文档库 最新最全的文档下载
当前位置:文档库 › 将军饮马模型

将军饮马模型

将军饮马模型
将军饮马模型

一、将军饮马模型:

1. 如图,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD 内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为_______

图1 图2

2. 如图,在锐角△ABC中,AB= ,∠BAC=45°,∠BAC的平分线交BC于点D,M,N分别是AD,AB上的动点,则BM+MN的最小值是____

3如图,在五边形ABCDE中,∠BAE=120°,∠B=∠E=90°,AB=BC,AE=DE,在BC,DE上分别找一点M,N,使得△AMN周长最小时,

①求∠AMN +∠ANM的度数为

②若AB=BC=1,AE=DE=2,求△AMN周长的最小值。

4已知,如图,二次函数图象的顶点为H,与x轴交于A、B两点(B在A点右侧),点H、B关于直线对称.

(3)过点B作直线BK∥AH交直线于K点,M、N分别为直线AH和直线上的两个动点,连接HN、NM、MK,求HN+NM+MK的最小值.

初中数学解题模型专题讲解10---“将军饮马”模型详解与拓展

初中数学解题模型专题讲解 专题10 “将军饮马”模型详解与拓展 平面几何中涉及最值问题的相关定理或公理有:① 线段公理:两点之间,线段最短. 并由此得到三角形三边关系; ② 垂线段的性质:从直线外一点到这条直线上各点所连的线段中,垂线段最短. 在一些“线段和最值”的问题中,通过翻折运动,把一些线段进行转化即可应用 ①、② 的基本图形,并求得最值,这类问题一般被称之为“将军饮马”问题。 问题提出: 唐朝诗人李欣的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交 河.”诗中隐含着一个有趣的数学问题. 如图所示,诗中将军在观望烽火之后从山脚下的A 点出发,走到河边饮马后再到B 点宿营.请问怎样走才能使总的路程最短? 模型提炼: 模型模型【【1】一定直线、异侧两定点 直线l 和l 的异侧两点A、B,在直线l 上求作一点P,使PA+PB 最小

解答:根据“两点之间,线段距离最短”,所以联结AB 交直线l 于点P,点P 即为所求点 模型模型【【2】一定直线、同侧两定点 直线l 和l 的同侧两点A、B,在直线l 上求作一点P,使PA+PB 最小 解答: 第一步:画点A 关于直线l 的对称点A'(根据“翻折运 动”的相关性质,点A、A'到对称轴上任意点距离相等, 如图所示,AP=A'P,即把一定直线同侧两定点问题转化为 一定直线异侧两定点问题) 第二步:联结A'B 交直线l 于点Q,根据“两点之间,线段距离最短”,此时“A'Q+QB”最短即“AQ+QB”最短 模型模型【【3】一定直线、一定点一动点 已知直线l 和定点A,在直线k 上找一点B (点A、B 在直线l 同侧), 在直线l 上找点P,使得AP+PB 最小 解答: 第一步:画点A 关于直线l 的对称点A' 第二步:过点A'做A'B⊥k 于点B 且交直线l 于点P,根据“从直线 外一点到这条直线上各点所连的线段中,垂线段最短”,可知A'P+PB 最小即AP+PB 最小

将军饮马问题讲定稿版

将军饮马问题讲 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

将军饮马问题 类型一、基本模式 类型二、轴对称变换的应用(将军饮马问题) 2、如图所示,如果将军从马棚M出发,先赶到河OA上的某一位置P,再马上赶到河OB 上的某一位置Q,然后立即返回校场N.请为将军重新设计一条路线(即选择点P 和Q),使得总路程MP+PQ+QN最短. 【变式】如图所示,将军希望从马棚M出发,先赶到河OA上的某一位置P,再马上赶到河OB上的某一位置Q.请为将军设计一条路线(即选择点P和Q),使得总路程MP+PQ最短. 3、将军要检阅一队士兵,要求(如图所示):队伍长为a,沿河OB排开(从点P到点Q);将军从马棚M出发到达队头P,从P至Q检阅队伍后再赶到校场N.请问:在什么位置列队(即选择点P和Q),可以使得将军走的总路程MP+PQ+QN最短? 4. 如图,点M在锐角∠AOB内部,在OB边上求作一点P,使点P到点M的距离与点P到OA边的距离之和最小 5已知∠MON内有一点P,P关于OM,ON的对称点分别是和,分别交OM, ON于点A、B,已知=15,则△PAB 的周长为() A. 15 B 7.5 C. 10 D. 24 6. 已知∠AOB,试在∠AOB内确定一点P,如图,使P到OA、OB的距离相等,并且到M、N两点的距离也相等.

7、已知∠MON=40°,P为∠MON内一定点,OM上有一点A,ON上有一点B,当△PAB的周长取最小值时,求∠APB的度数. 8. 如图,在四边形ABCD中,∠A=90°,AD=4,连接BD,BD⊥CD,∠ADB=∠C.若P是BC边上一动点,则DP长的最小值为______. 练习 1、已知点A在直线l外,点P为直线l上的一个动点,探究是否存在一个定点B,当点P 在直线l上运动时,点P与A、B两点的距离总相等,如果存在,请作出定点B;若不存在,请说明理由. 2、如图,在公路a的同旁有两个仓库A、B,现需要建一货物中转站,要求到A、B两仓 库的距离和最短,这个中转站M应建在公路旁的哪个位置比较合理? 3、已知:A、B两点在直线l的同侧,在l上求作一点M,使得|| -最小. AM BM 4、如图,正方形ABCD中,8 AB=,M是DC上的一点,且2 DM=,N是AC上的一动点,求DN MN +的最小值与最大值. 5、如图,已知∠AOB内有一点P,试分别在边OA和OB上各找一点E、F,使得△PEF的周长最小。试画出图形,并说明理由。 6、如图,直角坐标系中有两点A、B,在坐标轴上找两点C、D,使得四边形ABCD的周长最小。

将军饮马

将军饮马问题——线段和最短 一.六大模型 1.如图,直线l和l的异侧两点A、B,在直线l上求作一点P,使PA+PB最小。 2.如图,直线l和l的同侧两点A、B,在直线l上求作一点P,使PA+PB最小。 3.如图,点P是∠MON内的一点,分别在OM,ON上作点A,B。使△PAB的周长最小 4.如图,点P,Q为∠MON内的两点,分别在OM,ON上作点A,B。使四边形PAQB的 周长最小。 5.如图,点A是∠MON外的一点,在射线ON上作点P,使PA与点P到射线OM的距离之和最小 6. .如图,点A是∠MON内的一点,在射线ON上作点P,使PA与点P到射线OM的距离之和最小

D B C A A N 二、常见题目 Part1、三角形 1.如图,在等边△ABC 中,AB = 6,AD ⊥BC ,E 是AC 上的一点,M 是AD 上的一点,且AE = 2,求EM+EC 的最小值 2.如图,在锐角△ABC 中,AB = 42,∠BAC =45°,∠BAC 的平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点,则BM+MN 的最小值是____. 3.如图,△ABC 中,AB=2,∠BAC=30°,若在AC 、AB 上各取一点M 、N ,使BM+MN 的值最小,则这个最小值

M B D A D A Part2、正方形 1.如图,正方形ABCD 的边长为8,M 在DC 上,且DM =2,N 是AC 上的一动点,DN +MN 的最小值为_________。 即在直线AC 上求一点N ,使DN+MN 最小 2.如图所示,正方形ABCD 的面积为12,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD +PE 的和最小,则这个最小值为( ) A .23 B .2 6 C .3 D . 6 3.在边长为2㎝的正方形ABCD 中,点Q 为BC 边的中点,点P 为对角线AC 上一动点,连接PB 、PQ ,则△PBQ 周长的最小值为____________㎝(结果不取近似值). 4.如图,四边形ABCD 是正方形, AB = 10cm ,E 为边BC 的中点,P 为BD 上的一个动点,求PC+PE 的最小值;

将军饮马模型(终稿)教学提纲

将军饮马模型(终稿)

将军饮马模型 一、背景知识: 【传说】 早在古罗马时代,传说亚历山大城有一位精通数学和物理的学者,名叫海伦.一天,一位罗马将军专程去拜访他,向他请教一个百思不得其解的问题. 将军每天从军营A出发,先到河边饮马,然后再去河岸同侧的军营B开会,应该怎样走才能使路程最短?这个问题的答案并不难,据说海伦略加思索就解决了它.从此以后,这个被称为“将军饮马”的问题便流传至今. 【问题原型】将军饮马造桥选址费马点 【涉及知识】两点之间线段最短,垂线段最短; 三角形两边三边关系;轴对称;平移; 【解题思路】找对称点,实现折转直 二、将军饮马问题常见模型 1.两定一动型:两定点到一动点的距离和最小 例1:在定直线l上找一个动点P,使动点P到两个定点A与B的距离之和最小,即PA+PB最小. 作法:连接AB,与直线l的交点Q, Q即为所要寻找的点,即当动点P跑到了点Q处, PA+PB最小,且最小值等于AB. 原理:两点之间线段最短。 证明:连接AB,与直线l的交点Q,P为直线l上任意一点, 在⊿PAB中,由三角形三边关系可知:AP+PB≧AB(当且仅当PQ重合时取﹦)

例2:在定直线l上找一个动点P,使动点P到两个定点A与B的距离之和最小,即PA+PB的和最小. 关键:找对称点 作法:作定点B关于定直线l的对称点C,连接AC,与直线l的交点Q即为所要寻找的点,即当动点P跑到了点Q处,PA+PB和最小,且最小值等于AC. 原理:两点之间,线段最短 证明:连接AC,与直线l的交点Q,P为直线l上任意一点, 在⊿PAC中,由三角形三边关系可知:AP+PC≧AC(当且仅当PQ重合时取﹦) 2.两动一定型 例3:在∠MON的内部有一点A,在OM上找一点B,在ON上找一点C,使得△BAC周长最短. 作法:作点A关于OM的对称点A’,作点A关于ON的对称点A’’,连接A’ A’’,与OM 交于点B,与ON交于点C,连接AB,AC,△ABC即为所求. 原理:两点之间,线段最短

将军饮马模型终稿

将军饮马模型 一、背景知识: 【传说】 早在古罗马时代,传说亚历山大城有一位精通数学和物理的学者,名叫海伦.一天,一位罗马将军专程去拜访他,向他请教一个百思不得其解的问题. 将军每天从军营A出发,先到河边饮马,然后再去河岸同侧的军营B开会,应该怎样走才能使路程最短?这个问题的答案并不难,据说海伦略加思索就解决了它.从此以后,这个被称为“将军饮马”的问题便流传至今. 【问题原型】将军饮马造桥选址费马点 【涉及知识】两点之间线段最短,垂线段最短; 三角形两边三边关系;轴对称;平移; 【解题思路】找对称点,实现折转直 二、将军饮马问题常见模型 1.两定一动型:两定点到一动点的距离和最小 例1:在定直线l上找一个动点P,使动点P到两个定点A与B的距离之和最小,即PA+PB 最小. 作法:连接AB,与直线l的交点Q, Q即为所要寻找的点,即当动点P跑到了点Q处, PA+PB最小,且最小值等于AB. 原理:两点之间线段最短。 证明:连接AB,与直线l的交点Q,P为直线l上任意一点, 在⊿PAB中,由三角形三边关系可知:AP+PB≧AB(当且仅当PQ重合时取﹦)

例2:在定直线l上找一个动点P,使动点P到两个定点A与B的距离之和最小,即PA+PB的和最小. 关键:找对称点 作法:作定点B关于定直线l的对称点C,连接AC,与直线l的交点Q即为所要寻找的点,即当动点P跑到了点Q处,PA+PB和最小,且最小值等于AC. 原理:两点之间,线段最短 证明:连接AC,与直线l的交点Q,P为直线l上任意一点, 在⊿PAC中,由三角形三边关系可知:AP+PC≧AC(当且仅当PQ重合时取﹦) 2.两动一定型 例3:在∠MON的部有一点A,在OM上找一点B,在ON上找一点C,使得△BAC周长最短. 作法:作点A关于OM的对称点A’,作点A关于ON的对称点A’’,连接A’ A’’,与OM 交于点B,与ON交于点C,连接AB,AC,△ABC即为所求.

轴对称将军饮马问题

将军饮马问题教案 教学设计 【教材分析】 本节内容的地位与作用 最短路径问题是中考热点问题之一,本课是在初二上学期,学生学完了轴对称、勾股定理、位置与坐标、一次函数等章节后以课本上数学史中的一个经典问题——“将军饮马问题”为载体开展对“最短路径问题”的课题研究,让学生经历将实际问题抽象为数学的线段和最小问题,再利用轴对称将线段和最小问题转化为“两点之间,线段最短”(或“三角形两边之和大于第三边”)问题.主要是运用数形结合和思想,综合轴对称、线段的性质和勾股定理以及一些常见的轴对称图形的性质解决线段之和最短问题,该问题的解决为我们提供了一种解题的思路和线索,触类旁通,由此产生了一系列问题的解题思路。使学生在操作活动的过程中感受知识的自然呈现,体验数学的神秘与乐趣。 【学情分析】从我平时教学反映出学生不重视学习方法,不注意归纳总结,不会思考,更不善于思考,只懂得机械的重复做题,浪费的大量的时间和精力,再加上来自社会、家长和老师的压力较大,学生学的辛苦,毫无快乐可言.而家长对我们教学的质量的要求较高,不但要学习成绩好,还要孩子学的轻松,玩的高兴.所以想通过本节课引导学生学会学习,学会思考,从而使其感受到学习的快乐,提高学习的兴趣,避免死做题,读死书,以达到“教”是为可不教的目的.我班为平行班,代表了年级的平均水平,学生基础尚可,自觉性较强,学习努力,所以本节课设计为一堂学法研究课,旨在让学生学会思考,感受学习的快乐,体验成功. 教学目标: 【知识技能】 1.能利用轴对称解决简单的最短路径问题,体会图形的变化在解决最值问题中的作用,感 悟转化思想. 2.能利用轴对称变换解决日常生活中的实际问题。 【过程与方法】.培养学生的探究、归纳、分析、解决问题的能力。 【情感与态度】进一步培养好奇心和探究心理,更进一步体会到数学知识在生活中 重点:利用轴对称将最短路径问题转化为“两点之间,线段最短”问题. 难点:在实际题目中会运用最短路径模型灵活解决问题。 【教学关键】 运用好数形结合的思想,特别是从轴对称和线段的性质入手,获得求线段之和最短问题的直观形象,以便准确理解本节课的内容。 【教学策略】利用教学资源,通过创设具有启发性的、学生感兴趣的、有助自主学习和探索的问题情境,使学生在活动丰富、思维积极的状态中进行探究学习,组织好合作学习,并对合作过程进行引导,使学生朝着有利于知识建构的方向发展。

将军饮马模型(终稿)

将军饮马模型 将军饮马模型 一、背景知识: 【传说】 早在古罗马时代,传说亚历山大城有一位精通数学和物理的学者,名叫海伦.一天,一位罗马将军专程去拜访他,向他请教一个百思不得其解的问题. 将军每天从军营 A 出发,先到河边饮马,然后再去河岸同侧的军营 B 开会,应该怎样走才能使路程最短?这个问题的答案并不难,据说海伦略加思索就解决了它.从此以后,这个被称为“ 将军饮马”的问题便流传至今. 【问题原型】将军饮马造桥选址费马点 【涉及知识】两点之间线段最短,垂线段最短; 三角形两边三边关系;轴对称;平移; 【解题思路】找对称点,实现折转直 二、将军饮马问题常见模型 1.两定一动型:两定点到一动点的距离和最小 例1:在定直线l上找一个动点 P,使动点 P 到两个定点 A 与 B 的距离之和最小,即 PA+PB 最小 . 作法:连接 AB ,与直线l 的交点Q, Q 即为所要寻找的点,即当动点P 跑到了点 Q 处, PA+PB 最小,且最小值等于AB. 原理:两点之间线段最短。 证明:连接 AB ,与直线l 的交点Q,P为直线 l 上任意一点, 在⊿ PAB 中,由三角形三边关系可知:AP+PB ≧ AB( 当且仅当 PQ 重合时取﹦ )

例2:在定直线l上找一个动点P,使动点P到两个定点A与B的距离之和最小,即PA+PB 的和最小 . 关键:找对称点 作法:作定点 B 关于定直线l的对称点 C,连接 AC ,与直线 l 的交点 Q 即为所要寻找的点,即 当动点 P 跑到了点 Q 处, PA+PB 和最小,且最小值等于 AC. 原理:两点之间,线段最短 证明:连接 AC ,与直线l 的交点Q,P为直线 l 上任意一点, 在⊿ PAC 中,由三角形三边关系可知:AP+PC≧ AC( 当且仅当 PQ 重合时取﹦ ) 2.两动一定型 例3:在∠ MON 的内部有一点 A ,在 OM 上找一点 B ,在 ON 上找一点 C,使得△ BAC 周长最短. 作法:作点 A 关于 OM 的对称点 A’,作点 A 关于 ON 的对称点 A’’,连接 A’ A ’’,与 OM 交于点 B,与 ON 交于点 C,连接 AB , AC ,△ ABC 即为所求. 原理:两点之间,线段最短

轴对称中的动点问题:将军饮马

轴对称中的动点问题 【命题:严学荣 审核:明祥彬】 将军饮马问题:如图所示,将军准备从A 点出发,想让马到一条笔直的河流上去饮水,然后再去B 地,那么走怎样的路线最短呢? 【题型梳理】 一、两点一线型(两定一动) 例1 如图,A 、B 两点在直线l 的异侧,点P 是l 上一动点,若AB =5,求P A +PB 的最小值. 【变式训练】 1.如图,直线l 和l 的同侧两点A 、B ,在直线l 上求作一点P ,使P A +PB 最小. 2. 如图,A 、B 两点在直线l 的同侧,点P 是l 上一动点,若AB =5,求PA PB ?的最大值. 3.如图,直线l 和l 的同侧两点A 、B ,在直线l 上求作一点P ,使PA PB ?的最大. l A l l l

二、一点两线型(一定两动) 例2 如图,点P 是∠MON 内的一点,分别在OM ,ON 上 作点A ,B .使△P AB 的周长最小 【变式训练】 1.如图,点A 是∠MON 外的一点,在射线OM 上作点P ,使P A 与点P 到射线ON 的距离之和最小. 三、两点两线型(两定两动) 例3 如图,点P ,Q 为∠MON 内的两点,分别在OM ,ON 上作点A ,B .使四边形P AQB 的周长最小 【变式训练】 如图所示,在一条河的两岸有两个村庄,现要在河上建一座小桥,桥的方向与河流垂直,设河的宽度不变,试问:桥架在何处,才能使从A 到B 的距离最短? 【精讲精练】 1.如图,在台球桌面ABCD 上,有白和黑两球分别位于M ,N 两点处,问:怎样撞击白球M ,使白球先撞击台边BC ,反弹后再去击中黑球N ? O O N A O

轴对称与将军饮马问题(基础篇)专题练习(解析版)

轴对称与将军饮马问题(基础篇)专题练习 一、两定点一动点 1、答案:D 分析: 解答:∵点B和B’关于直线l对称,且点C在l上, ∴CB=CB’, 又∵AB’交l于C,且两条直线相交只有一个交点, ∴CB’+CA最短,即CA+CB的值最小,将轴对称最短路径问题利用线段的性质定理两点之间,线段最短,体现了转化思想,验证时利用三角形的两边之和大于第三边. 2、答案:B 分析: 解答:MN是正方形ABCD的一条对称轴, ∴PD=AP, 当PC+PD最小时,即点P位于AC与MN的交线上, 此时∠PCD=45°. 3、答案:C 分析: 解答:当PC+PE最小时,P在BE与AD的交点位置, 如图, ∵△ABC是等边三角形, ∴∠ACB=60°, ∵D、E分别是边BC,AC的中点, ∴P为等边△ABC的重心, ∴BE⊥AC, ∴∠PCE=1 2 ∠ACB= 1 2 ×60°=30°, ∴∠CPE=90°-∠PCE=90°-30°=60°,

选C. 4、答案:作图见解答. 分析: 解答:如图所示: 5、答案:作图见解答. 分析: 解答:所作图形如图所示: 6、答案:(1)画图见解答.(2)画图见解答. (3)P(0,4). 分析: 解答:(1)

(2) (3)过点A作AM⊥x轴于M, ∵A(2,6), ∴M(2,0),AM=6, 又∵B(4,0), ∴点B关于y轴的对称点B’(-4,0), ∴B’M=6=AM, ∴△AB’M为等腰直角三角形, ∴∠P’BO=45°, ∴△P’BO也为等腰直角三角形, ∴B’O=PO=4, ∴P(0,4). 7、答案:(1)画图见解答. (2)画图见解答. 分析: 解答:(1)关于y轴对称,纵坐标不变,横坐标相反. (2)作C关于y轴的对称点C1,连接C1B,交y轴于点P.连接PB,PC,此时△PBC周

(完整word版)将军饮马问题的11个模型及例题

将军饮马问题 问题概述 路径最短、线段和最小、线段差最大、周长最小等一系列最值问题 方法原理 1.两点之间,线段最短; 2.三角形两边之和大于第三边,两边之差小于第三边; 3.中垂线上的点到线段两端点的距离相等; 4.垂线段最短. 基本模型 1. 已知:如图,定点A、B分布在定直线l两侧; 要求:在直线l上找一点P,使PA+PB的值最小 解:连接AB交直线l于点P,点P即为所求, PA+PB的最小值即为线段AB的长度 理由:在l上任取异于点P的一点P′,连接AP′、BP′, 在△ABP’中,AP′+BP′>AB,即AP′+BP′>AP+BP ∴P为直线AB与直线l的交点时,PA+PB最小. 2. 已知:如图,定点A和定点B在定直线l的同侧 要求:在直线l上找一点P,使得PA+PB值最小(或△ABP的周长最小) 解:作点A关于直线l的对称点A′,连接A′B交l于P, 点P即为所求; 理由:根据轴对称的性质知直线l为线段AA′的中垂线, 由中垂线的性质得:PA=PA′,要使PA+PB最小,则 需PA′+PB值最小,从而转化为模型1.

3. 已知:如图,定点A、B分布在定直线l的同侧(A、B两 点到l的距离不相等) 要求:在直线l上找一点P,使︱PA-PB︱的值最大 解:连接BA并延长,交直线l于点P,点P即为所求; 理由:此时︱PA-PB︱=AB,在l上任取异于点P的一点P′, 连接AP′、BP′,由三角形的三边关系知︱P′A-P′B︱

将军饮马的六种模型

第 1 页 共 10 页 将军饮马的六种常见模型 将军饮马问题——线段和最短 一.六大模型 1.如图,直线l 和l 的异侧两点A 、B ,在直线l 上求作一点P ,使P A +PB 最小。 2.如图,直线l 和l 的同侧两点A 、B ,在直线l 上求作一点P ,使P A +PB 最小。 3.如图,点P 是∠MON 内的一点,分别在OM ,ON 上作点A ,B 。使△P AB 的周长最小 4.如图,点P ,Q 为∠MON 内的两点,分别在OM ,ON 上作点A ,B 。使四边形P AQB 的 周长最小。 5.如图,点A 是∠MON 外的一点,在射线ON 上作点P ,使P A 与点P 到射线OM 的距离之和最小

6. .如图,点A是∠MON内的一点,在射线ON上作点P,使P A与点P到射线OM的距离之和最小 二、常见题目 Part1、三角形 1.如图,在等边△ABC中,AB= 6,AD⊥BC,E是AC上的一点,M是AD上的一点,AE=2,求EM+EC 的最小值 解:∵点C关于直线AD的对称点是点B, ∴连接BE,交AD于点M,则ME+MD最小, 过点B作BH⊥AC于点H, 则EH = AH–AE = 3–2 = 1, BH = 22 BC CH -=22 63 -=33 在直角△BHE中,BE = 22 BH EH - =22 (33)1 +=27 2.如图,在锐角△ABC中,AB =42,∠BAC=45°,∠BAC的平分线交BC于点D,M、N分别是AD和AB上的动点,则BM+MN的最小值是____. 解:作点B关于AD的对称点B',过点B'作B'E⊥AB于点E,交AD于点F,则线段B'E长就是BM +MN的最小值在等腰Rt△AEB'中,根据勾股定理得到,B'E = 4 第 2 页共10 页

轴对称及将军饮马问题教师版

轴对称及“将军饮马”问题 知识点睛 轴对称图形: 如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形.这条直线就是它的对称轴.这时我们就说这个图形关于这条直线(或轴) 对称. 如下图,ABC ?是轴对称图形. 两个图形轴对称: 把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就是说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做 对称点. 如下图,ABC ?关于直线l对称,l叫做对称轴.A和'A,B和'B,C和'C是对 A B C ?与''' 称点. 对称轴的性质: 对称轴所在直线经过对称点所连线段的中点,并且垂直于这条线段.即:如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.类似地,轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线. 线段的垂直平分线: 经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线. 如图,直线l经过线段AB的中点O,并且垂直于线段AB,则直线l就是线段AB的垂直 平分线. 线段垂直平分线的性质: 线段垂直平分线上的点与这条线段两个端点的距离相等. 如图,点P是线段AB垂直平分线上的点,则PA PB =. 线段垂直平分线的判定: 与一条线段两个端点距离相等的点,在这条线段的垂直平分线上. 成轴对称的两个图形的对称轴的画法: 如果两个图形成轴对称,其对称轴就是任何一对对应点所连线段的垂直平分线.因此,我们只要找到一对对应点,作出连接它们的线段的垂直平分线,就可以得到这 两个图形的对称轴. 成轴对称的两个图形的主要性质: ①成轴对称的两个图形全等

将军饮马模型

一、背景知识:【传说】.一天,一海伦早在古罗马时代,传说亚历山大城有一位精通数学和物理的学者,名叫位罗马将军专程去拜访他,向他请教一个百思不得其解的问题.应该怎样走开会,出发,先到河边饮马,然后再去河岸同侧的军营B将军每天从军营A这个从此以后,才能使路程最短?这个问题的答案并不难,据说海伦略加思索就解决了它.”的问题便流传至今.被称为“将军饮马造桥选址费马点【问题原型】将军饮马【涉及知识】两点之间线段最短,垂线段最短;轴对称;平移;三角形两边三边关系; 【解题思路】找对称点,实现折转直二、将军饮马问题常见模型两定点到一动点的距离和最小1.两定一动型:l,使动点P到两个定点A与B的距离之和最小,即PA+PB例1:在定直线上找一个动点P最小. l的交点Q,AB,与直线作法:连接Q即为所要寻找的点,即当动点P跑到了点Q处, PA+PB最小,且最小值等于AB. 原理:两点之间线段最短。 ll为P证明:上任意一点,直线连接AB,与直线的交点Q,在⊿PAB中,由三角形三边关系可知:AP+PB≧AB(当且仅当PQ重合时取﹦) l:2例A与的距离之和最小,B在定直线P上找一个动点P,使动点到两个定点 .即PA+PB的和最小 关键:找对称点l即为所要寻找的点,的交点Q,连接AC作法:作定点B关于定直线,与直线的对称点Cl和最小,且最小值等于AC.Q处,PA+PB即当动点P跑到了点原理:两点之间,线段最短ll为:P证明,与直线直线的交点Q,上任意一点,连接AC)PQ重合时取﹦中,由三角形三边关系可知:AP+PC≧AC(当且仅当在⊿PAC 2.两动一定型 例3:在∠MON的内部有一点A,在OM上找一点B,在ON上找一点C,使得△BAC周长最短.

轴对称及将军饮马问题.教师版

轴对称及“将军饮马”问题 知识点睛 轴对称图形: 如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形.这条直线就是它的对称轴.这时我们就说这个图形关于这条直线(或轴)对称. 如下图,ABC ?是轴对称图形. 两个图形轴对称: 把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就是说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点. 如下图,ABC ?与'''A B C ?关于直线l 对称,l 叫做对称轴.A 和'A ,B 和'B ,C 和'C 是对称点. 对称轴的性质: 对称轴所在直线经过对称点所连线段的中点,并且垂直于这条线段.即:如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.类似地,轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线. 线段的垂直平分线: 经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线. 如图,直线l 经过线段AB 的中点O ,并且垂直于线段AB ,则直线l 就是线段AB 的垂直平分线. 线段垂直平分线的性质: 线段垂直平分线上的点与这条线段两个端点的距离相等. 轴对称图形 两个图形轴对称 区别 图形的个数 1个图形 2个图形 对称轴的条数 一条或多条 只有1条 联系 二者都的关于对称轴对称的

如图,点P 是线段AB 垂直平分线上的点,则PA PB . 线段垂直平分线的判定: 与一条线段两个端点距离相等的点,在这条线段的垂直平分线上. 成轴对称的两个图形的对称轴的画法: 如果两个图形成轴对称,其对称轴就是任何一对对应点所连线段的垂直平分线.因此,我们只要找到一对对应点,作出连接它们的线段的垂直平分线,就可以得到这两个图形的对称轴. 成轴对称的两个图形的主要性质: ①成轴对称的两个图形全等 ②如果两个图形关于某条直线对称,那么对称轴是任何一对对应点连线的垂直平分线 轴对称变换的方法应用: 轴对称变换是通过作图形关于一直线的对称图形的手段,把图形中的某一图形对称地移动到一个新的位置上,使图形中的分散条件和结论有机地联系起来.常用的辅助线有角平分线条件时的各种辅助线,本质上都是对称变换的思想. 轴对称变换应用时有下面两种情况: ⑴图形中有轴对称图形条件时,可考虑用此变换; ⑵图形中有垂线条件时,可考虑用此变换. 重、难点 例题精讲 板块一、轴对称与轴对称图形的认识 【例 1】 下列”QQ 表情”中属于轴对称图形的是( ) A . B . C . D . 【解析】 C 重点:理解轴对称的概念,并且熟悉掌握轴对称的性质以及作图,同时理解轴对称 变换的概念,能很好的做出轴对称变换的图形,并能很好的利用轴对称的知识来解决题目 难点:运用轴对称变换来解决实际题目,以及轴对称的生活中的实际运用

将军饮马的六种模型

将军饮马的六种常见模型 将军饮马问题——线段和最短 一.六大模型 1.如图,直线l和l的异侧两点A、B,在直线l上求作一点P,使P A+PB最小。 2.如图,直线l和l同侧两点A、B,在直线l上求作一点P,使P A+PB最小。 3.如图,点P是∠MON内一点,分别在OM,ON上作点A,B。使△P AB的周长最小 4.如图,点P,Q为∠MON内的两点,分别在OM,ON上作点A,B。使四边形P AQB的周长最小。 5.如图,点A是∠MON外的一点,在射线ON上作点P,使P A与点P到射线OM的距离之和最小

6. .如图,点A 是∠MON 内的一点,在射线ON 上作点P ,使P A 与点P 到射线OM 的距离之和最小 二、常见题目 Part 1、三角形 1.如图,在等边△ABC 中,AB = 6,AD ⊥BC ,E 是AC 上的一点,M 是AD 上的一点,AE =2,求EM +EC 的最小值 解: ∵点C 关于直线AD 的对称点是点B , ∴连接BE ,交AD 于点M ,则ME +MD 最小, 过点B 作BH ⊥AC 于点H , 则EH = AH – AE = 3 – 2 = 1, BH =22BC CH -=2263-=33 在直角△BHE 中,BE =22BH EH - =22(33)1+=27 2.如图,在锐角△ABC 中,AB =42,∠BAC =45°,∠BAC 的平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点, 则BM +MN 的最小值是____. 解:作点B 关于AD 的对称点B ',过点B '作B 'E ⊥AB 于点E ,交AD 于点F ,则线段B 'E 长就是BM +MN的最小值在等腰Rt △AEB '中,根据勾股定理得到,B 'E = 4

“将军饮马”模型详解与拓展

“将军饮马”模型详解与拓展 平面几何中涉及最值问题的相关定理或公理有:① 线段公理:两点之间,线段最短. 并由此得到三角形三边关系;② 垂线段的性质:从直线外一点到这条直线上各点所连的线段中,垂线段最短. 在一些“线段和最值”的问题中,通过翻折运动,把一些线段进行转化即可应用①、② 的基本图形,并求得最值,这类问题一般被称之为“将军饮马”问题。 问题提出: 唐朝诗人李欣的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题. 如图所示,诗中将军在观望烽火之后从山脚下的A点出发,走到河边饮马后再到B点宿 营.请问怎样走才能使总的路程最短? 模型提炼: 模型【1】一定直线、异侧两定点 直线l和l的异侧两点A、B,在直线l上求作一点P,使PA+PB最小 解答:根据“两点之间,线段距离最短”,所以联结AB交直 线l于点P,点P即为所求点 模型【2】一定直线、同侧两定点 直线l和l的同侧两点A、B,在直线l上求作一点P,使PA+PB最小 解答: 第一步:画点A关于直线l的对称点A'(根据“翻折运动”的 相关性质,点A、A'到对称轴上任意点距离相等,如图所示, AP=A'P,即把一定直线同侧两定点问题转化为一定直线异侧两 定点问题) 第二步:联结A'B交直线l于点Q,根据“两点之间,线段距离 最短”,此时“A'Q+QB”最短即“AQ+QB”最短

模型【3】一定直线、一定点一动点 已知直线l和定点A,在直线k上找一点B(点A、B在直线l同侧),在直线l上找点P, 使得AP+PB最小 解答: 第一步:画点A关于直线l的对称点A' 第二步:过点A'做A'B⊥k于点B且交直线l于点P,根据“从直线 外一点到这条直线上各点所连的线段中,垂线段最短”,可知A'P+PB 最小即AP+PB最小 模型【4】一定点、两定直线 点P是∠MON内的一点,分别在OM,ON上作点A,B,使△PAB的周长最小 解答: 策略:两次翻折 第一步:分别画点P关于直线OM、ON的对称点P1、P2 第二步:联结P1P2,交OM、ON于点A、点B (根据“翻折运动”的相关性质,AP=AP1,BP=BP2;根据“两点之间, 线段距离最短”可知此时AP1+BP2+AB最短即△ABP周长最短) 拓展 如果两定点、两定直线呢? “如图,点P,Q为∠MON内的两点,分别在OM,ON上作点 A,B。使四边形PAQB的周长最小” 问题升级: 问题:如图,△ABC中,点D、E、F分别在边AB、AC、BC上,试求作△DEF的最小值

初中将军饮马问题题型总结(全)

初中涉及将军饮马问题题型总结 题型一:将军饮马之单动点 1. 三角形中的将军饮马 【真题链接1.】(2017?天津) 如图,在ABC ?中,AB AC =,AD 、CE 是ABC ?的两条中线,P 是AD 上一个动点,则下列线段的长度等于BP EP +最小值的是( ) A .BC B .CE C .AD D .AC 【解析】 解:如图连接PC , AB AC =,BD CD =, AD BC ∴⊥, PB PC ∴=, PB PE PC PE ∴+=+, PE PC CE +, P ∴、C 、E 共线时,PB PE +的值最小,最小值为CE 的长度,故选:B . B B

【真题链接2.】(2020?天津一模) 如图,ABC ?是等边三角形,2AB =,AD 是BC 边上的高,E 是AC 的中点,P 是AD 上的一个动点,则PE PC +的最小值为( ) A .1 B .2 C D . 【解析】 解:如图, 连接BE 交AD 于点P ', ABC ?是等边三角形,2AB =,AD 是BC 边上的高,E 是AC 的中点, AD ∴、BE 分别是等边三角形ABC 边BC 、AC 的垂直平分线, P B P C ∴'=', P E P C P E P B BE '+'='+'=, 根据两点之间线段最短, 点P 在点P '时,PE PC +有最小值,最小值即为BE 的长. BE == 所以P E P C '+' 故选:C . B B

【真题链接3.】(2019秋?东至县期末) 如图,在ABC ?中,AB AC =,4BC =,面积是16,AC 的垂直平分线EF 分别交AC ,AB 边于E ,F 点,若点D 为BC 边的中点,点M 为线段EF 上一动点,则CDM ?周长的最小值为( ) A .6 B .8 C .10 D .12 【解析】解:连接AD ,AM . ABC ?是等腰三角形,点D 是BC 边的中点, AD BC ∴⊥, 11 41622 ABC S BC AD AD ?∴= =??=,解得8AD =, EF 是线段AC 的垂直平分线, ∴点C 关于直线EF 的对称点为点A , MA MC ∴=, AD AM MD +, AD ∴的长为CM MD +的最小值, CDM ∴?的周长最短11 ()84821022 CM MD CD AD BC =++=+ =+?=+=. 故选:C . A A

5轴对称的应用-将军饮马问题

轴对称的应用 将军饮马问题 【基础练习】 1. 如图,A 、B 是两个蓄水池,都在河流a 的同侧,为了方便灌溉作物, 要在河边建一 个抽水站,将河水送到A 、B 两地,问该站建在河边什么地方, 可使所修的渠道最短,试在图中确定该点(保留作图痕迹) 2.如图,已知牧马营地在P 处,每天牧马人要赶着马群先到河边饮水,再带到草地吃草,然后回到营地,请你替牧马人设计出最短的放牧路线. 3.如图,直线l 是一条河,P ,Q 两地相距8千米,P ,Q 两地到l 的距离分别为2千米,5千米,欲在l 上的某点M 处修建一个水泵站,向P ,Q 两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则铺设的管道最短的是( ) A . B . C . D . 草地 河流 营地 P

4.如图,直线L 是一条河,P ,Q 是两个村庄.欲在L 上的某处修建一个水泵站,向P ,Q 两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则所需管道最短的是( ) A . B . C . D . 5.如图,牧童在A 处放牛,其家在B 处,A 、B 到河岸的距离分别为AC 和BD ,且AC=BD ,若点A 到河岸CD 的中点的距离为500米,则牧童从A 处把牛牵到河边饮水再回家,最短距离是( ) A .750米 B .1000米 C .1500米 D .2000米 6.如图,在一条公路CD 的同一侧有A 、B 两个村庄,A 、B 与公路的距离AC 、BD 分别为500m 和700m ,且C 、D 两地相距500m ,若要公路旁(在CD 上)建一个车站,则A 、B 两村庄到车站的距离之和最短是( ) A .1000m B .1200m C .1300m D .1700m 7.如图,C 、D 、E 、F 是一个长方形台球桌的4个顶点,A 、B 是桌面上的两个球,怎样击

最值系列之将军饮马

最值系列之——将军饮马 一、什么是将军饮马? 【问题引入】 “白日登山望烽火,黄昏饮马傍交河”,这是唐代诗人李颀《古从军行》里的一句诗。而由此却引申出一系列非常有趣的数学问题,通常称为“将军饮马”。 【问题描述】 如图,将军在图中点A处,现在他要带马去河边喝水,之后返回军营,问:将军怎么走能使得路程最短? A B 将军 军营 河 【问题简化】 如图,在直线上找一点P使得P A+PB最小? 【问题分析】 这个问题的难点在于P A+PB是一段折线段,通过观察图形很难得出结果,关于最小值,我们知道“两点之间,线段最短”、“点到直线的连线中,垂线段最短”等,所以此处,需转化问题,将折线段变为直线段. 【问题解决】 作点A关于直线的对称点A’,连接P A’,则P A’=P A,所以P A+PB=P A’+PB

当A’、P、B三点共线的时候,P A’+PB=A’B,此时为最小值(两点之间线段最短) 【思路概述】 作端点(点A或点B)关于折点(上图P点)所在直线的对称,化折线段为直线段. 二、将军饮马模型系列 【一定两动之点点】 在OA、OB上分别取点M、N,使得△PMN周长最小. B B 此处M、N均为折点,分别作点P关于OA(折点M所在直线)、OB(折点N所在直线)的对称点,化折线段PM+MN+NP为P’M+MN+NP’’,当P’、M、N、P’’共线时,△PMN周长最小. 【例题】如图,点P是∠AOB内任意一点,∠AOB=30°,OP=8,点M和点N分别是射线OA和射线OB上的动点,则△PMN周长的最小值为___________. P O B A M N 【分析】△PMN周长即PM+PN+MN的最小值,此处M、N均为折点,分别作点P关于OB、OA对称点P’、P’’,化PM+PN+MN为P’N+MN+P’’M.

中考数学:'将军饮马'所有模型及变式——终极篇

中考数学:'将军饮马'所有模型及变式——终极篇 以微课堂 初中精品微课,数学奥林匹克国家一级教练执教。 一、模型展现 (1)直线型 模型1:在直线l上求作点P,使PA+PB最小. 原理:两点之间,线段最短.PA+PB最小值即为AB长. 模型2:在直线l上求作点P,使PA+PB最小. 原理:和最小,同侧转异侧.两点之间,线段最短. 模型3:在直线l上求作点P,使|PA-PB|最大. 原理:两边之差小于第三边,|PA-PB|最大值即为AB长. 模型4:在直线l上求作点P,使|PA-PB|最大. 原理:差最大,异侧转同侧.两边之差小于第三边. 变式:在直线l上求作点P,使l平分∠APB,与此作法相同. 模型5:在直线l上求作点P,使|PA-PB|最小.

原理:|PA-PB|最小为0,中垂线上的点到线段两端的距离相等. (2)角型 模型6:在OA,OB上求作点M,N,使△PMN周长最小. 原理:作两次对称,两点之间,线段最短. 模型7:在OA,OB上求作点M,N,使四边形PQMN周长最小.

原理:P,Q分别作对称,两点之间,线段最短. 模型8:在OA,OB上求作点M,N, (1)使PM+MN最小. (2)使PN+MN最小. 原理:先连哪个点,就先做关于那个点所在射线的对称点.垂线段最短. 模型9:P,Q为OA,OB的定点,在OA,OB上求作点M,N,使PN+NM +MQ最小. 原理:两点之间,线段最短,PN+NM+MQ最小值即为P’Q’的长.

(3)平移型 模型10:在直线l上求作点M,N,使MN=a,且AM+MN+NB最小. 原理:将l上的MN转化到B’B.(问题情境:将军从军营A出发,去河边l饮马,饮马完在河边牵马散步a米,回军营B.可以转化为饮完马,直接去军营B,在到达之前散步.) 模型11(造桥选址): 直线l1∥l2,在l1上求作点M,在l2上求作点N,使MN⊥l1,且AM+MN +NB最小. 原理: 将MN转化为AA’.(可以理解为在A处先走过桥的路,再直达点B.) 二、典型例题

相关文档
相关文档 最新文档