文档库 最新最全的文档下载
当前位置:文档库 › 环回测试

环回测试

环回测试
环回测试

环回测试

环回测试是很常用的一种测试,通常用于检查和分析端口或线路问题。如下图所示,我们在设备端口上用命令loopback(某些端口上命令格式为loopback diagnostic)使接口从内部将自己发送的信号转接到自己的接收端(如红线所示),通过检查数据发送和接收的情况来判断端口工作状态是否正常。如果需要对端口进行完全的检测,可以使用符合标准的短跳线将端口收发短接构成环。如果端口正常,可以将线路的一部分或全部包括到环中进行测试,即在线路中的某个点上进行短接构成环(如紫红色线所示)。这些点可以是在配线架、CSU/DSU、传输设备等之上。在某些类型的端口上,还可以用命令 loopback line 在端口上将对方发送的信号转接到对方的接收短,构成测试环。

观察环回测试成功与否,首先看端口有没有形成环,如用命令show interface 看看端口是不是已经从down状态变到up状态,状态中有没有“(looped)”的字样。端口的某些封装形式,如串行口上的PPP、帧中继等封装会检测环路,阻止端口变成up状态,所以可能要临时改为HDLC封装以便进行测试。

其次是通过ping 产生一定的流量,观察有没有丢包,show interface 检查端口计数器有没有显示input/output错误,有没有CRC、Frame等错误。注意在点对点类型的端口上ping 路由器本身的地址比ping 对端路由器的地址延时要小一半,原因可以参考下面的分析。在ATM等二层端口上不能直接产生测试数据包,可能需要额外的配置,如在8500交换机上可以这样配置:

interface atm 1/0/0 //需要进行环回测试的ATM二层端口

!

inter atm 0.1 point-to-point

atm pvc 0 100 interface atm 0/1/0 0 100 encap aal5snap

ip address 172.31.20.1 255.255.255.0

!

如果测试发现有丢包情况,可以通过命令show controller了解更多细节情况。如以下命令显示了某ATM端口上的BIP错误情况:

Router>show controllers atm 3/0/3

IF Name: ATM3/0/3 Chip Base Address: BC38E000

Port type: OC3 Port rate: 155000 Kbps Port medium: MM Fiber

Port status:Good Signal Loopback:None Flags:8308

...

Key: txcell - # cells transmitted

rxcell - # cells received

b1 - # section BIP-8 errors

b2 - # line BIP-8 errors

b3 - # path BIP-8 errors

ocd - # out-of-cell delineation errors - not implemented

g1 - # path FEBE errors

z2 - # line FEBE errors

chcs - # correctable HEC errors

uhcs - # uncorrectable HEC errors

txcell:275849733, rxcell:143010088

b1:26, b2:104, b3:34, ocd:0

g1:12, z2:0, chcs:0, uhcs:20

...

一般而言,环回测试直接了当:观察有没有象意料中的一样形成环,形成环之后有没有发现传输错误,然后根据测试结果调整线路或者设备。但是有的时候,环路测试的结果比较有迷惑性,下面举两个例子:

有一次在通讯机房里做环路测试,从本地E1传输设备上到本地路由器做环测试没有问题,从本地E1传输设备到远端路由器做环测试也没有问题,但从远端E1传输设备到本地路由器之间打环测试就会丢包。由于从本地E1传输设备到远端路由器做环测试没有问题,所以本地E1传输设备和远端E1传输设备之间的线路不应该有问题,但只要将这段线路包括进来之后测试就会出现丢包。最后发现原来是这个通讯机房里安装了微波传输设备,干扰大,线路屏蔽不好所以出现丢包。

另外一次是一台8540 ATM 交换机和12406路由器ATM端口通过一段短短的尾纤相连却发现大量CRC错误,更换了端口模块、尾纤都没有排除故障,反复观察才发现原来8540交换机的时钟同步信号存在问题。

还有一个特殊情况就是3750、3550、2950等以太网交换机在端口上发送keep alive信息以检查端口是否激活,如果端口被环回,按照默认的错误检测处理(errdisable)规则,端口将会关闭。除非设置了错误恢复(errdisable recovery)功能,否则在管理员干预之前端口不会恢复到正常工作状态。更严重的是网络中短暂的环路(如错误的连接、生成树配置错误)等都会引发这个错误,所以建议用端口配置命令no keepalive关闭端口激活检测或通过全局配置命令no errdisable detect cause loop 防止因环回错误关闭端口,中断网络连接。

附:点对点端口上的ping 数据观察与分析(ping 对端地址需要一个来回,ping 自己的地址需要两个来回)

测试情况,R1端口地址为172.31.20.1,对端R2地址为172.31.20.254

R1#ping

Protocol [ip]:

Target IP address: 172.31.20.254 //ping R2地址

Repeat count [5]: 1

...

Sending 1, 100-byte ICMP Echos to 172.31.20.254, timeout is 2 seconds: !

Success rate is 100 percent (1/1), round-trip min/avg/max = 8/8/8 ms (debug 输出)

Apr 10 12:19:03.994: IP: s=172.31.20.1 (local), d=172.31.20.254 (Serial4/0/0), len 100, sending

Apr 10 12:19:03.994: ICMP type=8, code=0 R1发出一个Echo Request(type=8),R2收到后以Echo Reply 相应

Apr 10 12:19:04.002: IP: s=172.31.20.254 (Serial4/0/0), d=172.31.20.1 (Serial4/0/0), len 100, rcvd 3

Apr 10 12:19:04.002: ICMP type=0, code=0 R1收到Echo Reply(type=0),计算延时(002-994=8ms)。

R1#ping

Protocol [ip]:

Target IP address: 172.31.20.1 //ping R1自己的地址

Repeat count [5]: 1

...

Sending 1, 100-byte ICMP Echos to 172.31.20.1, timeout is 2 seconds: !

Success rate is 100 percent (1/1), round-trip min/avg/max = 16/16/16 ms (debug 输出)

Apr 10 12:18:00.106: IP: s=172.31.20.1 (local), d=172.31.20.1 (Serial4/0/0), len 100, sending

Apr 10 12:18:00.106: ICMP type=8, code=0 R2发出一个Echo Request(type=8)

Apr 10 12:18:00.114: IP: s=172.31.20.1 (Serial4/0/0), d=172.31.20.1 (Serial4/0/0), len 100, rcvd 3

Apr 10 12:18:00.114: ICMP type=8, code=0 R2收到Echo Request,判断的目标地址为R1,所以将包发回

Apr 10 12:18:00.114: IP: s=172.31.20.1 (local), d=172.31.20.1 (Serial4/0/0), len 100, sending

Apr 10 12:18:00.114: ICMP type=0, code=0 R1收到自己发出的Echo Request,以Echo Reply(type=0)相应并通过端口发送

Apr 10 12:18:00.122: IP: s=172.31.20.1 (Serial4/0/0), d=172.31.20.1 (Serial4/0/0), len 100, rcvd 3

Apr 10 12:18:00.122: ICMP type=0, code=0 R2将包发回。R1收到Echo Reply (type=0),计算延时(112-106=16ms)。

在微机上运行终端仿真程序介绍

在微机上运行终端仿真程序(如Windows 3.X的Terminal或Windows 9X的超级终端等),设置终端通信参数为:波特率为9600bit/s、8位数据位、1位停止位、无校验和无流控,并选择终端类型为VT100, 1.2.1 进入以太网端口视图 要对以太网端口进行配置,首先要进入以太网端口视图。 请在系统视图下进行下列配置。 表1-1 进入以太网端口视图 1.2.2 打开/关闭以太网端口 当端口的相关参数及协议配置好之后,可以使用以下命令打开端口;如 果想使某端口不再转发数据,可以使用以下命令关闭端口。 请在以太网端口视图下进行下列配置。 表1-2 打开或关闭以太网端口 缺省情况下,端口为打开状态。 1.1.7 interface 【命令】 interface { interface_type interface_num | interface_name }

【视图】 系统视图 【参数】 interface_type:端口类型,取值为Ethernet。interface_num:端口号, 采用槽位编号/端口编号的格式。对于S2008-EI以太网交换机,槽号为0, 端口号取值范围为1~8;槽号取1或2分别表示前面板上两个扩展模块 提供的以太网端口,端口号只能取1。对于S2016-EI、S2403I以太网交 换机,槽号取值范围为0、1,槽号取0表示交换机提供的百兆以太网端 口,端口号取值范围为1~16(S2016-EI)或1~24(S2403I);槽号 取1表示交换机扩展模板提供的以太网端口,端口号只能取1。 interface_name:端口名,表示方法为interface_name= interface_type interface_num。 【描述】 interface命令用来进入以太网端口视图。用户要配置以太网端口的相关 参数,必须先使用该命令进入以太网端口视图。 【举例】 # 进入Ethernet0/1以太网端口视图。 [Quidway] interface ethernet0/1 1.1.8 loopback 【命令】 loopback { external | internal } 【视图】 以太网端口视图 【参数】 external:外环测试。 internal:内环测试。 【描述】 loopback命令用来设置以太网端口进行环回测试,以检验以太网端口工 作是否正常,环回测试执行一定时间后将自动结束。 缺省情况下,以太网端口不进行环回测试。 【举例】 # 对以太网端口Ethernet0/1进行内环测试。 [Quidway-Ethernet0/1] loopback internal 1.1.9 mdi 【命令】 mdi { across | auto | normal }

Ethernet信号测试方法

Ethernet信号测试方法 一、Ethernet物理层测试 1、简介 在PC和数据通信等领域中,以太网的应用非常广泛。以太网的技术从1990年10Base-T标准推出以来,发展非常迅速,目前普及的是基于双绞线介质的10兆/百兆/千兆以太网,同时10G以太网的技术也逐渐开始应用。 为了保证不同以太网设备间的互通性,就需要按照规范要求进行响应得一致性测试。测试所依据的标准主要是IEEE802.3和ANSI X3.263- 1995中的相应章节。根据不同的信号速率和上升时间,要求的示波器和探头的带宽也不一样。对于10Base-T/100Base-Tx/1000Base-T的测试需要1GHz带宽。对于10G以太网的测试,由于其标准非常多,如10GBase-CX、10GBase-T、10GBase-S等,有的是电接口,有的是光接口,不同接口的信号速率也不一样。10GBase-CX、XAUI、10GBase-T的测试至少需要8G带宽的实时示波器,10GBase-S等光接口的测试,根据不同速率则需要相应带宽的采样示波器。 要进行一致性测试,首先要保证的是测量的重复性,由于以太网信号的摆幅不大,如1000Base-T的信号幅度只有670~820mv,XAUI信号最小摆幅只有200mv,如果测量仪器噪声比较大,就会造成比较大的测量误差。

2、10M/100M/1000M以太网测试方法 对于10M/100M/1000M以太网的信号测试,可以选择Agilent 9000系列示波器,也可以选择90000系列示波器。 要进行Ethernet信号的测试,只有示波器是不够的,为了方便地进行以太网信号的分析,还需要有测试夹具和测试软件。测试夹具的目的是把以太网信号引出,提供一个标准的测试接口以方便测试,测试夹具的型号是N5395B。下图是夹具的图示。 在N5395B测试夹具上划分了不同的区域,可以分别进行10Base-T/100Base-Tx/1000Base-T的测量。另外还有专门区域可以连接网络分析仪进行回波损耗的测量。夹具附带的短电缆可以连接夹具和被测件,附带的小板用于回波损耗的测量时进行网络仪校准。 IEEE802.3规定了很多以太网信号的参数,对于10Base-T/100Base-Tx/1000Base-T的电气参数,可以分别参考IEEE802.3规范的14、25和40节。如果不借助相应的软件,要完全手动进行这些参数的测量是一件非常烦琐和耗时耗力的工作,为了便于用户完成以太网信号的测量,Agilent在8000/90000系列的Infiniium系列示波器上都提供了以太网的一致性测试软件N5392A。 下图是N5392A 以太网一致性测试软件提供的测试项目。

机房路由网络实战:环回测试 路由配置

环回测试是很常用的一种测试,通常用于检查和分析端口或线路问题如下图所示,我们在设备端口上用命令loopback(某些端口上命令格式为loopback diagnostic)使接口从内部将自己发送的信号转接到自己的接收端(如红线所示),通过检查数据发送和接收的情况来断定端口工作状态是否正常如果需要对端口进行完全的检测,可以使用符合标准的短跳线将端口收发短接构成环如果端口正常,可以将线路的一部分或全部包含到环中进行测试,即在线路中的某个点上进行短接构成环(如紫红色线所示)这些点可以是在配线架、CSU/DSU、传输设备等之上在某些类型的端口上,还可以用命令 loopback line 在端口上将对方发送的信号转接到对方的接收短,构成测试环 观察环回测试成功与否,首先看端口有没有形成环,如用命令 show interface 看看端口是不是已经从down状态变到up状态,状态中有没有“(looped)”的字样端口的某些封装形式,如串行口上的PPP、帧中继等封装会检测环路,阻止端口变成up状态,所以可能要临时改为HDLC封装以便进行测试 其次是通过ping 产生一定的流量,观察有没有丢包,show interface 检查端口计数器有没有显示input/output错误,有没有CRC、Frame等错误注意在点对点类型的端口上ping 路由器本身的地址比ping 对端路由器的地址延时要小一半,原因可以参考下面的分析在ATM等二层端口上不能直接产生测试数据包,可能需要额外的设置,如在8500交换机上可以这样设置: interface atm 1/0/0 //需要进行环回测试的ATM二层端口 ! inter atm 0.1 point-to-point atm pvc 0 100 interface atm 0/1/0 0 100 encap aal5snap ip address 172.31.20.1 255.255.255.0 ! 如果测试发明有丢包情况,可以通过命令show controller懂得更多细节情况如以下命令显示了某ATM端口上的BIP错误情况:

测试组工作流程和规范

测试组工作流程和规范 目录 1、测试组工作主要内容……………………………………………………………… DT组…………………………………………………………………………………………… CQT组………………………………………………………………………………………… 2、测试组工作重要注意事项………………………………………………………… A、问题处理时限…………………………………………………………………………… B、问题点汇总及跟进处理………………………………………………………………… C、重复问题点的处理……………………………………………………………………… D、日常测试及问题处理…………………………………………………………………… E、参数调整利弊权衡……………………………………………………………………… F、测试礼仪和形象维护…………………………………………………………………… G、项目内各小组之间及项目与局方接口人之间的沟通………………………………… 3、测试组工作流程…………………………………………………………………… A、DT测试流程图…………………………………………………………………………… B、CQT点测试流程图……………………………………………………………………… C、道路相关投诉处理流程图……………………………………………………………… D、RCU问题点回复流程图………………………………………………………………… E、测试组提单流程图……………………………………………………………………… 4、备注………………………………………………………………………………… 附件一:测试具体要求和规范参考………………………………………………………… 附件二:测试质差问题处理流程参考……………………………………………………… 附件三:测试切换问题处理流程参考……………………………………………………… 附件四:测试掉话问题处理流程参考……………………………………………………… 附件五:测试组成员………………………………………………………………………… 一、测试组工作主要内容 DT组: 例行DT测试

硬件在环仿真策略说明

该模式由五个阶段组成,每个阶段的作用如下: (l)功能设计:根据汽车发动机的原理和实际驾驶要求,设计发动机ECU的控制系统,制定规范。这个阶段需要经验的积累和试验数据等作为参考。 (2)快速控制原型:根据功能设计环节制定的发动机控制系统,用软件设计控制系统模型,实现控制系统的控制算法、控制逻辑,经过模型仿真后,对控制系统的指标和误差进行评估。 (3)目标代码生成:将快速控制原型设计好的控制系统模型生成C语言或者其他语言的代码,下载到实时计算系统以供进行实时仿真。 (4)硬件在环仿真:硬件在环(Hardware in theL。叩)环节是把己经烧录有模型代码的ECU和实际的传感器、执行器等通过FO接口连接,测试该ECU在各种工况下的功能性和稳定性。 (5)标定、测试:通过硬件在环仿真环节修正的发动机控制器连接到真正的发动机台架上的传感器、执行器以及生产完成汽车的发动机上,进行台架试验和道路试验,对数据进行标定,最后完成ECU的设计开发。 第一种:自主研发。工程师根据自身的需求,在软硬件方面自行设计:软件方面运用常见的软件开发工具进行设计;硬件方面一般自行购买己经商品化的处理器和接口模块,比如美国Nl公司的cRI09004嵌入式实时控制器和cRIO FO接口板卡,组装构建自己所需的硬件在环测试系统。清华大学设计了一套多处理器的硬件在环仿真系统,各个处理器共享存储器。采用PC机作为宿主计算机为硬件在环仿真提供了方便易用的开发平台;该系统采用一个32位的浮点DSP处理器来计算发动机动态模型,具有较快的计算速度;用80C552做芯片,设计信号智能接口板,提高了系统的实时性能。各处理器之间采用双口RAM进行高速大数据量的数据交换,实现了真正的并行处理。采用VisualC++编程软件设计开发监控界面。

MSTP以太网专线测试指标

MSTP以太网专线的测试方案和参数设置 MSTP以太网专线是利用传统的SDH网络承载,在用户端采用MSTP设备为用户提供以太网接口的专线业务。这种业务的特点是:用户接口使用方便;能够灵活提供2M~100M的带宽;在骨干传输网上带宽独享,可以保证传送质量。 MSTP以太网专线的主要性能测试指标 MSTP以太网专线的性能测试指标主要是:传输时延、丢帧率、吞吐量。 传输时延:是指测试仪表收到帧的时间与发出这一帧的时间之差。假设仪表发出某一帧的时间为Ta,收到这一帧的时间为Tb,则时间Delay=Tb-Ta。传输时延包括MSTP设备处理时延、SDH设备处理时延和信号传输时延。 在城域网内(短距离)应用时,MSTP以太网专线的传输时延主要是设备时延。一般MSTP设备处理时延在1ms以内,每台SDH设备引入的处理时延在0.5ms 以内。在长途网内(长距离)应用时,MSTP以太网专线的传输时延主要是信号传输时延,一般按照5ms/千公里计算。 MSTP设备的处理时延与以太帧的长度是正相关的关系。以太帧越长,MSTP 设备的处理时延越大。 丢帧率:是指测试仪表发出帧数与收到帧数之差除以仪表发出帧数,再乘以100%。公式表示如下:(仪表发出帧数-收到帧数)/仪表发出帧数*100%。不同帧长下的丢帧率会有所变化,随着帧长的增加,丢帧率会增加。 指标要求:以太帧长度为64字节时,测试15分钟,丢帧率应为0。 吞吐量:是指在没有丢帧的情况下,整个通道的最大数据速率,一般用bit/s 或者帧/秒表示。以帧长度64字节为准,根据用户的业务带宽需求,设置相应的VC通道个数。对照表如下:

业务带宽与通道配置对应关系

以太网组网实验(三)网络测试命令

以太网组网实验(三) --- 基本网络测试工具的使用 3.1 介绍基本网络测试工具 1.ping命令 ping.exe是个使用频率极高的实用程序,利用ping命令可以排除网卡、Modem、电缆和路由器等存在的故障。 ping命令只有在安装了TCP/IP协议以后才可以使用。运行ping命令以后,在返回的黑屏幕窗口中会返回对方客户机的IP地址和表明ping通对方的时间,如果出现信息“Reply from ...”,则说明能与对方连通;如果出现信息“Request timeout ...”,则说明不能与对方连通。 ping命令是用于检测网络连接性、可到达性和名称解析等疑难问题的TCP/IP 命令。根据返回的信息,可以推断TCP/IP参数的设置是否正确以及TCP/IP协议运行是否正常。 按照缺省设置,每发出一个ping命令就向对方发送4个网间控制报文协议ICMP的回送请求,如果网络正常,发送方应该得到4个回送的应答。ping命令发出后得到以毫秒或者毫微秒为单位的应答时间,这个时间越短就表示数据路由畅通;反之则说明网络连接不够畅通。 ping命令显示的TTL(Time To Live 存在时间)值,可以推算出数据包通过了多少个路由器。因此用ping命令来测试两台计算机是否连通非常有效。如果ping不成功,则可以认为故障出现在以下几个方面:网线、网卡、IP地址。 2.tracert命令 tracert命令用来显示数据包到达目标主机所经过的路径,并显示到达每个节点的时间。该命令比较适用于大型网络。

tracert命令通过递增“生存时间(TTL)”字段的值将“ICMP 回送请求”报文发送给目标主机,从而确定到达目标主机的路径。所显示的路径是源主机与目标主机间路径上的路由器的近侧接口列表。近侧接口是距离路径中的发送主机最近的路由器的接口。3.netstat命令 netstat命令可以帮助网络管理员了解网络的整体使用情况。它可以显示当前正在活动的网络连接的详细信息,可以统计目前总共有哪些网络连接正在运行。 具体地说,netstat命令可以显示活动的 TCP 连接、计算机侦听的端口、以太网统计信息、IP 路由表、IPv4 统计信息(对于 IP、ICMP、TCP 和 UDP 协议)以及 IPv6 统计信息(对于 IPv6、ICMPv6、通过 IPv6 的 TCP 以及通过 IPv6 的 UDP 协议)。使用时如果不带参数,netstat命令显示活动的 TCP 连接。 4.ipconfig命令 ipconfig命令可用于显示当前所有的 TCP/IP 网络配置值,这些信息一般用来检验人工配置的TCP/IP设置是否正确。另外,ipconfig还可以刷新动态主机配置协议 (DHCP) 和域名系统 (DNS) 的设置。使用不带参数的ipconfig命令可以显示所有适配器的 IP 地址、子网掩码和默认网关。 3.2 基本网络测试命令在Windows下的格式 1.ping命令 ⑴ 格式: ping [-t] [-a] [-n Count] [-l Size] [-f] [-i TTL] [-v TOS] [-r Count] [-s Count] [[-j HostList]|[-k HostList]] [-w Timeout] TargetName ⑵ 参数说明:

以太网端口配置命令

一以太网端口配置命令 1.1.1 display interface 【命令】 display interface[ interface_type | interface_type interface_num | interface_name ] 【视图】 所有视图 【参数】 interface_type:端口类型。 interface_num:端口号。 interface_name:端口名,表示方法为interface_name=interface_type interface_num。 参数的具体说明请参见interface命令中的参数说明。 【描述】 display interface命令用来显示端口的配置信息。 在显示端口信息时,如果不指定端口类型和端口号,则显示交换机上所 有的端口信息;如果仅指定端口类型,则显示该类型端口的所有端口信 息;如果同时指定端口类型和端口号,则显示指定的端口信息。 【举例】 # 显示以太网端口Ethernet0/1的配置信息。 display interface ethernet0/1 Ethernet0/1 current state : UP IP Sending Frames' Format is PKTFMT_ETHNT_2, Hardware address is 00e0-fc00-0010 Description : aaa The Maximum Transmit Unit is 1500 Media type is twisted pair, loopback not set Port hardware type is 100_BASE_TX 100Mbps-speed mode, full-duplex mode Link speed type is autonegotiation, link duplex type is autonegotiation Flow-control is not supported The Maximum Frame Length is 1536 Broadcast MAX-ratio: 100% PVID: 1 Mdi type: auto Port link-type: access Tagged VLAN ID : none Untagged VLAN ID : 1 Last 5 minutes input: 0 packets/sec 0 bytes/sec Last 5 minutes output: 0 packets/sec 0 bytes/sec input(total): 0 packets, 0 bytes 0 broadcasts, 0 multicasts input(normal): - packets, - bytes

Ethernet测试和操作介绍

以太网技术特征 常用称谓 connectors 码率 连接 标准

Page 3 10/100/1000BASE-T 连接器引脚排列 TD/RD: Transmit Data/Receive Data BI_D x : Bi-directional Pair x Computer RJ45 / 8P8C connector 规范要求的测试内容 10BASE-T 测试项目描述 参考规范

规范要求的测试内容 100BASE-TX rise/fall time symmetry 测试项目描述参考规范 规范要求的测试内容 1000BASE-T

10BASE-T 测试码型 First signal in auto-negotiation to test link connectivity. Sent every 16ms until a response is received. Sent at the end of data packet to indicate end of transmission. Pulse width is 300 or 350ns depending on whether the last bit was ‘0’or ‘1’. Differential Manchester encoded signal with pre-emphasis. All ‘1’s Manchester encoded signal, essentially a 5 MHz signal. Used in harmonic test to ensure all harmonics are 27 dB down from the fundamental. 100BASE-TX 测试码型Random Data 数据加扰保持链路上的DC平衡以及足够多的边沿进行

路由器生产测试流程

路由器生产测试流程 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

路由器测试方式 一、准备工作(第一次需设置) 1、从批量路由器单独拿一块,需单独设置,以批量默认网关为:为例,如默认网关有变,可相对应变更。 2、按复位键10秒左右,恢复出厂状态,打开IE,进入设置界面,如图 3、点“局域网”,在IP地址:,改为(第三位段可随意设置但不可超过254),以下就以为例,如设置有所不同,请相应修改即可,如图 点击确认即可,路由器自动重启(5RT更改后不能自动重启,需断电再上电,再次断电后存在复位的可能)。重启完毕后,输入用户名与密码,查看路由器的默认IP地址,如图 4、此块路由器设置完毕,待用。 二、批量测试路由器(适用于XP、win7、vista、linux系统)。 1、假定此批量路由器的默认网关:。在任意盘中新建文件夹,重新命名为TEST, 如图 2、进入TEST文件夹,新建文本文件,如图 3、打开此文本文档,输入:ping –l 1000 –t,另存为文件,如图 4、再输入:ping –l 1000 ,另存为,如图 5、设置完毕后,可看到此文件夹中的文件,如图 6、从第一阶段设置完待用的路由器LAN口引出网线连接至待测路由器WAN口,将测试电脑连接至待测路由器LAN口,依次将、打开,出现如图 7、依次测试其它3个LAN口,出现如图所示,此路由器性能是OK。

路由器测试完毕。 照以上步骤,集线器与交换机同样可测试。 优点:1.无需外线2.测试人员更容易上手 3.测试效率大大提高。 疑问:1.此方法主要测试了路由器动态连接上网功能,是否也能验证PPPOE功能2.对于路由器故障的细分将不是很明确。

RFC以太网性能测试规程

1R F C2544概述 IP网络设备是IP网络的核心,其性能的好坏直接影响IP网网络规模、网络稳定性以及网络可扩展性。 由于IETF没有对特定设备性能测试作专门规定,一般来说只能按照RFC2544(Benchmarking Methodology for Network Interconnect Devices)作测试。以太网交换机测试标准则参照RFC2889(Benchmarking Methodology for LAN Sw itching Devices)。但是由于网络互联设备除了通用性能测试以外通常还有一些特定的性能指标。例如路由器区别于一般简单的网络互连设备,在性能测试时还应该加上路由器特有的性能测试。例如路有表容量、路由协议收敛时间等指标。 网络互联设备例如路由器性能测试应当包括下列指标: 和线速 1280, 广播帧:验证广播帧对路由器性能的影响。上述测试后在测试帧中夹杂1%广播帧再测试。 管理帧:验证管理帧对路由器性能的影响。上述测试后在测试帧中夹杂每秒一个管理帧再测试。 路由更新:路由更新即下一跳端口改变对性能的影响。 过滤器:在设置过滤器条件下对路由器性能的影响。建议设置25个过滤条件测试。 协议地址:测试路由器收到随机处于256个网络中的地址时对性能的影响。 双向流量:测试路由器端口双向收发数据对性能的影响。 多端口测试:考虑流量全连接分布(full mesh)或非全连接分布(half mesh)对性能的影响。 多协议测试:考虑路由器同时处理多种协议对性能的影响。 混合包长:除测试所建议的递增包长外,检查混合包长对路由器性能的影响。RFC2544除要求包含所有测试包长外没有对混合包长中各包场所占比例作规定。建议按照实际网络中各包长的分布测试。 例如在没有特殊应用要求时以太网接口上可采用60字节包50%,128字节包10%,256字节包15,

以太网的环路检测技术

龙源期刊网 https://www.wendangku.net/doc/df8639246.html, 以太网的环路检测技术 作者:吴少勇甘玉玺张翰之 来源:《中兴通讯技术》2012年第01期 摘要:以太网在局域网中取得了巨大的成功,但是在城域网应用领域中仍需要解决网络环路的相关问题。根据不同的以太网应用领域,文章分析了几种环路检测的解决方案,包括生成树协议(STP)、以太网环路保护切换协议(ERPS)、环回检测和成环点定位技术。其中,成环点定位技术新颖实用,非常适合各种以太网局域网和城域网,对于以太网的运行和维护都有很大的意义。目前,全球的标准组织均正在积极对以太网环路检测技术进行标准化,随着标准的不断成熟,以太网的环路检测技术将逐步降低以太网的环路风险,提高以太网的可靠性,便于网络的管理。 关键词:以太网;环路;检测;可靠性 1以太网和网络环路 在城域网和局域网中广泛采用的是以太网组网技术,网络中90%以上的接人数量也都由 以太网承载。以太网的突出优势是可以封装任何协议数据、易于使用、成本低、灵活性好、兼容性强、标准化成熟,对于用户而言可以做到即插即用,网络的管理和维护都非常简单。然而,以太网本质上是一种局域网技术,对可靠性要求不高的微型局域网是非常适用的,但当网络规模扩大时,以太网本身存在的一些局限性会给网络带来致命的故障,其中网络环路就很容易导致以太网区域内的所有网络的瘫痪。 根据以太网的原理,当以太网交换机节点收到一个广播帧或未知单播帧时,会向其他所有端口泛洪该帧。在局域网中,以太网的这种转发方式非常简单实用,交换机节点通过泛洪的方式,很容易将广播帧或未知单播帧转发给目的主机。但是当网络中有环路存在时,广播帧会在环路中的各个交换机节点上依次进行泛洪和转发,最终回到源交换机节点,而源交换机节点收到该广播帧后,并不会丢弃,而是继续按照广播帧的转发方式进行泛洪,因此广播帧会永无休止地在环路的各个交换机节点上进行转发,最终流量越来越大,耗尽带宽。以太网交换机节点还会将广播帧向环路之外的端口泛洪,发送给局域网中的主机,随着泛洪流量的增大,主机将难以承受收到的泛洪流量,从而导致整个局域网及其主机瘫痪,造成严重的网络故障,这种场景也称为“网络风暴”。 在无环路的网络中,新连接的一条链路如果导致了环路,则称这条链路为成环点。在局域网中,通常网络中以太网交换机节点数量较少,网络结构简单,不易形成环路,即使新增加链路形成环路,也很容易定位出成环点,造成网络故障范围较小,维护难度不大。但是当网络范围扩大时,特别是在城域网中,通常有数十台以太网交换机,承载着成千上万的用户,网络拓扑非常复杂,一旦新增加链路形成环路,则很难定位到成环点,而且故障的影响范围都是非常大的。因此随着以太网应用范围越来越大,各种以太网的环路探测技术应运而生。

路由器的安装方法

图解:rj45水晶头网线的做法十分经典 驳线钳(用于接驳水晶头)(必备) 水晶头接法: 关于双绞线的色标和排列方法是有统一的国际标准严格规定的,现在常用的是TIA/EIA568B。在打线时应使用如下的顺序:(TIA/EIA568B) 1->橙白rj45水晶头,RJ45头,水晶头,网络接头,RJ45,布线接头 2->橙 3->绿白rj45水晶头,RJ45头,水晶头,网络接头,RJ45,布线接头 4->蓝rj45水晶头,RJ45头,水晶头,网络接头,RJ45,布线接头 5->蓝白 6->绿 7->棕白 8->棕 而且,使用电缆两头一对一的连接方式,会使一组信号(负电压信号)通过不绞合在一起的两根芯线传输,造成极大的近端串扰(NEXT-> Near-end-crosstalk)所以应按照国际标准打线!

局域网就是将单独的微机或终端,利用通信线路相互连接起来,遵循一定的协议,进行信息交换,实现资源共享。其中,通信线路,即传输介质常用的有:双绞线、同轴电缆、光纤等。从性价比和可维护性出发,大多数局域网使用非屏蔽双绞线(UTP—Unshielded Twisted Pair)作为布线的传输介质来组网。 网线由一定距离长的双绞线与RJ45头组成。双绞线由8根不同颜色的线分成4对绞合在一起,成队扭绞的作用是尽可能减少电磁辐射与外部电磁干扰的影响,双绞线可按其是否外加金属网丝套的屏蔽层而区分为屏蔽双绞线(STP)和非屏蔽双绞线(UTP)。在EIA/TIA- 568A标准中,将双绞线按电气特性区分有:三类、四类、五类线。网络中最常用的是三类线和五类线,目前已有六类以上线。第三类双绞线在LAN中常用作为 10Mbps以太网的数据与话音传输,符合 IEEE802.3 10Base-T的标准。第五类双绞线目前占有最大的LAN市场,最高速率可达100Mbps,符合IEEE802.3 100Base-T的标准。做好的网线要将RJ45水晶头接入网卡或HUB等网络设备的RJ45插座内。相应地RJ45插头座也区分为三类或五类电气特性。RJ45水晶头由金属片和塑料构成,特别需要注意的是引脚序号,当金属片面对我们的时候从左至右引脚序号是1-8, 这序号做网络联线时非常重要,不能搞错。双绞线的最大传输距离为100米。 EIA/TIA的布线标准中规定了两种双绞线的线序568A与568B。 标准568A:橙白--1,橙--2,绿白--3,蓝--4,蓝白--5,绿--6,棕白--7,棕--8; 标准568B:绿白--1,绿--2,橙白--3,蓝--4,蓝白--5,橙--6,棕白--7,棕--8。 在整个网络布线中应用一种布线方式,但两端都有RJ-45 plug 的网络联线无论是采用端接方式A,还是端接方式B,在网络中都是通用的。双绞线的顺序与RJ45头的引脚序号--对应。10M以太网的网线使用1,2,3,6编号的芯线传递数据,100M以太网的网线使用 4,5,7,8编号的芯线传递数据。为何现在都采用4对(8芯线)的双绞线呢?这主要是为适应更多的使用范围,在不变换基础设施的前提下,就可满足各式各样的用户设备的接线要求。例如,我们可同时用其中一对绞线来实现语音通讯。 100BASE-T4 RJ-45对双绞线的规定如下: 1、2用于发送,3、6用于接收,4、5,7、8是双向线。 1、2线必须是双绞,3、6双绞,4、5双绞,7、8双绞。 下面介绍几种应用环境下双绞线的制作方法。 MDI表示此口是级连口,而MDI-X时表示此口是普通口。

发动机ECU 硬件在环(HIL)测试方案

发动机ECU硬件在环(HIL)测试解决方案

一、 方案概述 1.1 HIL测试系统概述 随着汽车电子技术的不断革新和迅速发展,汽车电控单元数量的不断增加,汽车电子产品和技术在各种车型中得到了越来越多的应用,其中,汽车电子系统成本约占到整车的30%,而汽车故障的产生多发生在汽车电子系统,因此,从安全性、可行性和成本上考虑,硬件在回路(HIL)测试已经成为电控系统开发和应用中非常重要的一环,减少实车路试,缩短开发时间并降低成本的同时提高电控系统的软件质量,降低电控系统开发和应用的风险。 HIL(Hardware‐in‐the‐Loop)硬件在回路测试系统是以实时处理器中运行的实体仿真模型来模拟受控对象的运行状态,通过I/O接口与被测电控系统连接,对被测ECU进行全方面的、系统的测试。系统原理如图1.1中所示。 图1.1 HIL测试系统原理 HIL测试系统的特点: ●模拟被控对象的各种工况,包括极限工况; ●模拟复杂的故障模式,快速复现故障模式; ●将部分测试过程从传统试验台架中分离; ●自动化测试并生成测试报告,缩短测试周期; ●易于维护和扩展测试能力。

1.2SimCar硬件在环测试系统简介 SimCar硬件在环(HIL)测试系统是用于测试电控单元功能、系统集成和通信的一套完整的硬件在环仿真测试设备,可用于汽车、航空、兵器、工程机械等领域。基于SimCar硬件在环测试系统针对用户的被控对象进行建模仿真,并将其运行于跟控制器闭环工作的实时系统中,实现对汽车电控单元的复杂测试。 SimCar硬件在环仿真系统主要由三部分组成:仿真硬件平台、试验管理软件及车辆实时仿真模型。系统组成示意图如图1.2中所示: 图1.2 SimCar测试系统组成 SimCar支持的电控单元硬件在环测试: 发动机ECU; 自动变速器TCU; 混合动力整车控制器HCU; 纯电动汽车VCU;

实验1--以太网连通性测试实验

(一) 以太网连通性测试实验 实验目的: (1)理解IP协议,掌握IP地址的两种配置方式(指定和自动获取IP地址)。 (2)掌握IP网络连通性测试方法。 (3)熟悉ping命令和ipconfig命令的使用。 实验步骤: 四人一组 一、指定IP地址,连通网络 1.设置IP地址 在保留专用IP地址范围中(192.168.N.X),任选IP地址指定给主机。N为组号,子

网掩码均为255.255.255.0,X在1~254之间任选。各台主机均不设置缺省网关。 2.测试网络连通性 (1)用PING 命令PING 127.0.0.1,检测本机网卡连通性。 (2)分别“ping”同一实验组的计算机名;“ping”同一实验组的计算机IP地址,并记 录结果。

(3)ping不同实验分组的计算机。并记录结果。 二、自动获取IP地址,连通网络 Windows主机能从微软专用B类保留地址(网络ID为169.254)中自动获取IP地址。

1.设置IP地址 把指定IP地址改为“自动获取IP地址”。 2.在DOS命令提示符下键入“ipconfig”,查看本机自动获取的IP地址,并记录结果。

3.测试网络的连通性 (1)在命令提示符下试试能“ping”通组内主机吗? (2)每个实验组把一部分主机的IP地址改为“指定IP地址”,地址为169.254.*.*(*.*为0.1~255.254),另一部分仍然使用自动获取的IP地址,用“网上

邻居”和“ping”命令测试彼此的连通性,并记录结果。 实验报告: 1.请叙述指定IP地址时,网络连通性测试结果,并分析原因。

以太网OAM协议解析及测试关注点

以太网OAM(802.3ah)协议分析及测试关注点 1 以太网OAM简介 (3) 2 以太网OAM在网络上的应用 (3) 3 OAMPDU报文解析及工作原理 (4) 3.1 报文解析 (4) 3.2 几种最常见的OAMPDU用法: (7) 3.2.1 Information OAMPDU (7) 3.2.2 Event Notification OAMPDU (7) 3.2.3 Loopback Control OAMPDU (8) 3.3 以太网OAM工作原理: (8) 3.3.1 建立以太网OAM连接: (8) 3.3.2 链路监控 (10)

3.3.3 远端故障检测 (11) 3.3.4 远端环回 (12) 4 Feature list (13) 4.1 主要功能 (13) 4.2 工作原理 (13) 4.3 Event Notification的处理 (14) 4.4OAMPDU报文 (16) 4.5Local Information TLVs (17) 4.6Remote Information TLVs (18) 4.7Link Event TLVs (18) 4.8Variables Descriptors and Containers (19) 5 测试关注点: (20) 5.1 概述: (20) 5.2 具体测试点: (21)

1以太网OAM简介 以太网OAM(Operations, Administration and Maintenance,操作、管理和维护) 是一种监控网络问题的工具。它工作在数据链路层,利用设备之间定时交互 OAMPDU(OAM Protocol Data Units,OAM 协议数据单元)来报告网络的状态,使网络管理员能够更有效地管理网络。 2以太网OAM在网络上的应用 随着数据业务的广泛应用,以太网在通信网络中扮演着越来越重要的作用,但是以太网与传统的SDH相比,在网络故障告警、链路质量、维护手段等方面都略逊一筹。于是国际标准化组织IEEE,先后推出了802.3ah(2004)和802.1ag(2007)两个标准化协议来强化以太网在维护、告警方面的能力。 802.3ah的以太网OAM主要是链路方面的监测和维护,是一种偏物理层的OAM,它主要应用在网络的边缘设备上(接入层),且OAMPDU报文只能转发一跳,主要用来监测链路质量、收集链路告警等。而802.1ag的以太网OAM是偏网络和应用的OAM,主要用在汇聚层和核心层上,它的OAMPDU报文能够传输多跳。它不仅能够监测链路质量、收集告警,还能够实现电信级快速倒换以及traceroute、ping等功能。在TN705/725上的MPLS OAM就部分参考了

网络设备调试与配置实验(第一部分)

实验1:实验常用命令练习 一、操作内容和环境 ◆操作内容:本实验内容包括以太网交换机利用Console口进行连接配置的 方法。熟悉华为以太网交换机的命令行视图,掌握简单的常用命令。 ◆组网环境:华为Quidway S2403系列以太网交换机1台,操作系统为VRP (R)Software V ersion 3.1,PC机1台,专用配置电缆1根。 ◆连接方法:PC机COM口与交换机的Console口通过专用配置电缆相连, 如图1所示。 图1 交换机console口配置网络拓扑图 二、实验步骤 1.查看当前设备的配置信息 display current-configuration 2.进入用户视图 # 与交换机建立连接即进入 3.进入系统视图 system-view [Quidway] 4.进入以太网端口视图 [Quidway]interface ethernet0/1 [Quidway-ethernet0/1] 5.进入VLAN配置视图 [Quidway]VLAN 2 [Quidway-vlan2] 6.进入VLAN端口视图 [Quidway] ]interface vlan-interface 2 [Quidway-vlan-interface2]

7.进入OSPF协议视图 [Quidway]ospf [Quidway-ospf] 8.进入RIP协议视图 [Quidway]rip [Quidway-rip] 9.进入AUX用户接口视图 [Quidway]user-interface aux 0 [Quidway-ui-aux0] 10.进入多个VTY用户接口视图 [Quidway]user-interface vty 0 4 [Quidway-ui-vty0-4] 11.进入同/异步串口视图 [Quidway]interface serial 1/0/1 #在路由器上配置 [Quidway-ethernet1/0/1] 12.退出当前视图 [Quidway-ethernet1/0/1]quit [Quidway 13.删除某项操作 [Quidway]undo vlan 2 #把vlan 2 删除 14.更改交换机/路由器的名称 [Quidway]sysname SW1 [SW1] 15.更改中英文模式 language-mode chinese language-mode english 16.命令行在线帮助 language-mod? display ? dis #此时按键补全命令 display 17.查看历史命令 display history-command #用户在输入命令时可以使用向上键或访问上一条历史命令;使用向下键或访问下一条历史命令;最多可以保存10条历史命令。 18.保存当前配置信息 save 19.查看Flash中的配置信息 display saved-configuration 20.删除Flash 中的配置信息 reset saved-configuration 21.重新启动交换机 reboot

以太网物理层信号测试与分析

以太网物理层信号测试与分析 1 物理层信号特点 以太网对应OSI七层模型的数据链路层和物理层,对应数据链路层的部分又分为逻辑链路控制子层(LLC)和介质访问控制子层(MAC)。MAC与物理层连接的接口称作介质无关接口(MII)。物理层与实际物理介质之间的接口称作介质相关接口(MDI)。在物理层中,又可以分为物理编码子层(PCS)、物理介质连接子层(PMA)、物理介质相关子层(PMD)。根据介质传输数据率的不同,以太网电接口可分为10Base-T,100Base-Tx和 1000Base-T三种,分别对应10Mbps,100Mbps和1000Mbps三种速率级别。不仅是速率的差异,同时由于采用了不同的物理层编码规则而导致对应的测试和分析方案也全然不同,各有各的章法。下面先就这三种类型以太网的物理层编码规则做一分析。 1、1 10Base-T 编码方法 10M以太网物理层信号传输使用曼彻斯特编码方法,即“0”=由“+”跳变到“-”,“1”=由“-”跳变到“+”,因为不论是”0”或是”1”,都有跳变,所以总体来说,信号是DC平衡的, 并且接收端很容易就能从信号的跳变周期中恢复时钟进而恢复出数据逻辑。 图1 曼彻斯特编码规则 1、2100Base-Tx 编码方法 100Base-TX又称为快速以太网,因为通常100Base-TX的PMD是使用CAT5线传输,按TIA/EIA-586-A定义只能达到100MHz,而当PCS层将4Bit编译成5Bit时,使100Mb/s数据流变成125Mb/s数据流,所以100Base-TX同时采用了MLT-3(三电平编码)的信道编码方法,目的是使MDI的5bit输出的速率降低了。MLT-3定义只有数据是“1”时,数据信号状态才跳变,“0”则保持状态不变,以减低信号跳变的频率,从而减低信号的频率。

相关文档