文档库 最新最全的文档下载
当前位置:文档库 › 激光焊接空间焊缝双CCD识别技术研究

激光焊接空间焊缝双CCD识别技术研究

激光焊接空间焊缝双CCD识别技术研究
激光焊接空间焊缝双CCD识别技术研究

激光焊接空间焊缝双CCD识别技术研究

陈新松

(北京航空制造工程研究所,北京100024)

摘 要:焊缝自动跟踪是实现激光焊接自动化的关键。本文设计了一种基于双CCD的焊缝识别系统,可以提取出焊缝特征点位置坐标,实现焊缝跟踪。实验证明,传感器具有较高的精度和可靠性,并对焊缝跟踪系统具有一定的普适性。

关键词:机器视觉 焊缝跟踪 激光焊接 三维测量

1 前言

在激光焊接过程中,激光光斑移动路径是由操作者编程确定的一条理想路径,而被焊零件在加工、装配过程产生的尺寸偏差,以及在焊接过程中由于受热产生的变形,使得焊缝实际轨迹与焊接接头的理想轨迹有一定的偏差,但激光聚焦光斑直径细小,所以焊缝轨迹的偏差对焊接过程稳定完成及焊接质量保证有直接的影响。

目前,在实际工作过程中通常采用示教法来解决这一问题,但示教法费时费力,而且受操作人员个人因素影响大,难以发挥激光焊接高效的特点。

焊缝自动跟踪技术就是针对这一问题发展起来的,对保证焊接质量、提高焊接效率、降低操作者劳动强度具有重要意义。随着激光技术的发展,激光焊接在国外已经越来越广泛地应用于包括汽车、航空、航天等多个领域,同时为了提高焊接质量及自动化程度,激光焊缝自动跟踪技术也越来越受到工业界的关注。

焊缝自动跟踪系统主要由三部分组成:跟踪传感器、控制系统、执行机构。其主要工作原理是:通过与焊接头同步运动的跟踪传感器检测待焊焊缝的位置,然后通过控制系统对所测的实际位置与焊接头运动的理论路径进行比较,根据比较的结果通过执行机构修正焊接头的位置,达到焊缝轨迹自动跟踪的目的,整个过程完全自动完成,可以有效的解决激光焊接过程中由于零件的加工、装夹误差、以及由于焊接产生的热变形等影响。对于一些形状比较复杂的焊缝,也可以大大降低焊接加工程序的编制难度。

实现焊缝跟踪的最基础性的研究就是待焊焊缝轨迹检测。特别是对复杂结构的三维焊缝,焊接过程的焊缝轨迹存在6个自由度参量的变化,而且激光焊接过程往往要求激光光束中心线始终处于工件表面法线方向,焊接过程又存在很强的光辐射,因此三维空间焊缝激光焊的焊缝跟踪显得尤为重要,这已成为激光焊接技术的发展方向,但激光焊接的焊缝轨迹检测比电弧焊要复杂的多。目前对激光焊接焊缝轨迹检测的研究,主要是采用视觉传感器对焊缝进行二维检测,通过控制系统进将检测到的数据进行处理,得到焊缝的实际二维轨迹坐标,但对影响焊接质量的另一个重要因素:焊接焦点位置的跟踪检测,并未进行研究。本文主要对双视觉传感器获取三维空间焊缝的技术进行探讨。

2 双视觉传感器获取三维空间焊缝的实现

图1 测量系统示意图

2.1 双视觉传感器获取三维空间焊缝的基本步骤是:

1)采用两台位置相对固定的摄像机各自从不同角度拍摄加工零件的相同区域;2)对所获得的两幅二维图像进行预处理得到焊缝轨迹的二维图像;3)在两幅二维图像中选取特征点进行匹配;4) 再根据这些匹配点利用三角测距原理计算出焊缝轨迹的三维坐标。由于激光焊接对焊缝的精度要求较高,所以对测量系统的整体测量精度提出了较高要求。

2.2 硬件系统构成及误差分析:

硬件系统主要由以下几部分构成:摄像头(包括镜头)两只;图像采集处理系统;光源和标定块;安装和固定装置。

图2 硬件误差分析示意图

硬件系统的主要误差分析如下:

见图2,设图像上的一个像素点 ,其坐标为:。

在实际中,对应着一个小区域的中心点坐标为。则像素点对应的小区域可以表示为:

其中,和 是从摄像头光轴与被测目标垂直时图像上的一点代表的区域沿x和y方向上的相对于中心点的偏移量。单摄像头无法对距离信息进行测量,需要双摄像头对其进行测量。

仅考虑单摄像头对实际中待测目标的x坐标和y坐标的确定,可知,用S表示单像素点对应着待测目标区域的面积,则S与摄像头的像平面的夹角θ有如下关系:

由此可知: 越大,像平面上的一个像素点对应着实际中的区域S越大。而摄像头光轴与被测目标垂直时的摄像头中获得的整幅图像对应着实际中的区域与摄像头的焦距和摄像头与待测目标的距离有关系,即单像素点代表的实际中区域面积 与摄像头的焦距?和物距d有如下关系(设图像上的单个像素点的面积为s):

由此可得:

忽略其它的各方面的误差,取 , ,则 ,才有可能满足测量精度的要求。对于摄像头,s越小越好,即为分辨率越高越好。另一方面,摄像头的固定误差会对测量精度有所影响。

从实际坐标到图像像素坐标之间的转移矩阵为

其中,K是摄像机的内参数矩阵,

、t ,分别是摄像头坐标系与世界坐标系的旋转变换关系和平移变换关系, , 摄像头的固定包括了

三个方向的平移(用表示)和 三个方向的旋转(用旋转阵 表示)。由于固定方面的误差,导致产生 的平移和

的旋转。

此种误差在实际测量中是不可避免的,需要在固定设备之后通过标定的方式进行消除,其误差大小由标定的精度和固定装置的稳定性决定。

2.3 软件系统设计:

软件系统是本项目的核心主体部分,在硬件能够满足精度要求的前提下,软件设计中要尽可能的提高测量精度,这样才能保证摄像头有更大的可动范围。软件设计的核心为图像处理的算法设计部分。

我们的软件系统主要完成两个方面的工作:

1) 利用给定的标定块,求取摄像机的内部参数和外部参数,并建立摄像机的模型。

2) 根据建立的摄像机模型,结合图像预处理单元和图像匹配单元,求取焊缝上点的三维坐标。

2.3.1软件系统构成

软件系统主要包括图像的预处理(图像的滤波,背景的祛除,焊缝的提取以及细化等),两幅图像直接的匹配与对应,摄像头参数的标定,空间曲线三维重构四个部分。

2.3.2硬件初始化及图像捕获单元

硬件初始化及图像捕获单元主要是完成成像设备的硬件设备驱动,同时捕获CCD上的高清晰度的图像,并将图像按照后期处理程序的要求进行相应的格式转换。

本单元中必须正确选择摄像头的驱动程序使得摄像头能够正常的工作,并通过将采集的图像信息进行显示的方式进行验证。还将通过抓取单幅图像与实时显示的图像进行比较确定摄像头单帧捕获图像的正确

性。具体框架如图6-1。

图3 硬件初始化及图像捕获单元原理框图

图4 图像预处理单元原理框图

2.3.3图像预处理单元

图像处理技术主要是对图像进行增强,改善或修改,提取图像中感兴趣的部分或特征,同时抑制次要部分,为图像分析做准备。针对焊接过程中存在着大量的飞溅烟尘电弧光及周围环境电磁、静电等产生的噪声干扰,对原始采集到的图像采用了平滑处理,阈值变换,锐化,边缘检测,细化一系列图像预处理。

2.3.3.1图像平滑处理模块

通常图像中存在三个方面的噪声:光电、电磁转换过程中引入的人为噪声;CCD摄像机采集图像的不稳定性;自然起伏性噪声,有物理量的不连续性或粒子性所引起,这类噪声又可分成热噪声,散粒噪声等。为了消除噪声,要对图像进行平滑处理。

2.3.3.2图像阈值变换模块

灰度的阈值变换可以将一幅灰度图像转换成黑白二值图像。本方案根据已经获得的焊缝图像,统计出焊缝和背景之间的转换阈值,即可通过变换实现二值化。

2.3.3.3图像锐化模块

图像平滑往往使图像中的边界、轮廓变的模糊,为了减少这类不利效果的影响,这就需要利用图像锐化技术,使图像的边缘变的清晰。本方案采用的是拉普拉斯锐化方法。

2.3.3.4图像边缘检测模块

在边缘检测的过程中,我们要精确地检测出图像的边缘点,但是噪声可能对图像造成了模糊,也可能出现孤立的边缘点。

精确的边缘检测有3点要求:不能漏检,既需要检测出图像中含有的所有的边缘点;不能过检,即不能检测出过多的边缘点;不能偏检,即检测出来的边缘点是需要检测的。

本方案采用的方法是根据当前像素及前面处理的像素来进行判断是否是边缘点。

2.3.4摄像头内参数、外参数标定单元

空间物体的三维位置信息与其在二维图像中的投影之间存在着一种几何变换关系,而这种关系是由摄像机的成像几何模型来决定。确定摄像机非线性模型的参数以后就能从捕获的二维图像出发,计算三维焊缝的位置、形状等几何信息,进而重建场景和识别焊缝轨迹。

2.3.5特征点的匹配单元

该流程主要分三个部分:第一,分别在两幅图里面寻找特殊的特征点;第二,利用区域匹配的方法配对两幅图像的特征点;第三,利用七点算法计算基础矩阵。

2.3.6图像匹配单元

主要是利用找到的图像中的特征点,计算出两个摄像机的坐标系的转换关系,进而求出焊缝的实际三维坐标。

3 三维坐标重建数据分析

下面的表格给出了测量的实际坐标和经过三维重建后的坐标,单位是mm。

表1 对应坐标表

4 结论

目前采用双CCD摄像头进行三维焊缝识别的测量系统的测量精度优于0.1mm,测量速度大于2m/分钟。且

具有较强的抗现场干扰能力,为进行实际的焊接实验打下基础。

参考文献

[1] 谢志孟基于视觉传感的焊缝跟踪技术研究和展望焊接 2005 (4)

[2] 黄万群等 CCD视觉传感器及图像处理技术在焊缝自动跟踪中的应用沈阳工业大学学报第23卷第1期

[3] 毛剑飞,陈利红,刘晓峰,等. 机器人视觉系统的自标定新算法. 浙江大学学报,2003 ,37 (3) :283~287

[4] 降雨志等投影法和差影法在焊缝跟踪图像识别中的应用沈阳工业大学学报第27卷⑸

[5] 曹建树等基于DSP的焊缝自动跟踪控制系统设计中国机械工程第16 卷第9 期

[6] 刘安心,余跃庆. 三维机器视觉测量系统的坐标计算模型研究机械制造与自动化, 2005 ,34 (3) :712731

[7] 刘安心,余跃庆. 三维机器视觉测量系统的标定模型研究机械制造与自动化,2005 ,34 (4) :432461

[8] 张永亮,刘安心. 基于Prewitt 算子的计算机数字图像边缘检测改进算法解放军理工大学学报,2005 ,6 (1) :442461

[9] 贾云德. 机器视觉[M] . 北京:科学出版社,20001

[10] 章毓普. 图像分割[M] . 北京:科学出版社,20011

[11] 苑玮琦,王建军,张宏勋. 一种基于梯度极值的边缘检测算法信息与控制,1997 ,26 (2) :11721201

[12] Figgen, Achim. Easier and quicker laser welding instead of riveting of aircraft structures. AeroSpace,2000, No. 1, Apr. p.20~

23.

[13] Ferrard, Stephane. Laser welding introduced at Airbus - The smoothing revolution. Planet AeroSpace,2001,No.4,Sept. p.30~

33

[14] Huynh D. Q. . Calibration a structured light stripe system:a novel approach. International Journal of ComputerVision, 1999, 33

(1) : 73~ 86.

[15] Chang M. , Tal W. C. 3602deg profile noncontact measurement using a neural network. Optical Engineering,1995, 34 (12) :

3572~ 3576.

Abstract: Welded seaming tracking is a key issue to laser welding automation. This paper designs a kind of 3D Welded Seaming Tracking system based on DUAL-CCD. Testing result svalidate the reliability and accuracy of the sensor . And the sensor is adaptive to welding seam tracking system.

Key words: machine vision;welded seaming tracking;laser welding;3D measurement

虹膜识别技术

前言随着社会的发展,身份识别的重要性正日益显现,而传统的身份识别方式由于其固有的局限性已远远不能满足要求,钥匙、卡片和身份证等容易丢失和仿造,密码则容易遗忘,更为严重的是这些传统识别方式无法区分真正的拥有者和取得身份标识物的冒充者,一旦他人获得了这些身份标识物,就可以拥有相同的权力。在需求的驱动下,基于人脸、指纹、虹膜、手形、笔迹等生物特征的识别技术应运而生。 虹膜识别技术是近几年兴起的生物认证技术。虹膜的形成由遗传基因决定,人体基因表达决定了虹膜的形态、生理特性、颜色和总的外观,是最可靠的人体生物终身身份标识。虹膜识别就是通过这种人体生物特征来识别人的身份。在包括指纹在内的所有生物特征识别技术中,虹膜识别是当前应用最为精确的一种。虹膜识别技术以其高精确度、非接触式采集、易于使用等优点得到了迅速发展,被广泛认为是二十一世纪最具有发展前途的生物认证技术,未来的安防、国防、电子商务等多种领域的应用,也必然的会以虹膜识别技术为重点。这种趋势,现在已经在全球各地的各种应用中逐渐开始显现出来,市场应用前景非常广阔。 1.什么是虹膜 人眼的外观由巩膜、虹膜、瞳孔三部分构成,巩膜即眼球外围的白色部分,眼睛中心为瞳孔部分,虹膜位于巩膜和瞳孔之间,包含了最丰富的纹理信息。外观上看,虹膜由许多腺窝、皱褶、色素斑等构成,是人体中最独特的结构之一。 虹膜作为身份标识具有许多先天优势: 1) 唯一性,由于虹膜图像存在着许多随机分布的细节特征,造就了虹膜模式的唯一性。英国剑桥大学John Daugman教授提出的虹膜相位特征证实了虹膜图像有244个独立的自由度,即平均每平方毫米的信息量是3.2比特。实际上用模式识别方法提取图像特征是有损压缩过程,可以预测虹膜纹理的信息容量远大于此。并且虹膜细节特征主要是由胚胎发育环境的随机因素决定的,即使克隆人、双胞胎、同一人左右眼的虹膜图像之间也具有显著差异。虹膜的唯一性为高精度的身份识别奠定了基础。英国国家物理实验室的测试结果表明:虹膜识别是各种生物特征识别方法中错误率最低的。 2) 稳定性,虹膜从婴儿胚胎期的第3个月起开始发育,到第8个月虹膜的主要纹理结构已经成形。除非经历危及眼睛的外科手术,此后几乎终生不变。由于角膜的保护作用,发育完全的虹膜不易受到外界的伤害。 3) 非接触,虹膜是一个外部可见的内部器官,不必紧贴采集装置就能获取合格的虹膜图像,识别方式相对于指纹、手形等需要接触感知的生物特征更加干净卫生,不会污损成像装置,影响其他人的识别。 4) 便于信号处理,在眼睛图像中和虹膜邻近的区域是瞳孔和巩膜,它们和虹膜区域存在着明显的灰度阶变,并且区域边界都接近圆形,所以虹膜区域易于拟合分割和归一化。虹膜结构有利于实现一种具有平移、缩放和旋转不变性的模式表达方式。 5) 防伪性好,虹膜的半径小,在可见光下中国人的虹膜图像呈现深褐色,看不到纹理信息,具有清晰虹膜纹理的图像获取需要专用的虹膜图像采集装置和用户的配合,所以在一般情况下很难盗取他人的虹膜图像。此外眼睛具有很多光学和生理特性可用于活体虹膜检测。 2. 虹膜识别过程 虹膜识别通过对比虹膜图像特征之间的相似性来确定人们的身份,其核心是使用模式识别、图像处理等方法对人眼睛的虹膜特征进行描述和匹配,从而实现自动的个人身份认证。 虹膜识别技术的过程一般来说分为:虹膜图像获取、图像预处理、特征提取和特征匹配四个步骤。

激光焊接焊缝检测标准

1 目的 确立本公司激光焊接焊缝控制的标准。 2 范围 本标准适用于本公司喷嘴环激光焊接及其他需要激光焊接件的所有图纸要求符合的焊缝,除在焊接图上有不同的焊接标准说明,其余(包括氩弧焊)均以本标准为依据执行。 3 职责 质保部负责对本标准的实施及控制。。 4标准内容 焊缝焊接要求:

4.2焊缝外观质量要求: 4.2.1焊缝质量外观检查规定操作工100﹪目视检查,检验员进行首末检查和过程抽检,目 视怀疑尺寸超差的须送检验员进行复检确认。 4.2.2 焊缝表面缺陷检查: 缺陷名称传递力的焊缝连接作用的焊缝图示裂纹不允许 烧穿不允许 焊偏不允许 断弧不允许 焊瘤不允许 凹陷深度≤深度≤ 表面气孔不允许小直径密集 型气孔,单个气孔 直径≥ 气孔比例不大于整 个焊缝的3﹪ 不允许小直径密 集型气孔,单个气 孔直径≥ 气孔比例不大于 整个焊缝的5﹪

咬边咬边深度≤母材厚 度的4﹪ 咬边深度≤母材 厚度的8﹪ 弧坑不包含在焊缝长度内允许长度不得超过熔宽的2倍,且不能烧穿。 焊接间隙不得大于 焊缝增高不大于倍板的总厚度,不超过总厚度 表面夹渣夹渣与气孔同样判断 4.3试验标准 序号类型试验项目试验方法判定标准 1 尺寸直线度GB/T11336-2004母材断面直线度< 2翘曲度刀口尺+塞尺 L<10 翘曲度≤10<L<翘曲度≤<L<16 翘曲度≤ 3间隙公差塞尺装夹母材时焊接间隙为强度拉伸强度万能拉力测试机断裂面为母材即为合格

4.4焊接缺陷名称解释: 4.4.1裂纹:缺陷多数存在于焊缝及焊缝热影响区域的微小裂缝。此缺陷直接影响产品的机 械性能 4.4.2气孔:缺陷存在于焊缝内部及表面的孔洞。此缺陷影响焊接强度。 4.4.3咬边:缺陷存在于焊缝与母材的交界熔合线部位,正常焊缝该处应为圆滑过渡。此缺 陷影响焊接强度 4.4.4凹陷:在一段成型均匀的焊缝中,有一段焊缝低于正常的焊缝高度形成的塌陷,此缺 陷影响焊接强度,而且外表不美观。 4.4.5烧穿:在焊接部位母材熔化后,没有形成焊缝而将母材烧穿,此缺陷是一种严重的不 合格缺陷。 4.4.6焊瘤:在一段成型均匀的焊缝中,有局部焊缝,高于正常的焊缝高度形成的突起,此 缺陷影响外观。 4.4.7断弧:在一段成型均匀的焊缝中,有一段或一点焊缝没有或者此处焊缝细小。此缺陷 影响机械性能。 4.4.8夹渣:缺陷存在于焊缝内部及表面,它是一种非正常熔化金属的杂物熔夹在焊缝中。 4.4.9偏焊:焊脚两侧有一侧高度低于要求的焊脚高,此缺陷影响焊接强度和美观。 4.4.10 弧坑:缺陷存在于焊缝结束收弧部分,它是由于母材熔化过多或没有足够的金属填 充而形成的凹坑。

雷达的目标识别技术

雷达的目标识别技术 摘要: 对雷达自动目标识别技术和雷达目标识别过程进行了简要回顾,研究了相控阵雷达系统中多目标跟踪识别的重复检测问题提出了角度相关区算法,分析了实现中的若干问题,通过在相控阵雷达地址系统中进行的地址实验和结果分析表明:采用角度相关区算法对重复检测的回波数据进行处理时将使识别的目标信息更精确从而能更早地形成稳定的航迹达到对目标的准确识别。 一.引言 随着科学技术的发展,雷达目标识别技术越来越引起人们的广泛关注,在国防及未来战争中扮演着重要角色。地面雷达目标识别技术目前主要有-Se方式,分别是一维距离成象技术、极化成象技术和目标振动声音频谱识别技术。 1.一维距离成象技术 一维距离成象技术是将合成孔径雷达中的距离成象技术应用于地面雷达。信号带宽与时间分辨率成反比。例如一尖脉冲信号经过一窄带滤波器后宽度变宽、时间模糊变大。其基本原理如图1所示。 2.极化成象技术 电磁波是由电场和磁场组成的。若电场方向是固定的,例如为水

平方向或垂直方向,则叫做线性极化电磁波。线性极化电磁波的反射与目标的形状密切相关。当目标长尺寸的方向与电场的方向一致时,反射系数增大,反之减小。根据这一特征,向目标发射不同极化方向的线性极化电磁波,分别接收它们反射(散射)的回波。通过计算目标散射矩阵便可以识别目标的形状。该方法对复杂形状的目标识别很困难。 3.目标振动声音频谱识别技术 根据多普勒原理,目标的振动、旋转翼旋转将引起发射电磁波的频率移动。通过解调反射电磁波的频率调制,复现目标振动频谱。根据目标振动频谱进行目标识别。 传统上我国地面雷达主要通过两个方面进行目标识别:回波宽度和波色图。点状目标的回波宽度等于入射波宽度。一定尺寸的目标将展宽回波宽度,其回波宽度变化量正比于目标尺寸。通过目标回波宽度的变化可估计目标的大小。目标往往有不同的强反射点,如飞机的机尾、机头、机翼以及机群内各飞机等,往往会在回波上形成不同形状的子峰,如图2所示。 这类波型图叫作波色图。根据波色图内子峰的形状,可获得一些目标信息。熟练的操作员根据回波宽度变化和波色图内子峰形状,进行目标识别。

激光焊接的工作原理及其主要工艺参数(精)

激光焊接的工作原理及其主要工艺参数 目前常用的焊接工艺有电弧焊、电阻焊、钎焊、电子束焊等。电弧焊是目前应用最广泛的焊接方法,它包括手弧焊、埋弧焊、钨极气体保护电弧焊、等离子弧焊、熔化极气体保护焊等。但上述各种焊接方法都有各自的缺点,比如空间限制,对于精细器件不易操作等,而激光焊接不但不具有上述缺点,而且能进行精确的能量控制,可以实现精密微型器件的焊接。并且它能应用于很多金属,特别是能解决一些难焊金属及异种金属的焊接。 激光指在能量相应与两个能级能量差的光子作用下,诱导高能态的原子向低能态跃迁,并同时发射出相同能量的光子。激光具有方向性好、相干性好、单色性好、光脉冲窄等优点。激光焊接是利用大功率相干单色光子流聚焦而成的激光束为热源进行的焊接,这种焊接通常有连续功率激光焊和脉冲功率激光焊。激光焊接从上世纪60年代激光器诞生不久就开始了研究,从开始的薄小零器件的焊接到目前大功率激光焊接在工业生产中的大量的应用,经历了近半个世纪的发展。由于激光焊接具有能量密度高、变形小、热影响区窄、焊接速度高、易实现自动控制、无后续加工的优点,近年来正成为金属材料加工与制造的重要手段,越来越广泛地应用在汽车、航空航天、造船等领域。虽然与传统的焊接方法相比,激光焊接尚存在设备昂贵、一次性投资大、技术要求高的问题,但激光焊接生产效率高和易实现自动控制的特点使其非常适于大规模生产线。 2. 激光焊接原理 2.1激光产生的基本原理和方法 光与物质的相互作用,实质上是组成物质的微观粒子吸收或辐射光子。微观粒子都具有一套特定的能级,任一时刻粒子只能处在与某一能级相对应的状态,物质与光子相互作用时,粒子从一个能级跃迁到另一个能级,并相应地吸收或辐射光子。光子的能量值为此两能级的能量差△E,频率为ν=△E/h。爱因斯坦认为光和原子的相互作用过程包含原子的自发辐射跃迁、受激辐射跃迁和受激吸收跃迁三种过程。我们考虑原子的两个能级E1和E2,处于两个能级的原子数密度分别为N1和N2。构成黑体物质原子中的辐射场能量密度为ρ,并有E2 -E1=hν。 2.1.自发辐射 处于激发态的原子如果存在可以接纳粒子的较低能级,即使没有外界作用,粒子也有一定的概率自发地从高能级激发态(E2)向低能级基态(E1)跃迁,同时辐射出能量为(E2-E1)的光子,光子频率ν=(E2-E1)/h。这种辐射过程称为自发辐射。自发辐射发出的光,不具有相位、偏振态上的一致,是非相干光。 2.2.受激辐射 除自发辐射外,处于高能级E2上的粒子还可以另一方式跃迁到较低能级。当频率为ν=(E2-E1)/h的光子入射时,也会引发粒子以一定的概率,迅速地从能级E2跃迁到能级E1,同时辐射一个与外来光子频率、相位、偏振态以及传播方向都相同的光子,这个过程称为受激辐射。 2.3.受激吸收 受激辐射的反过程就是受激吸收。处于低能级E1的一个原子,在频率为的辐射场作用下吸收一个能量为hν的光子,并跃迁至高能级E2,这种过程称为受激吸收。自发辐射是不相干的,受激辐射是相干的。 由受激辐射和自发辐射的相干性可知,相干辐射的光子简并度很大。普通光源在红外和可见光波段实际上是非相干光源。如果能够创造这样一种情况:使得腔内某一特定模式的ρ很大,而其他所有模式的都很小,就能够在这一特定模式内形成很高的光子简并度,使相干

手势识别技术综述

手势识别技术综述 作者单位:河北工业大学计算机科学与软件学院 内容摘要: 手势识别是属于计算机科学与语言学的一个将人类手势通过数学算法针对人们所要表达的意思进行分析、判断并整合的交互技术。一般来说,手势识别技术并非针对单纯的手势,还可以对其他肢体动作进行识别,比如头部、胳臂等。

但是这其中手势占大多数。本文通过对手势识别的发展过程、使用工具、目的与市场等进行综述,梳理出手势识别发展的思路,让读者对手势识别有一个总体上的认识,同时也可以让读者在此基础上进行合理想象,对手势识别的未来有一个大体印象。 Abstract: Gesture recognition is an interactive technology using mathematical arithmetic to the analysis,judge and assembly meaning that people want to convey which belongs to computer science and Linguistics.In general, gesture recognition technology is not for simple gestures expressed by hands ,it can also aim to other body movement recognition, such as the head, arm and so on. But the gesture accounted for most of the analysis. In this paper, by describing the development process, tools used , objective and market of gesture recognition , we can sort out the ideas of the development of gesture recognition, and let readers have an overall understanding of gesture recognition. At the same time, it can let the reader imagine that on hand gesture recognition based on reason ,and have a general impression of its future. 1.定义 说到手势识别,首先要对手势识别中的手势有一个清晰的认知。手势在不同的学科中有不同含义,而在交互设计方面,手势与依赖鼠标、键盘等进行操控的区别是显而易见的,那就是手势是人们更乐意接受的、舒适而受交互设备限制小的方式,而且手势可供挖掘的信息远比依赖键盘鼠标的交互模式多。在学术界,人们试图对手势定义一个抽象、明确而简洁的概念以为手势及其应用的研究提供依据。1990年Eric Hulteen和Gord Kurtenbach曾发表的题为“Gestures in Human-Computer Communication”中定义:“手势为身体运动的一部分,它包括一部分信息,而且是一种能被观察到的有意义的运动。挥手道别是一种手势,而敲击键盘不是一种手势,因为手指的运动没有被观察,也不重要,它只表示键盘

车身激光焊接接头设计型式与质量评价标准

车身激光焊接接头设计型式与质量评价标准 一汽大众汽车有限公司规划部 韩立军 简介:激光焊接技术以其较高的能量密度、较快的焊接速度、较高的电弧稳定性和优质的焊缝成型在汽车车身制造过程中得到广泛应用,一汽大众迈腾车身的激光焊缝总长度达42m 。激光焊接技术的使用使车身的前撞、后撞、侧撞都能符合较高的设计要求,但在产品设计过程中,对焊接接头的设计和焊缝质量的评价标准以及焊后焊缝的返修也相应提出更高的要求。 关键词:车身;激光焊接;接头型式;质量评价标准 中图分类号:TG453 文献标识码:A 0 前言 从20世纪80年代开始,激光技术开始运用于汽车车身制造领域,主要是运用激光焊接车身。激光焊接设备使用的激光器主要有两大类:Nd:Y AG 固体激光器,主要优点是产生的光束可以通过光纤传送; CO 2激光器,可以连续工作并输出很高的功率。 在开发激光焊接新技术方面,激光技术在车身制造过程中经历了不等厚板激光拼接技术、车身激光焊接技术、激光复合焊接技术的发展历程。与单一的激光熔焊技术相比,激光混合焊接技术具有显著的优点:高速焊接时电弧焊接的较高的稳定性、更大的熔深、较大缝隙的焊接能力、焊缝的韧性更好、通过焊丝可以调整焊缝组织结构等。焊缝的设计型式和焊缝标准的评价随着激光焊接技术的发展也不断进行着改变与完善,特别是近些年镀锌板、三层板和超高强钢板的广泛应用,对接头的设计型式提出了更高的要求,焊缝标准的评价也不断细化和优化,这不仅为制造优质的焊接车身提供了保证,也为焊缝的返修提供了理论依据。 目前,一汽大众公司在Audi C6、Golf A6、宝来、速腾、迈腾、Model X 等几乎所有品牌车型的车身制造过程中都不同程度地采用了激光切割、激光熔化焊接、激光复合焊接等先进的制造技术(如表1)。由于焊接部位不同,焊接接头的型式与评价标准也不尽相同,焊缝存在的焊接缺陷也不同,从而导致焊缝返修标准也存在一定差别。 表1 一汽大众车型激光焊接部位数据统计 以一汽大众迈腾车身为例,车身激光焊缝总长度高达42m ,焊缝的接头型式涉及顶盖激光钎焊时的对 接接头、前后风窗上沿的搭接I 型接头、后流水槽处的搭接角焊缝以及前端的角接角焊缝等诸多形式。由于焊缝的型式不同,激光焊接时的焊接方法、参数、评价标准和焊后返修的标准均有所不同(如图1)。 CADDY BORA A5 BORA A4 GOLF A4 AUDI C5 AUDI C6 AUDI B6 顶盖设备 V V V V V V 前端V V 白车身V 密封槽-侧围 V note: 侧围V 车门V 后盖 V V 221 1 1 1 应用工位 主焊 合计(27台) 1 表示HL4006D 表示HL3006D

三种简单手势识别

简单手势识别

一、背景 随着计算机的发展,人机交互技术由传统的鼠标键盘时代发展到了以语音输入、动作识别等技术为代表的自然交互时代n1。特别是视觉计算技术的发展,使计算机获得了初步视觉感知的能力,能“看懂”用户的动作。手势识别作为一种直观自然的输入方式,把人们从传统接触性的输入装置中解放出来,可以以一种更自然的方式与计算机交互,使计算机界面变得更加易‘引。 手势主要分为静态手势和动态手势两种,动态手势可以看作是连续的静态手势序列。动态手势具有丰富和直观的表达能力,与静态手势结合在一起,能创造出更丰富的语义。利用动态手势识别构建新型的交互界面,是新一代的人机交互界面对输入方式自然性的要求,可以弥补传统交互方式的不足。基于视觉和手势识别研究正处于蓬勃发展的阶段,仍存着的许多值得研究的问题。研究基于视觉的动态手势识别对于构建更加好友的人机交互界面很有意义。

二、手势识别概述 2.1、手势识别的概念 手势是姿势的一个子集,姿势这个概念没有精确的定义。一般认为,手势概念经过人的手转化为的手势动作,观察者看到的是手势动作的图像。手势的产生过程如图2-1所示。 图2-1 手势的产生过程 手势识别的过程则找一个从图像V到概念动作G的变换而,如图2-2所示。

2.2、手势识别流程 随着计算机的发展,人机交互技术由传统的鼠标键盘时代发展到了以语音输入、动作识别等技术为代表的自然交互时代n1。特别是视觉计算技术的发展,使计算机获得了初步视觉感知的能力,能“看懂”用户的动作。手势识别作为一种直观自然的输入方式,把人们从传统接触性的输入装置中解放出来,可以以一种更自然的方式与计算机交互,使计算机界面变得更加容易。 手势主要分为静态手势和动态手势两种,动态手势可以看作是连续的静态手势序列。动态手势具有丰富和直观的表达能力,与静态手势结合在一起,能创造出更丰富的语义。利用动态手势识别构建新型的交互界面,是新一代的人机交互界面对输入方式自然性的要求,可以弥补传统交互方式的不足。基于视觉和手势识别研究正处于蓬勃发展的阶段,仍存着的许多值得研究的问题。研究基于视觉的动态手势识别对于构建更加好友的人机交互界面很有意义。

人脸识别技术的主要研究方法

1、绪论 人脸识别是通过分析脸部器官的唯一形状和位置来进行身份鉴别。人脸识别是一种重要的生物特征识别技术,应用非常广泛。与其它身份识别方法相比,人脸识别具有直接、友好和方便等特点,因而,人脸识别问题的研究不仅有重要的应用价值,而且在模式识别中具有重要的理论意义,目前人脸识别已成为当前模式识别和人工智能领域的研究热点。本章将简单介绍几种人脸识别技术的研究方法。 关键词:人脸识别 2、人脸识别技术的主要研究方法 目前在国内和国外研究人脸识别的方法有很多,常用的方法有:基于几何特征的人脸识别方法、基于代数特征的人脸识别方法、基于连接机制的人脸识别方法以及基于三维数据的人脸识别方法。人脸识别流程图如图2.1所示: 图2.1人脸识别流程图 3、基于几何特征的人脸识别方法 基于特征的方法是一种自下而上的人脸检测方法,由于人眼可以将人脸在不此研究人员认为有一个潜在的假设:人脸或人脸的部件可能具有在各种条件下都不会改变的特征或属性,如形状、肤色、纹理、边缘信息等。基于特征的方法的目标就是寻找上述这些不变特征,并利用这些特征来定位入脸。这类方法在特定的环境下非常有效且检测速度较高,对人脸姿态、表情、旋转都不敏感。但是由于人脸部件的提取通常都借助于边缘算子,因此,这类方法对图像质量要求较高,对光照和背景等有较高的要求,因为光照、噪音、阴影都极有可能破坏人脸部件的边缘,从而影响算法的有效性。 模板匹配算法首先需要人TN作标准模板(固定模板)或将模板先行参数化(可变模板),然后在检测人脸时,计算输入图像与模板之间的相关值,这个相关值通常都是独立计算脸部轮廓、眼睛、鼻子和嘴各自的匹配程度后得出的综合描述,最后再根据相关值和预先设定的阈值来确定图像中是否存在人脸。基于可变模板的人脸检测算法比固定模板算法检测效果要好很多,但是它仍不能有效地处理人脸尺度、姿态和形状等方面的变化。 基于外观形状的方法并不对输入图像进行复杂的预处理,也不需要人工的对人脸特征进行分析或是抽取模板,而是通过使用特定的方法(如主成分分析方法(PCA)、支持向量机(SVM)、神经网络方法(ANN)等)对大量的人脸和非人脸样本组成的训练集(一般为了保证训练得到的检测器精度,非人脸样本集的容量要为人脸样本集的两倍以上)进行学习,再将学习而成的模板或者说分类器用于人脸检测。因此,这也是j 种自下而上的方法。这种方法的优点是利用强大的机器学习算法快速稳定地实现了很好的检测结果,并且

激光焊接方式的分类

激光焊接方式的分类 激光焊接工艺方法不同可进行如下分类: 1、片与片间的焊接。 包括对焊、端焊、中心穿透熔化焊、中心穿孔熔化焊等4种工艺方法。 对焊要求对缝质量较高,一般采用自动化焊接或手动焊接。 参考机型: →激光通用焊接机(氙灯泵浦Nd:YAG激光器):AHL-W200、AHL-W400 →光纤传输激光焊接机:AHL-FW200、AHL-FW400 2、丝与丝的焊接。 包括丝与丝对焊、交叉焊、平行搭接焊、T型焊等4种工艺方法。 对这种焊接一般不适合自动焊接,采用手动焊接或半自动焊接。 参考机型: →激光通用焊接机(氙灯泵浦Nd:YAG激光器):AHL-W200、AHL-W400 →光纤传输激光焊接机:AHL-FW200、AHL-FW400 →激光点焊机(氙灯泵浦Nd:YAG激光器):AHL-W75、AHL-W90 →激光模具烧焊机(氙灯泵浦Nd:YAG激光器):AHL-W120II、AHL-W180III、AHL-W180IV 3、金属丝与块状元件的焊接。采用激光焊接可以成功的实现金属丝与块状元件的连接,块状元件的尺寸可以任意。在焊接中应注意丝状元件的几何尺寸。 参考机型: →激光点焊机(氙灯泵浦Nd:YAG激光器):AHL-W75、AHL-W90 →激光模具烧焊机(氙灯泵浦Nd:YAG激光器):AHL-W120II、AHL-W180III、AHL-W180IV 4、不同块的组焊及密封焊。在组件物体上缝上进行密封焊接及组焊,如传感器等 参考机型: →激光通用焊接机(氙灯泵浦Nd:YAG激光器):AHL-W200、AHL-W400 →光纤传输激光焊接机:AHL-FW200、AHL-FW400 →激光模具烧焊机(氙灯泵浦Nd:YAG激光器):AHL-W180III、AHL-W180IV 5、块状物件补焊。采用激光将激光焊丝熔化沉积到基材上。一般适合模具等产品修补。参考机型: →激光模具烧焊机(氙灯泵浦Nd:YAG激光器):AHL-W180III、AHL-W180IV →激光点焊机(氙灯泵浦Nd:YAG激光器):AHL-W75、AHL-W90 激光焊接的工艺参数。 1、功率密度。功率密度是激光加工中最关键的参数之一。采用较高的功率密度,在微秒时间范围内,表层即可加热至沸点,产生大量汽化。因此,高功率密度对于材料去除加工,如打孔、切割、雕刻有利。对于较低功率密度,表层温度达到沸点需要经历数毫秒,在表层汽化前,底层达到熔点,易形成良好的熔融焊接。因此,在传导型激光焊接中,功率密度在范围在104~106W/CM2。 2、激光脉冲波形。激光脉冲波形在激光焊接中是一个重要问题,尤其对于薄片焊接更为重要。当高强度激光束射至材料表面,金属表面将会有60~98%的激光能量反射而损失掉,且反射率随表面温度变化。在一个激光脉冲作用期间内,金属反射率的变化很大。 3、激光脉冲宽度。脉宽是脉冲激光焊接的重要参数之一,它既是区别于材料去除和材料熔化的重要参数,也是决定加工设备造价及体积的关键参数。 4、离焦量对焊接质量的影响。激光焊接通常需要一定的离做文章一,因为激光焦点处光斑中心的功率密度过高,容易蒸发成孔。离开激光焦点的各平面上,功率密度分布相对均匀。 离焦方式有两种:正离焦与负离焦。焦平面位于工件上方为正离焦,反之为负离焦。按几何光学理论,当正负离焦平面与焊接平面距离相等时,所对应平面上功率密度近似相同,但实际上所获得的熔池形状不同。负离焦时,可获得更

基于摄像头的手势识别技术初步版本

基于摄像头的手势识别技术 1、手势识别的概念 手势是姿势的一个子集,姿势这个概念没有精确的定义。一般认为,手势概念经过人的于转化为的于势动作,观察者看到的是于势动作的图像雎1。手势的产生过程如图1-1所示。 图1-1 手势识别的过程则找一个从图像V到概念动作G的变换而,如图下所示。 2、手势识别流程 手势识别流程包手势图像获取、手势分割、手势特征提取、手势识别四大部分,如图2-1所示。 图2-1

3. 手势建模 在手势识别框架中,手势模型是一个最基本的部分。根据不同的应用背景,于势识别采用的模型会有不同,而对于不同的手势模型,采用的手势检测与跟踪算法、特征提取、识别技术也会有差别。手势建模主要分为基于表观的手势模型与基于三维的于势模型。 基于表观的手势建模是一种二维建模,从二维平面观察得到的平面图像信息描述于的特征。 基于表观的手势模型主要包括基于颜色的模型与基于轮廓的模型两种。 基于颜色的手势模型是把手势图像看作像素颜色的集合,通过提取手部的颜色的特征来描述手势。 基于颜色的手势模型的常用特征是颜色直方图。基于轮廓的手势模型是把手看作一个轮廓,通过提取手部图像中手的轮廓的几何特征来描述手势。 4. 手势检测与跟踪 手势检测与跟踪是手势识别处理流程中最前端的处理部分,它处理从摄像头获取到手势图像(序列),从中检测和分割手势对象。如果是动态手势识别,还要对手进行跟踪。 基于运动信息的方法: 基于运动信息的方法是假设在视频中只有手是运动物体。 其中一种方法是背景减法。 它要求背景静止不变,把视频中的每帧与背景相减,背景相同的部分变为零,不同的部分就认为是运动的物体,即手。

激光焊接的工作原理及其主要工艺参数

激光焊接的工作原理及其主要工艺参数摘要:焊接技术主要应用在金属母材热加工上,常用的有电弧焊,电阻焊,钎焊, 电子束焊,激光焊等多种,本文详细介绍了激光焊接的工作原理与工艺参数,还讨论了激光焊接技术在现代工业中的应用,并与其他焊接方法进行对比。研究表明激光焊接技术将逐步得到广泛应用。 关键词:焊接技术;激光焊接;工作原理;工艺参数。 1. 引言 目前常用的焊接工艺有电弧焊、电阻焊、钎焊、电子束焊等。电弧焊是目前应用最广泛的焊接方法,它包括手弧焊、埋弧焊、钨极气体保护电弧焊、等离子弧焊、熔化极气体保护焊等。但上述各种焊接方法都有各自的缺点,比如空间限制,对于精细器件不易操作等,而激光焊接不但不具有上述缺点,而且能进行精确的能量控制,可以实现精密微型器件的焊接。并且它能应用于很多金属,特别是能解决一些难焊金属及异种金属的焊接。 激光指在能量相应与两个能级能量差的光子作用下,诱导高能态的原子向低能态跃迁,并同时发射出相同能量的光子。激光具有方向性好、相干性好、单色性好、光脉冲窄等优点。激光焊接是利用大功率相干单色光子流聚焦而成的激光束为热源进行的焊接,这种焊接通常有连续功率激光焊和脉冲功率激光焊。激光焊接从上世纪60年代激光器诞生不久就开始了研究,从开始的薄小零器件的焊接到目前大功率激光焊接在工业生产中的大量的应用,经历了近半个世纪的发展。由于激光焊接具有能量密度高、变形小、热影响区窄、焊接速度高、易实现自动控制、无后续加工的优点,近年来正成为金属材料加工与制造的重要手段,越来越广泛地应用在汽车、航空航天、造船等领域。虽然与传统的焊接方法相比,激光焊接尚存在设备昂贵、一次性投资大、技术要求高的问题,但激光焊接生产效率高和易实现自动控制的特点使其非常适于大规模生产线。 2. 激光焊接原理 2.1激光产生的基本原理和方法 光与物质的相互作用,实质上是组成物质的微观粒子吸收或辐射光子。微观粒子都具有一套特定的能级,任一时刻粒子只能处在与某一能级相对应的状态,物质与光子相互作用时,粒子从一个能级跃迁到另一个能级,并相应地吸收或辐射光子。光子的能量值为此两能级的能量差△E,频率为ν=△E/h。爱因斯坦认为光和原子的相互作用过程包含原子的自发辐射跃迁、受激辐射跃迁和受激吸收跃迁三种过程。我们考虑原子的两个能级E1和E2,处于两个能级的原子数密度分别为N1和N2。构成黑体物质原子中的辐射场能量密度为ρ,并有E2 -E1=hν。 2.1.自发辐射 处于激发态的原子如果存在可以接纳粒子的较低能级,即使没有外界作用,粒子也有一定的概率自发地从高能级激发态(E2)向低能级基态(E1)跃迁,同时辐射出能量为(E2-E1)的光子,光子频率ν=(E2-E1)/h。这种辐射过程称为自发辐射。自发辐射发出的光,不具有相位、偏振态上的一致,是非相干光。 2.2.受激辐射 除自发辐射外,处于高能级E2上的粒子还可以另一方式跃迁到较低能级。当频率为ν=(E2-E1)/h的光子入射时,也会引发粒子以一定的概率,迅速地从能级E2跃迁到能级E1,同时辐射一个与外来光子频率、相位、偏振态以及传播方向都相同的光子,

虹膜识别技术综述

虹膜识别技术综述 ——生物认证技术 姓名: 班级: 专业: 教师:

【引言】 生物认证技术又称为生物识别技术,是通过计算机利用人体所固有的生理特征或行为特征来进行个人身份鉴定。这是我们已经熟知的概念,然而,生物认证技术是一个很广泛的学术研究范围,我们需要深入了解的则是其下的各个研究分支,而其中的虹膜识别技术则是非常重要的一个分支,同时这种技术也是应用非常广泛的生物认证与识别技术之一 【知识简介】 首先,我们来了解一下虹膜—— 人眼睛的外观图由巩膜、虹膜、瞳孔三部分构成。虹膜位于巩膜和瞳孔之间,包含了最丰富的纹理信息,占据65%。外观上看,由许多腺窝、皱褶、色素斑等构成,是人体中最独特的结构之一。虹膜的形成由遗传基因决定,人体基因表达决定了虹膜的形态、生理、颜色和总的外观。另一方面,要改变虹膜外观,需要非常精细的外科手术,而且要冒着视力损伤的危险。虹膜的高度独特性、稳定性及不可更改的特点,是虹膜可用作身份鉴别的物质基础。 在包括指纹在内的所有生物识别技术中,虹膜识别技术可以说是当前应用最为方便和精确的一种技术。它被广泛认为是二十一世纪最具有发展前途的生物认证技术,未来的安防、国防、电子商务等多种领域的应用,也必然的会以虹膜识别技术为重点。这种趋势已经在全球各地的各种应用中逐渐开始显现出来,市场应用前景非常广阔。

【个人理解】 虹膜其实和我们人体的指纹一样,具有高度的“特异性”,这是作为“认”的根本与基础,同时它也同样具有良好的“稳定性”,这就意味着它具有防伪性,它奠定了“证”的可靠性! 许多资料包括刚才的简介中都提到这样类似的话“要改变虹膜外观,需要非常精细的外科手术,而且要冒着视力损伤的危险”。在我看来,其实这就是一种高度可信的“防伪性能”,因为特别是在一般商业用途中,伪造(或者称之为“修改”)虹膜的代价可能远远高于骗取识别系统的信任所带来的利益,换句话说这就是“得不偿失”! 虽然我们可能对指纹识别更为熟悉一些,但是实质上虹膜识别的精确性丝毫不逊于指纹识别!——根据各种资料的介绍,我得到了这样一种认知:“虹膜结构是非常复杂而精细的”,对于在鲜活人体上的虹膜与虹膜之间而言,它们的区别可以说是非常大的(超过了指纹间特征点的区别程度),就像一个完全独立于其他任何事物的精细工艺品,要“确认”它非常容易,同时要发现“雷同”的却基本是不可能的!在我看来,这就是虹膜可以作为真正识别身份的生物特征并且这种识别技术应用越来越广泛,实用性与适用性越来越强的原因!

图像识别技术的研究现状

图像识别技术研究现状综述 简介: 图像识别是指图形刺激作用于感觉器官,人们辨认出它是经验过的某一图形的过程,也叫图像再认。在图像识别中,既要有当时进入感官的信息,也要有记忆中存储的信息。只有通过存储的信息与当前的信息进行比较的加工过程,才能实现对图像的再认。图像识别技术是以图像的主要特征为基础的,在图像识别过程中,知觉机制必须排除输入的多余信息,抽出关键的信息。在人类图像识别系统中,对复杂图像的识别往往要通过不同层次的信息加工才能实现。对于熟悉的图形,由于掌握了它的主要特征,就会把它当作一个单元来识别,而不再注意它的细节了。这种由孤立的单元材料组成的整体单位叫做组块,每一个组块是同时被感知的。图像在人类的感知中扮演着非常重要的角色,人类随时随处都要接触图像。随着数字图像技术的发展和实际应用的需要,出现了另一类问题,就是不要求其结果输出是一幅完整的图像,而是将经过图像处理后的图像,再经过分割和描述提取有效的特征,进而加以判决分类,这就是近20年来发展起来的一门新兴技术科学一图像识别。它以研究某些对象或过程的分类与描述为主要内容,以研制能够自动处理某些信息的机器视觉系统,代替传统的人工完成分类和辨识的任务为目的。 图像识别的发展大致经历了三个阶段:文字识别、图像处理和识别及物体识别:文字识别的研究是从1950年开始的,一般是识别字母、数字和符号,并从印刷文字识别到手写文字识别,应用非常广泛,并且已经研制了许多专用设备。图像处理和识别的研究,是从1965年开始的。过去人们主要是对照相技术、光学技术的研究,而现在则是利用计算技术、通过计算机来完成。计算机图像处理不但可以消除图像的失真、噪声,同时还可以进行图像的增强与复原,然后进行图像的判读、解析与识别,如航空照片的解析、遥感图像的处理与识别等,其用途之广,不胜枚举。物体识别也就是对三维世界的认识,它是和机器人研究有着密切关系的一个领域,在图像处理上没有特殊的难点,但必须知道距离信息,并且必须将环境模型化。在自动化技术已从体力劳动向部分智力劳动自动化发展的今天,尽管机器人的研究非常盛行,还只限于视觉能够观察到的场景。进入80年代,随着计算机和信息科学的发展,计算机视觉、人工智能的研究已成为新的动向 图像识别与图像处理的关系: 在研究图像时,首先要对获得的图像信息进行预处理(前处理)以滤去干扰、噪声,作几何、彩色校正等,以提供一个满足要求的图像。图像处理包括图像编码,图像增强、图像压缩、图像复原、图像分割等。对于图像处理来说,输入是图像,输出(即经过处理后的结果)也是图像。图像处理主要用来解决两个问题:一是判断图像中有无需要的信息;二是确定这些信息是什么。图像识别是指对上述处理后的图像进行分类,确定类别名称,它可以在分割的基础上选择需要提取的特征,并对某些参数进行测量,再提取这些特征,然后根据测量结果做出分类。为了更好地识别图像,还要对整个图像做结构上的分析,对图像进行描述,以便对图像的主要信息做一个好的解释,并通过许多对象相互间的结构关系对图像加深理解,以便更好帮助和识别。故图像识别是在上述分割后的每个部分中,找出它的形状及纹理特征,以便对图像进行分类,并对整个图像做结构上的分析。因而对图像识别环节来说,输入是图像(经过上述处理后的图像),输出是类别和图像的结构分析,而结构分析的结果则

目标识别技术

目标识别技术 摘要: 针对雷达自动目标识别技术进行了简要回顾。讨论了目前理论研究和应用比较成功的几类目标识别方法:基于目标运动的回波起伏和调制谱特性的目标识别方法、基于极点分布的目标识别方法、基于高分辨雷达成像的目标识别方法和基于极化特征的目标识别方法,同时讨论了应用于雷达目标识别中的几种模式识别技术:统计模式识别方法、模糊模式识别方法、基于模型和基于知识的模式识别方法以及神经网络模式识别方法。最后分析了问题的可能解决思路。 引言: 雷达目标识别技术回顾及发展现状 雷达目标识别的研究始于"20世纪50年代,早期雷达目标特征信号的研究工作主要是研究达目标的有效散射截面积。但是,对形状不同、性质各异的各类目标,笼统用一个有效散射面积来描述,就显得过于粗糙,也难以实现有效识别。几十年来,随着电磁散射理论的不断发展以及雷达技术的不断提高,在先进的现代信号处理技术条件下,许多可资识别的雷达目标特征信号相继被发现,从而建立起了相应的目标识别理论和技术。 随着科学技术的飞速发展,一场以信息技术为基础、以获取信息优势为核心、以高技术武器为先导的军事领域的变革正在世界范围内兴起,夺取信息优势已成为夺取战争主动权的关键。电子信息装备作为夺取信息优势的物质基础,是推进武器装备信息化进程的重要动力,其总体水平和规模将在很大程度上反映一个国家的军事实力和作战能力。 雷达作为重要的电子信息装备,自诞生起就在战争中发挥了极其重要的作用。但随着进攻武器装备的发展,只具有探测和跟踪功能的雷达也已经不能满足信息化战争的需要,迫切要求雷达不仅要具有探测和跟踪功能,而且还要具有目标识别功能,雷达目标分类与识别已成为现代雷达的重要发展方向,也是未来雷达的基本功能之一。目标识别技术是指:利用雷达和计算机对遥远目标进行辨认的技术。目标识别的基本原理是利用雷达回波中的幅度、相位、频谱和极化等目标特征信息,通过数学上的各种多维空间变换来估算目标的大小、形状、重量和表面层的物理特性参数,最后根据大量训练样本所确定的鉴别函数,在分类器中进行识别判决。目标识别还可利用再入大气层后的大团过滤技术。当目标群进入大气层时,在大气阻力的作用下,目标群中的真假目标由于轻重和阻力的不同而分开,轻目标、外形不规则的目标开始减速,落在真弹头的后面,从而可以区别目标。 所谓雷达目标识别,是指利用雷达获得的目标信息,通过综合处理,得到目标的详细信息(包括物理尺寸、散射特征等),最终进行分类和描述。随着科学技术的发展,武器性能的提高,对雷达目标识别提出了越来越高的要求。 目前,目标识别作为雷达新的功能之一,已在诸如海情监控系统、弹道导弹防御系统、防空系统及地球物理、射电天文、气象预报、埋地物探测等技术领域发挥出很大威力。为了提高

虹膜识别技术的应用

华侨大学厦门工学院《信息安全技术》课程论文 题目:虹膜识别技术的研究与应用 专业、班级:通信工程X班 学生姓名:XXX 学号:120230XXXX 指导教师:XXX 分数: 2015 年XX月XX 日

《虹膜识别技术的研究与应用》 摘要 本文介绍了当前最有发展前景的生物特征识别技术,即虹膜识别技术,详细介绍了虹膜识别的主要步骤,虹膜图像的获取、预处理、特征提取与编码和分类。最后,针对虹膜识别技术存在的主要问题分析了虹膜识别的发展方向及应用前景。 关键词:虹膜识别;身份鉴别;生物特征 1.识别技术的简介 身份是指从行政法律或经济社会方面确定个人的地位或权利。身份识别就是验证个人的真伪,以防范冒名顶替者的违法犯罪活动。目前,身份识别主要靠各种证件(如身份证、智能卡等)、个人识别码(如口令、密码等)及生物特征识别。由于证件容易被剽窃、转移或丢失,识别码容易被忘记、破解,所以生物特征识别是目前最为方便与安全的识别技术。它不需要随身携带任何证件,记住任何密码,是一种方便、快捷、可靠的识别方法。生物特征识别是通过人体所固有的生理特征或行为特征对个人身份进行鉴定的技术。常见的生物特征有指纹、掌纹、虹膜、视网膜、脸形、声音、笔迹、DNA、人体气味等。其中,虹膜识别是一种重要的个人身份识别手段。 眼睛中心为瞳孔部分,虹膜位于巩膜和瞳孔之间,包含了最丰富的纹理信息。外观上看,虹膜由许多腺窝、皱褶、色素斑等构成,是人体中最独特的结构之一。虹膜作为身份标识具有许多先天优势。第一,唯一性,由于虹膜图像存在着许多

随机分布的细节特征,造就了虹膜模式的唯一性。英国剑桥大学John Daugman 教授提出的虹膜相位特征证实了虹膜图像有244个独立的自由度,即平均每平方毫米的信息量是3.2比特。实际上用模式识别方法提取图像特征是有损压缩过程,可以预测虹膜纹理的信息容量远大于此。并且虹膜细节特征主要是由胚胎发育环境的随机因素决定的,即使克隆人、双胞胎、同一人左右眼的虹膜图像之间也具有显著差异。虹膜的唯一性为高精度的身份识别奠定了基础。英国国家物理实验室的测试结果表明:虹膜识别是各种生物特征识别方法中错误率最低的。第二,稳定性,虹膜从婴儿胚胎期的第3个月起开始发育,到第8个月虹膜的主要纹理结构已经成形。除非经历危及眼睛的外科手术,此后几乎终生不变。由于角膜的保护作用,发育完全的虹膜不易受到外界的伤害。第三,非接触,虹膜是一个外部可见的内部器官,不必紧贴采集装置就能获取合格的虹膜图像,识别方式相对于指纹、手形等需要接触感知的生物特征更加干净卫生,不会污损成像装置,影响其他人的识别。第四,便于信号处理,在眼睛图像中和虹膜邻近的区域是瞳孔和巩膜,它们和虹膜区域存在着明显的灰度阶变,并且区域边界都接近圆形,所以虹膜区域易于拟合分割和归一化。虹膜结构有利于实现一种具有平移、缩放和旋转不变性的模式表达方式。第五,防伪性好,虹膜的半径小,在可见光下中国人的虹膜图像呈现深褐色,看不到纹理信息,具有清晰虹膜纹理的图像获取需要专用的虹膜图像采集装置和用户的配合,所以在一般情况下很难盗取他人的虹膜图像。此外眼睛具有很多光学和生理特性可用于活体虹膜检测。 2.虹膜识别技术的原理 2.1 虹膜识别的过程 虹膜识别通过对比虹膜图像特征之间的相似性来确定人们的身份,其核心是使用模式识别、图像处理等方法对人眼睛的虹膜特征进行描述和匹配,从而实现自动的个人身份认证。虹膜识别的主要步骤包括虹膜图像的获取、预处理、特征提取与编码和分类。 2.2 虹膜图像获取 虹膜图像获取是指使用特定的数字摄像器材对人的整个眼部进行拍摄,并将

2019年全球主要手势识别技术系统细分行业分析

2019年全球主要手势识别技术系统细分行业分析 1、以数据手套为输入设备的手势识别系统 目前使用广泛的人机交互设备是数据手套(DataGlove)。数据手套反馈各关节的数据,并经一个位置跟踪器返回人手所在的三维坐标,从而来测量手势在三维空间中的位置信息和手指等关节的运动信息。这种系统可以直接获得人手在3D空间中的坐标和手指运动的参数,数据的精确度高,可识别的手势多且辨识率高。缺点是数据手套和位置跟踪器价格昂贵,有时也会给用户带来不便,如持戴的手部出汗等。 由于神经网络很适合用快速、交互的方式进行训练,可用于静态手势和动态手势的输入,网络连接的权值也可以根据情况调整,各种用户都能适应手势识别系统。它的缺点是对设备的依赖性高,一旦需更换数据手套,则须重新训练网络。 2、以摄像机为输入设备的手势识别系统 输入设备可用单个或多个摄像头或摄像机来采集手势信息,经计算机系统分析获取的图像来识别手势。摄像头或摄像机的价格相对较低,但计算过程较复杂,其识别率和实时性均较差。其优点是学习和使用简单灵活,不干扰用户,是更自然和直接的人与计算机的交互方式。 目前较成功的实现手势识别的系统,均为依据手掌轮廓区域的几何特征,如手的重心及轮廓、手指的方向和形状等进行分析完成识别,或根据手掌的其他特征,如手掌的运动轨迹、手掌的肤色及纹理等进行分析识别。 手势模型的选取在手势识别系统中,对确定识别范围起着关键性作用。模型的选取往往跟具体应用有关, 不同的应用目的选取不同的模型。比如,对于某个给定的目的,可以先建立简单粗糙的模型,而后再跟据需要建立精细有效的手势模型,这对于实现自然的人机交互是必须的,可使绝大部分手势都能被系统正确的识别出来。 目前,手势模型有基于表观的手势模型和基于3D模型的手势模型。前者通过分析手势在图像(序列)里的表观特征给手势建模,它是建立在手(臂)图像的表观之上的。后者的建模方法则略有不同,其先对手和臂的运动姿态建模,然后再估计手势模型参数。 图表1:同一手势的5种模型图 资料来源:蒂华森咨询

相关文档