文档库 最新最全的文档下载
当前位置:文档库 › 计算机控制实验二数字滤波

计算机控制实验二数字滤波

计算机控制实验二数字滤波
计算机控制实验二数字滤波

学院:********** 班级:********** 姓名:****** 学号:**********

实验二 数字滤波

实验项目名称:数字滤波 实验项目性质:普通

所属课程名称:计算机控制技术 实验计划学时:2学时

一、实验目的

1.通过实验熟悉数字滤波器的实现方法; 2.研究滤波器参数的变化对滤波性能的影响。

二、实验内容和要求

1.设计一个带尖脉冲(频率可变)干扰信号和正弦信号输入的模拟加法电路; 2.设计并调试一阶数字滤波器; 3.设计并调试高阶数字滤波器。 4、实验原理

1)在许多信息处理过程中,如对信号的滤波,检测,预测等都要广泛地用到滤波器。数字滤波器是数字信号处理中广泛使用的一种线性环节,它从本质上说是将一组输入的数字序列通过一定规则的运算后转变为另一组希望输出的数字序列。一般可以用两种方法来实现:一种是用数字硬件来实现;另一种是用计算机的软件编程来实现。

一个数字滤波器,它所表达的运算可用差分方程来表示:

∑∑==-+-=N

i i N i i i n y b i n x a n y 0

)()()(

2)一阶数字滤波器及其数字化

一阶数字滤波器的传递函数为 1

1

)()()(+=

=

s s X s Y s G F τ(τ=RC ) 利用一阶差分法离散化,可以得到一阶数字滤波器的算法: )1()1()()(--

+=

k y T k x T k y S

S

τ

τ

其中T S 为采样周期,τ为滤波器的时间常数。T S 和τ应根据信号的频谱来选择。

3.高阶数字滤波器

高阶数字滤波器算法很多,这里只给出一种加权平均算法:

)3()2()1()()(4321-+-+-+=K x A K x A K x A K x A K y

其中权系数i A 满足:

∑==4

1

1i i

A

。同样,i A 也根据信号的频谱来选择。

三、实验主要仪器设备和材料

1.THTJ-1型计算机控制技术实验箱

2.THVLW-1型USB数据采集卡一块(含37芯通信线、USB电缆线各1根)

3.PC机1台(含上位机软件“THTJ-1”)

四、实验方法、步骤及结果测试

1、实验接线及准备

1.1启动计算机,在桌面双击图标THTJ-1,运行实验软件;

1.2打开实验箱“电源总开关”,按图1接线,先将“信号发生器”单元输出端连接到采集卡的“AD1”通道,并选择方波输出。在虚拟示波器观测方波信号的频率和幅值,然后调节信号发生器中的“频率调节”和“幅度调节”电位器,使方波信号的频率和幅值分别为4Hz,2V。然后断开与采集卡的连接,将“信号发生器”单元输出端连接到“尖脉冲单元”单元输入端,产生一个尖脉冲信号Uo;

1.3按图2连接电路,其中正弦信号来自数据采集卡的“DA1”输出端,尖脉冲信号来自“尖脉冲单元”单元输出端。图2的输出端与数据采集卡的“AD1”输入端相连,同时将数据采集卡的“DA2”输出端与“AD2”输入端相连;

2、脚本程序运行

2.1点击软件工具栏上的“”按钮(脚本编程器),打开脚本编辑器窗口;

2.2在脚本编辑器窗口的文件菜单下点击“打开”按钮,并在“计算机控制算法VBS\计算机控制技术基础算法”文件夹下选中“数字滤波”脚本程序并打开,阅读、理解该程序,然后点击脚本编辑器窗口的调试菜单下“步长设置”,将脚本算法的运行步长设为10ms;

2.3点击脚本编辑器窗口的调试菜单下“启动”,用双踪示波器分别观察图2的输出端和数据采集卡输出端“DA2”的波形。调节信号发生器中的“频率调节”电位器,改变方波信号的频率(即尖脉冲干扰信号的频率)。观察数据滤波器的滤波效果;

2.4点击脚本编辑器的调试菜单下“停止”,修改算法程序中的参数Ts(注:修改Ts时要同步修改算法的运行步长)、Ti两个参数,然后再运行该程序,在示波器上再次观察参数变化对滤波效果的影响;

2.5对于高阶数字滤波器的算法编程实验,请参考本实验步骤2.2、2.3和2.4。不同的是打开的脚本程序文件名为“数字滤波(高阶)”,实验时程序可修改的参数为a1、a2、a3和采样时间Ts。

2.6 实验结束后,关闭脚本编辑器窗口,退出实验软件。

五、实验报告要求

1.画出尖脉冲干扰信号

的产生电路图。

图一

把图1产生的尖脉冲信号视为干扰信号,幅值=2V,频率=4HZ与一低频正弦信号,幅值=4V,频率=8HZ,此信号由上位机的“脚本编辑器”编程输出(DA1),输入到图2所示的两个输入端。

(输入信号:4Hz,2V的方波信号输入,产生尖脉冲干扰信号。上位机的“脚本编辑器”

编程从DA1输出4V,8 Hz的正弦信号;)

图2 测试信号的产生电路图

2.一阶数字滤波器的脚本程序。

dim pv,op1,op2,Ts,t,opx,x,Ti ‘变量定义

sub Initialize(arg)‘初始化函数

WriteData 0 ,1 '给通道一写0

opx=0 '赋初值

end sub '结束初始化子函数

sub TakeOneStep (arg) ‘算法运行函数

pv = ReadData(1) 'pv为当前测量值

op1=2*sin(x) ‘产生一正弦信号

x=x+0.05

Ti=0.02 'Ti为惯性数字滤波器的时间常数

Ts=0.01 ‘采样时间10ms

op2=Ts/Ti*pv+(1-Ts/Ti)*opx 'op1为滤波后的输出,算法为Yk=(1-a)Xk+aYk-1 opx=op2 '赋值,为下一时刻做准备

if op2>=4.9 then '输出值限幅,op2上限为4.9

op2=4.9

end if

if op2<=-4.9 then 'op2下限为-4.9

op2=-4.9

end if

WriteData op1 ,1 '通道1写入op1的值

WriteData op2 ,2 '通道2写入op2的值

end sub '结束算法运行子函数

sub Finalize (arg) ‘退出函数

WriteData 0 ,1 '给通道一写0

WriteData 0 ,2 '给通道二写0

end sub '结束退出子函数

3.绘制加数字滤波器前、后的输出波形,并分析程序中参数的变化对其滤波效果的影响。

六、思考题

1、一阶数字滤波器的截止频率f c 如何选取?对一阶系统时间常数有什么影响? 答:c f =

RC

21

时间常数τ=RC 可以看出c f 越小时间常数τ越大。时间常数越小,其滤

波特性越好。

2、采样周期T S 对一阶滤波效果有何影响? 答:采样频率f=

s

T 1

,如果Ts 太大,f 就会变小,如果f 小于信号的最大频率两倍,就会出现频率混迭。

3、滤波器的时间常数Ti 对一阶滤波效果有什么影响?

答:时间常数越大,电路达到稳态的时间越长,过渡过程也越长。

4、采样频率对滤波效果有什么影响? 答:采样频率必须至少是滤波信号中最大频率分量频率的两倍,否则就不能从信号采样中恢复原始信号。

5、尖脉冲输入信号对滤波效果有什么影响? 答:在实验中,我尝试直接加方波,没加尖脉冲输入信号,发现原信号出现很圆滑的正弦波,滤波结果没什么区别;如果加入尖脉冲输入信号就出现很多干扰信号,滤波效果明显。

《大学计算机基础》上机实验报告

《大学计算机基础》 上机实验报告 班级: 姓名: 学号: 授课教师: 日期:年月日

目录 一、Windows操作系统基本操作......................................................... - 1 - 二、Word文字处理基本操作 .............................................................. - 4 - 三、Excel电子表格基本操作 ............................................................ - 6 - 四、PowerPoint幻灯片基本操作....................................................... - 8 - 五、网页设计基本操作 ...................................................................... - 9 - 六、Access数据库基本操作 ............................................................ - 10 - 上机实验作业要求: ○1在实验报告纸上手写并粘贴实验结果; ○2每人将所有作业装订在一起(要包封面); ○3全部上机实验结束后全班统一上交; ○4作业内容不得重复、输入的数据需要有差别。

实验名称一、Windows操作系统基本操作 实验目的1、掌握Windows的基本操作方法。 2、学会使用“画图”和PrntScr快捷键。 3、学会使用“计算器”和Word基本操作。 实验内容1、日历标注 利用“画图”和Word软件,截取计算机上日历的图片并用文字、颜色、图框等标注出近期的节假日及其名称,并将结果显示保存在下面(参考下面样图)。 运行结果是: 主要操作步骤是: 2、科学计算 利用“计算器”和Word软件,计算下列题目,并将结果截图保存在下面(参考样图)。 ○1使用科学型计算器,求8!、sin(8)、90、74、20、67、39、400、50.23、ln(785)的平均值、和值,并用科学计数法显示。 运行结果是: ②将以下十、八、十六进制数转换为二进制数:(894.8125)10、(37.5)8、(2C.4B)16 运行结果是:(需要下载使用“唯美计算器”) ○3计算下列二进制数的加法与乘法:101.1+11.11;1101*1011 运行结果是:(参考样图) 写出主要操作步骤: 3、实验心得体会

实验四 IIR数字滤波器设计

实验四IIR数字滤波器的设计与MATLAB实现 一、实验目的: 1、要求掌握IIR数字滤波器的设计原理、方法、步骤。 2、能够根据滤波器设计指标进行滤波器设计。 3、掌握数字巴特沃斯滤波器和数字切比雪夫滤波器的设计原理和步骤。 二、实验原理: IIR数字滤波器的设计方法:频率变换法、数字域直接设计以及计算机辅助等。这里只介绍频率变换法。由模拟低通滤波器到数字低通滤波器的转换,基本设计过程: 1、将数字滤波器的设计指标转换为模拟滤波器指标 2、设计模拟滤波器G(S) 3、将G(S)转换为数字滤波器H(Z) 在低通滤波器设计基础上,可以得到数字高通、带通、带阻滤波器的设计流程如下: 1、给定数字滤波器的设计要求(高通、带通、带阻) 2、转换为模拟(高通、带通、带阻)滤波器的技术指标 3、转换为模拟低通滤波器的指标 4、设计得到满足3步骤中要求的低通滤波器传递函数 5、通过频率转换得到模拟(高通、带通、带阻)滤波器 6、变换为数字(高通、带通、带阻)滤波器 三、标准数字滤波器设计函数 MATLAB提供了一组标准的数字滤波器设计函数,大大简化了滤波器设计过程。 1、butter 例题1 设计一个5阶Butterworth数字高通滤波器,阻带截止频率为250Hz ,设采样频率为1KHz. 图1 5阶Butterworth数字高通滤波器

2、cheby1和cheby2 例题2 设计一个7阶chebyshevII型数字低通滤波器,截止频率为3000Hz,Rs=30dB,采样频率为1KHz。 图2 7阶chebyshevII型数字低通滤波器 四、冲激响应不变法 一般来说,在要求时域冲激响应能模仿模拟滤波器的场合,一般使用该方法。冲激响应不变法一个重要的特点是频率坐标的变换时线性的,因此如果模拟滤波器的频响带限于折叠频率的话,则通过变换后滤波器的频率响应可不失真的反映原响应与频率的关系。 例题3 设计一个中心频率为500Hz,带宽为600 Hz的数字带通滤波器,采样频率为1K Hz。

微机控制技术实验报告

《微机控制技术》课程设计报告 课题:最少拍控制算法研究专业班级:自动化1401 姓名: 学号: 指导老师:朱琳琳 2017年5月21日

目录 1. 实验目的 (3) 2. 控制任务及要求 (3) 3. 控制算法理论分析 (3) 4. 硬件设计 (5) 5. 软件设计 (5) 无纹波 (5) 有纹波 (7) 6. 结果分析 (9) 7. 课程设计体会 (10)

1.实验目的 本次课程设计的目的是让同学们掌握微型计算机控制系统设计的一般步骤,掌握系统总体控制方案的设计方法、控制算法的设计、硬件设计的方法。学习并熟悉最少拍控制器的设计和算法;研究最少拍控制系统输出采样点间纹波的形成;熟悉最少拍无纹波控制系统控制器的设计和实现方法。复习单片机及其他控制器在实际生活中的应用,进一步加深对专业知识的认识和理解,使自己的设计水平、对所学知识的应用能力以及分析问题解决问题的能力得到全面提高。 2.控制任务及要求 1.设计并实现具有一个积分环节的二阶系统的最少拍有纹波控制和无纹波控制。 对象特性G (s )= 采用零阶保持器H 0(s ),采样周期T =,试设计单位阶跃,单位速度输入时的有限拍调节器。 2.用Protel 、Altium Designer 等软件绘制原理图。 3.分别编写有纹波控制的算法程序和无纹波控制的算法程序。 4.绘制最少拍有纹波、无纹波控制时系统输出响应曲线,并分析。 3.控制算法理论分析 在离散控制系统中,通常把一个采样周期称作一拍。最少拍系统,也称为最小调整时间系统或最快响应系统。它是指系统对应于典型的输入具有最快的响应速度,被控量能经过最少采样周期达到设定值,且稳态误差为定值。显然,这样对系统的闭环脉冲传递函数)(z φ提出了较为苛刻的要求,即其极点应位于Z 平面的坐标原点处。 1最少拍控制算法 计算机控制系统的方框图为: 图7-1 最少拍计算机控制原理方框图 根据上述方框图可知,有限拍系统的闭环脉冲传递函数为: ) ()(1)()()()()(z HG z D z HG z D z R z C z +==φ (1) )(1)()(11)()()(1z z HG z D z R z E z e φφ-=+== (2) 由(1) 、(2)解得:

实验4 基于MATLAB的FIR数字滤波器设计

实验4 基于MATLAB 的FIR 数字滤波器设计 实验目的:加深对数字滤波器的常用指标和设计过程的理解。 实验原理:低通滤波器的常用指标: P P P for H Ω≤Ω+≤Ω≤-,1)(1δδ πδ≤Ω≤Ω≤ΩS S for H ,)( 通带边缘频率P Ω,阻带边缘频率S Ω ,通带起伏 P δ, 通带峰值起伏] )[1(log 2010dB p p δα--=, 阻带起伏s δ,最小阻带衰减])[(log 2010dB s S δα-=。 数字滤波器有IIR 和FIR 两种类型,它们的特点和设计方法不同。 在MATLAB 中,可以用b=fir1(N,Wn,’ftype’,taper) 等函数辅助设计FIR 数字滤波器。N 代表滤波器阶数;Wn 代表滤波器的截止频率(归一化频率),当设计带通和带阻滤波器时,Wn 为双元素相量;ftype 代表滤波器类型,如’high ’高通,’stop ’带阻等;taper 为窗函数类型,默认为海明窗,窗系数需要实现用窗函数blackman, hamming,hanning chebwin, kaiser 产生。 例1 用凯塞窗设计一FIR 低通滤波器,通带边界频率π3.0=Ωp ,阻带边界频率π5.0=Ωs ,阻带衰减 不小于50dB 。 解 首先由过渡带宽和阻带衰减 来决定凯塞窗的N 和 π2.0=Ω-Ω=?Ωp s , , S P P S Passband Stopband Transition band Fig 1 Typical magnitude specification for a digital LPF

数通实验报告二.数字调制

中南大学 通信原理实验报告书 题目:实验二 专业: 姓名: 学号: 时间:2014-12-13

通信原理实验报告(实验二) 实验名称:数字调制 一.实验目的 1、掌握绝对码、相对码概念及它们之间的变换关系。 2、掌握用键控法产生2ASK、2FSK、2DPSK信号的方法。 3、掌握相对码波形与2PSK信号波形之间的关系、绝对码波形与2DPSK信号波形之间的关系。 1、了解2ASK、2FSK、2DPSK信号的频谱与数字基带信号频谱之间的关系。 二.实验内容 1、用示波器观察绝对码波形、相对码波形。 2、用示波器观察2ASK、2FSK、2PSK、2DPSK信号波形。 3、用频谱仪观察数字基带信号频谱及2ASK、2FSK、2DPSK信号的频谱。 三.实验步骤 本实验使用数字信源单元及数字调制单元。 1、熟悉数字调制单元的工作原理。接通电源,打开实验箱电源开关。将数字调制单元单刀双掷开关K7置于左方N(NRZ)端。 2、用数字信源单元的FS信号作为示波器的外同步信号,示波器CH1接信源单元的(NRZ-OUT)AK(即调制器的输入),CH2接数字调制单元的BK,信源单元的K1、K2、K3置于任意状态(非全0),观察AK、BK波形,总结绝对码至相对码变换规律以及从相对码至绝对码的变换规律。 3、示波器CH1接2DPSK,CH2分别接AK及BK,观察并总结2DPSK信号相位变化与绝对码的关系以及2DPSK信号相位变化与相对码的关系(此关系即是2PSK信号相位变化与信源代码的关系)。注意:2DPSK信号的幅度比较小,要调节示波器的幅度旋钮,而且信号本身幅度可能不一致,但这并不影响信息的正确传输。 4、示波器CH1接AK、CH2依次接2FSK和2ASK;观察这两个信号与AK的关系(注意“1”码与“0”码对应的2FSK信号幅度可能不相等,这对传输信息是没有影响的)。 5、用频谱议观察AK、2ASK、2FSK、2DPSK信号频谱(条件不具备时不进行此项观察)。 四.实验过程及结果: 按实验步骤连接,得到全零码的AK、BK波形如下:

计算机控制实验报告

中国石油大学计算机控制实验报告实验日期:2011.11.30 成绩: 班级:自动化08-4 姓名:陈方光学号:08071402 实验一基于NI6008的数据采集 1.实验目的: 理解基本计算机控制系统的组成,学会使用MATLAB和NI6008进行数据采集。 2.实验设备: 计算机控制实验箱、NI6008数据通讯卡、Matlab软件、计算机 3.实验内容: (1)使用计算机控制实验箱搭建二阶被控对象,并测试对象特性 (2)在Matlab中设计数字PID控制器,对上述对象进行控制 4. 实验步骤: (1)选择合适的电阻电容,参考如下电路结构图,在计算机控制实验箱上搭建二阶被控对象,使得其被控对象传递函数为 建议数值:R1=200kΩ,R2=200kΩ,C1=1μF,R4=300kΩ, R5=500kΩ,C2=1μF. (2)测试NI6008数据通讯卡,确保数据输入输出通道正常。

(3)使用MATLAB和OPC通讯技术进行数据采集: (4)编写程序,实现数据的定时采集和显示。 5.实验结果 1)测试NI6008数据通讯卡 首先将NI6008数据采集卡的AI负端与GND端短接,然后通过usb数据线连接计算机,打开opc端口调试工具,添加NI数据采集卡,添加自己所需的输入、输出端口,通过向输入端强制写入1,观察AO端口显示数据,能较精确的跟踪输入数据,该数据采集完好。 2)使用matlab和opc进行数据采集及其显示 在Matlab中读写数据: da = opcda(‘localhost’, ‘NI USB-6008.Server’); % 定义服务器 connect(da); %连接服务器 grp = addgroup(da); %添加OPC 组 itmRead = additem(grp,‘Dev1/AI0’); %在组中添加数据项 itmWrite = additem(grp,'Dev1/AO0'); %在组中添加数据项 r=read(itmRead); y(1)=r.Value; %读取数据项的值 Write(itmWrite,1); %向数据项中写值 disconnect(da); %断开服务器 关于定时器的问题 t = timer(‘TimerFcn’,@myread, ‘Period’, 0.2,‘ExecutionMode’,‘fixedRate’);%定义定时器 start(t) %打开定时器 out = timerfind; %寻找定时器 stop(out); %停止定时器 delete(out);%删除定时器 将读取的数据存储并动态显示于图中: function myread(obj,event) global tt k y da grp itmRead Ts itmWrite r=read(itmRead); k=k+1;

实验四 用窗函数法设计FIR数字滤波器

实验四 用窗函数法设计FIR 数字滤波器 实验项目名称:用窗函数法设计FIR 数字滤波器 实验项目性质:验证性实验 所属课程名称:数字信号处理 实验计划学时:2 一. 实验目的 (1)掌握用窗函数法设计FIR 数字滤波器的原理与方法。 (2)熟悉线性相位FIR 数字滤波器的特性。 (3)了解各种窗函数对滤波特性的影响。 二. 实验容和要求 (1) 复习用窗函数法设计FIR 数字滤波器一节容,阅读本实验原理,掌握设计步骤。 (2) 用升余弦窗设计一线性相位低通FIR 数字滤波器,截止频率 rad c 4 π ω= 。窗口长度N =15,33。要求在两种窗口长度情况下,分别求出()n h ,打印出相应的幅频特性和相频特性曲线,观察3dB 带宽和20dB 带宽。总结窗口长度N 对滤波器特性的影响。 设计低通FIR 数字滤波器时,一般以理想低通滤波特性为逼近函数()ωj e H ,即 ()?????≤<≤=-π ωωωωωα ω c c j j d ,,e e H 0 其中2 1 -= N α ()() ()[]() a n a n d e e d e e H n h c j j j j d d c c --= = = ??- -- πωωπ ωπ ωαωω ωαωπ π ωsin 2121

(3) 33=N ,4πω=c ,用四种窗函数设计线性相位低通滤波器,绘制相应的幅频特性曲线,观察3dB 带宽和20dB 带宽以及阻带最小衰减,比较四种窗函数对滤波器特性的影响。 三. 实验主要仪器设备和材料 计算机,MATLAB6.5或以上版本 四. 实验方法、步骤及结果测试 如果所希望的滤波器的理想的频率响应函数为()ωj d e H ,则其对应的单位脉冲响应为 ()()ωπ ω ωπ πd e e H n h j j d d ?- = 21 (4.1) 窗函数设计法的基本原理是用有限长单位脉冲响应序列()n h 逼近 ()n h d 。由于()n h d 往往是无限长序列,而且是非因果的,所以用窗函数() n ω将()n h d 截断,并进行加权处理,得到: ()()()n n h n h d ω= (4.2) ()n h 就作为实际设计的FIR 数字滤波器的单位脉冲响应序列,其频率 响应函数()ωj e H 为 ()()n j N n j e n h e H ωω ∑-==1 (4.3) 式中,N 为所选窗函数()n ω的长度。 我们知道,用窗函数法设计的滤波器性能取决于窗函数()n ω的类型及窗口长度N 的取值。设计过程中,要根据对阻带最小衰减和过渡带宽度的

计算机控制技术实验报告

精品文档

精品文档 实验一过程通道和数据采集处理 为了实现计算机对生产过程或现场对象的控制,需要将对象的各种测量参数按 要求转换成数字信号送入计算机;经计算机运算、处理后,再转换成适合于对生产 过程进行控制的量。所以在微机和生产过程之间,必须设置信息的传递和变换的连 接通道,该通道称为过程通道。它包括模拟量输入通道、模拟量输出通道、数字量 输入通道、数字量输出通道。 模拟量输入通道:主要功能是将随时间连续变化的模拟输入信号变换成数字信 号送入计算机,主要有多路转化器、采样保持器和 A/D 转换器等组成。模拟量输出通道:它将计算机输出的数字信号转换为连续的电压或电流信 号,主要有 D/A 转换器和输出保持器组成。 数字量输入通道:控制系统中,以电平高低和开关通断等两位状态表示的 信号称为数字量,这些数据可以作为设备的状态送往计算机。 数字量输出通道:有的执行机构需要开关量控制信号 ( 如步进电机 ) ,计算机 可以通过 I/O 接口电路或者继电器的断开和闭合来控制。 输入与输出通道 本实验教程主要介绍以 A/D 和 D/A 为主的模拟量输入输出通道, A/D 和D/A的 芯片非常多,这里主要介绍人们最常用的 ADC0809和 TLC7528。 一、实验目的 1.学习 A/D 转换器原理及接口方法,并掌握ADC0809芯片的使用 2.学习 D/A 转换器原理及接口方法,并掌握TLC7528 芯片的使用 二、实验内容 1.编写实验程序,将- 5V ~ +5V 的电压作为 ADC0809的模拟量输入,将 转换所得的 8 位数字量保存于变量中。 2.编写实验程序,实现 D/A 转换产生周期性三角波,并用示波器观察波形。 三、实验设备 + PC 机一台, TD-ACC实验系统一套, i386EX 系统板一块 四、实验原理与步骤 1.A/D 转换实验 ADC0809芯片主要包括多路模拟开关和 A/D 转换器两部分,其主要特点为:单 电源供电、工作时钟 CLOCK最高可达到 1200KHz 、8 位分辨率, 8 +个单端模拟输 入端, TTL 电平兼容等,可以很方便地和微处理器接口。 TD-ACC教学系统中的 ADC0809芯片,其输出八位数据线以及 CLOCK线已连到控制计算机的数据线及系统应用时钟1MCLK(1MHz) 上。其它控制线根据实验要求可另外连接(A 、B、C、STR、/OE、EOC、IN0~ IN7) 。根据实验内容的第一项要求,可以设计出如图 1.1-1 所示 的实验线路图。

大学计算机实验报告2

《大学计算机基础Ⅰ》课程 实验报告手册 \ 实验教师(签字) 西南大学计算机与信息科学学院 计算机基础教育系 年月日

一、实验说明 本课程实验分为一般性实验(验证和简单设计)和综合性实验(课程设计)两部分。从第3周开始参考实验任务书(本报告中的五部分)完成每周规定的实验,并根据进度按要求认真填写本实验报告中的六、七部分,此实验报告将作为实验成绩评定的依据之一。 本课程实验从开课学期第3周开始实习,每周2学时,16周结束,共28学时。除统一安排的时间外,学生还可根据自己的实际适当安排课余时间上机。上机内容参见本报告中的“五、实验任务书”部分。 二、实验目的 通过本实验,让学生掌握计算机的基本操作和基本技能,能够学会知识的运用与积累,能够举一反三,具备一定的独立解决问题的能力和信心,培养学生熟练地使用常用软件的能力及严肃认真的科学作风,为今后的学习和工作打下良好的基础。 三、实验要求 1、每次实验课将考勤,并作为实验成绩的重要依据。 2、每次实验前学生必须充分准备每次的实验内容,以保证每次上机实验的效果。实验过程中必须独立完成。 3、学期结束时,每位同学应将自己的《实验报告》交各专业班长或学习委员,由班长或学习委员以专业为单位、按学号从小到大排列好统一交给实验指导老师,否则无实验成绩。 四、实验报告要求 一共要求填写3个阶段性实验报告、1个综合性实验报告和1份学期总结,与每份实验报告对应产生的电子文档交由实验老师指定的位置,该电子文档也将作为实验成绩评定的依据之一。 五、实验任务书 教材:《大学计算机基础》第五版高等教育出版社 实验参考书:《大学计算机基础实践教程》高等教育出版社 实验一:指法练习、汉字录入 实验目的: 1.掌握鼠标和键盘的使用及正确的操作指法。 2.掌握微型计算机的打开和关闭操作 3.熟悉键盘指法和文字录入 4.了解中英文切换,全半角的切换 实验任务: 1.参见实验参考书中的实验1-1-1中的[任务1](7页) 2.参见实验参考书中的实验1-1-1中的[任务3](7页) 实验二:Windows的基本操作和文件管理操作 实验目的: 1.掌握Windows的基本知识和基本操作 2.掌握“Windows资源管理器”和“我的电脑”的使用 实验任务: 1.参见实验参考书中的实验1-2-1中的全部任务(14页) 2.参见实验参考书中的实验1-2-2中的全部任务(18页)

计算机控制系统实验报告

南京理工大学 动力工程学院 实验报告 实验名称最少拍 课程名称计算机控制技术及系统专业热能与动力工程 姓名学号 成绩教师任登凤

计算机控制技术及系统 一、 实验目的及内容 通过对最少拍数字控制器的设计与仿真,让自己对最少拍数字控制器有更好的理解与认识,分清最少拍有纹波与无纹波控制系统的优缺点,熟练掌握最少拍数字控制器的设计方法、步骤,并能灵巧地应用MATLAB 平台对最少拍控制器进行系统仿真。 (1) 设计数字调节器D(Z),构成最少拍随动控制系统,并观察系统 的输出响应曲线; (2) 学习最少拍有纹波系统和无纹波系统,比较两系统的控制品质。 二、实验方案 最少拍控制器的设计理论 r (t ) c(t ) e*(t) D (z) E (z) u*(t) U (z) H 0(s )C (z) Gc (s ) Φ(z) G(z) R(z) 图1 数字控制系统原理图 如图1 的数字离散控制系统中,G C (S)为被控对象,其中 H(S)= (1-e -TS )/S 代表零阶保持器,D(Z)代表被设计的数字控制器,D(Z)的输入输出均为离散信号。 设计步骤:根据以上分析 1)求出广义被控对象的脉冲传递函数G (z ) 2)根据输入信号类型以及被控对象G (z )特点确定参数q, d, u, v, j, m, n 3)根据2)求得参数确定)(z e Φ和)(z Φ 4)根据 )(1) ()(1)(z z z G z D Φ-Φ= 求控制器D (z ) 对于给定一阶惯性加积分环节,时间常数为1S ,增益为10,采样周期T 为1S 的对象,其传递函数为:G C (S) =10/S(S+1)。 广义传递函数: G(z)=Z [])()(s G s H c ?=Z ?? ?????--)(1s G s e c Ts =10(1-z -1 )Z ??????+)1(12s s =3.68×) 368.01)(1() 717.01(1 111------+z z z z

实验四IIR数字滤波器设计及软件实现

实验四IIR数字滤波器设计及软件实现 1.实验目的 (1)熟悉用双线性变换法设计IIR数字滤波器的原理与方法; (2)学会调用MATLAB信号处理工具箱中滤波器设计函数(或滤波器设计分析工具fdatool)设计各种IIR数字滤波器,学会根据滤波需求确定滤波器指标参数。 (3)掌握IIR数字滤波器的MATLAB实现方法。 (4)通过观察滤波器输入输出信号的时域波形及其频谱,建立数字滤波的概念。 2.实验原理 设计IIR数字滤波器一般采用间接法(脉冲响应不变法和双线性变换法),应用最广泛的是双线性变换法。基本设计过程是:①先将给定的数字滤波器的指标转换成过渡模拟滤波器的指标;②设计过渡模拟滤波器;③将过渡模拟滤波器系统函数转换成数字滤波器的系统函数。MATLAB信号处理工具箱中的各种IIR数字滤波器设计函数都是采用双线性变换法。第六章介绍的滤波器设计函数butter、cheby1 、cheby2 和ellip可以分别被调用来直接设计巴特沃斯、切比雪夫1、切比雪夫2和椭圆模拟和数字滤波器。本实验要求读者调用如上函数直接设计IIR数字滤波器。 本实验的数字滤波器的MATLAB实现是指调用MATLAB信号处理工具箱函数filter对给定的输入信号x(n)进行滤波,得到滤波后的输出信号y(n)。

3.实验内容及步骤 (1)调用信号产生函数mstg产生由三路抑制载波调幅信号相加构成的复合信号st,该函数还会自动绘图显示st的时域波形和幅频特性曲线。三路信号时域混叠无法在时域分离。但频域是分离的,所以可以通过滤波的方法在频域分离,这就是本实验的目的。 (2)要求将st中三路调幅信号分离,通过观察st的幅频特性曲线,分别确定可以分离st中三路抑制载波单频调幅信号的三个滤波器(低通滤波器、带通滤波器、高通滤波器)的通带截止频率和阻带截止频率。要求滤波器的通带最大衰减为0.1dB,阻带最小衰减为60dB。 (3)编程序调用MATLAB滤波器设计函数ellipord和ellip分别设计这三个椭圆滤波器,并绘图显示其幅频响应特性曲线。

计算机控制技术

《计算机控制技术》课程教学大纲 课程名称:计算机控制技术 英文名称:The Technology of Control Based On The Computer 课程类型:专业基础选修课 总学时:48 讲课学时:40 实验学时:8 学时:48 学分:3 适用对象:自动化专业、测控技术与仪器 先修课程:自动控制原理、现代控制理论、微机原理及应用、单片机原理及应用 一、课程性质、目的和任务 《计算机控制技术》是自动化专业的一门重要的专业基础课。课程的教学目的在于使学生掌握通过计算机来实现自动控制的工作原理和一般的方法,掌握计算机控制系统的分析和设计的基本理论和方法。在本课程的教学过程中,着重突出阐述基本的数字控制器的设计方法,针对计算机控制系统的特点,介绍具体的数字控制器的设计技术。最后,通过对目前国内典型的计算机控制系统的举例及分析,使学生能够更加具体地了解以数字控制器为核心的计算机控制系统的一般设计过程和在控制方法上的特点。通过课程学习,培养学生分析问题与解决问题的能力,培养学生一定的动手能力,为进一步学习专业知识以及毕业后从事专业工作打下必要的基础。 二、教学基本要求 本课程主要以线性离散控制系统为研究对象,进行系统的分析与设计。学完本课程应达到以下基本要求: 1.了解计算机控制系统的组成、特点及分类,典型的计算机控制系统和计算机控制系的发展方向。 2.了解计算机控制系统基本的输入输出接口技术和输入输出通道的组成及其作用。 3.掌握线性离散系统的基本理论和分析方法。 4.掌握数字PID控制算法,并在此基础上能进行计算机控制系统的模拟化设计。 5.熟练掌握计算机控制系统的直接设计方法。 6.了解纯滞后对象的特点及其控制算法——大林算法。 三、教学内容及要求 1.绪论 ①理解计算机控制系统的组成及特点; ②理解计算机控制系统的分类; ③了解典型的计算机控制系统; ④了解机控制系统的发展方向。 2.输入输出接口和通道 ①了解I/O接口与I/O控制方式; ②了解I/O通道的组成、分类及其作用;

实验四数字滤波器的设计实验报告

数字信号处理 实验报告 实验四 IIR数字滤波器的设计学生姓名张志翔 班级电子信息工程1203班 学号 指导教师 实验四 IIR数字滤波器的设计 一、实验目的: 1. 掌握双线性变换法及脉冲响应不变法设计IIR数字滤波器的具体设 计方法及其原理,熟悉用双线性变换法及脉冲响应不变法设计低通、高通和带通IIR数字滤波器的MATLAB编程。 2. 观察双线性变换及脉冲响应不变法设计的滤波器的频域特性,了解双线性变换法及脉冲响应不变法的特点。 3.熟悉Butterworth滤波器、切比雪夫滤波器和椭圆滤波器的频率特性。 二、实验原理: 1.脉冲响应不变法 用数字滤波器的单位脉冲响应序列模仿模拟滤波器的冲激响应 ,让正好等于的采样值,即,其中为采样间隔,如果以及分别表示的拉式变换及的Z变换,则 2.双线性变换法 S平面与z平面之间满足以下映射关系:

s平面的虚轴单值地映射于z平面的单位圆上,s平面的左半平面完全映射到z平面的单位圆内。 双线性变换不存在混叠问题。 双线性变换是一种非线性变换,这种非线性引起的幅频特性畸变可通过预畸而得到校正。 三、实验内容及步骤: 实验中有关变量的定义: fc 通带边界频率; fr阻带边界频率;δ通带波动;At 最小阻带衰减; fs采样频率; T采样周期 (1) =0.3KHz, δ=0.8Db, =0.2KHz, At =20Db,T=1ms; 设计一个切比雪夫高通滤波器,观察其通带损耗和阻带衰减是否满足要求。 MATLAB源程序: wp=2*1000*tan(2*pi*300/(2*1000)); ws=2*1000*tan(2*pi*200/(2*1000)); [N,wn]=cheb1ord(wp,ws,0.8,20,'s'); %给定通带(wp)和阻带(ws)边界角频率,通带波动波动0.8,阻带最小衰减20dB,求出最低阶数和通带滤波器的通带边界频率Wn [B,A]=cheby1(N,0.5,wn,'high','s');%给定通带(wp)和阻带(ws)边界角频率,通带波动 [num,den]=bilinear(B,A,1000); [h,w]=freqz(num,den); f=w/(2*pi)*1000; plot(f,20*log10(abs(h)));

实验二 数字调制

实验二数字调制 一、实验目的 1、掌握绝对码、相对码概念及它们之间的变换关系。 2、掌握用键控法产生2ASK、2FSK、2DPSK信号的方法。 3、掌握相对码波形与2PSK信号波形之间的关系、绝对码波形与2DPSK信号波形之间的关系。 1、了解2ASK、2FSK、2DPSK信号的频谱与数字基带信号频谱之间的关系。 二、实验内容 1、用示波器观察绝对码波形、相对码波形。 2、用示波器观察2ASK、2FSK、2PSK、2DPSK信号波形。 3、用频谱仪观察数字基带信号频谱及2ASK、2FSK、2DPSK信号的频谱。 三、基本原理 本实验用到数字信源模块和数字调制模块。信源模块向调制模块提供数字基带信号(NRZ码)和位同步信号BS(已在实验电路板上连通,不必手工接线)。调制模块将输入的绝对码AK(NRZ码)变为相对码BK、用键控法产生2ASK、2FSK、2DPSK信号。调制模块内部只用+5V电压。 数字调制单元的原理方框图如图2-1所示,电原理图如图2-2所示(见附录)。 图2-1 数字调制方框图 本单元有以下测试点及输入输出点: ? CAR 2DPSK信号载波测试点 ? BK 相对码测试点 ? 2DPSK 2DPSK信号测试点/输出点,V P-P>0.5V ? 2FSK 2FSK信号测试点/输出点,V P-P>0.5V ? 2ASK 2ASK信号测试点,V P-P>0.5V 用2-1中晶体振荡器与信源共用,位于信源单元,其它各部分与电路板上主要元器件对应关系如下: ?÷2(A)U8:双D触发器74LS74 ?÷2(B)U9:双D触发器74LS74

?滤波器A V6:三极管9013,调谐回路 ?滤波器B V1:三极管9013,调谐回路 ?码变换U18:双D触发器74LS74;U19:异或门74LS86 ? 2ASK调制U22:三路二选一模拟开关4053 ? 2FSK调制U22:三路二选一模拟开关4053 ? 2PSK调制U21:八选一模拟开关4051 ?放大器V5:三极管9013 ?射随器V3:三极管9013 将晶振信号进行2分频、滤波后,得到2ASK的载频2.2165MHZ。放大器的发射极和集电极输出两个频率相等、相位相反的信号,这两个信号就是2PSK、2DPSK的两个载波,2FSK 信号的两个载波频率分别为晶振频率的1/2和1/4,也是通过分频和滤波得到的。 下面重点介绍2PSK、2DPSK。2PSK、2DPSK波形与信息代码的关系如图2-3所示。 图2-3 2PSK、2DPSK波形 图中假设码元宽度等于载波周期的1.5倍。2PSK信号的相位与信息代码的关系是:前后码元相异时,2PSK信号相位变化180?,相同时2PSK信号相位不变,可简称为“异变同不变”。2DPSK信号的相位与信息代码的关系是:码元为“1”时,2DPSK信号的相位变化180?。码元为“0”时,2DPSK信号的相位不变,可简称为“1变0不变”。 应该说明的是,此处所说的相位变或不变,是指将本码元内信号的初相与上一码元内信号的末相进行比较,而不是将相邻码元信号的初相进行比较。实际工程中,2PSK或2DPSK 信号载波频率与码速率之间可能是整数倍关系也可能是非整数倍关系。但不管是那种关系,上述结论总是成立的。 本单元用码变换——2PSK调制方法产生2DPSK信号,原理框图及波形图如图2-4所示。相对于绝对码AK、2PSK调制器的输出就是2DPSK信号,相对于相对码、2PSK调制器的输出是2PSK信号。图中设码元宽度等于载波周期,已调信号的相位变化与AK、BK的关系当然也是符合上述规律的,即对于AK来说是“1变0不变”关系,对于BK来说是“异变同不变”关系,由AK到BK的变换也符合“1变0不变”规律。 图2-4中调制后的信号波形也可能具有相反的相位,BK也可能具有相反的序列即00100,这取决于载波的参考相位以及异或门电路的初始状态。 2DPSK通信系统可以克服上述2PSK系统的相位模糊现象,故实际通信中采用2DPSK而不用2PSK(多进制下亦如此,采用多进制差分相位调制MDPSK),此问题将在数字解调实验中再详细介绍。

计算机控制 最小拍实验报告

重庆邮电大学 自动化学院 计算机控制实验报告 学院:自动化 学生姓名:魏波 专业:电气工程与自动化班级:0830903 学号:2009212715

最小拍控制系统 一、实验目的 1、掌握最小拍有纹波控制系统的设计方法。 2、掌握最小拍无纹波控制系统的设计方法。 二、实验设备 PC机一台,TD-+ ACC实验系统一套,i386EX系统板一块 三、实验原理及内容 典型的最小拍控制系统如图其中D(Z)为数字调节器,G(Z)为包括零阶保持器在内的广义对象的Z传递函数,Φ(Z)为闭环Z传递函数,C(Z)为输出信号的Z传递函数,R(Z)为输入信号的Z传递函数。R为输入,C为输出,计算机对误差E定时采样按D(Z)计算输出控制量U(Z)。图中K=5。 闭环Z传递函数

1、最小拍有纹波系统设计

2、最小拍无纹波设计 有纹波系统虽然在采样点上的误差为零,但不能保证采样点之间的误差值为零,因此存在有纹波现象。无纹波系统设计只要使U(Z)是1 Z的有限多项式,则可以保证系统输出无纹波。 四、实验线路图

(2)D(Z)算法 采样周期T=1S ,E(Z)为计算机输入,U(Z)为输出,有: D(Z)=) Z (E ) Z (U = 3 322113322110Z P Z P Z P 1Z K Z K Z K K ------++++++ 式中Ki 与Pi 取值范围:-0.9999~0.9999,计算机分别用相邻三个字节存储其BCD 码。最低字节符号,00H 为正,01H 为负。中间字节存前2位小数,最高字节存末2位小数。例有系数0.1234,则内存为: 地址 内容 2F00H 00H 2F01H 12H 2F02H 34H 系数存储安排如表5—1。 表5—1 0101H 010DH 0102H K 0 010EH P 1 0103H 010FH 0104H 0110H

实验四 窗函数法设计FIR数字滤波器

实验四 窗函数法设计FIR 数字滤波器 一、实验目的 1、掌握窗函数法设计FIR 数字滤波器的原理及具体方法。 2、掌握频率取样法设计FIR 数字滤波器的原理和基本方法。 3、学习利用窗函数法和频率取样法设计低通、带通、高通、带阻数字滤波器。 二、实验环境 计算机、MATLAB 软件 三、实验基础理论 窗函数设计FIR 滤波器 1.基本原理 窗函数设计法的基本思想为,首先选择一个适当的理想的滤波器()j d H e ω ,然后 用窗函数截取它的单位脉冲响应(n)d h ,得到线性相位和因果的FIR 滤波器。这种方法的重点是选择一个合适的窗函数和理想滤波器,使设计的滤波器的单位脉冲响应逼近理想滤波器的单位脉冲响应。 2.设计步骤 (1)给定理想滤波器的频率响应()j d H e ω ,在通带上具有单位增益和线性相位, 在阻带上具有零响应。一个带宽为()c c ωωπ<的低通滤波器由下式给定: π ωωωωωωω≤<=≤=-||,0)(,||,)(c j d c ja j d e H e e H 其中α为采样延迟,其作用是为了得到一个因果系统。 (2)确定这个滤波器的单位脉冲响应 ) ()) (sin()(a n a n n h c d --= πω 为了得到一个(n)h 长度为N 的因果的线性相位FIR 滤波器,我们令 2 1 -= N a (3)用窗函数截取(n)d h 得到所设计FIR 数字滤波器:)()()(n R n h n h N d = 3.窗函数的选择 常用的窗函数有矩形(Rectangular )窗,汉宁(Hanning )窗,海明(Hamming )窗、布莱克曼(Blackman )窗、凯瑟(Kaiser )窗等 表4-1 MATLAB 中产生窗函数的命令

计算机控制实验报告初稿解析

南京邮电大学自动化学院 实验报告 课程名称:计算机控制系统 实验名称:计算机控制系统性能分析 所在专业:自动化 学生姓名:王站 班级学号: B11050107 任课教师: 程艳云 2013 /2014 学年第二学期

实验一:计算机控制系统性能分析 一、 实验目的: 1.建立计算机控制系统的数学模型; 2.掌握判别计算机控制系统稳定性的一般方法 3.观察控制系统的时域响应,记录其时域性能指标; 4.掌握计算机控制系统时间响应分析的一般方法; 5.掌握计算机控制系统频率响应曲线的一般绘制方法。 二、 实验内容: 考虑如图1所示的计算机控制系统 图1 计算机控制系统 1. 系统稳定性分析 (1) 首先分析该计算机控制系统的稳定性,讨论令系统稳定的K 的取值范围; 解: G1=tf([1],[1 1 0]); G=c2d(G1,0.01,'zoh');//求系统脉冲传递函数 rlocus(G);//绘制系统根轨迹 Root Locus Real Axis I m a g i n a r y A x i s -7 -6-5-4-3-2-1012 -2.5-2-1.5-1-0.500.51 1.5 22.5 将图片放大得到

0.75 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 1.25 -0.15 -0.1 -0.05 0.05 0.1 0.15 Root Locus Real Axis I m a g i n a r y A x i s Z 平面的临界放大系数由根轨迹与单位圆的交点求得。 放大图片分析: [k,poles]=rlocfind(G) Select a point in the graphics window selected_point = 0.9905 + 0.1385i k = 193.6417 poles = 0.9902 + 0.1385i 0.9902 - 0.1385i 得到0

计算机控制实验报告 过程接口板设计

实验一:《过程接口板设计》上机报告 一、设计内容 设计一个32路的数据采集系统 二、设计要求 1、输入信号为正负5V ;用查询法读取A/D 的转换数; 2、用Protel 软件画出该数据采集板的原理线路图。 三、设计过程 1、设计原理 系统总框图如图所示: 系统原理框图 根据系统原理框图得到设计的主要组成如下: (1)多路数据输入单元。 (2)采样保持电路的A/D 转换单元。 (3)硬件和单片机的连接电路。 (4)单片机输出的数据锁存和D/A 转换单元。 其中设计包括: ① 模拟多路开关电路 ② 运算放大电路 ③ 采样保持电路 ④ 模数转换电路 ⑤ 硬件和单片机的连接电路 ⑥ 数模转换电路 ⑦ 转换开关保护电路 2、设计步骤 32路数据采集系统的硬件部分:分为多路数据输入部分、采样保持部分、A/D 转换部分、硬件和单片机的连接电路部分、D/A 转换部分。 1)多路开关的选择 多路转换开关在模拟输入通道中的作用是实现多选一操作,即利用多路转换开关将多路输入中的一路接至后续电路中。切换过程可在CPU 或数字电路的控制下完成。 常用的模拟开关大都采用CMOS 工艺,如8选1开关CD4051、双4选1开关CD4052、三3选1开关CD4053等。 本实验要实现32路数据采集,则选择4片8选1的模拟开关CD4051。 CD4051由电平转换电路、译码驱动电路和CMOS 模拟开关电路三部分组成。开关部分的供电电压为V EE (低端)和V DD (高端),因此需要的控制电压为 V EE ~V DD ,电平转换电路

将输入的逻辑控制电压(A、B、C、INH端)从V SS ~V DD 转换到V EE ~V DD 以满足开关控制的 需要。 2)前置放大电路 传感器检测出的信号一般是微弱的,不能直接用于显示、记录、控制或进行A/D转换。因此,在进行非电量到电量转换之后,需要将信号放大。由于前置放大器要求输入阻抗高,漂移低、共模抑制比大,所以选用高阻抗、低漂移的运算放大器AD521作为前置放大器。 AD521的外部接线图 3)采样/保持电路 当输入信号为缓慢变化的信号时,在A/D转换期间的变化量小于A/D转换器的误差,且不是多通道同步采样时,则可以不用采样/保持电路。当控制信号U C 为采样电平时,开 关S 导通,模拟信号通过开关S向保持电容C H 充电,这时输出电压U o 跟踪输入电压U I 的变化。 当控制信号U C 为保持电平时,开关S断开,此时输出电压U o 保持模拟开关S断开时 的瞬时值。为使保持阶段C H 上的电荷不被负载放掉,在保持电容C H 与负载之间需加一个 高输入阻抗缓冲放大器A。 采样/保持器原理图 采样/保持器的选择,是以速度和精度作为最主要的因素。因为影响采样/保持器的 误差源比较多,所以关键在于误差的分析。AD582它由一个高性能的运算放大器、低漏电阻的模拟开关和一个由结型场效应管集成的放大器组成。它采用14脚双列直插式封装,其管脚及结构示意图所示,其中脚1是同相输入端,脚9是反相输入端,保持电容C H 在脚6和脚8之间,脚10和脚5是正负电源;脚11和脚12是逻辑控制端;脚3和脚4接 直流调零电位器;脚2,7,13,14为空脚(N C )。 AD582管脚图 由于AD582的以上特征,所以选择AD582采样保持器。 下图为AD582的连接图。 4)模/数转换电路 A/D转换器是数据采集系统的关键器件,选择A/D转换器时,要根据系统采集对象的

相关文档
相关文档 最新文档