知木板与地面间的动摩擦因数μ1=0.1,铁块与木板之间的动摩擦因数μ2=0.4,取g=10m/s2。现给铁块施加一个水平向左的力F,若力F从零开始逐渐增加,且木板足够长。试通过分析与计算,在图中做出铁块受到的摩擦力f随力F大小变化的图像。

牛顿第二定律题型总结

牛顿运动定律的应用(张胜富) 一、知识归纳: 1、牛顿第二定律 (1)定律内容:物体的加速度跟所受的合外力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同. (2)定义式:F 合=ma 2、对牛顿第二定律的理解 (1)瞬时性.根据牛顿第二定律,对于质量确定的物体而言,其加速度的大小和方向完全由物体受到的合外力的大小和方向所决定.加速度和物体所受的合外力是瞬时对应关系,即同时产生、同时变化、同时消失,保持一一对应关系. (2)矢量性.F=ma 是一个矢量式.力和加速度都是矢量,物体的加速度的方向由物体所受合外力的方向决定.已知F 合的方向,可推知a的方向,反之亦然. (3)同体性:a = m F 合各量都是属于同一物体的,即研究对象的统一性. (4)独立性:F合产生的a 是物体的合加速度,x方向的合力产生x 方向的加速度,y 方向的合力产生y 方向的加速度.牛顿第二定律的分量式为F x =ma x,F y =ma y. (5)相对性:公式中的a 是相对地面的而不是相对运动状态发生变化的参考系的. 特别提醒: (1)物体的加速度和合外力是同时产生的,不分先后,但有因果性,力是产生加速度的原因,没有力就没有加速度. (2)不能根据m= m F 得出m∝F ,m ∝a 1 的结论.物体的质量m 与物体受的合外力和运动的加速度无关. 3、合外力、加速度、速度的关系 (1)物体所受合外力的方向决定了其加速度的方向,合外力与加速度的大小关系是F=ma ,只要有合外力,不管速度是大还是小,或是零,都有加速度,只要合外力为零,则加速度为零,与速度的大小无关.只有速度的变化率才与合外力有必然的联系. (2)合力与速度同向时,物体做加速运动,反之减速. (3)力与运动关系: 力是改变物体运动状态的原因,即力→加速度→速度变化(运动状态变化),物体所受到的合外力决定了物体加速度的大小,而加速度的大小决定了单位时间内速度变化量的大小,加速度的大小与速度大小无必然的联系. (4)加速度的定义式与决定式: a= t v ??是加速度的定义式,它给出了测量物体的加速度的方法,这是物理上用比值定义物理量的方法;a =m F 是加速度的决定式,它揭示了物体产生加速度的原因及影响物体加 速度的因素. 特别提醒:物体的加速度的方向与物体所受的合外力是瞬时对应关系,即a 与合力F方向总是相同,但速度v 的方向不一定与合外力的方向相同. 讨论点一:如图所示,对静止在光滑水平面上的物体施加一水平拉力,当力刚开始作用瞬间 ( ) A .物体立即获得速度 B.物体立即获得加速度 C.物体同时获得速度和加速度

牛顿第二定律说课稿

牛顿第二定律说课稿 (一)教材分析 牛顿运动定律以力和运动的知识为基础,进一步研究了力和运动的关系。牛顿运动定律是经典力学的基础,从牛顿运动定律出发可以推导出动能定理、动量定理等一系列重要的物理规律。牛顿运动定律还是学习热学、电磁学的重要基础。因此,这一章内容在力学和整个物理学中占有很重要的地位,是中学物理教学的重点。牛顿第二定律是动力学的核心规律,是本章的重点和中心内容。 (二)教学内容、教材体系与教学目标 本章教材在牛顿第一定律之后,安排了一节“运动状态的改变”,起到了承上启下的作用。它既是对牛顿第一定律的深化,使学生进一步认识到力是产生加速度的原因,质量是惯性大小的量度,也是为学习牛顿第二定律做的铺垫,使学生认识到物体的加速度由力和质量两个因素决定,并且对它们的关系有了定性的认识。 本节教材利用控制变量的实验方法,分别研究了加速度跟力、加速度跟质量的关系,再把这两个关系综合起来,总结出牛顿第二定律。然后把牛顿第二定律从物体受一个力的特殊情况,推广到受多个力的一般情况,从物体受恒力的情况推广到物体受变力的情况,并且进一步强调了牛顿第二定律的矢量性和瞬时性。 根据以上分析和大纲对本节内容的要求,结合学生的实际情况,确定的知识教学目标为: 1.知道牛顿第二定律内容及表达式,理解牛顿第二定律的含义,能应用牛顿第二定律分析和解决有关问题。 2.理解牛顿第二定律的矢量性和瞬时性。 3.知道力的单位“牛顿”的定义。 在本节课的教学中,还应渗透科学方法教育。让学生通过研究加速度跟力和质量的关系的实验,掌握控制变量法。在总结牛顿第二定律的过程中,让学生体会实验研究、分析数据、总结规律的科学研究方法,并在这一过程中培养学生实验、观察、分析、归纳、概括的能力。 (三)教学方法

牛顿第二定律练习题(经典好题)

牛顿定律(提高) 1、质量为m 的物体放在粗糙的水平面上,水平拉力F 作用于物体上,物体产生的加速度为a 。若作用在物体上的水平拉力变为2F ,则物体产生的加速度 A 、小于a B 、等于a C 、在a 和2a 之间 D 、大于2a 2、用力F 1单独作用于某一物体上可产生加速度为3m/s 2,力F 2单独作用于这一物体可产生加速度为1m/s 2,若F 1、F 2同时作用于该物体,可能产生的加速度为 A 、1 m/s 2 B 、2 m/s 2 C 、3 m/s 2 D 、4 m/s 2 3、一个物体受到两个互相垂直的外力的作用,已知F 1=6N ,F 2=8N ,物体在这两个力的作用下获得的加速度为2.5m/s 2,那么这个物体的质量为 kg 。 4、如图所示,A 、B 两球的质量均为m ,它们之间用一根轻弹簧相连,放在光滑的水平面上,今用力将球向左推,使弹簧压缩,平衡后突然将F 撤去,则在此瞬间 A 、A 球的加速度为F/2m B 、B 球的加速度为F/m C 、B 球的加速度为F/2m D 、B 球的加速度为0 5如图3-3-1所示,A 、B 两个质量均为m 的小球之间用一根轻弹簧(即不计其 质量)连接,并用细绳悬挂在天花板上,两小球均保持静止.若用火将细绳烧断,则在绳刚断的这一瞬间,A 、B 两球的加速度大小分别是

A.a A=g;a B=gB.a A=2g ;a B=g C.a A=2g ;a B=0 D.a A=0 ;a B=g 6.(8分)如图6所示,θ=370,sin370=0.6,cos370=0.8。箱子重G=200N,箱子与地面的动摩擦因数μ=0.30。(1)要匀速拉动箱子,拉力F为多大? (2)以加速度a=10m/s2加速运动,拉力F为多大? 7如图所示,质量为m的物体在倾角为θ的粗糙斜面下匀速下滑,求物体与斜面间的滑动摩擦因数。 8.(6分)如图10所示,在倾角为α=37°的斜面上有一块竖直放置的档板,在档板和斜

牛顿第二定律练习题和答案

牛顿第二定律练习题和 答案 公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

牛顿第二定律练习题 一、选择题 1.关于物体运动状态的改变,下列说法中正确的是 [ ] A.物体运动的速率不变,其运动状态就不变 B.物体运动的加速度不变,其运动状态就不变 C.物体运动状态的改变包括两种情况:一是由静止到运动,二是由运动到静止 D.物体的运动速度不变,我们就说它的运动状态不变 2.关于运动和力,正确的说法是 [ ] A.物体速度为零时,合外力一定为零 B.物体作曲线运动,合外力一定是变力 C.物体作直线运动,合外力一定是恒力 D.物体作匀速运动,合外力一定为零 3.在光滑水平面上的木块受到一个方向不变,大小从某一数值逐渐变小的外力作用时,木块将作 [ ] A.匀减速运动B.匀加速运动 C.速度逐渐减小的变加速运动D.速度逐渐增大的变加速运动 4.在牛顿第二定律公式F=km·a中,比例常数k的数值: [ ] A.在任何情况下都等于1 B.k值是由质量、加速度和力的大小决定的 C.k值是由质量、加速度和力的单位决定的

D.在国际单位制中,k的数值一定等于1 5.如图1所示,一小球自空中自由落下,与正下方的直立轻质弹簧接触,直至速度为零的过程中,关于小球运动状态的下列几种描述中,正确的是 [ ] A.接触后,小球作减速运动,加速度的绝对值越来越大,速度越来越小,最后等于零 B.接触后,小球先做加速运动,后做减速运动,其速度先增加后减小直到为零 C.接触后,速度为零的地方就是弹簧被压缩最大之处,加速度为零的地方也是弹簧被压缩最大之处 D.接触后,小球速度最大的地方就是加速度等于零的地方 6.在水平地面上放有一三角形滑块,滑块斜面上有另一小滑块正沿斜面加 速下滑,若三角形滑块始终保持静止,如图2所示.则地面对三角形滑块 [ ] A.有摩擦力作用,方向向右B.有摩擦力作用,方向向左 C.没有摩擦力作用D.条件不足,无法判断 7.设雨滴从很高处竖直下落,所受空气阻力f和其速度v成正比.则雨滴的运动情况是 [ ] A.先加速后减速,最后静止B.先加速后匀速 C.先加速后减速直至匀速D.加速度逐渐减小到零 8.放在光滑水平面上的物体,在水平拉力F的作用下以加速度a运动,现将拉力F 改为2F(仍然水平方向),物体运动的加速度大小变为a′.则 [ ] A.a′=a B.a<a′<2a C.a′=2a D.a′>2a

牛顿第二定律

牛顿第二定律 一、知识与技能 1、掌握牛顿第二定律的文字内容和数学公式; 2、理解公式中各物理量的意义及相互关系。 3、知道在国际单位制中力的单位“牛顿”是怎样定义的。 4、会用牛顿第二定律的公式实行相关的计算。 1、以实验为基础,归纳得到物体的加速度跟它的质量及所受外力的关系,进而总结出牛顿第二定律。 2、培养学生的概括水平和分析推理水平。 三、情感、态度与价值观 1、渗透物理学研究方法的教育。 2、理解到由实验归纳总结物理规律是物理学研究的重要方法。 ★教学重点 牛顿第二定律 ★教学难点 牛顿第二定律的意义 ★教学方法 1、复习回顾,创设情景,归纳总结; 2、通过实例的分析、强化训练,使学生理解牛顿第二定律的意义。 ★教学过程 一、引入新课 教师活动:利用多媒体播放汽车启动、飞机起飞等录像资料。教师提出问题,启发引导学生讨论它们的速度的变化快慢即加速度由哪些因素决定? 学生活动:学生观看,讨论其可能性。 点评:通过实际问题及现象分析,激发学生学习兴趣,培养学生发现问题的水平 教师活动:提出问题让学生复习回顾: l、物体的加速度与其所受的作用力之间存有什么关系? 2、物体的加速度与其质量之间存有什么关系? 学生活动:学生回顾思考讨论。

教师活动:(进一步提出问题,完成牛顿第二定律探究任务的引入)物体的加速度与其所受的作用力、质量之间存有怎样的关系呢? 学生活动:学生思考讨论,并在教师的引导下,初步讨论其规律. 点评;通过多媒体演示及学生的讨论,复习回顾上节内容,激发学生的学习兴趣。培养学生发现问题、探究问题的水平。 二、实行新课 教师活动:学生分析讨论后,教师进一步提出问题: l、牛顿第二定律的内容应该怎样表述? 2、它的比例式如何表示? 3、各符号表示什么意思? 4、各物理量的单位是什么?其中,力的单位“牛顿”是如何定义的? 学生活动:学生讨论分析相关问题,记忆相关的知识。 教师活动:上面我们研究的是物体受到一个力作用的情况,当物体受到几个力作用时,上述规律又将如何表述? 学生活动:学生讨论分析后教师总结:物体的加速度跟所受的外力的合力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同。 点评:培养学生发现一般规律的水平 教师活动:讨论a和F合的关系,并判断下面哪些说法不对?为什么? A、只有物体受到力的作用,物体才具有加速度. B、力恒定不变,加速度也恒定不变。 C、力随着时间改变,加速度也随着时间改变。 D、力停止作用,加速度也随即消失。 E、物体在外力作用下做匀加速直线运动,当合外力逐渐减小时,物体的速 度逐渐减小。 F、物体的加速度大小不变一定受恒力作用。 学生活动:学生讨论分析后教师总结:力是使物体产生加速度的原因,力与物体的加速度具有矢量性、瞬时性和独立性 点评:牛顿第二定律是由物体在恒力作用下做匀加速直线运动的情形下导出的,但由力的独立作用原理可推广到几个力作用的情况,以及应用于变力作用的某一瞬时。 教师活动:出示例题引导学生一起分析、解决。

牛顿第二定律教学设计市级一等奖

牛顿第二定律 教学设计 教材分析 牛顿第二定律是动力学部分的核心内容,它具体地、定量地回答了物体运动状态的变化,即加速度与它所受外力的关系,以及加速度与物体自身的惯性——质量的关系;况且此定律是联系运动学与力学的桥梁,它在中学物理教学中的地位和作用不言而喻,所以本节课的教学对力学是至关重要的.本节课是在上节探究结果的基础上加以归纳总结得出牛顿第二定律的内容,关键是通过实例分析强化训练让学生深入理解,全面掌握牛顿第二定律,会应用牛顿第二定律解决有关问题. 学情分析???? 学生学习了第二节实验课:探究加速度与力/质量的关系,?对a?m?F三者关系都有了初步了解,并且总结出了相关规律,所以对本节理论课内容做好了铺垫,对掌握本节内容具有重要作用,? 教学目标: 知识与技能 1、能准确表述牛顿第二定律 2、理解数学表达式中各物理量的意义及相互关系 3、知道在国际单位制中力的单位“牛顿”是怎样定义的 4、能运用牛顿第二定律分析和处理简单的问题 过程与方法 通过对上节课实验结论的归纳,培养学生概括和分析推理能力

情感与态度 1、渗透物理学研究方法的教育——由实验归纳总结物理规律 2、让学生感受到物理学在认识自然上的本质性、深刻性、有效性 教学重点: 牛顿第二定律 教学难点: 1、牛顿第二定律公式的理解 2、理解k=1时,F=ma 教学方法和程序:探讨、归纳、数字化实验、讯飞多媒体辅助互动等。具体步骤是:创设物理情景→回顾与思考→数字化演示实验→总结规律→讯飞多媒体辅助互动。 教学过程:

板书设计: 牛顿第二定律 1.内容:物体的加速度跟所受的合外力成正比,跟物体的质量成反比.加速度的方向跟合外力的方向相同 2.表达式:a =F 合m 或F 合=ma 说明:①a =F m 是加速度的决定式②力是产生加速度的原因③m =F a 中m 与F 、a 无关 1. 3.对牛顿第二定律的理解:①矢量性 ②因果性 ③瞬时性 ④同体性 ⑤独立性 ⑥局限性 4.应用牛顿第二定律解题的一般步骤 备用习题: 1.如图所示,一物体以一定的初速度沿斜面向 上滑动,滑到顶点后又返回斜面底端.试分析在物 体运动的过程中加速度的变化情况. 解析:在物体向上滑动的过程中,物体运动受到重力和斜面的摩擦力作用,其沿斜面的合力平行于斜面向下,所以物体运动的加速度方向是平行斜面向下的,与物体运动的速度方向相反,物体做减速运动,直至速度减为零.在物体向下滑动的过程中, 物体运动也是受到重力和斜面的摩擦力作用,但摩擦力的方向平行斜面向上,其沿斜面的合力仍然是

牛顿第二定律基础计算终审稿)

牛顿第二定律基础计算文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

牛顿第二定律基础计算 1、如图所示,光滑水平面上有一个质量m=7.0kg的物体,在 F=14N的水平力作用下,由静止开始沿水平面做匀加速直线运 动.求: (1)物体加速度的大小; (2)5.0s内物体通过的距离. 2、如图所示,光滑水平面上,质量为5 kg的物块在水平拉力F=15 N的作用下,从静止开始向右运动。求: (1)物体运动的加速度是多少 (2)在力F的作用下,物体在前10 s内的位移 3、质量为2kg的物体,在水平拉力F=5N的作用下,由静止开始在水平面上运动,物体与水平面间的动摩擦因素为0.1,求: (1)该物体在水平面上运动的加速度大小。 (2)2s末时,物体的速度大小。 4、如图所示,质量为20Kg的物体在水平力F=100N作用下沿水平面做匀速直线运动,速度大小V=6m/s,当撤去水平外力后,物体在水平面上继续匀减速滑行3.6m后停止运动.(g=10m/s2)求: (1)地面与物体间的动摩擦因数;

(2)撤去拉力后物体滑行的加速度的大小. 5、一质量为2kg的物块置于水平地面上.当用10N的水平拉力F拉物块时,物块做匀速直线运动.如图所示,现将拉力F改为与水平方向成37°角,大小仍为10N,物块开始在水平地面上运动.(sin 37°=0.6,cos 37°=0.8,g取10m/s2)求:(1)物块与地面的动摩擦因数; (2)物体运动的加速度大小. 6、如图所示,沿水平方向做匀变速直线运动的车厢中,悬挂小球的悬线偏离竖直方向角,小球和车厢相对静止,球的质量为. 已知当地的重力加速度 ,,求: (1)车厢运动的加速度,并说明车厢的运动情况. (2)悬线对球的拉力. 7、如图所示,位于水平地面上质量为M的物块,在大小为F、方向与水平方向成α角的拉力作用下沿地面作加速运动,若木块与地面之间的动摩擦因数为μ,求:(1)地面对木块的支持力; (2)木块的加速度大小. 8、如图所示,一个人用与水平方向成的力F=10N推一个静止 在水平面上质量为2kg的物体,物体和地面间的动摩擦因数为 0.25。(cos37o=0.8,sin37o=0.6, g取10m/s2)求:

牛顿第二定律 基础理解

牛顿第二定律基础理解 不定项选择 1、关于运动和力的关系,下列说法中正确的是 A.力是维持物体运动的原因 B.力是改变物体运动状态的原因 C.一个物体受到的合力越大,它的速度越大 D.一个物体受到的合力越大,它的加速度越大 2、关于伽利略理想实验,以下说法正确的是() A.理想实验是一种实践活动 B.理想实验是一种思维活动 C.伽利略的理想实验否定了亚里士多德关于力与运动的关系 D.伽利略的理想实验证实牛顿第二定律 3、下列说法中正确的是( ) A.物体在不受外力作用时,保持原有运动状态不变的性质叫惯性,故牛顿运动定律又叫惯性定律 B.牛顿第一定律仅适用于宏观物体,只可用于解决物体的低速运动问题 C.牛顿第一定律是牛顿第二定律在物体的加速度a=0条件下的特例 D.伽利略根据理想实验推出,如果没有摩擦,在水平面上的物体,一旦具有某一个速度,将保持这个速度继续运动下去 4、关于速度、加速度、合外力之间的关系,正确的是( ) A.物体的速度越大,则加速度越大,所受的合外力也越大 B.物体的速度为零,则加速度为零,所受的合外力也为零 C.物体的速度为零,但加速度可能很大,所受的合外力也可能很大 D.物体的速度很大,但加速度可能为零,所受的合外力也可能为零 5、下列对力和运动的认识正确的是() A.亚里士多德认为只有当物体受到力的作用才会运动 B.伽利略认为力不是维持物体速度的原因,而是改变物体速度的原因 C.牛顿认为力是产生加速度的原因 D.伽利略根据理想实验推论出,如果没有摩擦,在水平面上的物体,一旦具有某一个速度,将保持这个速度继续运动下去

6、由牛顿第二定律表达式F=ma可知 ( ) A.质量m与合外力F成正比,与加速度a成反比 B.合外力F与质量m和加速度a都成正比 C.物体的加速度的方向总是跟它所受合外力的方向一致 D.物体的加速度a跟其所受的合外力F成正比,跟它的质量m成反比 7、关于运动和力的关系,下列说法中正确的是( ) A.当物体所受合外力不变时,运动状态一定不变 B.当物体所受合外力为零时,速度一定不变 C.当物体速度为零时,所受合外力不一定为零 D.当物体运动的加速度为零时,所受合外力不一定为零 8、下列说法正确的是( ) A.物体所受到的合外力越大,其速度改变量也越大 B.物体所受到的合外力不变(F合≠0),其运动状态就不改变 C.物体所受到的合外力变化,其速度的变化率一定变化 D.物体所受到的合外力减小时,物体的速度可能正在增大 9、下列说法正确的是() A.物体受到的合外力方向与速度方向相同时,物体做加速直线运动 B.物体受到的合外力方向与速度方向成锐角时,物体做加速曲线运动 C.物体受到的合外力方向与速度方向成钝角时,物体做减速直线运动 D.物体受到的合外力方向与速度方向相反时,物体做减速直线运动 10、在牛顿第二定律的数学表达式F=kma中,有关比例系数k的说法正确的是( ) A.在任何情况下k都等于1 B.在国际单位制中k一定等于1 C.k的数值由质量、加速度和力的大小决定 D.k的数值由质量、加速度和力的单位决定 11、力F1单独作用在物体A上时产生的加速度a1大小为5m/s2,力F2单独作用在物体A上时产生的加速度a2大小为2m/s2,那么,力F1和F2同时作用在物体A上时产生的加速度a可能是() A. 5m/s2 B. 2m/s2 C. 8m/s2 D. 6m/s2

牛顿第二定律练习题和答案

~ 牛顿第二定律练习题 一、选择题 1.关于物体运动状态的改变,下列说法中正确的是 [ ] A.物体运动的速率不变,其运动状态就不变 B.物体运动的加速度不变,其运动状态就不变 C.物体运动状态的改变包括两种情况:一是由静止到运动,二是由运动到静止 D.物体的运动速度不变,我们就说它的运动状态不变 2.关于运动和力,正确的说法是 [ ] % A.物体速度为零时,合外力一定为零 B.物体作曲线运动,合外力一定是变力 C.物体作直线运动,合外力一定是恒力 D.物体作匀速运动,合外力一定为零 3.在光滑水平面上的木块受到一个方向不变,大小从某一数值逐渐变小的外力作用时,木块将作 [ ] A.匀减速运动B.匀加速运动 C.速度逐渐减小的变加速运动D.速度逐渐增大的变加速运动 ? 4.在牛顿第二定律公式F=km·a中,比例常数k的数值: [ ] A.在任何情况下都等于1 B.k值是由质量、加速度和力的大小决定的 C.k值是由质量、加速度和力的单位决定的 D.在国际单位制中,k的数值一定等于1 5.如图1所示,一小球自空中自由落下,与正下方的直立轻质弹簧接触,直至速度为零的过 程中,关于小球运动状态的下列几种描述中,正确的是 [ ] . A.接触后,小球作减速运动,加速度的绝对值越来越大,速度越来越小,最后等于零 B.接触后,小球先做加速运动,后做减速运动,其速度先增加后减小直到为零 C.接触后,速度为零的地方就是弹簧被压缩最大之处,加速度为零的地方也是弹簧被压缩最大之处D.接触后,小球速度最大的地方就是加速度等于零的地方 6.在水平地面上放有一三角形滑块,滑块斜面上有另一小滑块正沿斜面加速下滑,若三角形滑块始终保持静止,如图2所示.则地面对三角形滑块 [ ] A.有摩擦力作用,方向向右B.有摩擦力作用,方向向左 C.没有摩擦力作用D.条件不足,无法判断 7.设雨滴从很高处竖直下落,所受空气阻力f和其速度v成正比.则雨滴的运动情况是 [ ] … A.先加速后减速,最后静止B.先加速后匀速 C.先加速后减速直至匀速D.加速度逐渐减小到零 8.放在光滑水平面上的物体,在水平拉力F的作用下以加速度a运动,现将拉力F改为2F(仍然水平方向),物体运动的加速度大小变为a′.则 [ ] A.a′=a B.a<a′<2a C.a′=2a D.a′>2a

牛顿第二定律计算题2汇总

1.(9分)如图所示为火车站使用的传送带示意图,绷紧的传送带水平部分长度L =4 m ,并以v0=1 m/s 的速度匀速向右运动。现将一个可视为质点的旅行包无初速度地轻放在传送带的左端,已知旅行包与传送带之间的动摩擦因数μ=0.2,g 取10 m/s2。 (1)求旅行包经过多长时间到达传送带的右端。 (2)若要旅行包从左端运动到右端所用时间最短,传送带速度的大小应满足什么条件? 2.(18分)如图所示,倾角α=30的足够长光滑斜面固定在水平面上,斜面上放一长L=1.8m 、质量M= 3kg 的薄木板,木板的最右端叠放一质量m=lkg 的小物块,物块与木板间的动摩擦因数μ=3 2.对木板施加沿斜面向上的恒力F ,使木板沿斜面由静止开始做匀加速直线运动.设物块与木板间最大静摩擦力等于滑动摩擦力,取重力加速度g=l02 /m s . (1)为使物块不滑离木板,求力F 应满足的条件; (2)若F=37.5N ,物块能否滑离木板?若不能,请说明理由;若能,求出物块滑离木板所用的时间及滑离木板后沿斜面上升的最大距离. 3.如图所示,一质量为M =4 kg ,长为L =2 m 的木板放在水平地面上,已知木板与地面间的动摩擦因数为0.1,在此木板的右端上还有一质量为m =1 kg 的铁块,小铁块可视为质点,木板厚度不计.今对木板突然施加一个水平向右的拉力.(g =10 m/ ) (1)若不计铁块与木板间的摩擦,且拉力大小为6 N ,则小铁块经多长时间将离开木板? (2)若铁块与木板间的动摩擦因数为0.2,铁块与地面间的动摩擦因数为0.1,要使小铁块相对木板滑动且对地面的总位移不超过1.5 m ,则施加在木板水平向右的拉力应满足什么条件?

牛顿第二定律以专题训练

牛顿第二定律 1.牛顿第二定律的表述(内容) 物体的加速度跟物体所受的外力的合力成正比,跟物体的质量成反比,加速度的方向跟合力的方向相同,公式为:F=ma(其中的F和m、a必须相对应)。 对牛顿第二定律理解: (1)F=ma中的F为物体所受到的合外力. (2)F=ma中的m,当对哪个物体受力分析,就是哪个物体的质量,当对一个系统(几个物体组成一个系统)做受力分析时,如果F是系统受到的合外力,则m是系统的合质量.(3)F=ma中的F与a有瞬时对应关系,F变a则变,F大小变,a则大小变,F方向变a也方向变. (4)F=ma中的F与a有矢量对应关系,a的方向一定与F的方向相同。 (5)F=ma中,可根据力的独立性原理求某个力产生的加速度,也可以求某一个方向合外力的加速度. 若F为物体受的合外力,那么a表示物体的实际加速度;若F为物体受的某一个方向上的所有力的合力,那么a表示物体在该方向上的分加速度;若F为物体受的若干力中的某一个力,那么a仅表示该力产生的加速度,不是物体的实际加速度。 (6)F=ma中,F的单位是牛顿,m的单位是千克,a的单位是米/秒2. (7)F=ma的适用范围:宏观、低速 2.应用牛顿第二定律解题的步骤 ①明确研究对象。可以以某一个物体为对象,也可以以几个物体组成的质点组为对象。设每个质点的质量为m i,对应的加速度为a i,则有:F合=m1a1+m2a2+m3a3+……+m n a n 对这个结论可以这样理解:先分别以质点组中的每个物体为研究对象用牛顿第二定律: ∑F1=m1a1,∑F2=m2a2,……∑F n=m n a n,将以上各式等号左、右分别相加,其中左边所有力中,凡属于系统内力的,总是成对出现的,其矢量和必为零,所以最后实际得到的是该质点组所受的所有外力之和,即合外力F。 ②对研究对象进行受力分析。(同时还应该分析研究对象的运动情况(包括速度、加速度),并把速度、加速度的方向在受力图旁边画出来。 ③若研究对象在不共线的两个力作用下做加速运动,一般用平行四边形定则(或三角形定则)解题;若研究对象在不共线的三个以上的力作用下做加速运动,一般用正交分解法解题(注意灵活选取坐标轴的方向,既可以分解力,也可以分解加速度)。 ④当研究对象在研究过程的不同阶段受力情况有变化时,那就必须分阶段进行受力分析,分阶段列方程求解。 解题要养成良好的习惯。只要严格按照以上步骤解题,同时认真画出受力分析图,那么问题都能迎刃而解。 3.应用举例 【例1】质量为m的物体放在水平地面上,受水平恒力F作用,由静止开始做匀加速直线运动,经过ts后,撤去水平拉力F,物体又经过ts停下,求物体受到的滑动摩擦力f.

牛顿第二定律两类动力学问题及答案解析

牛顿第二定律两类动力学问题 知识点、两类动力学问题 1.动力学的两类基本问题 第一类:已知受力情况求物体的运动情况。 第二类:已知运动情况求物体的受力情况。 2.解决两类基本问题的方法 以加速度为“桥梁”,由运动学公式和牛顿第二定律列方程求解,具体逻辑关系如图: 对牛顿第二定律的理解 1.牛顿第二定律的“五个性质”

2.合力、加速度、速度的关系 (1)物体的加速度由所受合力决定,与速度无必然联系。 (2)合力与速度夹角为锐角,物体加速;合力与速度夹角为钝角,物体减速。 (3)a=Δv Δt 是加速度的定义式,a与v、Δv无直接关系;a= F m 是加速度的决定式。 3.[应用牛顿第二定律定性分析]如图1所示,弹簧左端固定,右端自由伸长到O点并系住质量为m的物体,现将弹簧压缩到A点,然后释放,物体可以一直运动到B点。如果物体受到的阻力恒定,则( ) 图1 A.物体从A到O先加速后减速 B.物体从A到O做加速运动,从O到B做减速运动 C.物体运动到O点时,所受合力为零 D.物体从A到O的过程中,加速度逐渐减小 解析物体从A到O,初始阶段受到的向右的弹力大于阻力,合力向右。随着物体向右运动,弹力逐渐减小,合力逐渐减小,由牛顿第二定律可知,加速度向右且逐渐减小,由于加速度与速度同向,物体的速度逐渐增大。当物体向右运动至AO间某点(设为点O′)时,弹力减小到与阻力相等,物体所受合力为零,加速度为零,速度达到最大。此后,随着物体继续向右运动,弹力继续减小,阻力大于弹力,合力方向变为向左。至O点时弹力减为零,此后弹力向左且逐渐增大。所以物体越过O′点后,合力(加速度)方向向左且逐渐增大,由于加速度与速度反

牛顿第二定律 提升计算

牛顿第二定律提升计算 1、如图所示,一个质量的物块,在的拉力作用下,从静止开始沿水平面做匀加速直线运动, 拉力方向与水平方向成,假设水平面光滑,取重力加速度,,。(1)画出物体的受力示意图; (2)求物块运动的加速度大小; (3)求物块速度达到时移动的距离。 2、如图所示,质量为10kg的金属块放在水平地面上,在大小为100N,方向与水平成37°角斜向上的拉力作用下,由静止开始沿水平地面向右做匀加速直线运动.物体与地面间的动摩擦因数μ=0.5.2s后撤去拉力,则撤去拉力后金属块在桌面上还能滑行多远?(已知sin37°=0.6,cos37°=0.8.g取10m/s2) 3、如图所示,长度l=2m,质量M=kg的木板置于光滑的水平地面上,质量m=2kg的小物块(可视为质点)位于木板的左端,木板和小物块间的动摩擦因数μ=0.1,现对小物块施加一水平向右的恒力F=10N,取 g=10m/s2.求: (1)将木板M固定,小物块离开木板时的速度大小; (2)若木板M不固定,m和M的加速度a1、a2的大小; (3)若木板M不固定,从开始运动到小物块离开木板所用的时间.

4、如图甲所示,t=0时,一质量为m=2kg的小物块受到水平恒力F的作用,从A点由静止开始运动,经过B点时撤去力F,最后停在C点.图乙是小物块运动的速度一时间图象.已知重力加速度g=l0m/s2,求: (1)从第Is末到第2s末,物体运动的距离; (2)恒力F的大小. 5、一质量为的小球用轻细绳吊在小车内的顶棚上,如图所示.车厢内的地板上有一质量为 的木箱.当小车向右做匀加速直线运动时,细绳与竖直方向的夹角为θ=30°,木箱与车厢地板相对静止. (空气阻力忽略不计,取g=10 m/s2) 求: (1)小车运动加速度的大小 (2)细绳对小车顶棚拉力的大小 (3)木箱受到摩擦力的大小 . 6、质量分别为m1和m2的木块,并列放置于光滑水平地面,如图所示,当木块1受到水平力F的作用时,两木块同时向右做匀加速运动,求: (1)匀加速运动的加速度多大? (2)木块1对2的弹力.

高中物理必修一知识讲解 牛顿第二定律 提高(两篇)

牛顿第二定律【学习目标】 1.深刻理解牛顿第二定律,把握 F a m =的含义. 2.清楚力的单位“牛顿”是怎样确定的. 3.灵活运用F=ma解题. 【要点梳理】 要点一、牛顿第二定律 (1)内容:物体的加速度跟作用力成正比,跟物体的质量成反比. (2)公式: F a m ∝或者F ma ∝,写成等式就是F=kma. (3)力的单位——牛顿的含义. ①在国际单位制中,力的单位是牛顿,符号N,它是根据牛顿第二定律定义的:使质量为1kg的物体产生1 m/s2加速度的力,叫做1N.即1N=1kg·m/s2. ②比例系数k的含义. 根据F=kma知k=F/ma,因此k在数值上等于使单位质量的物体产生单位加速度的力的大小,k的大小由F、m、a三者的单位共同决定,三者取不同的单位,k的数值不一样,在国际单位制中,k=1.由此可知,在应用公式F=ma进行计算时,F、m、a的单位必须统一为国际单位制中相应的单位. 要点二、对牛顿第二定律的理解 (1)同一性 【例】质量为m的物体置于光滑水平面上,同时受到水平力F的作用,如图所示,试讨论: ①物体此时受哪些力的作用? ②每一个力是否都产生加速度? ③物体的实际运动情况如何? ④物体为什么会呈现这种运动状态? 【解析】①物体此时受三个力作用,分别是重力、支持力、水平力F. ②由“力是产生加速度的原因”知,每一个力都应产生加速度. ③物体的实际运动是沿力F的方向以a=F/m加速运动. ④因为重力和支持力是一对平衡力,其作用效果相互抵消,此时作用于物体的合力相当于F. 从上面的分析可知,物体只能有一种运动状态,而决定物体运动状态的只能是物体所受的合力,而不能是其中一个力或几个力,我们把物体运动的加速度和该物体所受合力的这种对应关系叫牛顿第二定律的同一性. 因此,牛顿第二定律F=ma中,F为物体受到的合外力,加速度的方向与合外力方向相同. (2)瞬时性 前面问题中再思考这样几个问题: ①物体受到拉力F作用前做什么运动? ②物体受到拉力F作用后做什么运动? ③撤去拉力F后物体做什么运动? 分析:物体在受到拉力F前保持静止. 当物体受到拉力F后,原来的运动状态被改变.并以a=F/m加速运动. 撤去拉力F后,物体所受合力为零,所以保持原来(加速时)的运动状态,并以此时的速度做匀速直线运动. 从以上分析知,物体运动的加速度随合力的变化而变化,存在着瞬时对应的关系.

牛顿第二定律计算题

牛顿第二定律计算题(难度) 1.(17分)如图所示,将小砝码置于桌面上的薄纸板上,用水平向右的拉力将纸板迅速抽出,砝码的移动很小,几乎观察不到,这就是大家熟悉的惯性演示实验。若砝码和纸板的质量分别为 1m 和2m ,各接触面间的动摩擦因数均为μ。重力加速度为g 。 (1)当纸板相对砝码运动时,求纸板所受摩擦力的大小; (2)要使纸板相对砝码运动,求所需拉力的大小范围; (3)本实验中, 1m =0.5kg , 2m =0.1kg , μ=,砝码与纸板左端的距 离d=0.1m ,取g=102 /m s 。 若砝码移动的距离超过l =0.002m ,人眼就能感知。 为确保实验成功,纸板所需的拉力至少多大 2.如图所示,竖直光滑的杆子上套有一滑块A,滑块通过细绳绕过光滑滑轮连接物块B,B 又通过一轻质弹簧连接物块C ,C 静止在地面上。开始用手托住A,使绳子刚好伸直处于水平位置但无张力,现将A 由静止释放,当速度达到最大时,C 也刚好同时离开地面,此时B 还没有到达滑轮位置.已知:m A =, m B =1kg, m c =1kg ,滑轮与杆子的水平距离L=。试求: (1)A 下降多大距离时速度最大 (2)弹簧的劲度系数 (3)的最大速度是多少 3.如图甲所示,平板小车A 静止在水平地面上,平板板长L=6m ,小物块B 静止在平板左端,质量m B = 0.3kg ,与A 的动摩擦系数μ=,在B 正前方距离为S 处,有一小球C ,质量m C = 0.1kg ,球C 通过长l = 0.18m 的细绳与固定点O 相连,恰当选择O 点的位置使得球C 与物块B 等高, 且C 始终不与平板A 接触。在t = 0时刻,平板车A 开始运动,运动情况满足如图乙所示S A – t 关系。若BC 发生碰撞,两者将粘在一起,绕O 点在竖直平面内作圆周运动, 并能通过O 点正上方的最高点。BC 可视为质点,g = 10m/s 2 , 求:(1)BC 碰撞瞬间,细绳拉力至少为多少 (2)刚开始时,B 与C 的距离S 要满足什么关系 4.如图所示为某钢铁厂的钢锭传送装置,斜坡长为L =20 m ,高为h =2 m ,斜坡上紧排着一排滚筒.长为l =8 m 、质量为m =1×103 kg 的钢锭ab 放在滚筒上,钢锭与滚筒间的动摩擦因数为μ=,工作时由电动机带动所有滚筒顺时针匀速转动,使钢锭沿斜坡向上移动,滚筒边缘的线速度均为v =4 m/s.假设关闭电动机的瞬时所有滚筒立即停止转动,钢锭对滚筒的总压力近似等于钢锭的重力.取当地的重力加速度g =10 m/s2.试求: (1)钢锭从坡底(如上图示位置)由静止开始运动,直到b 端到达坡顶所需的最短时间; (2)钢锭从坡底(如上图示位置)由静止开始运动,直到b 端到达坡顶的过程中电动机至 C B A L S O 图甲 3 S A t 12 图乙

相关文档
相关文档 最新文档