文档库 最新最全的文档下载
当前位置:文档库 › 神经元的通讯与信号整合

神经元的通讯与信号整合

1

2

Neurons and Glia

神经生物教研室

王丹丹

3

引言

\Neurons

Sense environmental changes

Process information

Communicate changes to other neurons

Command body response

\Glia

Insulates, supports, and nourishes neurons

90% of brain cells are glial cells

4

Part one:Neurons

Contents

典型的神经元结构

神经元的分类

*

神经元的通讯与信号整合

Lab Protocols

5

神经元学说

(The Neuron Doctrine)

The Birth of Neurohistology

\显微镜的发明(17世纪后半叶)

\固定方法的建立(4% 多聚甲醛)、切片机

\细胞染色法:尼氏染色法、高尔基染色法

6

1. The Nissl Stain(焦油紫)

\Developed by the German neurologist Franz Nissl

\Stain the nuclei and surrounding material (Nissl body)

\Made it possible to distinguish neurons vs. glia

7

8

2. The Golgi Stain

\Soma (cell body or perikaryon) and neurites

(axons and dendrites)

9

Golgi

“网络理论”Cajal “细胞理论”vs.

神经元学说(Cajal’s Contribution ):“神经元的突起是通过接触而非连通传递信息”

Part one:Neurons

Contents

典型的神经元结构

神经元的分类

神经元的功能

神经元的通讯与信号整合

Lab Protocols

10

典型的神经元结构

The Soma

Fig2.7 \直径大约20 um

\细胞液:富含钾离子的盐溶液

\丰富的膜质闭合细胞器

11

12典型的神经元结构

The Cytoskeleton

\微管

\微丝

\神经丝

大骨架韧带参与细胞形状改变

微管相关蛋白(MAPs)参与微管组装与功能调控MAP-2:

enriched in dendrites

Tau:

active primarily in axons

MAP-2

Tau / Tubulin

β-tubulin

13

A B C Part one

阿尔茨海默病患者脑内的神经元

A:神经丝显示出活的神经元;

B:神经元纤维缠结tau蛋白;C:合成图

14

典型的神经元结构

The Axon

\不含粗面内质网

\不合成蛋白

\轴突侧枝(回返侧枝)

15

16

The Axon

\不含粗面内质网

\不合成蛋白

\轴突侧枝(回返侧枝)典型的神经元结构

顺向运输逆向运输

17

ATP供能,物质储存于囊泡,沿着微管“走下去”,“腿脚”是驱动

蛋白

顺向运输

轴突终末的细胞质和轴

突内细胞质的不同:

1.不存在微管

2.包含大量突触囊泡

3.含有大量线粒体,

能量需求高

MAP-2/突触囊泡

18

Waller 氏退变(Wallerian degeneration):Degeneration of axon when severed (axotomy) is due to the lack of protein synthesis machinery within axon.

Kandel Fig 55-18

19

1. 顺向运输的科研应用:

跟踪突触蛋白的运输与突触连

接的途径

例如:视觉传导通路

(放射性氨基酸)

2. 逆向运输的科研应用:

神经元的病毒感染机制

例如:疱疹病毒

狂犬病毒

20

第七章 细胞信号转导异常与疾病-卢建

总字数:19,361 图:5 表:0 第七章细胞信号转导异常与疾病 第一节细胞信号转导系统概述 一、受体介导的细胞信号转导通路 二、细胞信号转导通路调节靶蛋白活性的主要方式 第二节信号转导异常发生的环节和机制 一、细胞外信号发放异常 二、受体或受体后信号转导异常 第三节与信号转导异常有关的疾病举例 一、胰岛素抵抗性糖尿病 二、肿瘤 三、心肌肥厚和心衰

第七章细胞信号转导异常与疾病 细胞信号转导系统(signal transduction system或cell signaling system)由能接收信号的特定受体、受体后的信号转导通路以及其作用的靶蛋白所组成。细胞信号转导系统具有调节细胞增殖、分化、代谢、适应、防御和凋亡等作用,它们的异常与疾病,如肿瘤、心血管病、糖尿病、某些神经精神性疾病以及多种遗传病的发生发展密切相关。受体和细胞信号转导分子异常既可以作为疾病的直接原因,引起特定疾病的发生;亦可在疾病的过程中发挥作用,促进疾病的发展。细胞信号转导异常可以局限于单一成分(如特定受体)或某一环节,亦可同时或先后累及多个环节甚至多条信号转导途径,造成调节信号转导的网络失衡。对信号转导系统与疾病关系的研究不仅有助于阐明疾病的发生发展机制,还能为新药设计和发展新的治疗方法提供思路和作用靶点。 第一节细胞信号转导系统概述 信号转导过程包括细胞对信号的接受,细胞内信号转导通路的激活和信号在细胞内的传递。激活的信号转导通路对其靶蛋白的表达或活性/功能的调节,如导致如离子通道的开闭、蛋白质可逆磷酸化反应以及基因表达改变等,导致一系列生物效应。 一、受体介导的细胞信号转导通路 细胞的信号包括化学信号和物理信号,物理信号包括射线、紫外线、光信号、电信号、机械信号(摩擦力、压力、牵张力以及血液在血管中流动所产生的切应力等)以及细胞的冷热刺激等。已证明物理信号能激活细胞内的信号转导通路,但是与化学信号相比,目前多数物理信号是如何被细胞接受和启动细胞内信号转导的尚不清楚。 化学信号又被称为配体(ligand),它们包括:①可溶性的化学分子如激素、神经递质和神经肽、细胞生长因子和细胞因子、局部化学介质如前列腺素、细胞

细胞信号通路大全

1 PPAR信号通路:过氧化物酶体增殖物激活受体( PPARs) 是与维甲酸、类固醇 和甲状腺激素受体相关的配体激活转录因子超家族核激素受体成员。它们作为脂 肪传感器调节脂肪代谢酶的转录。PPARs由PPARα、PPARβ和PPARγ 3种亚型组成。PPARα主要在脂肪酸代谢水平高的组织,如:肝、棕色脂肪、心、肾和骨骼肌表达。他通过调控靶基因的表达而调节机体许多生理功能包括能量代谢、生 长发育等。另外,他还通过调节脂质代谢的生物感受器而调节细胞生长、分化与 凋亡。PPARa同时也是一种磷酸化蛋白,他受多种磷酸化酶的调节包括丝裂原激活蛋白激酶( ERK-和p38.M APK) ,蛋白激酶A和C( PKA,PKC) ,AM PK和糖原合成酶一3( G SK3) 等调控。调控PPARa生长信号的酶报道有M APK、PKA和G SK3。PPARβ广泛表达于各种组织,而PPAR γ主要局限表达在血和棕色脂肪,其他组织如骨骼肌和心肌有少量表达。PPAR-γ在诸如炎症、动脉粥样硬化、胰岛素抵抗和糖代谢调节,以及肿瘤和肥胖等方面均有着举足轻重的作用, 而其众多生物学效应则是通过启动或参与的复杂信号通路予以实现。鉴于目前人 们对PPAR—γ信号通路尚不甚清,PPARs通常是通过与9-cis维甲酸受体( RXR)结合实现其转录活性的。 2 MAPK信号通路:mapk简介:丝裂原激活蛋白激酶(mitogen—activated protein kinase,MAPK)是广泛存在于动植物细胞中的一类丝氨酸/苏氨酸蛋白激酶。作用主要是将细胞外刺激信号转导至细胞及其核内,并引起细胞的生物化学反应(增殖、分化、凋亡、应激等)。 MAPKs家族的亚族 :ERKs(extracellular signal regulated kinase):包括ERK1、ERK2。生长因子、细胞因子或激素激活此通路,介导细胞增殖、分化。 JNKs(c-Jun N-terminal kinase)包括JNK1、JNK2、JNK3。此亚族成员能使 Jun转录因子N末端的两个氨基酸磷酸化而失活,因此称为Jun N末端激酶(JNKs)。物理、化学的因素引起的细胞外环境变化以及致炎细胞因子调节此通路。P38 MAPKs:丝氨酸/络氨酸激酶,包括p38 α、p38β、p38γ、p38δ。p38 MAP K参与多种细胞内信息传递过程 ,能对多种细胞外刺激发生反应,可磷酸化其它细胞质蛋白,并能从胞浆移位至细胞核而调节转录因子的活性来改变基因的表达水平 ,从而介导细胞生长、发育、分化及死亡的全过程。 ERK5:是一种非典型的MAPK通路,也叫大MAPK通路,只有一个成员。它可被各种刺激因素激活。不仅可以通过磷酸化作用使底物活化,并且通过C端的物理性结合作用激活底物。 3 ERBB信号途径:ErbB 蛋白属于跨膜酪氨酸激酶的 EGF 受体家族成员。ErbB 的命名来源于在禽红白血病 B( v-Erb-B) 发现的 EGF 受体的突变体,因而 EGF 受体 亦称为“ ErbB1”。人源 ErbB2 称为HER2, 特指人的 EGF 受体。ErbB 家族的

铁道概论部分重点

1.谈谈对我们国家铁路的了解? 答:中国领土早期出现的第一条铁路是1876年在上海修建的吴淞铁路,采用欺骗和蒙混手段修建的,而我国自己创建的第一铁路是1881年建设的唐胥铁路,尽管如此但是和世界第一条铁路相比还是晚了56年。总体来说旧中国铁路具有半封建半殖民的色彩,不仅铁路不均匀、不合理、技术落后,主要表现在少、偏、低。新中国建立后党和政府十分重视铁路的建设,建设新线,改造旧线,大力发展铁路。如1958年包兰铁路、1970年的成昆铁路1987年的京广铁路和2005年建设的青藏铁路。随着铁路的建设和发展,对中国的经济影响越来越大。 2.怎样才能实现铁路的协调发展? 答:首先要根据规划原则总体要求来规划和建设铁路。简而言之就是线网布局、枢纽建设与其他交通方式优化、衔接和协调发展提高综合效率和整体优势同时还要协调好点线能力,使客货通道畅通无阻。增加网络密度、扩大路网覆盖面积,节约和集约利用土地,充分利用既有资源,保护生态坏境。 3.列车在曲线上运行时,产生的曲线附加阻力的原因是什么?曲线半径的大小,对列车运行有什么影? 答:因为列车在曲线线路上运行时,除了基本的阻力外,还要受到额外的阻力。单位曲线阻力w与半径R成反比所以曲线半径越大阻力越小,反之则越大。 4.铁路上坡道坡度如何表示?列车在坡道上运行时,产生的坡道附加阻力是什么原因?他对列车有什么影响? 答:坡度是用陡与缓来表示的。由于有了坡道,就会给列车带来不良的影响,在破倒是运行时会受到一种由坡道引起的阻力叫做附加阻力。坡度越大,列车上坡时坡道的阻力就越大,同一台机车所牵引的列车重量就越小。 5.什么是限制坡度?它的大小对运营条件和工程条件有哪些影响?I+W》Ix的含义是什么? 答:在一个区段上,决定一台某一类型机车所牵引的货物列车重量最大值的坡度叫做限制坡度。限制坡度的大小影响运输能力,限制坡度越小,列车重量可以增加,运输能力就越大,运营费用就越少。坡道阻力值和曲线阻力值之和,不能大于该区段规定的限制坡度的阻力值。 6.路基的基本形式与自然地面有何关系?路基的排水设备有哪些? 答:路基高于天然地面时,路基以填筑方式完成,这种路基称路堤。路基低于天然地面时,路基以开挖的方式构成,这种路基叫路堑。路基的排水设备有:纵向排水沟、侧沟、截水沟、渗沟、渗管。 7.轨道的组成及作用?我国铁路轨道有几种类型?不同类别的构造有何区别?答:轨道由钢轨、轨枕、连接零件、道床、防爬设备和道岔组成。 钢轨:直接承受车轮的巨大作用力并引导车轮的运行方向。 轨枕:支撑钢轨,并将压力传给道床,同时可以固定钢轨位置及保持规定轨距。 连接零件:把钢轨和轨枕连接在一条道床上 道床;支承轨枕,把压力均匀传给路基,固定轨枕位置,防止位移。 防爬设备;安装在轨枕之间,用来顶住轨枕,共同防止轨枕爬行。 道岔;主要作用是为列车变道所用。 我国铁路轨道有2种类型(有砟轨和无砟轨)主要区别在;无砟轨道施工简便、精确度高,混泥土道床板内钢筋布置多,采用无缝轨道电路。 8.道岔号如何表示?道岔号数大小对列车有什么影响?绘制单开道岔图。 答:辅助道用阿拉伯数字1、2、3..表示,主轨道用I II...表示。道岔数越大通行越快,反之越小。

(完整版)细胞信号转导研究方法

细胞信号转导途径研究方法 一、蛋白质表达水平和细胞内定位研究 1、信号蛋白分子表达水平及分子量检测: Western blot analysis. 蛋白质印迹法是将蛋白质混合样品经SDS-PAGE后,分离为不同条带,其中含有能与特异性抗体(或McAb)相应的待检测的蛋白质(抗原蛋白),将PAGE胶上的蛋白条带转移到NC膜上此过程称为blotting,以利于随后的检测能够的进行,随后,将NC膜与抗血清一起孵育,使第一抗体与待检的抗原决定簇结合(特异大蛋白条带),再与酶标的第二抗体反应,即检测样品的待测抗原并可对其定量。 基本流程: 检测示意图:

2、免疫荧光技术 Immunofluorescence (IF) 免疫荧光技术是根据抗原抗体反应的原理,先将已知的抗原或抗体标记上荧光素制成荧光标记物,再用这种荧光抗体(或抗原)作为分子探针检查细胞或组织内的相应抗原(或抗体)。在细胞或组织中形成的抗原抗体复合物上含有荧光素,利用荧光显微镜观察标本,荧光素受激发光的照射而发出明亮的荧光(黄绿色或桔红色),可以看见荧光所在的细胞或组织,从而确定抗原或抗体的性质、定位,以及利用定量技术测定含量。 采用流式细胞免疫荧光技术(FCM)可从单细胞水平检测不同细胞亚群中的蛋白质分子,用两种不同的荧光素分别标记抗不同蛋白质分子的抗体,可在同一细胞内同时检测两种不同的分子(Double IF),也可用多参数流式细胞术对胞内多种分子进行检测。 二、蛋白质与蛋白质相互作用的研究技术 1、免疫共沉淀(Co- Immunoprecipitation, Co-IP)

Co-IP是利用抗原蛋白质和抗体的特异性结合以及细菌蛋白质的“protein A”能特异性地结合到免疫球蛋白的FC片段的现象而开发出来的方法。目前多用精制的protein A预先结合固化在agarose的beads 上,使之与含有抗原的溶液及抗体反应后,beads上的prorein A就能吸附抗原抗体达到沉淀抗原的目的。 当细胞在非变性条件下被裂解时,完整细胞内存在的许多蛋白质-蛋白质间的相互作用被保留了下来。如果用蛋白质X的抗体免疫沉淀X,那么与X在体内结合的蛋白质Y也能沉淀下来。进一步进行Western Blot 和质谱分析。这种方法常用于测定两种目标蛋白质是否在体内结合,也可用于确定一种特定蛋白质的新的作用搭档。缺点:可能检测不到低亲和力和瞬间的蛋白质-蛋白质相互作用。 2、GST pull-down assay GST pull-down assay是将谷胱甘肽巯基转移酶(GST)融合蛋白(标记蛋白或者饵蛋白,GST, His6, Flag, biotin …)作为探针,与溶液中的特异性搭档蛋白(test protein或者prey被扑获蛋白)结合,然后根据谷胱甘肽琼脂糖球珠能够沉淀GST融合蛋白的能力来确定相互作用的蛋白。一般在发现抗体干扰蛋白质-蛋白质之间的相互作用时,可以启用GST沉降技术。该方法只是用于确定体外的相互作用。

蛋白质组学方法在细胞内信号转导研究中的应用

生物技术通讯 LETTERSINBIOTECHNOLOGYVol.18No.2Mar.,2007 综述 文章编号:1009-0002(2007)02-0336-03 蛋白质组学方法在细胞内信号转导研究中的应用 李敏,周慧,崔银秋 吉林大学生命科学学院生物大分子实验室,吉林长春130021 [摘要]蛋白质组学的新技术为我们研究细胞内的信号转导过程提供了更广泛和崭新的思路,它克服了传统技术的局限 性,实现了对蛋白的高通量分析。简要综述了蛋白质组学技术在信号转导过程中信号分子的确定、定量,磷酸化等翻译后修 饰的识别,以及蛋白质之间相互作用研究等方面的应用。 [关键词]蛋白质组学;信号转导 [中图分类号]Q25FQ503[文献标识码]A ApplyingProteomicMethodstoCellularSignalTransductionResearch LIMin,ZHOUHui,CUIYin-qiu BiomacromoleculeLab,CollegeofLifeScience,JilinUniversity,Changchun130021,China [Abstract]Improvedtechnologiesthathaveemergedinproteomicsprovideusmuchmorecomprehensiveandnewin- sightsintocellularsignaltransductionresearch.Ithasovercomethelimitationsoftraditionalmethodsandrealizedthe high-throughputproteinanalysismode.Inthisletter,theapplyingofproteomictechnologiesindefiningandquantitating signalingmolecules,identifyingpost-translationalmodificationssuchasphosphorylation,andprotein-proteininteractionsre- searchduringcellularsignaltransductionwerereviewed. [Keywords]proteomicsFsignaltransduction 20世纪90年代以来,对细胞内信号转导途径的研究逐渐成为国内外生物学界广泛关注的热点。由于信号的传递在细胞的增殖、分化和生存等过程中都起着十分关键的作用,因而逐渐成为解决许多重要理论及实践问题的基本思路和有力武器。近年来有关细胞信号转导研究的方法层出不穷。传统地,人们主要利用RNA干扰技术、抗体免疫沉淀、32P标记结合蛋白质印迹法(Westernblotting)、SDS-聚丙烯酰胺凝胶电泳(SDS-PAGE)等方法来检测和鉴定信号传递过程中差异表达的信号分子及关键蛋白的磷酸化。这些方法和技术能够做小量的分析,但无法进行大规模的研究。随着双向电泳(twodimensionalelectrophoresis,2-DE)和质谱技术的不断完善与发展,蛋白质组学方法越来越多地被用于研究胞内信号转导过程。它弥补了传统方法的不足之处,实现了高通量大规模的研究模式。近年来,蛋白质组学方法应用于信号转导的研究,主要在对蛋白表达谱的检测和定量、翻译后修饰的识别,以及蛋白质之间相互作用图谱的绘制等方面。蛋白质组学方法为我们完整地绘制细胞内信号转导网络图提供了更为可靠的依据。以下就近年来该领域的一些新技术及应用做一简要综述。 1信号蛋白的寻找和确定 细胞受到外界的刺激后,首先吸引许多锚定蛋白、衔接蛋白的结合,引起蛋白的相互作用,并随之引发胞内的一系列信号蛋白的改变(如级联磷酸化事件的发生),最终信号传递到核基因,表达或阻抑表达一些特征蛋白,或者作用于某些特定的细胞器,引发其他生物学效应。由此可见,要了解一种信号途径的具体过程,首先要对该过程的特征信号分子及下游所表达的蛋白进行确定。目前,二维电泳结合质谱技术(MALDI-TOF-MS或ESI-MS)已经成为蛋白质组学的首选工具,来获得不同状态下的细胞全蛋白质组。许多研究通过选择性抑制或激活信号通路并筛选2-DE的效应分子成功地鉴定了信号转导过程中的靶标。本文作者所在研究室[1]利用2-DE结合MALDI-TOF-MS,对处于不同生理条件下的NIH3T3细胞的全细胞裂解液进行双向电泳分离及软件分析。在我们筛选的aFGF拮抗剂小肽存在的条件下,鉴定出3种表达量下调、1种表达量上升的蛋白,其中鸟苷酸结合蛋白α-11亚单位和1C型核因子分别参与胞内aFGF信号传导以及转录调控。近来人们又开发出许多以2-DE为基础的改进方法,包括从样本制备、分离到染色等各方面,来对蛋白进行更好的分离分析,如亚细胞分离、差异凝胶电泳(DIGE)技术等[2]。 2-DE的优势是能够更直观地提供信号蛋白的相对分子质量、等电点、相对表达丰度等信息,但它在分离一些pI过大或过小、疏水性强的低丰度蛋白时有很大的困难。最近研究较多的多维蛋白质鉴定技术(multidimensionalproteinidentificationtech-nique,MudPIT)[3]弥补了上述缺陷。MudPIT能够更有效地检测疏水蛋白,且在分析来自胞内细胞器的蛋白时具有更高的效率。最常用的是二维液相色谱(2D-LC),它首先对蛋白复合物进行酶 [收稿日期]2006-08-30 [基金项目]吉林省科技发展计划项目(20040411-3) [作者简介]李敏(1982-),女,硕士研究生 [通讯作者]崔银秋,(E-mail)cuiyq@jlu.edu.cn 336

细胞通讯与细胞信号转导-北京大学

细胞通讯与信号转导
北京大学医学部 细胞生物学系

第一节 基本概念 第二节 膜受体介导的信号转导 第三节 细胞内受体介导的信号转导 第四节 Wnt/β-catenin信号通路 第五节 细胞信号转导与疾病

第一节 基本概念
一、基本概念
1.细胞通讯(cell signaling):指细胞通过释放信号 分子,实现细胞之间、以及细胞与其环境之间 的信息交流。
2.细胞间通讯 (cell-cell communication):特指细胞 之间的信息交流,即一个细胞发出的信息通过 介质传递到另一个细胞产生相应反应的过程。

第一节 基本概念
一、基本概念
3. 细 胞 识 别 (cell recognition) : 以 某 个 细 胞 为 主 体,表述对其周围环境的识别。细胞周围的环 境包括:
? 细胞环境:即其它相邻的自体或异体细胞; ? 分子环境:包括激素、细胞因子、信息素、营养物、
异物、毒物、理化因子等。

第一节 基本概念
一、基本概念
4.信号转导 (signal transduction):细胞外的信号分 子通过与相应的受体作用,引发细胞将胞外信 号转变为胞内信号的过程。
5.信号转导途径或通路(signaling pathway):细胞 通讯过程中涉及的一系列分子相互作用顺序。

二、细胞信号分子
物理信号 :包括多种外界信号,包括:
? 光、声、热、电、辐射、力场等。
化学信号:是细胞间通讯中最广泛的信号分 子,
? 从化学结构可分为:短肽、蛋白质、气体分子(NO、 CO、H2S)以及氨基酸、核苷酸、脂类和胆固醇衍生 物等等
? 从产生和作用方式来看可分为:内分泌激素、细胞因 子与免疫因子、神经递质以及局部化学介质和气体分 子等四大类。
? 从溶解性来看又可分为脂溶性和水溶性两类。

细胞信号转导异常与疾病

细胞信号转导异常与疾病 【简介】 细胞通过受体感受胞外信号分子的刺激,经复杂的细胞内信号转导系统的转换而影响其生物学功能,该过程称为细胞信号转导。水溶性信号分子及某些脂溶性信号分子不能穿过细胞膜,通过与膜表面受体相结合而激活细胞内信号分子,经信号转导的级联反应将细胞外信号传递至胞浆或核内,调节靶细胞功能,该过程称为跨膜信号转导。脂溶性信号分子能穿过细胞膜,与位于胞浆或核内的受体相结合并激活之,活化的受体作为转录因子,改变靶基因的转录活性而诱导细胞特定的应答反应。在病理情况下,细胞信号转导途径中一个或多个环节异常,可导致细胞代谢及功能紊乱或生长发育异常。近年来,人们已经认识到大多数疾病与细胞外或细胞内的信号转导异常有关。信号转导治疗的概念进入了现代药物研究的最前沿。 【要求】 掌握细胞信号转导的概念、跨膜信号转导的概念,掌握细胞信号转导的主要途径 熟悉细胞信号转导障碍与疾病的关系 了解细胞信号转导调控与疾病防治措施 细胞信号转导系统具有调节细胞增殖、分化、代谢、适应、防御和凋亡等多方面的作用,它们的异常与疾病,如肿瘤、心血管病、糖尿病、某些神经精神性疾病以及多种遗传病的发生发展密切相关。受体和细胞信号转导分子异常既可以作为疾病的直接原因,引起特定疾病的发生;亦可在疾病的过程中发挥作用,促进疾病的发展。某些信号转导蛋白的基因突变或多态性虽然并不能导致疾病,但它们在决定疾病的严重程度以及疾病对药物的敏感性方面起重要作用。细胞信号转导异常可以局限于单一成分(如特定受体)或某一环节,亦可同时或先后累及多个环节甚至多条信号转导途径,造成调节信号转导的网络失衡。对信号转导系统与疾病关系的研究不仅有助于阐明疾病的发生发展机制,还能为新药设计和发展新的治疗方法提供思路和作用靶点。 第一节细胞信号转导系统概述 生物的细胞每时每刻都在接触着来自细胞内或者细胞外的各种各样信号。细胞通过位于胞膜或胞内的受体感受胞外信息分子的刺激,经复杂的细胞内信号转导系统的转换而影响其生物学功能,这一过程称为细胞信号转导(cell signal transduction)。典型的细胞信号转导过程通常包括①信号发放:细胞合成和分泌各种信号分子;②接受信号:靶细胞上的特异受体接受信号并启动细胞内的信号转导;③信号转导:通过多个信号转导通路调节细胞代谢、功能及基因表达;④信号的中止:信号的去除及细胞反应的终止。 一、信号以及细胞转导信号的要素 (一)细胞信号的种类 一般说来,能够介导细胞反应的各种刺激都称为细胞信号。细胞信号按照其形式不同可分为物理信号、化学信号和生物信号。生物细胞所接受的信号有多种多样,从这些信号的自然性质来说,可以分为物理信号、化学信号和生物学信号等几大类,它们包括光、热、紫外线、X-射线、离子、过氧化氢、不稳定的氧化还原化学物质、生长因子、分化因子、神经递质和激素等等。在这些信号中,最经常、最普遍、最广泛的信号应该说是化学信号。 化学信号种类繁多,包括激素(hormone)、神经递质(nerve mediator)、细胞因子

(完整版)铁道概论试题与答案

课题一绪论(5%) 一、填空题(每空2分,共50分) 1.运输业的产品是旅客和货物的位移,单位是“人.km”、“t.km”,为了统计的方便,一般应采用换算吨公里。 2.铁路运输业除了具备一般运输业的特点外,还具有“高、大、半”的特点。 3.劳动力、劳动对象和劳动资料是物质生产的三要素。 4.我国交通运输业的发展方向是铁路运输发挥骨干作用。 5.我国交通运输业的发展方向是公路运输发挥基础作用。 6.1825 年世界第一条铁路在英国诞生。 7.1881 年中国人自己建设的第一条铁路叫唐胥铁路。 8.我国杰出的铁路工程师詹天佑在京张铁路建设中巧妙采用人字型展线方案。9.建国后中国共产党修建的第一条铁路叫成渝铁路。 10.我国铁路实行铁道部--铁路局-- 站段三级管理。 11.铁路站段是按车机工电辆进行专业设置,是直接进行最基本的运输产生活动的生产单位。 12.到2020年,全国铁路营业里程将达到12万km。 14. 现代交通运输业主要包括铁路. 公路. 水路. 航空及管道运输。 15. 通用性最强的运输方式是公路运输;运输成本最高的是航空运输。 16.世界上第一条铁路是1825年在英国(国家)修建的斯托克顿至达林顿铁路. 17. 中国第一条铁路是1876年在上海修建的吴淞铁路. 18、从我国国情出发铁路应是我国主要运输方式。 19、三个城际客运系统:环渤海地区、长江三角洲地区、珠江三角洲地区城际客运系统,覆盖区域内主要城镇。 20、运输生产的产品不是改变劳动对象的形状和性质,而只是改变其在空间的位置,计算单位是人·km 或t·km。 二、判断题(在正确的括号内打“√”,错误的打“×”。)(每题2分,共10分) 1.运输业对它的劳动对象只提供服务,不能自由支配。(√) 2.运输是进行物质产品生产的必要条件。(√) 3.运输业的产品可以储存、调拔和积累。(×) 4.中国第一条铁路是英国人于1876年在上海修建的吴淞铁路。(√) 5.运输业的产品是旅客和货物。(×) 6.铁路线路、铁路站场、机车车辆等固定和移动设备属于劳动资料。(√) 7.铁路工人、机车车辆、铁路线路是铁路运输生产的三要素。(×) 三、简答(每题10分,共40分) 1.铁路运输业的特点有那些? 2.现代交通运输业的种类有那些? 3.什么是铁路运输产品?叙述运输产品的特殊性? 4.简述运输业的作用。 5.谈谈你对中国和谐铁路建设的理解。 课题二铁路线路(20%) 一、填空题(每空2分,共40分) 1.铁路线路是机车、车辆和列车的运行基础。

细胞信号转导

植物Ca2+信号的研究进展 摘要 为了适应环境,调节自身代谢和生长, 在植物的生长发育过程中,需要对各种外界环境刺激以及植物内部生理信息做出反应,因此,植物产生了自己的信号系统。Ca2+作为一种信号分子,它几乎参与了生命体所有的生理生化活动,在植物细胞的信号系统中也起着举足轻重的作用。钙是植物生长发育必需的大量元素之一,在细胞水平上, 钙在细胞分裂、极性形成、生长、分化、凋亡等过程中均有重要的调节功能, 能维持细胞壁, 细胞膜及膜结合蛋白的稳定性并参与调节和控制植物的许多生理生化反应, 是植物代谢的重要调节者。针对国内外对植物Ca2+信号的研究情况,综述了Ca2+信号的产生、Ca2+信号参与的各种植物生理过程、Ca2+信号的检测以及其研究的最新进展。 关键词:植物; Ca2+信号; 检测; 研究进展

钙元素广泛存在于自然界和各种生物体内, 而游离态的Ca2+更是在生命活动中扮演着举足轻重的角色, 它几乎参与了生命体所有的生理生化活动。作为一种信号分子, Ca2+在受精、胚胎发育、基因表达、细胞分化、组织形成、代谢调控等过程中都有参与, 可以说, Ca2+信号无处不在[1]。1967年, Ridg-wang和Ashley通过向藤壶肌纤维中微注射水母发光蛋白, 第一次测定静息态胞内钙离子浓度[Ca2+]以来, 对于Ca2+信号的研究即风生水起。虽然植物Ca2+信号的研究起步较动物细胞晚, 但依然取得了一些成果。对植物Ca2+信号的研究, 不但能揭示生命的奥秘, 同时能帮助我们更加清楚地了解各种生命活动。为此, 针对国内外对植物Ca2+信号的研究情况, 笔者对Ca2+信号的生理功能、信号的产生、Ca2+信号参与的各种植物生理过程、以及其研究的最新进展进行了综述。 1.Ca2+的功能 Heilbrunn在1937~1952年发表的著作中, 提出了Ca2+在生物系统中复杂和多功能性的观点。认为利用Ca2+是所有活细胞的基本特征。在他提出的“细胞刺激理论”中认为:当细胞受到各种刺激时, 细胞内原来浓度很低的Ca2+水平明显增高。Heilbrunn提出Ca2+的一些细胞效应有:(1)促进细胞黏合和胞间通讯;(2)影响酶活性, 如ATP酶酯酶等;(3)调节细胞分裂;(4)控制细胞的代谢活动;(5)调节细胞溶质中溶胶-凝胶状态转变;(6)高浓度Ca2+可能造成细胞死亡, 溶质中Ca2+浓度如果太高, 会与细胞内的磷酸根产生沉淀, 而磷酸根是细胞能量及物质代谢所必须的;(7)调节细胞膜的透性。钙在维持细胞膜方面有着重要作用, 电镜观察表明, 缺钙导致细胞膜解体, 加钙又恢复常态。可见钙有稳定细胞膜结构, 防止细胞膜损伤的作用。有机酸是植物代谢的中间产物, 钙能和有机酸结合成为可溶性的钙盐结晶, 其中最为普遍的就是草酸钙。据报道, 在外源Ca2+诱导下, 细胞内可形成草酸钙结晶移去外源Ca2+, 结晶会消失。草酸钙的形成有以下生理作用:(1)消除有机酸在植物体内的过多积累。(2)草酸钙的形成过程是可逆的,植物体内钙离子过多形成草酸钙, 消除过量钙对植物的伤害, 当钙离子浓度不能满足植物需要时,草酸钙释放出Ca2+以满足植物的需要。 2.植物Ca2+信号的产生和终止 高度区域化的植物细胞内结构中, 在质膜液泡膜内质网膜上都存在着跨膜的钙离子电化学梯度, 细胞质和细胞核内游离钙离子也呈现不均匀分布, 这些梯度分布在静止状态是相对稳定的, 在受到刺激时会发生变化。钙离子梯度是钙信号产生的基础,即植物细胞Ca2+空间分布的不均衡性是产生Ca2+信号的生物基础。植物细胞中, 静息态的胞内Ca2+浓度([Ca2+] i)为100~200nM, 而细胞外(细胞壁)和细胞内(内质网、液泡、线粒体、高尔基体、细胞核)钙离子库中钙离子浓度却是胞内的数十倍, 达到了1~10mM[2,3]。当细胞受到信号刺激时, Ca2+从钙离子库中释放, 使胞内Ca2+浓度瞬间升高,激活Ca2+依赖蛋白和激酶CPKs引起细胞代谢以及基因表达的改变。当Ca2+重新进入细胞内钙离子库或流出细胞进入胞外钙离子库时, 信号得以终止。钙离子浓度的调节是通过各种钙离子通道, 钙离子泵和钙离子转运来实现的[4]。 3.植物Ca2+信号的多样性 Ca2+信号几乎参与了各种植物生理过程, 包括花粉管生长、细胞分裂、受精等;同时, Ca2+信号还参与植物的抗逆反应和对光线的感知。由此可见, Ca2+

第七章 细胞信号转导异常与疾病

第七章细胞信号转导异常与疾病 一、单选题 1.下列哪项不属于典型的膜受体 ( ) A.乙酰胆碱受体 B.异丙肾上腺素受体 C.胰岛素受体 D.γ干扰素受体 E.糖皮质激素受体 2.介导去甲肾上腺素作用的受体属于 ( ) A.离子通道受体 B.G蛋白偶联受体 C.受体酪氨酸蛋白激酶 D.核受体 E.细胞粘附受体 3.核受体本质是配体激活的 ( ) A.丝/苏氨酸蛋白激酶 B.酪氨酸蛋白激酶 C.离子通道受体 D.转录因子 E.效应器 4.信号转导系统对靶蛋白调节的最重要方式是通过 ( ) A.DNA的甲基化 B.蛋白质的糖基化 C.DNA的乙酰化 D.蛋白质可逆的磷酸化 E.蛋白质的磷酸化 5.激素抵抗综合征是由于 ( ) A.激素合成减少 B.激素降解过多 C.靶细胞对激素反应性降低 D.靶细胞对激素反应性过高 E.以上都不是 6.毒性甲状腺肿(Graves病)的主要信号转导异常是 ( ) A.促甲状腺素分泌减少 B.促甲状腺素受体下调或减敏 C.Gs含量减少 D.促甲状腺激素(TSH)受体刺激性抗体的作用 E.TSH受体阻断性抗体的作用 7.霍乱毒素对G蛋白的作用是 ( ) A.促进Gs与受体结合 B.刺激Gs生成 C.使Gs的GTP酶活性增高

D.使Gs的GTP酶活性抑制或丧失 E.抑制Gi与受体结合 8.下列哪项不是激活NF- KB的因素 ( ) A.TNF B.病毒 C.糖皮质激素 D.活性氧 E.内毒素 9.肿瘤中小G蛋白Ras最常见的突变可导致 ( ) A.Ras的表达减少 B.Ras的失活 C.Ras与GDP解离障碍 D.Ras自身的GTP酶活性降低 E.Ras激活ERK通路的能力降低 10.家族性肾性尿崩症发病的关键环节是 ( ) A.腺垂体合成和分泌ADH减少 B.肾髓质病变使肾小管上皮细胞对ADH反应性降低 C.基因突变使ADH受体介导的信号转导障碍 D.基因突变使腺苷酸环化酶含量减少 E.肾小管上皮细胞上的水通道增多 11.肿瘤的细胞信号转导异常有 ( ) A.生长因子分泌过多 B.生长因子受体过度激活 C.Ras持续激活 D.抑制细胞增殖的信号减弱 E.以上都是 12.死亡受体(如I型TNFa受体)介导细胞凋亡主要通过激活 ( ) A.蛋白激酶A(PKA) B.Ca2+/钙调素依赖性蛋白激酶 C.蛋白激酶C(PKC) D.NF-kB E.caspases 二、问答题 1.简述细胞信号转导系统的组成、生理作用及异常的病理意义。 2.试述信号转导通路的异常与肿瘤发生发展的关系。 3.何谓自身免疫性受体病,举例说明受体自身抗体的种类和作用。 4.试述激素抵抗综合征的发生机制。 5.信号转导障碍在疾病发生和发展中起什么作用? 6.简述糖皮质激素的抗炎机制。 7.试从激素、受体以及信号转导通路调节的靶蛋白这几个不同层次阐述尿崩症的发生机制。 8.简述受体调节的类型和生理病理意义。 9.试述信号转导改变在高血压心肌肥厚发生中的作 用。 10.以LPS的信号转导为例,简述信号转导与炎症启动和放大的关系。

《铁道概论》

《铁道概论》课程复习资料 一、填空题: 1.运输业的产品是旅客和货物的______,单位是“人.km”、“t.km”,为了统计的方便,一般应采用换算 吨公里。 2.《中长期铁路网调整规划》中提出了三个城际客运系统:环渤海地区、______、珠江三角洲地区城际 客运系统,覆盖区域内主要城镇。 3.______是机车、车辆和列车的运行基础。 4.铁路路基的两种基本断面是路堤和______。 5.区间一般分为______区间和所间区间。 6.区段是两相邻______站的铁路线段,它包含了若干个区间和车站。 7.客车按用途可分为______、为旅客服务和特殊用途等三种。 8.视觉信号包括信号机、信号牌、信号灯、信号旗、火炬等设备显示的信号,它分为______信号、移动 信号、手信号三大类。 9.动车组中M表示______,T表示拖车。 10.德国正在运营的高速线及时速达200km的ICE列车的通行里程只占德国铁路总营业里程的1%和10%, 却担负着______的旅客周转量。 11.旅客列车的车次以开往北京方向为上行方向,车次编为______数。 12.铁路线路根据其在铁路网中的作用、性质、远期客货运量分为______个等级。 13.道岔号数(N)用辙叉角(α)的______来表示。 14.区段站和编组站统称为______站。 15.货车按用途分为通用货车、专用货车和______货车。 16.地面固定信号一般设于线路______侧。 17.动车组按动力源可分为______和电力动车组。 18.车站等级车站按其所担任的客货运量和技术作业量划分为:______站和一、二、三、四、五等站。 19.车号一般由基本型号、辅助型号及______组成。 20.信号机灯光为红色表示禁止运行;黄色表示______运行;绿色表示按规定速度运行。 21.动车组按动力配置可分为动力集中式和______。 22.高速铁路的轨道结构有:道砟轨道和______。 23.铁路车票分为:______票和附加票。 24.我国杰出的铁路工程师______在京张铁路建设中巧妙采用人字型展线方案。 25.三个城际客运系统:环渤海地区、长江三角洲地区、______城际客运系统,覆盖区域内主要城镇。 26.铁路线路中心线在水平面上的投影叫做______。 27.铁路基本限界有机车车辆限界和______限界。 28.铁路枢纽按其在路网上的地位及作用可分为______、区域性铁路枢纽和地方性铁路枢纽。 29.某铁路车辆标记为C604768543,其中C的含义是______。 30.______反映了铁路线路的起伏变化和高程。 31.铁路标准轨距是______mm。 32.驼峰由推送部分、峰顶平台、______三部分组成。 33.铁路车辆一般由______、走行装置、车钩缓冲装置、制动装置、车内设备等五个基本部分组成。 34.铁路信号分为______信号和视觉信号。 35.列车运行图中以垂直线等分横轴表示时间,将纵轴以横线划分代表各车站中心线的位置,图上斜线称 为______线。 二、单项选择题: 1.世界上第一条铁路出现于 [ ]

细胞信号转导及与相关疾病综述

细胞信号转导及与相关疾病综 ——广医大李雪银孔颖诗郭欣仪张淑珍谭丞茵小组 摘要:由于细胞的信号转导功能就是机体生理功能调节的细胞和分子机制,所以信号转导通路及信号分子、信号分子间的以及信号通路间的相互 作用的改变,是许多人类疾病的分子基础,这已在癌症、动脉硬化、 心肌肥大、炎症疾病以及神经退行性疾病等发展的病理机制研究中取 得了显著进展。 关键词:信号转导,受体,配体,介导等 一、信号传导的概念:是指生物学信息(兴奋或抑制)在细胞间或细胞内 转换和传导,并产生生物效应的过程。信号转导的核心在于通过特定 信号通路进行生物信息的细胞内转换与传递过程并涉及对相关蛋白 质基因表达过程的调控。 二、信号转导的生理意义:1)其本质上就是细胞核分子水平的功能调节, 是机体生命活动中的生理功能调节的基础。2)信号转导中的信号指 的是生物学信号,可以是物理信号,如电、声光等,更多的是以化学 物质为载荷物体的化学信号,如激素、神经递质等。3)信号转导的 结果即生物效应是各式各样的,可为对靶细胞功能的硬性,或为对靶 细胞代谢、分化和生长发育的影响,甚至是对靶细胞形态结构和生存 状态等方面的影响。 三、与信号转导作用有关物质的概念与性质 1)受体:是指细胞中具有接受和转导信息功能的蛋白质,分布于细胞膜中的受体称为膜受体,位于细胞质内和核内的受体 则称之为胞质受体和核受体①离子通道型受体:是一种同时 具有受体和离子通道功能的蛋白质分子,属于化学门控通道, 他们接受的化学信号绝大多数是神经递质,激活后可引起离 子的跨膜流动。②G蛋白耦联受体:是指激活后作用于之耦 联的G蛋白,然后一发一系列以信号蛋白为主的级联反应而 完成跨膜信号转导的一类受体。③酶联型受体:是指自身就 具有酶的活性或能与酶结合的膜受体。④招募型受体:也是 单个跨膜受体,受体分子的胞内域没有任何酶的活性,故不 能进行生物信号的放大。⑤核受体:实质上是激素调控特定 蛋白质转录的一大类转录调节因子,包括类固醇激素,维生 素D3受体,甲状腺激素受体和维甲酸受体等。 2)配体:凡能与受体发生特异性结合的活性物质称之为配体 3)G蛋白耦联受体:是指激活后作用于与之耦联的G蛋白,然后引发一系列以信号为主的级联反应而完成跨膜信号转导的一类 受体。 4)G蛋白:是鸟苷酸结合蛋白的简称,是G蛋白耦联受体联系胞内信号通路的关键蛋白。 5)G蛋白效应器:是指G蛋白直接作用的靶标,包括效应器酶、膜离子通道以及膜转运蛋白等。 6)第二信使:是指激素、神经递质、细胞因子等细胞外信号分子(第一信使)作用于膜受体后产生的细胞内信号分子。

铁道概论复习总结

第一章概论 1、世界铁路发展大概分为几个时期? 萌芽期(1825~1870)蓬勃发展期(1870~1913)衰退期(1918~1969)复苏期(1970后) 2、改革开放后,我国进行了几次列车提速?六次 3、高速铁路的特征? (1)速度快(2)客运量大(3)全天候(4)安全可靠(5)能耗低(6)污染轻(7)占地少(8)舒适(9)效益高 第二章铁路线路 1、铁路建设的三个阶段?(1)前期工作阶段(2)基本建设阶段(3)投资效果反馈 2、铁路分几个等级?三个等级,即Ⅰ级、Ⅱ级、Ⅲ级。 3、铁路线路的中心线、平面、纵断面? 中心线:表示线路在空间的位置。 平面:线路中心线在水平面上的投影,表明线路的直、曲变化状态。 纵断面:线路中心线展直后在铅垂面上的投影,表明线路的坡度变化。 4、铁路平面组成?直线、圆曲线、缓和曲线 5、铁路曲线要素?曲线半径R、曲线转角α、曲线长L、切线长度T、缓和曲线长度L0 6、曲线半径对运行的影响?小曲线对运行不利 7、缓和曲线的特点?曲率半径由无穷大逐渐减小到它所衔接的圆曲线半径R(或反之);离心力逐渐增加(或减小);外轨超高逐渐增加(或减少);轨距加宽值逐渐增加(或减少) 8、同向曲线、反向曲线、夹直线,三者关系 两相邻曲线,转向相同,称为同向曲线;转向相反,称为反向曲线。介于两同向曲线(或反向曲线)间一般不太长的直线成为夹直线。 9、基本阻力、附加阻力 基本阻力:列车在空旷地段沿平、直轨道运行时所受到的阻力。包括车轴与轴承之间、轮轨之间以及钢轨接头对车轮的撞击阻力等。基本阻力在列车运行时总是存在的。 附加阻力:列车在线路上运行时,受到的额外阻力,如坡道阻力、曲线阻力、起动阻力等。 10、曲线附加阻力产生原因、计算方法 当列车通过曲线时,由于惯性力的作用,外侧车轮轮缘紧压外轨,使其磨耗增大。又由于曲线外轨长于加力牵引:跨越山岭时,机车须双机牵引或多机牵引。 15、铁路线路纵断面图:用一定的比例尺和规定符号,把平面图上的线路中心线展直后投影到铅垂面上,并注有线路平面和纵断面有关资料的图。 16、线路标志及作用:用来表明铁路建筑物及设备位置和技术状态的标志。 作用:为了线路的维修和养护,为了司机和车长等工作需要。 17、线路标志都有哪些 里程标:公里标、半公里标;曲线标;圆曲线与缓和曲线始终点标;桥梁标;坡度标;管界标 18、铁路路基的断面形式

细胞间通讯与信号转导

. 第九章细胞间通讯与信号转导 第一节细胞通讯 一.信号转导:针对外源信息所发生的细胞应答反应全过程。 二.细胞间联络的三种方式: (一)细胞间隙连接:是细胞间的直接通讯方式。 相邻细胞间存在着连接蛋白构成的管道结构——连接子。 生物学意义:相邻的可以共享小分子物质,因此可以快速和可逆的促进。 相邻细胞对外界信号的协同反应。 (二)膜表面分子接触通讯细胞质膜的外表面存在的蛋白质或糖蛋白、蛋白聚糖分子作为细胞的触角,可以与相邻细胞的膜表面分子特异性的相互识别和相互作用,以达到功能上的相互协调。这种细胞通讯方式称为膜表面分子接触通讯。 例如:T淋巴细胞和B淋巴细胞的相互作用。 黏附分子的相互作用。 黏附分子:细胞表面的整合蛋白、钙粘蛋白和免疫球蛋白超家族等分子都可以通过其蛋白质或糖链部分与另一细胞的同类或不同类分子相互识别并结合,使得两个细胞黏附在一起,因此将这些分子称为黏附分子。 (三)化学信号介导的通讯 多细胞生物与邻近细胞或相对较远距离的细胞之间的信息交流主要是由细胞所分泌的化学物质,如蛋白质或小分子有机化合物所完成的。这些分子称为化学信号。他们作用于周围或距离较远的其他种类细胞(靶分子),调节其功能,这种通讯方式称为化学通讯。 是间接的细胞通讯,是细胞间的相互联系不再需要它们之间的直接接触,而是以化学信号介质进行调控。 第二节细胞信号转导机制概述 外源信号---受体---细胞内多种生物分子的浓度、活性、位置变化---细胞应答反应。 一.信号必须经由受体发挥作用 二.信号转导分子负责信号在细胞内的传递和转换 (一)第二信使:细胞的信号转导过程是由一个复杂的网络系统完成的。这一网络系统的结构基础是一些关键的蛋白质分子和一些小分子活性物质,其中的蛋白质分子常被称为信号转导分子,小分子活性物质常被称为第二信使。 (二)蛋白激酶与蛋白磷酸酶是蛋白质活性的开关系统 蛋白质的磷酸化修饰是体内蛋白质类物质活性快速调节的重要方式之一。 蛋白激酶(PK)催化A TP分子中的r-磷酸基团转移至蛋白质分子中的羟基的反应。 蛋白质分子中可以发生磷酸化的羟基主要为酪氨酸和丝氨酸/苏氨酸羟基,据此可以将蛋白激酶分为酪氨酸蛋白激酶和丝、苏氨酸蛋白激酶两大类。 蛋白磷酸酯酶是指具有催化已经磷酸化的蛋白分子发生去磷酸化反应的一类酶分子,与蛋白激酶相对应存在,共同构成了磷酸化和去磷酸化这一重要的蛋白质活性的开关系统。 (三)G蛋白的GTP/GDP开关作用 GTP结合蛋白又称鸟苷酸结合蛋白,亦称G蛋白。是一类重要的信号转导分子,在各种细胞信号转导途径中,G蛋白起到开关的作用。当其结合的核苷酸为GTP时,即成为活化形式,可作用于下游分子使相应的信号转导途径开放,而当其结合的GTP水解成为GDP

相关文档
相关文档 最新文档