文档库 最新最全的文档下载
当前位置:文档库 › 2017-2018学年八年级数学上册第14章 《整式乘法与因式分解》专题(学生版)

2017-2018学年八年级数学上册第14章 《整式乘法与因式分解》专题(学生版)

2017-2018学年八年级数学上册第14章   《整式乘法与因式分解》专题(学生版)
2017-2018学年八年级数学上册第14章   《整式乘法与因式分解》专题(学生版)

因式分解专题

一、考点、热点回顾

因式分解是把一个多项式分解成几个整式乘积的形式,它和整式乘法互为逆运算,在初

中代数中占有重要的地位和作用,在其它学科中也有广泛应用,学习本章知识时,应注意以

下几点。

1. 因式分解的对象是多项式;

2. 因式分解的结果一定是整式乘积的形式;

3. 分解因式,必须进行到每一个因式都不能再分解为止;

4. 公式中的字母可以表示单项式,也可以表示多项式;

5. 结果如有相同因式,应写成幂的形式;

6. 题目中没有指定数的范围,一般指在有理数范围内分解;

7. 因式分解的一般步骤是:

(1)通常采用一“提”、二“公”、三“分”、四“变”的步骤。即首先看有无公因式可提,其次看能否直接利用乘法公式;如前两个步骤都不能实施,可用分组分解法,分组的目

的是使得分组后有公因式可提或可利用公式法继续分解;

(2)若上述方法都行不通,可以尝试用配方法、换元法、待定系数法、试除法、拆项(添项)等方法;

因式分解的十二种方法:

1、提公因法

2、公式法

3、分组分解法

4、十字相乘法

5、配方法

对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解。

6、拆、添项法

可以把多项式拆成若干部分,再用进行因式分解。

7、换元法

有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来。

8、求根法

令多项式f(x)=0,求出其根为x1 ,x2,……x n则多项式可因式分解为f(x)=(x-x1 )(x-x2)……(x-x n ) 9、图象法

令y=f(x),做出函数y=f(x)的图象,找到函数图象与X轴的交点x1 ,x 2,……x n,则多项式可因式分解为f(x)=(x-x1 )(x-x2)……(x-x n )

10、主元法

先选定一个字母为主元,然后把各项按这个字母次数从高到低排列,再进行因式分解。

11、特殊值法

将2或10代入x,求出数P,将数P分解质因数,将质因数适当的组合,并将组合后的每一个因数写成2或10的和与差的形式,将2或10还原成x,即得因式分解式。

例、分解因式x +9x +23x+15

解:令x=2,则x +9x +23x+15=8+36+46+15=105

将105分解成3个质因数的积,即105=3×5×7

注意到多项式中最高项的系数为1,而3、5、7分别为x+1,x+3,x+5,在x=2时的值

则x +9x +23x+15=(x+1)(x+3)(x+5)

12、待定系数法

首先判断出分解因式的形式,然后设出相应整式的字母系数,求出字母系数,从而把多项式因式分解。

二、典型例题

1.公式法

(1)a2-b2=(a+b)(a-b);

(2)a2±2ab+b2=(a±b)2;

(3)a3+b3=(a+b)(a2-ab+b2);

(4)a3-b3=(a-b)(a2+ab+b2).

(5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2;

(6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);

(7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1) ,其中n为正整数;

(8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1),其中n为偶数;

(9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…-ab n-2+b n-1),其中n为奇数.

例1 分解因式:

(1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4 (2)x3-8y3-z3-6xyz

(3)a2+b2+c2-2bc+2ca-2ab (4)a7-a5b2+a2b5-b7

例2 分解因式:a3+b3+c3-3abc

例3 分解因式:a7-a5b2+a2b5-b7x15+x14+x13+…+x2+x+1.

2.拆项、添项法:因式分解是多项式乘法的逆运算.在多项式乘法运算时,整理、化简常将几个同类项合并为一项,或将两个仅符号相反的同类项相互抵消为零.在对某些多项式分解因式时,需要恢复那些被合并或相互抵消的项,即把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符合相反的项,前者称为拆项,后者称为添项.拆项、添项的目的是使多项式能用分组分解法进行因式分解

例4 分解因式:x3-9x+8.

例5 分解因式:

(1)x9+x6+x3-3; (2)(m2-1)(n2-1)+4mn;

(3)(x+1)4+(x2-1)2+(x-1)4; (4)a3b-ab3+a2+b2+1.

3.换元法

换元法指的是将一个较复杂的代数式中的某一部分看作一个整体,并用一个新的字母替代这个整体来运算,从而使运算过程简明清晰.

例6 分解因式:(x2+x+1)(x2+x+2)-12.

例7 分解因式:(x2+3x+2)(4x2+8x+3)-90.

例8 分解因式:(x2+4x+8)2+3x(x2+4x+8)+2x2.

例9分解因式:6x4+7x3-36x2-7x+6.

例10 分解因式:(x2+xy+y2)-4xy(x2+y2).

三、课堂实战

1.分解因式:

(1)x10+x5-2; (2)(x5+x4+x3+x2+x+1)2-x5.

2.分解因式:

(1)x3+3x2-4; (2)x4-11x2y2+y2;

(3)x3+9x2+26x+24; (4)x4-12x+323.

3.分解因式:

(1)(2x2-3x+1)2-22x2+33x-1; (2)x4+7x3+14x2+7x+1;

(3)(x+y)3+2xy(1-x-y)-1; (4)(x+3)(x2-1)(x+5)-20.

四、课后反馈

1、 (1) (2) 9(a-b)2-(x-y)2;

(3) (x-2)2+12(x-2)+36 (4)

(5)

2. 已知:a+b=3,x-y=1,求a+2ab+b-x+y的值.

3.求证(x+1)(x+2)(x+3)(x+4)+1是一个完全平方式。

4.已知a,b,c是△ABC的三条边,且满足a2+b2+c2-ab-bc-ca=0试判断△ABC的形状。

5.设x+2z=3y,试判断x2-9y2+4z2+4xz的值是不是定值?

6.利用因式分解说明:能被140整除。

7、分解因式:

8、若=0,求证:、、三个数中至少有两个数相等。

【八数】因式分解(一)

多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍.

1.运用公式法

在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用

的公式,例如:

(1)a2-b2=(a+b)(a-b);

(2)a2±2ab+b2=(a±b)2;

(3)a3+b3=(a+b)(a2-ab+b2);

(4)a3-b3=(a-b)(a2+ab+b2).

下面再补充几个常用的公式:

(5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2;

(6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);

(7)an-bn=(a-b)(an-1+an-2b+an-3b2+…+abn-2+bn-1)其中n为正整数;

(8)an-bn=(a+b)(an-1-an-2b+an-3b2-…+abn-2-bn-1),其中n为偶数;

(9)an+bn=(a+b)(an-1-an-2b+an-3b2-…-abn-2+bn-1),其中n为奇数.

运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.

例1 分解因式:

(1)-2x5n-1yn+4x3n-1yn+2-2xn-1yn+4;

(2)x3-8y3-z3-6xyz;

(3)a2+b2+c2-2bc+2ca-2ab;

(4)a7-a5b2+a2b5-b7.

解(1)原式=-2xn-1yn(x4n-2x2ny2+y4)

=-2xn-1yn[(x2n)2-2x2ny2+(y2)2]

=-2xn-1yn(x2n-y2)2

=-2xn-1yn(xn-y)2(xn+y)2.

(2)原式=x3+(-2y)3+(-z)3-3x(-2y)(-Z)

=(x-2y-z)(x2+4y2+z2+2xy+xz-2yz).

(3)原式=(a2-2ab+b2)+(-2bc+2ca)+c2

=(a-b)2+2c(a-b)+c2

=(a-b+c)2.

本小题可以稍加变形,直接使用公式(5),解法如下:

原式=a2+(-b)2+c2+2(-b)c+2ca+2a(-b)

=(a-b+c)2

(4)原式=(a7-a5b2)+(a2b5-b7)

=a5(a2-b2)+b5(a2-b2)

=(a2-b2)(a5+b5)

=(a+b)(a-b)(a+b)(a4-a3b+a2b2-ab3+b4)

=(a+b)2(a-b)(a4-a3b+a2b2-ab3+b4)

例2 分解因式:a3+b3+c3-3abc.

本题实际上就是用因式分解的方法证明前面给出的公式(6).

分析我们已经知道公式

(a+b)3=a3+3a2b+3ab2+b3

的正确性,现将此公式变形为

a3+b3=(a+b)3-3ab(a+b).

这个式也是一个常用的公式,本题就借助于它来推导.

解原式=(a+b)3-3ab(a+b)+c3-3abc

=[(a+b)3+c3]-3ab(a+b+c)

=(a+b+c)[(a+b)2-c(a+b)+c2]-3ab(a+b+c)

=(a+b+c)(a2+b2+c2-ab-bc-ca).

说明公式(6)是一个应用极广的公式,用它可以推出很多有用的结论,例如:我们将公式(6)变形为

a3+b3+c3-3abc

显然,当a+b+c=0时,则a3+b3+c3=3abc;当a+b+c>0时,则a3+b3+c3-3abc≥0,即a3+b3+c3≥3abc,而且,当且仅当a=b=c时,等号成立.

如果令x=a3≥0,y=b3≥0,z=c3≥0,则有

等号成立的充要条件是x=y=z.这也是一个常用的结论.

例3 分解因式:x15+x14+x13+…+x2+x+1.

分析这个多项式的特点是:有16项,从最高次项x15开始,x的次数顺次递减至0,由此想到应用公式an-bn来分解.

解因为

x16-1=(x-1)(x15+x14+x13+…x2+x+1),

所以

说明在本题的分解过程中,用到先乘以(x-1),再除以(x-1)的技巧,这一技巧在等式变形中很常用.

2.拆项、添项法

因式分解是多项式乘法的逆运算.在多项式乘法运算时,整理、化简常将几个同类项合并为一项,或将两个仅符号相反的同类项相互抵消为零.在对某些多项式分解因式时,需要恢复那些被合并或相互抵消的项,即把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符合相反的项,前者称为拆项,后者称为添项.拆项、添项的目的是使多项式能用分组分解法进行因式分解.

例4 分解因式:x3-9x+8.

分析本题解法很多,这里只介绍运用拆项、添项法分解的几种解法,注意一下拆项、添项的目的与技巧.

解法1 将常数项8拆成-1+9.

原式=x3-9x-1+9

=(x3-1)-9x+9

=(x-1)(x2+x+1)-9(x-1)

=(x-1)(x2+x-8).

解法2 将一次项-9x拆成-x-8x.

原式=x3-x-8x+8

=(x3-x)+(-8x+8)

=x(x+1)(x-1)-8(x-1)

=(x-1)(x2+x-8).

解法3 将三次项x3拆成9x3-8x3.

原式=9x3-8x3-9x+8

=(9x3-9x)+(-8x3+8)

=9x(x+1)(x-1)-8(x-1)(x2+x+1)

=(x-1)(x2+x-8).

解法4 添加两项-x2+x2.

原式=x3-9x+8

=x3-x2+x2-9x+8

=x2(x-1)+(x-8)(x-1)

=(x-1)(x2+x-8).

说明由此题可以看出,用拆项、添项的方法分解因式时,要拆哪些项,添什么项并无一定之规,主要的是要依靠对题目特点的观察,灵活变换,因此拆项、添项法是因式分解诸方法中技巧性最强的一种.

例5 分解因式:

(1)x9+x6+x3-3;

(2)(m2-1)(n2-1)+4mn;

(3)(x+1)4+(x2-1)2+(x-1)4;

(4)a3b-ab3+a2+b2+1.

解(1)将-3拆成-1-1-1.

原式=x9+x6+x3-1-1-1

=(x9-1)+(x6-1)+(x3-1)

=(x3-1)(x6+x3+1)+(x3-1)(x3+1)+(x3-1)

=(x3-1)(x6+2x3+3)

=(x-1)(x2+x+1)(x6+2x3+3).

(2)将4mn拆成2mn+2mn.

原式=(m2-1)(n2-1)+2mn+2mn

=m2n2-m2-n2+1+2mn+2mn

=(m2n2+2mn+1)-(m2-2mn+n2)

=(mn+1)2-(m-n)2

=(mn+m-n+1)(mn-m+n+1).

(3)将(x2-1)2拆成2(x2-1)2-(x2-1)2.

原式=(x+1)4+2(x2-1)2-(x2-1)2+(x-1)4

=[(x+1)4+2(x+1)2(x-1)2+(x-1)4]-(x2-1)2

=[(x+1)2+(x-1)2]2-(x2-1)2

=(2x2+2)2-(x2-1)2=(3x2+1)(x2+3).

(4)添加两项+ab-ab.

原式=a3b-ab3+a2+b2+1+ab-ab

=(a3b-ab3)+(a2-ab)+(ab+b2+1)

=ab(a+b)(a-b)+a(a-b)+(ab+b2+1)

=a(a-b)[b(a+b)+1]+(ab+b2+1)

=[a(a-b)+1](ab+b2+1)

=(a2-ab+1)(b2+ab+1).

说明(4)是一道较难的题目,由于分解后的因式结构较复杂,所以不易想到添加+ab-ab,而且添加项后分成的三项组又无公因式,而是先将前两组分解,再与第三组结合,找到公因式.这道题目使我们体会到拆项、添项法的极强技巧所在,同学们需多做练习,积累经验.

3.换元法

换元法指的是将一个较复杂的代数式中的某一部分看作一个整体,并用一个新的字母替代这个整体来运算,从而使运算过程简明清晰.

例6 分解因式:(x2+x+1)(x2+x+2)-12.

分析将原式展开,是关于x的四次多项式,分解因式较困难.我们不妨将x2+x看作一个整体,并用字母y来替代,于是原题转化为关于y的二次三项式的因式分解问题了.

解设x2+x=y,则

原式=(y+1)(y+2)-12=y2+3y-10

=(y-2)(y+5)=(x2+x-2)(x2+x+5)

=(x-1)(x+2)(x2+x+5).

说明本题也可将x2+x+1看作一个整体,比如今x2+x+1=u,一样可以得到同样的结果,有兴趣的同学不妨试一试.

例7 分解因式:

(x2+3x+2)(4x2+8x+3)-90.

分析先将两个括号内的多项式分解因式,然后再重新组合.

解原式=(x+1)(x+2)(2x+1)(2x+3)-90

=[(x+1)(2x+3)][(x+2)(2x+1)]-90

=(2x2+5x+3)(2x2+5x+2)-90.

令y=2x2+5x+2,则

原式=y(y+1)-90=y2+y-90

=(y+10)(y-9)

=(2x2+5x+12)(2x2+5x-7)

=(2x2+5x+12)(2x+7)(x-1).

说明对多项式适当的恒等变形是我们找到新元(y)的基础.

例8 分解因式:

(x2+4x+8)2+3x(x2+4x+8)+2x2.

解设x2+4x+8=y,则

原式=y2+3xy+2x2=(y+2x)(y+x)

=(x2+6x+8)(x2+5x+8)

=(x+2)(x+4)(x2+5x+8).

说明由本题可知,用换元法分解因式时,不必将原式中的元都用新元代换,根据题目需要,引入必要的新元,原式中的变元和新变元可以一起变形,换元法的本质是简化多项式.

例9分解因式:6x4+7x3-36x2-7x+6.

解法1 原式=6(x4+1)+7x(x2-1)-36x2

=6[(x4-2x2+1)+2x2]+7x(x2-1)-36x2

=6[(x2-1)2+2x2]+7x(x2-1)-36x2

=6(x2-1)2+7x(x2-1)-24x2

=[2(x2-1)-3x][3(x2-1)+8x]

=(2x2-3x-2)(3x2+8x-3)

=(2x+1)(x-2)(3x-1)(x+3).

说明本解法实际上是将x2-1看作一个整体,但并没有设立新元来代替它,即熟练使用换元法后,并非每题都要设置新元来代替整体.

解法2

原式=x2[6(t2+2)+7t-36]

=x2(6t2+7t-24)=x2(2t-3)(3t+8)

=x2[2(x-1/x)-3][3(x-1/x)+8]

=(2x2-3x-2)(3x2+8x-3)

=(2x+1)(x-2)(3x-1)(x+3).

例10 分解因式:(x2+xy+y2)-4xy(x2+y2).

分析本题含有两个字母,且当互换这两个字母的位置时,多项式保持不变,这样的多项式叫作二元对称式.对于较难分解的二元对称式,经常令u=x+y,v=xy,用换元法分解因式.

解原式=[(x+y)2-xy]2-4xy[(x+y)2-2xy].令x+y=u,xy=v,则

原式=(u2-v)2-4v(u2-2v)

=u4-6u2v+9v2

=(u2-3v)2

=(x2+2xy+y2-3xy)2

=(x2-xy+y2)2.

练习一

1.分解因式:

(2)x10+x5-2;

(4)(x5+x4+x3+x2+x+1)2-x5.

2.分解因式:

(1)x3+3x2-4;

(2)x4-11x2y2+y2;

(3)x3+9x2+26x+24;

(4)x4-12x+323.

3.分解因式:

(1)(2x2-3x+1)2-22x2+33x-1;

(2)x4+7x3+14x2+7x+1;

(3)(x+y)3+2xy(1-x-y)-1;

(4)(x+3)(x2-1)(x+5)-20.

1.运用公式法

八年级数学人教版上册整式的乘法(含答案)

第十四章 整式的乘法与因式分解 14.1整式的乘法 专题一 幂的性质 1.下列运算中,正确的是( ) A .3a 2-a 2=2 B .(a 2)3=a 9 C .a 3?a 6=a 9 D .(2a 2)2=2a 4 2.下列计算正确的是( ) A .· 622x x = B .·82x x = C .632)(x x -=- D .523)(x x = 3.下列计算正确的是( ) A .2a 2+a 2=3a 4 B .a 6÷a 2=a 3 C .a 6·a 2=a 12 D .( -a 6)2=a 12 专题二 幂的性质的逆用 4.若2a =3,2b =4,则23a+2b 等于( ) A .7 B .12 C .432 D .108 5.若2m=5,2n=3,求23m+2n的值. 专题三 整式的乘法 7.下列运算中正确的是( ) A .2325a a a += B .22(2)()2a b a b a ab b +-=-- C .23622a a a ?= D .222(2)4a b a b +=+ 8.若(3x 2-2x +1)(x +b )中不含x 2项,求b 的值,并求(3x 2-2x +1)(x +b )的值.

9.先阅读,再填空解题: (x +5)(x +6)=x 2+11x +30; (x -5)(x -6)=x 2-11x +30; (x -5)(x +6)=x 2+x -30; (x +5)(x -6)=x 2-x -30. (1)观察积中的一次项系数、常数项与两因式中的常数项有何关系?答:________. (2)根据以上的规律,用公式表示出来:________. (3)根据规律,直接写出下列各式的结果:(a +99)(a -100)=________;(y -80)(y -81)=________. 专题四 整式的除法 10.计算:(3x 3y -18x 2y 2+x 2y )÷(-6x 2y )=________. 11.计算:2362743 19132 )()(ab b a b a -÷-. 12.计算:(a -b )3÷(b -a )2+(-a -b )5÷(a +b )4. 状元笔记 【知识要点】 1.幂的性质 (1)同底数幂的乘法:n m n m a a a +=? (m ,n 都是正整数),即同底数幂相乘,底数不变,指数相加. (2)幂的乘方:()m n mn a a =(m ,n 都是正整数),即幂的乘方,底数不变,指数相乘. (3)积的乘方:()n n n ab a b =(n 都是正整数),即积的乘方,等于把积中的每一个因式分别 乘方,再把所得的幂相乘. 2.整式的乘法 (1)单项式与单项式相乘:把它们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式. (2)单项式与多项式相乘:就是用单项式去乘单项式的每一项,再把所得的积相加. (3)多项式与多项式相乘:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.

《-整式乘除与因式分解》知识点归纳及经典例题

第十五章 整式乘除与因式分解 知识点归纳: 一、幂的运算: 1、同底数幂的乘法法则:n m n m a a a +=?(n m ,都是正整数) 同底数幂相乘,底数不变,指数相加。注意底数可以是多项式或单项式。 如:532)()()(b a b a b a +=+?+ 2、幂的乘方法则:mn n m a a =)((n m ,都是正整数) 幂的乘方,底数不变,指数相乘。如:10253)3(=- 幂的乘方法则可以逆用:即m n n m mn a a a )()(== 如:23326)4()4(4== 3、积的乘方法则:n n n b a ab =)((n 是正整数)。积的乘方,等于各因数乘方的积。 如:(523)2z y x -=5101555253532)()()2(z y x z y x -=???- 4、同底数幂的除法法则:n m n m a a a -=÷(n m a ,,0≠都是正整数,且)n m φ 同底数幂相除,底数不变,指数相减。如:3334)()()(b a ab ab ab ==÷ 5、零指数; 10=a ,即任何不等于零的数的零次方等于1。 二、单项式、多项式的乘法运算: 6、单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。如:=?-xy z y x 3232 。 7、单项式乘以多项式,就是用单项式去乘多项式的每一项,再把所得的积相加, 即mc mb ma c b a m ++=++)((c b a m ,,,都是单项式)。如:)(3)32(2y x y y x x +--= 。 8、多项式与多项式相乘,用多项式的每一项乘以另一个多项式的每一项,再把所的的积相加。 9、平方差公式:22))((b a b a b a -=-+注意平方差公式展开只有两项 公式特征:左边是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数。右边是相同项的平方减去相反项的平方。 如:))((z y x z y x +--+ = 10、完全平方公式:2222)(b ab a b a +±=± 完全平方公式的口诀:首平方,尾平方,首尾2倍中间放,符号和前一个样。

八年级上数学整式乘法题

八年级数学(整式的乘法) 一.选择题(共11小题每题3分) 1.下列计算结果正确的是() A.(3x4)2=6x8 B.(﹣x4)3=﹣x12 C.(﹣4a3)2=4a6 D.〔(﹣a)4〕5=﹣a20 2.下列计算正确的是() A.a2+a3=a5B.(2a)2=4a C.a2a3=a5 D.(a2)3=a5 3.如果□×3a=﹣3a2b,则“□”内应填的代数式是() A.﹣ab B.﹣3ab C.a D.﹣3a 4.计算[(﹣a)2]3(a3)2所得结果为() A.a10 B.﹣a10 C.a12 D.﹣a12 5.已知单项式9a m+1b n+1与﹣2a2m﹣1b2n﹣1的积与5a3b6是同类项,求m n的值()A.4 B.3 C.2 D.1 6.355、444、533的大小关系是() A.355<444<533B.444<355<533C.533<444<355D.533<355<444 7.若m,n均为正整数且2m2n=32,(2m)n=64,则mn+m+n的值为()A.10 B.11 C.12 D.13 8.已知a=8131,b=2741,c=961,则a,b,c的大小关系是() A.a>b>c B.a>c>b C.a<b<c D.b>c>a 9.下列计算正确的是() A.﹣(a﹣b)=﹣a﹣b B.a2+a2=a4C.a2a3=a6 D.(ab2)2=a2b4

10.下列运算正确的是() A.3m﹣2m=1 B.(m3)2=m6C.(﹣2m)3=﹣2m3D.m2+m2=m4 11.已知4×8m×16m=29,则m的值是() A.1 B.4 C.3 D.2 二.填空题(共3小题每题3分) 12.若|a﹣2|+(b+)2=0,则a11b11= . 13.(1)a4a2a= ; (2)(﹣2x2y)3= ; (3)(a3)2+a6= . 14.若2m=5,2n=6,则2m+2n= 若4a=2a+5,求(a﹣4)2005= . 三.解答题(共10小题) 15.计算:(12分) (1)34×36(2)a2×(﹣a)2(3)(3ab7)2(4)(x﹣y)3(x﹣y)2(5)(x2)5×(﹣x)5 (6)(m4)2+m5m3+(﹣m)4m4. 16.计算:(9分) (1)(﹣x)x2(﹣x)6(2)(y4)2+(y2)3y2 (3)a5(﹣a)3+(﹣2a2)4. 17.计算:(12分) (1)34×36= (2)xx7= (3)a2a4+(a3)2= (4)(﹣2ab3c2)4=

整式的乘法与因式分解培优

第二章 整式的乘法 【知识点归纳】 1.同底数幂相乘, 不变, 相加。a n.a m = (m,n 是正整数) 2.幂的乘方, 不变, 相乘。(a n )m = (m,n 是正整数) 3.积的乘方,等于把 ,再把所得的幂 。 (ab)n = (n 是正整数) 4.单项式与单项式相乘,把它们的 、 分别相乘。 5.单项式与多项式相乘,先用单项式 ,再把所得的积 ,a (m+n )= 6.多项式与多项式相乘,先用一个多项式的每一项分别乘 ,再把所得的积 ,(a+b )(m+n )= 。 7.平方差公式,即两个数的 与这两个数的 的积等于这两个数的平方差(a+b )(a-b )= 8.完全平方公式,即两数和(或差)的平方,等于它们的 ,加(或减)它们的积的 。(a+b )2= ,(a-b )2= 。 9.公式的灵活变形: (a+b )2+(a-b )2= ,(a+b )2-(a-b )2= , a 2+b 2=(a+b )2- , a 2+ b 2=(a-b )2+ ,(a+b )2=(a-b )2+ , (a-b )2=(a+b )2- 。 【例1】若代数式22(26)(2351)x ax y bx x y +-+--+-的值与字母x 的取值无关,求代数 式234a -+2221 2(3)4b a b --的值 【例2】已知两个多项式A 和B , 43344323,321,n n n A nx x x x B x x x nx x +-+=+-+-=-++--试判断是否存在整数n ,使A B -是五次六项式?

【例3】已知,,x y z 为自然数,且x y <,当1999,2000x y z x +=-=时,求x y z ++的所有值中最大的一个是多少? 【例4】如果代数式535ax bx cx ++-当2x =-时的值为7,那么当2x =时,该式的值是 . 【例5】已知a 为实数,且使323320a a a +++=,求199619971998(1)(1)(1)a a a +++++的值. 【例6】(1)已知2x+2=a ,用含a 的代数式表示2x ; (2)已知x=3m +2,y=9m +3m ,试用含x 的代数式表示y . 【例7】我们知道多项式的乘法可以利用图形的面积进行解释,如(2a+b )(a+b )=2a 2+3ab+b 2就能用图1或图2等图形的面积表示: (1)请你写出图3所表示的一个等式: . (2)试画出一个图形,使它的面积能表示:(a+b )(a+3b )=a 2+4ab+3b 2.

新人教版八年级数学上册第14章《整式的乘法》计算专题

14.1—14.2整式乘法运算题 一、直接写出答案。 (1)x2·x3 =(2)a·a6= ?(3)-x5·x3·x10= ? (4)mx-2·m2-x=(5)10x×1000= (6)(-2)×(-2)5×(-2)5= (7)(103)6= (8)(a4)2 =(9)(a m)10= (10)-(x4)5= (11)(a2)3·a5 = (12)-(-x2)2= (13)(2a)2= (14)(-5b)3=(15)(x2y)3= (16)(-3m2)3=(17)(2ab2)3 = (18)-(x2y3z5)2= (19)-8m2n3·3m4n5= (20)3x2·(-6xy2)= (21)(-5a2b)(-4a)= (22)3x2·6x2= (23)4y·(-2xy2)= (24)(-3x)2·5x3=(25)x8 ÷x3= (26)(ab)5÷(ab)2=(27)(-a)12÷(-a)5= (28)m8÷m2=(29)(xy)6÷(xy)3= (30)n7÷(-n5)= (31)-8a2b3÷ 6ab2= (32)(6×109)÷(2×105)= (33)(4×103)×(5×105)= (34)(_____-4b)(_____+4b)=9a2-16b2 (35)(_____-2x)(_____-2x)=4x2-25y2 二、计算(请写出过程) 1.a2·(-a)5·(-3a)3 2.[(a m)n]p 3.(-mn)2(-m2n)3

4.(-3ab)·(-a 2c)·6ab 2 5.(-a b)3·(-a 2 b)·(-a 2b 4c)2 6. (-4a)·(2a 2+3a-1) 7. (-2a b2)3·(3a 2b-2ab-4b 2) 8.(3m-n)(m -2n). 9.(x+2y)(5a+3b). 10.5x (x 2+2x+1)-(2x+3)(x-5) 11.-ab 2(3a 2b –abc -1) 12.)2()1015(23xy xy y x -÷- 13.(12x2-10xy 2)÷4xy 14 . 7m (4m 2p) 2 ÷7m 2 15.)2 1()6 12 375.0(234232y x y x y x y x -÷--

整式的乘法与因式分解专题训练

整式的乘法和因式分解 一、整式的运算 1、已知a m =2,a n =3,求a m +2n 的值; 2、若32=n a ,则n a 6= . 3、若125512=+x ,求x x +-2009)2(的值。 4、已知2x +13x 1=144,求x ; 5.2005200440.25?= . 6、( 23 )2002×(1.5)2003÷(-1)2004 =________。 7、如果(x +q )(3x 4)的结果中不含x 项(q 为常数),求结果中的常数项 8、设m 2+m 1=0,求m 3+2m 2+2010的值 二、乘法公式的变式运用 1、位置变化,x y y x 2、符号变化,x y x y 3、指数变化,x 2y 2x 2y 24 4、系数变化,2a b 2a b 5、换式变化,xy z m xy z m 6、增项变化,x y z x y z 7、连用公式变化,x y x y x 2y 2

8、逆用公式变化,x y z 2 x y z 2 三、乘法公式基础训练: 1、计算 (1)1032 (2)1982 2、计算 (1)a b c 2 (2)3x y z 2 3、计算 (1)a 4b 3c a 4b 3c (2)3x y 23x y 2 4、计算 (1)19992-2000×1998 (2)2 2007 200720082006 -?. 四、乘法公式常用技巧 1、已知a 2b 213,ab 6,求a b 2,a b 2的值。 变式练习:已知a b 27,a b 24,求a 2b 2,ab 的值。 2、已知2=+b a ,1=ab ,求22b a +的值。 变式练习:已知8=+b a ,2=ab ,求2)(b a -的值。

八年级上数学整式乘法题

八年级数学(整式的乘法) 一.选择题(共 11 小题每题 3 分) 1.下列计算结果正确的是( ) A. (3x 4) 2=6X 8 B .(- x 4) 3= - x 12 C. (-4a 3) 2=4a 6 D .〔(- a ) 4〕5二-a 20 2. 下列计算正确的是( ) A . a 2+a 3=a 5 B .( 2a ) 2=4a C . a 2?a 3=a 5 D .( a 2) 3=a 5 3. 如果A 3a= - 3a 2b ,则“□内应填的代数式是( ) 4. 计算 [ (- a ) 2] 3?( a 3) 2所得结果为( ) 5. 已知单项式9a m+b n+1与-2a 2m-1b 2n - 1的积与5a 3b 6是同类项,求m i 的值( ) A . 4 B . 3 C . 2 D . 1 6. 355、444、533 的大小关系是( ) A. 355V 444V 533 B. 444V 355V 533 C. 533v 444v 355 D. 533v 355v 444 7.若 m , i 均为正整数且 2m ?2i =32,( 2m ) B . 11 C . 12 D . 13 8. 已知 a=8131, b=2741, C =961,则 a , b , A . a > b > c B . a > c > b C. a v b v c 9. 下列计算正确的是( ) A . -( a - b ) =- a - b B . 224 a+a=a C . 10 . 下列运算正确的是( ) :64,贝卩mn+m+的值为( )A. 10 c 的大小关系是( ) D. b >c >a 2 3 6 2 2 2 4 a?a=a D .( ab ) =ab A .- ab B .- 3ab C . a D .- 3a A . a 10 B 10 -a C . a 12 D 12 -a

人教版八年级数学上册整式的乘法及因式分解章节测试题

整式的乘法及因式分解 章节测试题 考试时间:90分钟 满分:100分 一、选择题(每小题3分,共24分) 1. 11()4-等于( ) A. 14- B. -4 C. 4 D. 14 2. 计算232()x y xy ÷,结果是( ) A. xy B. y C. x D. 2xy 3. 下列式子计算正确的是( ) A. 660a a ÷= B. 236(2)6a a -=- C. 222()2a b a ab b --=-+ D. 22()()a b a b a b ---+=- 4. 下列从左到右的变形,属于分解因式的是( ) A. 2(3)(3)9a a a -+=- B. 25(1)5x x x x +-=+- C. 2(1)a a a a +=+ D. 32x y x x y =?? 5. 把2288x y xy y -+分解因式, 正确的是( ) A. 22(44)x y xy y -+ B. 22(44)y x x -+ C. 22(2)y x - D. 22(2)y x + 6. 下列各式能用平方差公式计算的是( ) A. (2)(2)a b b a +- B. 11(1)(1)22 x x -+-- C. ()(2)a b a b +- D. (21)(21)x x --+ 7. 若二项式2 41a ma ++是一个含a 的完全平方式,则m 等于( ) A. 4 B. 4或-4 C. 2 D. 2或-2 8. 如图,两个正方形边长分,a b ,如果6a b ab +==, 则阴影部分的面积为( ) A. 6 B. 9 C. 12 D .18 二、填空题(每小题2分,共20分)

新人教版八年级数学上册整式的乘法计算专题

14.1—14.2整式乘法运算题 一、直接写出答案。 (1)x2·x3 = (2)a·a6 = (3)- x5·x3·x10 = (4)m x-2·m2-x = (5)10x×1000= (6)(-2)×(-2)5×(-2)5 = (7)(103)6 = (8)(a4)2 = (9)(a m)10= (10)-(x4)5= (11)(a2)3·a5 = (12)-(-x2)2= (13)(2a)2 = (14)(-5b)3= (15)(x2y)3= (16)(-3m2)3= (17)(2ab2)3 = (18)-(x2y3z5)2= (19)-8m2n3·3m4n5 = (20)3x2·(-6xy2)= (21)(-5a2b)(-4a)= (22)3x2·6x2= (23)4y·(-2xy2)= (24)(-3x)2·5x3= (25)x8 ÷x3= (26)(ab)5÷(ab)2= (27)(-a)12÷(-a)5= (28)m8÷m2= (29)(xy)6÷(xy)3= (30)n7÷(-n5)= (31)-8a2b3 ÷ 6ab2= (32)(6×109)÷(2×105)= (33)(4×103)×(5×105)= (34)(_____-4b)(_____+4b)=9a2-16b2 (35)(_____-2x)(_____-2x)=4x2-25y2 二、计算(请写出过程) 1.a2·(-a)5·(-3a)3 2.[(a m)n]p 3.(-mn)2(-m2n)3

4.(-3ab)·(-a 2c)·6ab 2 5.(-ab)3·(-a 2b)·(-a 2b 4c)2 6. (-4a)·(2a 2+3a-1) 7. (-2ab 2)3·(3a 2b-2ab-4b 2) 8.(3m-n)(m-2n). 9.(x+2y)(5a+3b). 10.5x(x 2+2x+1)-(2x+3)(x-5) 11.-ab 2(3a 2b –abc-1) 12.)2()1015(23xy xy y x -÷- 13.(12x 2-10xy 2)÷4xy 14. 7m (4m 2p )2÷7m 2 15.)2 1()612375.0(234232y x y x y x y x -÷-- 16.(2x +2)(2x -2) 17.(a+3b )(a-3b )

(完整版)整式的乘法与因式分解知识点

整式乘除与因式分解 一.知识点 (重点) 1.幂的运算性质: a m ·a n =a m +n (m 、n 为正整数) 同底数幂相乘,底数不变,指数相加. 2.() n m a = a mn (m 、n 为正整数) 幂的乘方,底数不变,指数相乘. 3. ()n n n b a ab = (n 为正整数) 积的乘方等于各因式乘方的积. 练习: (1)y x x 2325? (2))4(32 b ab -?- (3)a ab 23? (4)222z y yz ? (5))4()2(2 32xy y x -? (6)22253)(63 1ac c b a b a -?? 4.n m a a ÷= a m -n (a ≠0,m 、n 都是正整数,且m >n ) 同底数幂相除,底数不变,指数相减. 例:(1)x 8÷x 2 (2)a 4÷a (3)(a b )5÷(a b )2 (4)(-a )7÷(-a )5 (5) (-b ) 5÷(-b )2 5.零指数幂的概念: a 0=1 (a ≠0) 任何一个不等于零的数的零指数幂都等于l . 例:若1)32(0=-b a 成立,则b a ,满足什么条件? 6.负指数幂的概念: a -p =p a 1 (a ≠0,p 是正整数) 任何一个不等于零的数的-p (p 是正整数)指数幂,等于这个数的p 指数幂的倒数. 也可表示为:p p n m m n ? ?? ??=? ? ? ??-(m ≠0,n ≠0,p 为正整数)

单项式相乘,把系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式. 例:(1)223123abc abc b a ?? (2)4233)2()2 1 (n m n m -?- 8.单项式与多项式的乘法法则: 单项式与多项式相乘,用单项式和多项式的每一项分别相乘,再把所得的积相加. 例:(1))35(222b a ab ab + (2)ab ab ab 2 1)232(2?- (3))32()5(-2 2 n m n n m -+? (4)xyz z xy z y x ?++)(23 2 2 9.多项式与多项式的乘法法则: 多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加. 例:(1))6.0(1x x --)( (2)))(2(y x y x -+ (3) 2)2n m +-( 练习: 1.计算2x 3·(-2xy)(- 1 2 xy) 3的结果是 2.(3×10 8)×(-4×10 4)= 3.若n 为正整数,且x 2n =3,则(3x 3n ) 2的值为 4.如果(a n b ·ab m ) 3=a 9b 15,那么mn 的值是 5.-[-a 2(2a 3-a)]= 6.(-4x 2+6x -8)·(- 12 x 2 )= 7.2n(-1+3mn 2 )= 8.若k(2k -5)+2k(1-k)=32,则k = 9.(-3x 2)+(2x -3y)(2x -5y)-3y(4x -5y)= 10.在(ax 2+bx -3)(x 2-1 2 x +8)的结果中不含x 3和x 项,则a = ,b = 11.一个长方体的长为(a +4)cm ,宽为(a -3)cm ,高为(a +5)cm ,则它的表面积为 ,体积为 。 12.一个长方形的长是10cm ,宽比长少6cm ,则它的面积是 ,若将长方 形的长和都扩大了2cm ,则面积增大了 。

人教版八年级上册数学 整式的乘法与因式分解专题练习(解析版)

人教版八年级上册数学 整式的乘法与因式分解专题练习(解析版) 一、八年级数学整式的乘法与因式分解选择题压轴题(难) 1.在矩形ABCD 中,AD =3,AB =2,现将两张边长分别为a 和b (a >b )的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为S 1,图2中阴影部分的面积为S 2.则S 1﹣S 2的值为( ) A .-1 B .b ﹣a C .-a D .﹣b 【答案】D 【解析】 【分析】 利用面积的和差分别表示出S 1、S 2,然后利用整式的混合运算计算它们的差. 【详解】 ∵1()()()(2)(2)(3)S AB a a CD b AD a a a b a =-+--=-+-- 2()()()2(3)()(2)S AB AD a a b AB a a a b a =-+--=-+-- ∴21S S -=(2)(2)(3)a a b a -+--2(3)()(2)a a b a ----- 32b b b =-+=- 故选D. 【点睛】 本题考查了整式的混合运算,计算量比较大,注意不要出错,熟练掌握整式运算法则是解题关键. 2.已知x 2+4y 2=13,xy=3,求x+2y 的值,这个问题我们可以用边长分别为x 和y 的两种正方形组成一个图形来解决,其中x>y ,能较为简单地解决这个问题的图形是( ) A . B . C . D . 【答案】A 【解析】 ∵222(2)44x y x y xy +=++, ∴若用边长分别为x 和y 的两种正方形组成一个图形来解决(其中x y >), 则这个图形应选A ,其中图形A 中,中间的正方形的边长是x ,四个角上的小正方形边长是y ,四周带虚线的每个矩形的面积是xy .

人教版八年级数学上册整式的乘法

初中数学试卷 金戈铁骑整理制作 整式的乘法 例1. 计算:(1)y y ?3;(2)1 2+?m m x x ;(3)6 2 a a ?- 例2. 计算:(1)() 3 310;(2)()2 3 x ; (3)()5 m x - ;(4)()5 3 2a a ? 例3. 计算:(1)()6 xy ;(2)2 31?? ? ??p ;(3)() 2323y x - 例4. 计算:(1)( )??? ? ??-2 2 3 2xy y x ;(2)() 223212xz yz x xy -??? ? ??-? 例5. 计算(1)?? ? ?? +-+ ?-1312322 y xy x xy ; (2)() ()ab b ab ab -?+-432 例6. 计算:()()y x y x 342++ A 档 1.b 3·b 3 的值是( ). (A)b 9 (B)2b 3 (C)b 6 (D)2b 6 2.(-c)3·(-c)5 的值是( ). (A)-c 8 (B)(-c)15 (C)c 15 (D)c 8 3.下列计算正确的是( ). (A)(x 2)3=x 5 (B)(x 3)5 =x 15 (C)x 4·x 5=x 20 (D)-(-x 3)2=x 6 4.(-a 5)2+(-a 2)5 的结果是( ). (A)0 (B)-2a 7 (C)2a 10 (D)-2a 10 5.下列计算正确的是( ). (A)(xy)3=xy 3 (B)(-5xy 2)2 =-5x 2y 4 (C)(-3x 2)2=-9x 4 (D)(-2xy 2)3=-8x 3y 6 6.若(2a m b n )3=8a 9b 15 成立,则( ). (A)m =6,n =12 (B)m =3,n =12 (C)m =3,n =5 (D)m =6,n =5 7.下列计算中,错误的个数是( ). ①(3x 3)2 =6x 6 ②(-5a 5b 5)2 =-25a 10b 10 ③333 8 )32(x x -=- ④(3x 2y 3)4=81x 6y 7

八年级上册数学《整式的乘法与因式分解》整式乘法

整式的乘法 有疑问的题目请发在“51加速度学习网”上,让我们来为你解答 51加速度学习网整理一、本节学习指导 整式的乘法是整数运算的主要内容,是进一步学习因式分解、分式、方程以及其它数学内容的基础,学习过程中只要能理解并运用数学常用方法“整体代入”便可学好本节,本节同学们要多做练习,达到很多整式乘法都能口算为止。本节有配套免费学习视频。 二、知识要点 1、单项式乘法法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。 注意:①积的系数等于各因式系数积,先确定符号,再计算绝对值。这时容易出现的错误的是,将系数相乘与指数相加混淆; ②相同字母相乘,运用同底数的乘法法则; ③只在一个单项式里含有的字母,要连同它的指数作为积的一个因式; ④单项式乘法法则对于三个以上的单项式相乘同样适用; ⑤单项式乘以单项式,结果仍是一个单项式。 加速度学习网我的学习也要加速

加速度学习网 我的学习也要加速 2、单项式与多项式相乘 单项式乘以多项式,是通过乘法对加法的分配律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。 注意:①单项式与多项式相乘,积是一个多项式,其项数与多项式的项数相同; ②运算时要注意积的符号,多项式的每一项都包括它前面的符号; ③在混合运算时,要注意运算顺序。 3、多项式与多项式相乘 多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得的积相加。 注意:①多项式与多项式相乘要防止漏项,检查的方法是:在没有合并同类项之前,积的项数应等于原两个多项式项数的积; ②多项式相乘的结果应注意合并同类项; ③对含有同一个字母的一次项系数是1的两个一次 二项式相乘 2 ()()()x a x b x a b x ab ++=+++,其二次项系数为1,一次项系数等于两个因式中常数 项的和,常数项是两个因式中常数项的积。对于一次项系数不为1的两个一次二项式(mx+a )和(nx+b )相乘可以得2 ()()()m x a nx b m nx m b m a x ab ++=+++

2013年秋新人教版八年级上14.1整式的乘法练习题

14.1整式的乘法单元练习题 一、选择题 1、计算下列各式结果等于54 x 的是( ) A 、2 25x x ? B 、2 2 5x x + C、x x +35 D、x x 354 + 2、下列计算错误的是( ). A .(-2x)3=-2x 3 B .-a 2·a=-a 3 C .(-x)9+(-x)9=-2x 9 D .(-2a 3)2=4a 6 3、下面是某同学的作业题:○ 13a+2b=5ab ○24m 3 n-5mn 3 =-m 3 n ○35 2 36)2(3x x x -=-? ○ 44a 3b ÷(-2a 2b)=-2a ○5(a 3)2=a 5 ○6(-a)3÷(-a)=-a 2 其中正确的个数是( ) A 、1 B 、2 C 、3 D 、4 4、若(2x -1)0 =1,则( ). A .x≥12- B .x≠12- C .x≤12 - D .x≠1 2 5、若(x x -2 +m )(x -8)中不含x 的一次项,则m 的值为( ) A 、8 B 、-8 C 、0 D 、8或-8 6、化简2 )2()2(a a a --?-的结果是( ) A .0 B .22a C .26a - D .2 4a - 7、下列各式的积结果是-3x 4y 6 的是( ). A .213x - ·(-3xy 2)3 B .21()3x -·(-3xy 2)3 C .213x -·(-3x 2y 3)2 D .21 ()3 x -·(-3xy 3)2 8、如果a 2m -1 ·a m +2 =a 7 ,则m 的值是( ). A .2 B .3 C .4 D .5 9、210 +(-2)10 所得的结果是( ). A .211 B .-211 C .-2 D .2 10、计算( 32)2003×1.52002×(-1)2004 的结果是( ) A 、32 B 、23 C 、-3 2 D 、- 2 3 11、(-5x)2 ·5 2xy 的运算结果是( ). A 、10y x 3 B 、-10y x 3 C 、-2x 2 y D 、2x 2 y 12、(x -4)(x +8)=x 2 +mx +n 则m ,n 的值分别是( ). A .4,32 B .4,-32 C .-4,32 D .-4,-32 13、当( ) mn m n b 6-=-成立,则( ) A 、m 、n 必须同时为正奇数 B 、m 、n 必须同时为正偶数 C 、m 为奇数 D 、m 为偶数。 14、()() 1 333--?+-m m 的值是( ) A 、1 B 、-1 C 、0 D 、() 1 3+-m

整式的乘法与因式分解知识点

整式乘除与因式分解 专项复习 一.知识点 (重点) 幂的运算性质: a m ·a n =a m +n (m 、n 为正整数) 同底数幂相乘,底数不变,指数相加. 例1:(-2a )2(-3a 2)3=________. 2.()n m a = a mn (m 、n 为正整数) 幂的乘方,底数不变,指数相乘. 例2: (-a 5)5=____________. 3. ()n n n b a ab = (n 为正整数) 积的乘方等于各因式乘方的积. 例3:(-a 2b )3=___________. 练习: (1)y x x 2325? (2))4(32b ab -?- (3)a ab 23? (4)222z y yz ? (5))4()2(232xy y x -? 4.n m a a ÷= a m -n (a ≠0,m 、n 都是正整数,且m >n ) 同底数幂相除,底数不变,指数相减. 例:(1)x 8÷x 2 (2)a 4÷a (3)(a b )5÷(a b )2 (4)(-a )7÷(-a )5 5.零指数幂的概念: a 0=1 (a ≠0) 任何一个不等于零的数的零指数幂都等于l .

例4:若1)32(0=-b a 成立,则b a ,满足什么条件? 6.负指数幂的概念: a -p =p a 1 (a ≠0,p 是正整数) 任何一个不等于零的数的-p (p 是正整数)指数幂,等于这个数的p 指数幂的倒数. 也可表示为:p p n m m n ??? ??=??? ??-(m ≠0,n ≠0,p 为正整数) 7.单项式的乘法法则: 单项式相乘,把系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式. 例5:(1)223123abc abc b a ?? (2 423)2()n m n -? 8.单项式与多项式的乘法法则: 单项式与多项式相乘,用单项式和多项式的每一项分别相乘,再把所得的积相加. 例6:(1))35(222b a ab ab + (2)ab ab ab 2 1)232(2?- 9.多项式与多项式的乘法法则: 多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加. 例7:(1) )6.0(1x x --)( (2)))(2(y x y x -+ (3)2)2n m +-( 练习: 1.计算2x 3·(-2xy)(-12 xy) 3的结果是 2.(3×10 8)×(-4×10 4)= 3.若n 为正整数,且x 2n =3,则(3x 3n ) 2的值为

初中数学人教版八年级上册14.1 整式的乘法教案

初中数学人教版八年级上册实用资料 14.1 整式的乘法(第1课时) 教学目标 1.探索并理解同底数幂的乘法法则,并能运用其熟练地进行运算; 2.运用同底数幂的乘法法则解决一些简单实际问题,体会数式通性的思想方法. 教学重点 同底数幂的乘法法则. 教学难点 正确理解与推导同底数幂的乘法法则. 一、创设情景,明确目标 七年级的时候我们学习过整式的加减,a2+2a2同学们肯定会计算,因为它们是同类项,相同字母的指数相同,当指数不一样的时候还能计算吗?如a2+a3?如果我们把加法转化为乘法,a2·a3它能计算吗?它等于多少呢?要想解开这个疑惑的话就认真学习第十五章的第一节同底数幂的乘法,相信学完以后都能解开谜底了. 二、自主学习,指向目标 自学教材第95页至96 页,思考下列问题: 1.回顾乘法与幂的相关知识: ①a n的意义是n个a相乘,我们把这种运算叫做乘方,乘方的结果叫幂,a 叫做底数,n是指数; 24=(2) ×(2)× (2)×(2); 10×10×10×10×10=105 ②指出下列幂的底数和指数: (-a)2底数为-a,指数为2;a2底数为a,指数为2; (x-y)3底数为x-y,指数为3;_(y-x)n底数为y-x,指数为n; 2. 同底数幂的乘法法则是同底数幂相乘,底数不变,指数相加,即:a m·a n =a(m+n)(m,n都是正整数). 3. 同底数幂乘法法则推导的依据是乘方的意义. 三、合作探究,达成目标 探究点一探究同底数幂的乘法法则的推导 活动一:阅读教材第95页,思考并完成下列问题: (1) 思考:乘方的意义是什么?(即a m表示什么?) (相同因数积的形式,即m个a相乘.) (2)根据乘方的意义填空,看看计算结果有什么规律: 23×22=[(2)×(2) ×(2)]×[(2)×(2) ]=2(5)

整式乘法与因式分解专题复习

整式的乘法与因式分解专题复习 一、知识点总结: 1、 单项式的概念:由数与字母的乘积构成的代数式叫做单项式。单独的一个数或一个字母也是单项式。单项式的数字因数叫做单项式的系数,字母指数和叫单项式的次数。 如:bc a 22-的系数为2-,次数为4,单独的一个非零数的次数是0。 2、 多项式:几个单项式的和叫做多项式。多项式中每个单项式叫多项式的项,次数最高项的次数叫多项式的次数。 如:122++-x ab a ,项有2a 、ab 2-、x 、1,二次项为2a 、ab 2-,一次项为x ,常数项为1,各项次数分别为2,2,1,0,系数分别为1,-2,1,1,叫二次四项式。 3、 整式:单项式和多项式统称整式。 注意:凡分母含有字母代数式都不是整式。也不是单项式和多项式。 4、 同底数幂的乘法法则:m n m n a a a +=(n m ,都是正整数) 同底数幂相乘,底数不变,指数相加。注意底数可以是多项式或单项式。 如:235()()()a b a b a b ++=+ 5、 幂的乘方法则:mn n m a a =)((n m ,都是正整数) 幂的乘方,底数不变,指数相乘。如:10253)3(=- 幂的乘方法则可以逆用:即m n n m mn a a a )()(== 如:23326)4()4(4== 6、 积的乘方法则:n n n b a ab =)((n 是正整数) 积的乘方,等于各因数乘方的积。 如:(523)2z y x -=5 101555253532)()()2(z y x z y x -=???- 7、 同底数幂的除法法则:n m n m a a a -=÷(n m a ,,0≠都是正整数,且)n m 同底数幂相除,底数不变,指数相减。如:3 334)()()(b a ab ab ab ==÷ 8、 零指数和负指数; 10=a ,即任何不等于零的数的零次方等于1。 p p a a 1=-(p a ,0≠是正整数),即一个不等于零的数的p -次方等于这个数的p 次方的倒数。

整式的乘除与因式分解知识点归纳

整 式 的 乘 除 及 因 式 分 解 知识点归纳: 1、单项式的概念:由数与字母的乘积构成的代数式叫做单项式。单独的一个数或一个字母也是单项式。单项式的数字因数叫做单项式的系数,字母指数和叫单项式的次数。 如:bc a 22-的 系数为2-,次数为4,单独的一个非零数的次数是0。 2、多项式:几个单项式的和叫做多项式。多项式中每个单项式叫多项式的项,次数最高项的次数叫多项式的次数。 如:122++-x ab a ,项有2a 、ab 2-、x 、1,二次项为2a 、ab 2-,一次项为x ,常数项为1,各项次数分别为2,2,1,0,系数分别为1,-2,1,1,叫二次四项式。 3、整式:单项式和多项式统称整式。 注意:凡分母含有字母代数式都不是整式。也不是单项式和多项式。 5、同底数幂的乘法法则:n m n m a a a +=?(n m ,都是正整数) 同底数幂相乘,底数不变,指数相加。注意底数可以是多项式或单项式。如:________3=?a a ;________32=??a a a 532)()()(b a b a b a +=+?+,逆运算为: 6、幂的乘方法则:mn n m a a =)((n m ,都是正整数) 幂的乘方,底数不变,指数相乘。如:10253)3(=- 幂的乘方法则可以逆用:即m n n m mn a a a )()(== 如:23326)4()4(4== 例如:_________)(32=a ;_________)(25=x ;()334)()(a a = 7、积的乘方法则:n n n b a ab =)((n 是正整数)

积的乘方,等于各因数乘方的积。 如:(523)2z y x -=5101555253532)()()2(z y x z y x -=???- ________)(3=ab ;________)2(32=-b a ;________)5(223=-b a 8、同底数幂的除法法则:n m n m a a a -=÷(n m a ,,0≠都是正整数,且)n m 同底数幂相除,底数不变,指数相减。 如:3334)()()(b a ab ab ab ==÷ ________3=÷a a ;________210=÷a a ;________55=÷a a 9、零指数和负指数; 10=a ,即任何不等于零的数的零次方等于1。 p p a a 1=-(p a ,0≠是正整数),即一个不等于零的数的p -次方等于这个数的p 次方的倒数。 如:8 1)21(233==- 10、科学记数法:如:0.00000721=7.21610-?(第一个不为零的数前面有几个零就是负几次方) 11、单项式的乘法法则:单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。 注意: ①积的系数等于各因式系数的积,先确定符号,再计算绝对值。 ②相同字母相乘,运用同底数幂的乘法法则。 ③只在一个单项式里含有的字母,则连同它的指数作为积的一个因式 ④单项式乘以单项式,结果仍是一个单项式。 如:=?-xy z y x 3232

相关文档