文档库 最新最全的文档下载
当前位置:文档库 › 概论论与数理统计作业1

概论论与数理统计作业1

概论论与数理统计作业1
概论论与数理统计作业1

《概率论与数理统计》作业

第1章 概率论的基本概念

§1 .1 随机试验及随机事件

1. (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形. 样本空间是:S= {HHH,HHT,HTH,THH,THT,TTH,TTT} ;

(2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= {0,1,2,3} ; 2.(1) 丢一颗骰子. A :出现奇数点,则A= {1,2,3} ;B :数点大于2,则B= {3,4,5,6} . (2) 一枚硬币连丢2次, A :第一次出现正面,则A= {正正,正反} ;

B :两次出现同一面,则= {正正,反反};

C :至少有一次出现正面,则C= {正正,正反,反正 .

§1 .2 随机事件的运算)(B A P ?

1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件:

(1)A 、B 、C 都不发生表示为: ABC .(2)A 与B 都发生,而C 不发生表示为: C AB . (3)A 与B 都不发生,而C 发生表示为: C B A .(4)A 、B 、C 中最多二个发生表示为:

C B A ?? .(5)A 、B 、C 中至少二个发生表示为: BC AC AB ?? .(6)A 、B 、C 中

不多于一个发生表示为: C B C A B A ?? .

2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则

(1)=?B A {x:1

§1 .3 概率的定义和性质

1. 已知6.0)(,5.0)(,8.0)(===?B P A P B A P ,则 (1) =)(AB P P(A)+P(B)-P(AUB)=0.5+0.6-0.8=0.3 , (2)()(B A P )= 1-P(AUB)=1-0.8=0.2 , (3))(B A P ?= 1-P(AB)=1-0.3=0.7 .

2. 已知,

3.0)(,7.0)(==AB P A P 则)(B A P = 0.4 .

§1 .4 古典概型

1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率,

(2)最多有2个女同学的概率,(3) 至少有2个女同学的概率.

1) 103022228/C C C 2)(8

22

28922181022C C C C C ++)/1030C 3)1-(922181022C C C +)/1030C 2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率.

3344/A

§1 .5 条件概率与乘法公式

1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 2/6 。 2. 已知,2/1)|(,3/1)|(,4/1)(===B A P A B P A P 则=?)(B A P 1/3 。

§1 .6 全概率公式

1. 有10个签,其中2个“中”,第一人随机地抽一个签,不放回,第二人再随机地抽一个

签,说明两人抽“中‘的概率相同。 设A 表示第一人“中”,则P (A)=2/10,

设B 表示第二人“中”,则)|()()|()()(A B P A P A B P A P B P += =

10

2

9210891102=?+? 2. 第一盒中有4个红球6个白球,第二盒中有5个红球5个白球,随机地取一盒,从中

随机地取一个球,求取到红球的概率。

设1R 表示第一次取到红球,表示2R 第二次取到红球,则:

52

)|()()|()()(,12

4)|(,106)|(,106)(,104)(1211212121211=

+=====

R R P R P R R P R P R P R R P R R P R P R P ,

§1 .7 贝叶斯公式

1. 某厂产品有70%不需要调试即可出厂,另30%需经过调试,调试后有80%能出厂,求(1)

该厂产品能出厂的概率,(2)任取一出厂产品, 求未经调试的概率。 设A 需要调试 A 不要调试 B 出厂

1)|(%,80)|(%,70)(%,30)(====A B P A B P A P A P , 1),由全概率公式:)|()()|()()(A B P A P A B P A P B P += =30%X80%+70%X1=94%

2)由贝叶斯公式:%

94)

|()()()()|(A B P A P B P B A P B A P =

=

=

94

70 2. 将两信息分别编码为A 和B 传递出去,接收站收到时,A 被误收作B 的概率为0.02,

B 被误收作A 的概率为0.01,信息A 与信息B 传递的频繁程度为3 : 2,若接收站收到的信息是A ,问原发信息是A 的概率是多少?

993.001

.04.0)02.01(6.0)

02.01(6.0=?+-?-?=

P

§1 .8 随机事件的独立性

1. 电路如图,其中A,B,C,D 为开关。设各开关闭合与否相互独立,且每一开关闭合的概率均为p,求L 与R 为通路(用T 表示)的概率。

A B L R C D

用A B C D 表示开关闭合,于是 CD AB T ?=,从而,由概率的性质及A,B,C,D 相互独立性

P(T)=P(AB)+P(CD)-P(ABCD)

=P(A)P(B)+P(C)P(D)- P(A)P(B)P(C)P(D)

=4

2

4

2

2

2p p p p p -=-+

3. 甲,乙,丙三人向同一目标各射击一次,命中率分别为0.4,0.5和0.6,是否命中,相

互独立, 求下列概率: (1) 恰好命中一次,(2) 至少命中一次。 1)、6.0)5.01()4.01()6.01(5.0)4.01()6.01()5.01(4.0?-?-+-??-+-?-?=0.38 2)、88.0)6.01()5.01()4.01(1=-?-?--

第2章 随机变量及其分布

§2.1 随机变量的概念,离散型随机变量

1 一盒中有编号为1,2,3,4,5的五个球,从中随机地取3个,用X 表示取出的3个球 中的最大号码., 试写出X 的分布律.

2 某射手有5发子弹,每次命中率是0.4,一次接一次地射击,直到命中为止或子弹用尽为止,用X 表示射击的次数, 试写出X 的分布律。

X 3 4 5 p i 0.1 0.3 0.6

X | 1 2 3 4 5 ____________________________________________________ i P | 0.4 0.24 0.144 0.0864 0.1296

§2.2 10-分布和泊松分布

1 某程控交换机在一分钟内接到用户的呼叫次数X 是服从λ=4的泊松分布,求

(1)每分钟恰有1次呼叫的概率;(2)每分钟只少有1次呼叫的概率; (3)每分钟最多有1次呼叫的概率;

1)、P(X=1)=P(X ≥1)–P(X ≥2)=0.981684–0.908422=0.073262 2)、P(X ≥1)=0.981684

3)、P(X ≤1=1–P(X ≥2)=1-0.908422=0.091578

2 设随机变量X 有分布律: X 2

3 , Y ~π(X), 试求: p 0.

4 0.6

(1)P(X=2,Y ≤2); (2)P(Y ≤2); (3) 已知 Y ≤2, 求X=2 的概率。

1)、由乘法公式:P(X=2,Y ≤2)=P(X=2)P(Y ≤2|X=2)=0.4e ×(2+2e -2+2e -2)=2e -2 2)、P(Y ≤2)=P(X=2)P(Y ≤2|X=2)+P(X=3)P(Y ≤2|X=3) =0.4×5e -2+0.6×

2

17e -3

=0.27067+0.25391=0.52458 3)、由贝叶斯公式:

P(X=2,Y ≤2)=P(X=2)P(Y ≤2|X=2)/P(Y ≤2)=0.27067/0.52458=0.516

§2.3 贝努里分布

1 一办公室内有5台计算机,调查表明在任一时刻每台计算机被使用的概率为0.6,计算

机是否被使用相互独立,问在同一时刻 (1) 恰有2台计算机被使用的概率是多少? (2) 至少有3台计算机被使用的概率是多少? (3) 至多有3台计算机被使用的概率是多少? (4) 至少有1台计算机被使用的概率是多少?

贝努里公式:k

n k k n p p C k X P -==)(

1)、322

52

52254.06.0)2(??===-C q

p C X P

2)、5

4

4

52

3

3

56.04.06.04.06.0)3(+??+??=≥C C X P 3)、5

6.01)5(1)4(-==-=≤X P X P 4)、54.01)0(1)1(-==-=≥X P X P

2 设每次射击命中率为0.2,问至少必须进行多少次独立射击,才能使至少击中一次的概率不小于0.9 ?

设至少进行n 次射击,X 表示n 次命中的次数,则X--B(n,0.2),已经,

9.0)2.01(1)1(≥--=≥n X P 即1.08.0≤n ,两边取对数,得32.108.0lg /1.0lg =≥n 至少进行11次的独立射击

§2.4 随机变量的分布函数

1设随机变量X 的分布函数是: F(x) = ??

?

??≥<≤--<11115.010

x x x

(1)求 P(X ≤0 ); P ()10≤

X -1 1 Pi 0.5 0.5

2 设随机变量X 的分布函数是:F(x) = ???

??≤>+0

001x x x

Ax , 求(1)常数A, (2) P ()21≤

1) 1,1lim

)(lim 1==+==+∞→+∞→A A x

Ax

x f x x

2) 6

1

2132)1()2()21(=-=-=≤

§2.5 连续型随机变量

1 设连续型随机变量X 的密度函数为:?

??<<=他其01

0)(x kx x f

(1)求常数k 的值;(2)求X 的分布函数F(x),画出F(x) 的图形,

(3)用二种方法计算 P(- 0.5

)(11

==

==

??

+∞

-k k

kxdx ds x f 2)、当x <0时,00)(==

?

-x

dt x F

当20

20)(10x tdt dt x F x x

x

=+=

<≤??

-时,

当1≥x 时,1020)(1

10

0=++=

???∞

-x

dt tdt dt x F

3)、4

120)()5.05.0(5

.00

05

.05

.05

.0=

+==

<<-???

--xdx dx dx x f X P 2 设连续型随机变量0≥x 的分布函数为:F(x) = ??

?

??≥<≤

(1)求X 的密度函数)(x f ,画出)(x f 的图形,(2)并用二种方法计算 P(X>0.5).

1)、?????<<=他

其011

)(e

x x x f

2)、

2

ln 1/12

ln 1)2(1)2(2

-==-=-=>?e

xdx F X P 或

§2.6 均匀分布和指数分布

1设随机变量K 在区间 (0, 5) 上服从均匀分布, 求方程 42

x + 4Kx + K + 2 = 0

有实根的概率。

1,2,0)2(44162-≤≥≥+?-=?K K K K 或

5

3510)2()1(52

=+=≥+-≤?

dx K P K P 2 假设打一次电话所用时间(单位:分)X 服从2.0=α的指数分布,如某人正好在你前面

走进电话亭,试求你等待:(1)超过10分钟的概率;(2)10分钟 到20分钟的概率。

?

?<≥=-0

00

)(x x ae x f ax 1)、2

)10(-=>e X P 2)、42

)2010(---=<

§2.7 正态分布

1 随机变量X ~N (3, 4), (1) 求 P(22), P(X>3); (2)确定c ,使得 P(X>c) = P(X

22)(21

)(σμσ

π--

=

x e x f 分布函数:?

-∞

--

=-Φ=σ

μ

π

σ

μ

x ds s e x x F 2

221)(

)(

1)、0.5328, 0.9996, 0.6977, 0.5 2) c=3

2 某产品的质量指标X 服从正态分布,μ=160,若要求P(120

取多大?

25.31≤σ

§2.8 随机变量函数的分布

1设随机变量X 的分布律为; X 0 1 2

p 0.3 0.4 0.3 Y = 2X – 1, 求随机变量X 的分布律。 X -1 1 3 pi 0.3 0.4 0.3

2设随机变量X 的密度函数为:?

?

?<<-=他其01

0)1(2)(x x x f ,

2X Y =;求随机变量Y 的密度函数。

??

?

??<<-=他其010)1(1

)(y y y

x f y 3. 设随机变量X 服从(0, 1)上的均匀分布,X Y ln 2-= ,求随机变量Y 的密度函数。

???

??≤>=-0

021)(2y y e

x f y

y

第3章 多维随机变量

§3.1 二维离散型随机变量

1. 设盒子中有2个红球,2个白球,1个黑球,从中随机地取3个,用X 表示取到的红球

个数,用Y 表示取到的白球个数,写出 (X, Y) 的联合分布律及边缘分布律。 X Y 0 1 2

0 0 0 0.1 0.1 1 0 0.4 0.2 0.6 2 0.1 0.2 0 0.3 0.1 0.6 0.3 1

2. 设二维随机变量),(Y X 的联合分布律为: X Y 0 1 2

试根椐下列条件分别求a 和b 的值; 0 0.1 0.2 a (1)6.0)1(==X P ; 1 0.1 b 0.2 (2)5.0)2|1(===Y X P ; (3)设)(x F 是Y 的分布函数,5.0)5.1(=F 。 1) a=0.1,b=0.3

2) a=0.2,b=0.2 3) a=0.3,b=0.1

§3.2 二维连续型随机变量

1. )(Y X 、的联合密度函数为:??

?<<<<+=他其0

1

0,10)(),(y x y x k y x f

求(1)常数k ;(2)P(X<1/2,Y<1/2);(3) P(X+Y<1);(4) P(X<1/2)。 1) ??

?

?

∞∞-∞

-+==

)(),(1dxdy y x k dxdy y x f ,得 k=1

2) 8

1

)21,21(=<<

Y X P 3) 3

1

)1(=<+Y X P

4) 8

3

)21(=

2.)(Y X 、的联合密度函数为:??

?<<<<=他其0

0,10),(x

y x kxy y x f

求(1)常数k ;(2)P(X+Y<1);(3) P(X<1/2)。

1) k=8

2) 61)1(<+Y X P 3) 16

1

)21(=

§3.3 边缘密度函数

1. 设(X, Y) 的联合密度函数如下,分别求X 与Y 的边缘密度函数。

+∞<<∞-+∞<<∞-++=

y x y x y x f ,)

1)(1(1

),(222π

答: )1(1

)1)(1(1)(2222x dy y x x f x +=++=

?∞

∞-ππ +∞<<∞-x )

1(1)1)(1(1)(2222y dx y x y f y +=++=?

∞-ππ +∞<<∞-y

2. 设(X, Y) 的联合密度函数如下,分别求X 与Y 的边缘密度函数。

??

?<<=-他

其0

0),(x

y e y x f x

答: ?????<<+=他其01021)(x x x f x ?????<<+=他其0

1

02

1)(y y y f y §3.4 随机变量的独立性

1. (X, Y) 的联合分布律如下, X Y 1 2 3

试根椐下列条件分别求a 和b 的值; 1 1/6 1/9 1/18 (1) 3/1)1(==Y P ; 2 a b 1/9 (2) 5.0)2|1(==>Y X P ; (3)已知X 与Y 相互独立。

1) a=1/6,b=7/18 2) a=1/9 b=4/9 3) a=1/3 b=2/9

2. (X,Y) 的联合密度函数如下,求常数c ,并讨论X 与Y 是否相互独立?

???<<<<=他其0

1

0,10),(2

y x c x y y x f

C=6, X,Y 相互独立

*§3.5 多个随机变量的函数的分布 *§3.6 几种特殊随机变量函数的分布

第4章 随机变量的数字特征

§4.1 数学期望

1.盒中有5个球,其中2个红球,随机地取3个,用X 表示取到的红球的个数,则EX 是: (A )1; (B )1.2; (C )1.5; (D )2. 答: 1.2

2. 设X 有密度函数:??

?

??=0

83)(2

x x f 他其20≤≤x , 求)1(),12(),(2X E X E X E -,并求X

大于数学期望)(X E 的概率。

答:2

383)()(2

2=?==

?

?

+∞

-dx x x dx x xf X E

2)18

32()()12(2

2=-==

-?

?

+∞

-dx x x dx x xf X E

4

3)8

3(1)()1(

20222===??+∞∞-dx x x dx x xf X E 37/64

3. 设二维随机变量),(Y X 的联合分布律为: X Y 0 1 2

已知65.0)(=XY E , 0 0.1 0.2 a 则a 和b 的值是: 1 0.1 b 0.2

(A )a=0.1, b=0.3; (B )a=0.3, b=0.1; (C )a=0.2, b=0.2; (D )a=0.15, b=0.25。 答: D

4.设随机变量 (X, Y) 的联合密度函数如下:求)1(,,+XY E EY EX 。

???<<<<=他其

02

0,10),(y x xy y x f EX=2/3,EY=4/3 ,E(XY+1)=17/9

§4.2 数学期望的性质

1.设X 有分布律: X 0 1 2 3 则)32(2

+-X X E 是: p 0.1 0.2 0.3 0.4

(A )1; (B )2; (C )3; (D )4. 答:D

2. 设),(Y X 有?????<<=他其0

1

45

),(2y x y y x f ,试验证 )()()(Y E X E XY E =,但X 与Y 不

相互独立。

E(XY)=E(X)E(Y)=0x5/7=0,但f(x,y)≠)(y f y

§4.3 方差

1.丢一颗均匀的骰子,用X 表示点数,求DX EX ,. E(X)=2,D(X)=35/12

2.X 有密度函数:?

??+=04

/)1()(x x f 他其20≤≤x ,求 D(X).

D(X)=11/36

§4.4 常见的几种随机变量的期望与方差

1. 设)2(~πX ,)6.0,3(~B Y ,相互独立,则)2(),2(Y X D Y X E --的值分别是: (A )-1.6和4.88; (B )-1和4; (C )1.6和4.88; (D )1.6和-4.88. A

2. 设)3,4(~),,(~N Y b a U X ,X 与Y 有相同的期望和方差,求b a ,

的值。

(A ) 0和8; (B ) 1和7; (C ) 2和6; (D ) 3和5.

B

§4.5 协方差与相关系数

1.随机变量 (X,Y) 的联合分布律如下:试求协方差 ),(Y X Cov 和相关系数XY ρ,

X Y -1 0 1 . 0 0.2 0.1 0 1 0.1 0.3 0.3 Cov(X,Y)=0.2 563.0=XY ρ

2.设随机变量 (X, Y) 有联合密度函数如下:试求协方差 ),(Y X Cov 和相关系数XY ρ,

?

??<<<<+=他其01

0,10),(y x y x y x f

Cov(X,Y)=-1/144 11/1-=XY ρ

§4.6 独立性与不相关性 矩

1.下列结论不正确的是( C )

(A )X 与Y 相互独立,则X 与Y 不相关; (B )X 与Y 相关,则X 与Y 不相互独立;

(C ))()()(Y E X E XY E =,则X 与Y 相互独立; (D ))()(),(y f x f y x f Y X =,则X 与Y 不相关;

2.若 0),(=Y X C O V

,则不正确的是( C ) (A ))()()(Y E X E XY E =;(B ))()()(Y E X E Y X E +=+; (C ))()()(Y D X D XY D =;(D ))()()(Y D X D Y X D +=+; 3.(Y X ,)有联合分布律如下,试分析X 与Y 的相关性和独立性。 X Y -1 0 1 .

-1 1/8 1/8 1/8 0 1/8 0 1/8 1 1/8 1/8 1/8

X,Y 不相关,但X 与Y 不相互独立

4.)()()(Y E X E XY E =是X 与Y 不相关的( C )

(A )必要条件;(B )充分条件:(C )充要条件;(D )既不必要,也不充分。 5. )()()(Y E X E XY E =是X 与Y 相互独立的( C )

(A ) 必要条件;(B )充分条件:(C )充要条件;(D )既不必要,也不充分。 6. 设随机变量 (X, Y) 有联合密度函数如下:试验证X 与Y 不相关,但不独立。

???<<=他其0

1

4/21),(22y x y x y x f

第5章 极限定理

*§5.1 大数定理 §5.2 中心极限定理

1. 一批元件的寿命(以小时计)服从参数为0.004的指数分布,现有元件30只,一只在用,

其余29只备用,当使用的一只损坏时,立即换上备用件,利用中心极限定理求30只元件至少能使用一年(8760小时)的近似概率。

0.1788

2. 某一随机试验,“成功”的概率为0.04,独立重复100次,由泊松定理和中心极限定理

分别求最多“成功”6次的概率的近似值。 0.889, 0.841

第6章 数理统计基础

§6.1 数理统计中的几个概念

1. 有n=10的样本;1.2, 1.4, 1.9, 2.0, 1.5, 1.5, 1.6, 1.4, 1.8, 1.4,则样本

均值X = 1.57 ,样本均方差=S 0.254 ,样本方差=2

S 0.0646 。

2.设总体方差为2

b 有样本n X X X ,,,21 ,样本均值为X ,则=),(1X X Cov 。

§6.2 数理统计中常用的三个分布

1. 查有关的附表,下列分位点的值:9.0Z = -1.29 ,

)5(2

1.0χ= 9.236 ,)10(9.0t = -1.3722 。

2.设n X X X ,,,21 是总体)(2

m χ的样本,求)(),

(X D X E 。

n m X D m X E /2)(,)(==

§6.3 一个正态总体的三个统计量的分布

1.设总体),(~2

σμN X ,样本n X X X ,,,21 ,样本均值X ,样本方差2

S ,则

~/n

X σμ

- N(0,1) ,

~/n

S X μ

- t(n-1) ,

∑=-n

i i

X X

1

2

2

)(1

σ

~ ,

∑=-n

i i

X

1

22

)(1

μσ

~ ,

*§6.4 二个正态总体的三个统计量的分布

第7章 参数估计

§7.1 矩估计法和顺序统计量法

1.设总体X 的密度函数为:????

?≤≤=-他

10)(1

x x

x f θθ,有样本n X X X ,,,21 ,求未

知参数θ 的矩估计。 2

)1(

X

X - 2.每分钟通过某桥量的汽车辆数)(~λπX ,为估计λ的值,在实地随机地调查了20次,每次1分钟,结果如下:次数: 2 3 4 5 6 量数: 9 5 3 7 4 试求λ的一阶矩估计和二阶矩估计。 λ=5 λ=4.97

§7.2 极大似然估计

1.设总体X 的密度函数为:????

?≤≤+=他

10)1()(x x

x f θ

θ,有样本n X X X ,,,21 ,求

未知参数θ 的极大似然估计。 21

)1ln (

+∑=n

i i

x

n

§7.3 估计量的评价标准

1.设总体X 服从区间)1,(a 上的均匀分布,有样本n X X X ,,,21 ,证明=a

?12-X 是a 的无偏估计。

2.设总体X ~)(λπ,有样本n X X X ,,,21 ,证明2

)1(S a X a -+是参数λ的无偏估计(10<

§7.4 参数的区间估计

1. 纤度是衡量纤维粗细程度的一个量,某厂化纤纤度),

(~2σμN X ,抽取9根纤维,测

量其纤度为:1.36,1.49,1.43,1.41,1.27,1.40,1.32,1.42,1.47,试求μ的置

信度为95.0的置信区间,(1)若22048.0=σ,(2)若2

σ未知。 1)μ (1.377,1.439) 2) (1.346,1.454)

2. 为分析某自动设备加工的另件的精度,抽查16个另件,测量其长度,得075.12=x ㎜,

s = 0.0494㎜, 设另件长度),(~2σμN X ,取置信度为95.0,(1)求2

σ的置信区间,(2)求σ的置信区间。

1) 2

σ (0.0013,0.0058) 2) σ (0.036,0.076)

*§7.5 二个正态总体的参数的区间估计 *§7.6 区间估计的二种特殊情形

第8章 假设检验

§8.1 假设检验的基本概念

1. 某种电子元件的阻值(欧姆))400,1000

(~N X ,随机抽取25个元件,测得平均电

阻值992=x ,试在1.0=α下检验电阻值的期望μ是否符合要求? 拒绝1000:0=μH

2. 在上题中若2

σ未知,而25个元件的均方差25=s ,则需如何检验,结论是什么?

接受:1000:0=μH

§8.2 假设检验的说明

1. 设第一道工序后,半成品的某一质量指标)64,(~μN X ,品质管理部规定在进入下一工序前必需对该质量指标作假设检验00:μμ=H ,01:μμ≠H ;16=n ,当X 与0μ的绝对偏差不超过3.29时,许进入下一工序,试推算该检验的显著性水平。 0.1

§8.3 一个正态总体下参数的假设检验

1. 成年男子肺活量为3750=μ毫升的正态分布,选取20名成年男子参加某项体育锻练一

定时期后,测定他们的肺活量,得平均值为3808=x 毫升,设方差为22

120=σ,试检

验肺活量均值的提高是否显著(取02.0=α)? 拒绝0H

*§8.4 二个正态总体下参数的假设检验

概率论与数理统计第4章作业题解

第四章作业题解 4.1 甲、乙两台机床生产同一种零件, 在一天内生产的次品数分别记为 X 和 Y . 已知 ,X Y 的概率分布如下表所示: 如果两台机床的产量相同, 问哪台机床生产的零件的质量较好? 解: 11.032.023.014.00)(=?+?+?+?=X E 9.0032.025.013.00)(=?+?+?+?=Y E 因为 )()(Y E X E >,即乙机床的平均次品数比甲机床少,所以乙机床生产的零件质量较好。 4.2 袋中有 5 个球, 编号为1,2,3,4,5, 现从中任意抽取3 个球, 用X 表示取出的3 个球中的 最大编号,求E (X ). 解:X 的可能取值为3,4,5. 因为1.01011)3(35 == = =C X P ;3.010 3)4(35 2 3== = =C C X P ; 6.010 6)5(3 5 24=== =C C X P 所以 5.46.053.041.03)(=?+?+?=X E 4.3 设随机变量X 的概率分布1 {}(0,1,2,),(1) k k a P X k k a +===+ 其中0a >是个常 数,求()E X 解: 1 1 2 1 1 1 ()(1) (1) (1) k k k k k k a a a E X k k a a a -∞ ∞ +-=== = +++∑∑ ,下面求幂级数11 k k k x ∞ -=∑的和函数, 易知幂级数的收敛半径为1=R ,于是有 1 2 1 1 1()( ),1,1(1) k k k k x k x x x x x ∞ ∞ -==''=== <--∑ ∑

概率论与数理统计(含答案)

对外经济贸易大学远程教育学院 2006-2007学年第一学期 《概率论与数理统计》期末复习大纲 (附参考答案) 一、复习方法与要求 学习任何数学课程,要求掌握的都是基本概念、基本定理、基本方法,《概率论与数理统计》同样.对这些基本内容,习惯称三基,自己作出罗列与总结是学习的重要一环,希望尝试自己完成. 学习数学离不开作题,复习时同样.正因为要求掌握的是基本内容,将课件中提供的练习题作好就可以了,不必再找其他题目. 如开学给出的学习建议中所讲: 作为本科的一门课程,在课件中我们讲述了大纲所要求的基本内容.考虑到学员的特点,在学习中可以有所侧重.各章内容要求与所占分值如下: 第一章介绍的随机事件的关系与运算,概率的基本概念与关系. 约占20分. 第二章介绍的一维随机变量的分布. 约占20分. 第三章二维随机变量的分布,主要要求掌握二维离散型随机变量的联合分布律、边缘分布律以及随机变量独立的判别. 约占15分. 第四章介绍的随机变量的数字特征. 约占20分. 第五章的中心极限定理. 约占5分. 分布); 第六章介绍的总体、样本、统计量等术语;常用统计量的定义式与分布(t分布、2 正态总体样本函数服从分布定理. 约占7分. 第七章的矩估计与一个正态总体期望与方差的区间估计. 约占8分. 第八章一个正态总体期望与方差的假设检验. 约占5分. 对上述内容之外部分,不作要求. 二、期终考试方式与题型 本学期期终考试采取开卷形式,即允许带教材与参考资料. 题目全部为客观题,题型有判断与选择.当然有些题目要通过计算才能得出结果.其中判断题约占64分,每小题2分;选择题约占36分,每小题3分.

概率论与数理统计习题集及答案

* 《概率论与数理统计》作业集及答案 第1章 概率论的基本概念 §1 .1 随机试验及随机事件 1. (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形. 样本空间是:S= ; (2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ; 2.(1) 丢一颗骰子. A :出现奇数点,则A= ;B :数点大于2,则B= . (2) 一枚硬币连丢2次, A :第一次出现正面,则A= ; B :两次出现同一面,则= ; C :至少有一次出现正面,则C= . ? §1 .2 随机事件的运算 1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件: (1)A 、B 、C 都不发生表示为: .(2)A 与B 都发生,而C 不发生表示为: . (3)A 与B 都不发生,而C 发生表示为: .(4)A 、B 、C 中最多二个发生表示为: . (5)A 、B 、C 中至少二个发生表示为: .(6)A 、B 、C 中不多于一个发生表示为: . 2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则 (1)=?B A ,(2)=AB ,(3)=B A , (4)B A ?= ,(5)B A = 。 \ §1 .3 概率的定义和性质 1. 已知6.0)(,5.0)(,8.0)(===?B P A P B A P ,则 (1) =)(AB P , (2)()(B A P )= , (3))(B A P ?= . 2. 已知,3.0)(,7.0)(==AB P A P 则)(B A P = . §1 .4 古典概型 1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率, (2)最多有2个女同学的概率,(3) 至少有2个女同学的概率. 2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率. — §1 .5 条件概率与乘法公式 1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。 2. 已知,2/1)|(,3/1)|(,4/1)(===B A P A B P A P 则=?)(B A P 。 §1 .6 全概率公式 1. 有10个签,其中2个“中”,第一人随机地抽一个签,不放回,第二人再随机地抽一个 签,说明两人抽“中‘的概率相同。

概率与数理统计

简介: 全书共分9章:随机事件与概率,一维随机变量及其分布,多维随机变量及其分布,随机变量的数字特征,极限定理,统计量及抽样分布,参数估计,假设检验,方差分析与回归分析.本书科学、系统地介绍了概率论与数理统计的基本内容,重点介绍了概率论与数理统计的方法及其在经济管理中的应用,每章均配有习题,书末附有习题的参考答案. 图书目录: 第一章随机事件与概率 §1.1随机试验与样本空间;§1.2随机事件及其概率;一、随机事件;二、事件间的关系与运算;三、频率与概率;§1.3古典概型;§1.4概率的基本性质;§1.5条件概率与事件的独立性;一、条件概率;二、乘法定理;三、全概率公式;四、贝叶斯公式;五、事件的独立性;§1.6贝努里概型;数学家简介--费马;习题一 第二章一维随机变量及其分布 §2.1一维随机变量;§2.2离散型随机变量;一、离散型随机变量及其分布律;二、常用的离散型随机变量的分布;§2.3随机变量的分布函数;§2.4连续型随机变量;一、连续型随机变量及其密度函数;二、常用的连续型随机变量的分布;§2.5随机变量函数的分布;一、离散型随机变量函数的分布;二、连续型随机变量函数的分布;数学家简介--帕斯卡贝叶斯;习题二 第三章多维随机变量及其分布 §3.1二维随机变量;一、二维随机变量及其联合分布函数;二、二维离散型随机变量及其分布;三、二维连续型随机变量及其分布;§3.2条件分布;§3.3随机变量的独立性;数学家简介--雅各布·贝努里;习题三 第四章随机变量的数字特征 §4.1数学期望;一、离散型随机变量的数学期望;二、连续型随机变量的数学期望;三、随机变量函数的数学期望;四、数学期望的性质;§4.2方差;一、方差的定义;二、方差的性质;§4.3协方差与相关系数;一、协方差;二、相关系数;数学家简介--棣莫弗;习题四 第五章极限定理 §5.1切比雪夫不等式;§5.2大数定律;§5.3中心极限定理;数学家简介--拉普拉斯;习题五 第六章统计量及抽样分布 §6.1总体与样本;一、总体与样本;二、统计量;§6.2样本分布函数;一、频率分布表; 二、直方图;三、样本分布函数;§6.3常用统计量的分布;一、正态总体样本的线性函数的分布;二、χ2分布;三、t分布;四、F分布;数学家简介--切比雪夫;习题六| 第七章参数估计 §7.1点估计;一、矩估计法;二、极大似然估计法;§7.2估计量的评价标准;一、无偏性;二、有效性;三、一致性;§7.3区间估计;一、正态总体均值的区间估计;二、正态总体方差的区间估计;三、非正态总体均值的区间估计;四、单边置信区间;数学家简介--马尔柯夫;习题七

概率论与数理统计练习题

概率论与数理统计练习题 一、填空题 1、设A 、B 为随机事件,且P (A)=,P (B)=,P (B A)=,则P (A+B)=__ __。 2、θθθ是常数21? ,?的两个 无偏 估计量,若)? ()?(21θθD D <,则称1?θ比2?θ有效。 3、设A 、B 为随机事件,且P (A )=, P (B )=, P (A ∪B )=,则P (B A )=。 4. 设随机变量X 服从[0,2]上的均匀分布,Y =2X +1,则D (Y )= 4/3 。 5. 设随机变量X 的概率密度是: ?? ?<<=其他 103)(2 x x x f ,且{}784 .0=≥αX P ,则α= 。 6. 已知随机向量(X ,Y )的联合密度函数 ?????≤≤≤≤=其他 , 010,20, 2 3 ),(2y x xy y x f ,则 E (Y )= 3/4 。 7. 若随机变量X ~N (1,4),Y ~N (2,9),且X 与Y 相互独立。设Z =X -Y +3,则Z ~ N (2, 13) 。 * 8. 设A ,B 为随机事件,且P (A)=,P (A -B)=,则=?)(B A P 。 9. 设随机变量X ~ N (1, 4),已知Φ=,Φ=,则{}=<2X P 。 10. 随机变量X 的概率密度函数1 22 1 )(-+-= x x e x f π ,则E (X )= 1 。 11. 已知随机向量(X ,Y )的联合密度函数 ?? ?≤≤≤≤=其他 , 010,20, ),(y x xy y x f ,则 E (X )= 4/3 。 12. 设A ,B 为随机事件,且P (A)=, P (AB)= P (B A ), 则P (B )= 。 13. 设随机变量),(~2σμN X ,其密度函数6 4 4261)(+-- = x x e x f π ,则μ= 2 。 14. 设随机变量X 的数学期望EX 和方差DX >0都存在,令DX EX X Y /)(-=,则D Y= 1 。 15. 随机变量X 与Y 相互独立,且D (X )=4,D (Y )=2,则D (3X -2Y )= 44。 16. 三个人独立地向某一目标进行射击,已知各人能击中的概率分别为3 1 ,41,51,则目标能被击中 的概率是3/5 。 17. 设随机变量X ~N (2,2σ),且P {2 < X <4}=,则P {X < 0}= 。 ! 18. 设随机变量X 的概率分布为5.0)3(,3.0)2(,2.0)1(======X P X P X P ,则X 的期望

概率论与数理统计网上作业题

东北农业大学网络教育学院 概率论与数理统计作业题(一) 一、填空题 1.将A ,A ,C ,C ,E ,F ,G 这7个字母随机地排成一行,恰好排成GAECF AC 的概率为 。 2.用随机变量X 来描述掷一枚硬币的试验结果. 则X 的分布函数为 。 3.已知随机变量X 和Y 成一阶线性关系,则X 和Y 的相关系数=XY ρ 。 4.简单随机样本的两个特点为: 5.设21,X X 为来自总体),(~2σμN X 的样本,若212004 1 X CX + 为μ的一个无偏估计,则C = 。 二、选择题 1.关系( )成立,则事件A 与B 为互逆事件。 (A )Φ=AB ; (B )Ω=B A ; (C )Φ=AB Ω=B A ; (D )A 与B 为互逆事件。 2.若函数)(x f y =是一随机变量X 的概率密度,则( )一定成立。 )(A )(x f y =的定义域为[0,1] )(B )(x f y =非负 )(C )(x f y =的值域为[0,1] )(D )(x f y =在),(+∞-∞内连续 3.设Y X ,分别表示甲乙两个人完成某项工作所需的时间,若EY EX <,DY DX >则 ( ) (A ) 甲的工作效率较高,但稳定性较差 (B ) 甲的工作效率较低,但稳定性较好 (C ) 甲的工作效率及稳定性都比乙好 (D ) 甲的工作效率及稳定性都不如乙 4.样本4321,,,X X X X 取自正态分布总体X ,μ=EX 为已知,而2σ=DX 未知,则下列随机变量中不能作为统计量的是( ) (.A ).∑==4141i i X X (B ).μ241++X X (C ).∑=-= 4 12 2)(1 i i X X k σ (D ).∑=-=4 1 22 )(31i i X X S 5.设θ是总体X 的一个参数,θ?是θ的一个估计量,且θθ=)?(E ,则θ?是θ的( )。 (A )一致估计 (B )有效估计 (C )无偏估计 (D )一致和无偏估计 三、计算题 1.两封信随机地投向标号1,2,3,4的四个空邮筒,问:(1)第二个邮筒中恰好投入一封信的概率是多少;(2)两封信都投入第二个邮筒的概率是多少?

概率论与数理统计第四版课后习题答案

概率论与数理统计课后习题答案 第七章参数估计 1.[一] 随机地取8只活塞环,测得它们的直径为(以mm 计) 74.001 74.005 74.003 74.001 74.000 73.998 74.006 74.002 求总体均值μ及方差σ2的矩估计,并求样本方差S 2。 解:μ,σ2 的矩估计是 61 22 106)(1?,002.74?-=?=-===∑n i i x X n X σμ 621086.6-?=S 。 2.[二]设X 1,X 1,…,X n 为准总体的一个样本。求下列各总体的密度函数或分布律中的未知参数的矩估计量。 (1)? ??>=+-其它,0,)()1(c x x c θx f θθ 其中c >0为已知,θ>1,θ为未知参数。 (2)?? ???≤≤=-.,01 0,)(1其它x x θx f θ 其中θ>0,θ为未知参数。 (5)()p p m x p p x X P x m x m x ,10,,,2,1,0,)1()(<<=-==- 为未知参数。 解:(1)X c θc θc c θdx x c θdx x xf X E θθc θ θ =--=-== =+-∞+-∞+∞ -? ? 1 ,11)()(1令, 得c X X θ-= (2),1)()(10 += = = ? ? ∞+∞ -θθdx x θdx x xf X E θ 2 )1(,1 X X θX θθ-==+得令 (5)E (X ) = mp 令mp = X , 解得m X p =? 3.[三]求上题中各未知参数的极大似然估计值和估计量。 解:(1)似然函数 1211 )()()(+-=== ∏θn θ n n n i i x x x c θ x f θL 0ln ln )(ln ,ln )1(ln )ln()(ln 1 1 =- +=-++=∑∑ ==n i i n i i x c n n θθ d θL d x θc θn θn θL

概率论与数理统计作业

第一章随机事件与概率 1. 将一枚均匀的硬币抛两次,事件C B A ,,分别表示“第一次出现正面”,“两次出现同一面”,“至少有一次出现正面”。试写出样本空间及事件C B A ,,中的样本点。 解:{}反正正、正反、反正、反=Ω {}正正、正反=A ,{}正正=B ,{}正正、正反、反正=C 2.设3 1)(=A P ,21)(=B P ,试就以下三种情况分别求)(A B P : (1)AB =?,(2)B A ?,(3)81 )(=AB P 解: (1)5.0)()()()()(==-=-=B P AB P B P AB B P A B P (2)6/13/15.0)()()()()()(=-=-=-=-=A P B P AB P B P AB B P A B P (3)375.0125.05.0)()()()(=-=-=-=AB P B P AB B P A B P 3.某人忘记了电话号码的最后一个数字,因而随机的拨号,求他拨号不超过三次而接通所需的电话的概率是多少?如果已知最后一个数字是奇数,那么此概率是多少? 解: 记H 表拨号不超过三次而能接通。 Ai 表第i 次拨号能接通。 注意:第一次拨号不通,第二拨号就不再拨这个号码。 如果已知最后一个数字是奇数(记为事件B )问题变为在B 已发生的条件下,求H 再发生的概率。 4.进行一系列独立试验,每次试验成功的概率均为,试求以下事件的概率: (1)直到第r 次才成功; (2)在n 次中取得)1(n r r ≤≤次成功; 解: (1)p p P r 1)1(--= (2)r n r r n p p C P --=)1( 5. 设事件A ,B 的概率都大于零,说明以下四种叙述分别属于那一种:(a )必然对,(b )必然错,(c )可能对也可能错,并说明理由。 (1)若A ,B 互不相容,则它们相互独立。 (2)若A 与B 相互独立,则它们互不相容。 (3)()()0.6P A P B ==,则A 与B 互不相容。

概率论与数理统计公式整理超全免费版

第1章随机事件及其概率 (1)排列组合公式 )! ( ! n m m P n m- =从m个人中挑出n个人进行排列的可能数。 )! (! ! n m n m C n m- =从m个人中挑出n个人进行组合的可能数。 (2)加法和乘法原理加法原理(两种方法均能完成此事):m+n 某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n种方法来完成,则这件事可由m+n 种方法来完成。 乘法原理(两个步骤分别不能完成这件事):m×n 某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成。 (3)一些常见排列重复排列和非重复排列(有序)对立事件(至少有一个) 顺序问题 (4)随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。 试验的可能结果称为随机事件。 (5)基本事件、样本空间和事件在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质: ①每进行一次试验,必须发生且只能发生这一组中的一个事件; ②任何事件,都是由这一组中的部分事件组成的。 这样一组事件中的每一个事件称为基本事件,用ω来表示。 基本事件的全体,称为试验的样本空间,用Ω表示。 一个事件就是由Ω中的部分点(基本事件ω)组成的集合。通常用大写字母A,B,C,…表示事件,它们是Ω的子集。 Ω为必然事件,?为不可能事件。 不可能事件(?)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。 (6)事件的关系与运算①关系: 如果事件A的组成部分也是事件B的组成部分,(A发生必有事件B发生):B A? 如果同时有B A?,A B?,则称事件A与事件B等价,或称A等于B:A=B。 A、B中至少有一个发生的事件:A B,或者A+B。 属于A而不属于B的部分所构成的事件,称为A与B的差,记为A-B,也可表示为A-AB或者B A,它表示A发生而B不发生的事件。 A、B同时发生:A B,或者AB。A B=?,则表示A与B不可能同时发生,称 事件A与事件B互不相容或者互斥。基本事件是互不相容的。 Ω-A称为事件A的逆事件,或称A的对立事件,记为A。它表示A不发生的

概率论与数理统计习题解答

第一章随机事件及其概率 1. 写出下列随机试验的样本空间: (1)同时掷两颗骰子,记录两颗骰子的点数之和; (2)在单位圆内任意一点,记录它的坐标; (3)10件产品中有三件是次品,每次从其中取一件,取后不放回,直到三件次品都取出为止,记录抽取的次数; (4)测量一汽车通过给定点的速度. 解所求的样本空间如下 (1)S= {2,3,4,5,6,7,8,9,10,11,12} (2)S= {(x, y)| x2+y2<1} (3)S= {3,4,5,6,7,8,9,10} (4)S= {v |v>0} 2. 设A、B、C为三个事件,用A、B、C的运算关系表示下列事件: (1)A发生,B和C不发生; (2)A与B都发生,而C不发生; (3)A、B、C都发生;

(4)A、B、C都不发生; (5)A、B、C不都发生; (6)A、B、C至少有一个发生; (7)A、B、C不多于一个发生; (8)A、B、C至少有两个发生. 解所求的事件表示如下 3.在某小学的学生中任选一名,若事件A表示被选学生是男生,事件B表示该生是三年级学生,事件C表示该学生是运动员,则 (1)事件AB表示什么? (2)在什么条件下ABC=C成立? ?是正确的? (3)在什么条件下关系式C B (4)在什么条件下A B =成立? 解所求的事件表示如下 (1)事件AB表示该生是三年级男生,但不是运动员. (2)当全校运动员都是三年级男生时,ABC=C成立. ?是正确的. (3)当全校运动员都是三年级学生时,关系式C B

(4)当全校女生都在三年级,并且三年级学生都是女生时,A B =成立. 4.设P (A )=,P (A -B )=,试求()P AB 解 由于 A ?B = A – AB , P (A )= 所以 P (A ?B ) = P (A ?AB ) = P (A )??P (AB ) = , 所以 P (AB )=, 故 ()P AB = 1? = . 5. 对事件A 、B 和C ,已知P(A) = P(B)=P(C)=1 4 ,P(AB) = P(CB) = 0, P(AC)= 1 8 求A 、B 、C 中至少有一个发生的概率. 解 由于,()0,?=ABC AB P AB 故P(ABC) = 0 则P(A+B+C) = P(A)+P(B)+P(C) –P(AB) –P(BC) –P(AC)+P(ABC) 6. 设盒中有α只红球和b 只白球,现从中随机地取出两只球,试求下列事件的概率: A ={两球颜色相同}, B ={两球颜色不同}. 解 由题意,基本事件总数为2a b A +,有利于A 的事件数为2 2a b A A +,有利于B 的事件数为111111 2a b b a a b A A A A A A +=, 则 2 2 11 2 22()()a b a b a b a b A A A A P A P B A A +++==

概率论与数理统计作业及解答

概率论与数理统计作业及解答 第一次作业 ★1. 甲? 乙? 丙三门炮各向同一目标发射一枚炮弹? 设事件A ? B ? C 分别表示甲? 乙? 丙击中目标? 则三门炮最多有一门炮击中目标如何表示. 事件E ?{事件,,A B C 最多有一个发生},则E 的表示为 ;E ABC ABC ABC ABC =+++或;AB AC BC =U U 或;AB AC BC =U U 或;AB ACBC =或().ABC ABC ABC ABC =-++ (和A B +即并A B U ,当,A B 互斥即AB φ=时?A B U 常记为A B +?) 2. 设M 件产品中含m 件次品? 计算从中任取两件至少有一件次品的概率. 221M m M C C --或1122(21)(1)m M m m M C C C m M m M M C -+--=- ★3. 从8双不同尺码鞋子中随机取6只? 计算以下事件的概率. A ?{8只鞋子均不成双}, B ?{恰有2只鞋子成双}, C ?{恰有4只鞋子成双}. ★4. 设某批产品共50件? 其中有5件次品? 现从中任取3件? 求? (1)其中无次品的概率? (2)其中恰有一件次品的概率? (1)34535014190.724.1960C C == (2)21455350990.2526.392 C C C == 5. 从1~9九个数字中? 任取3个排成一个三位数? 求? (1)所得三位数为偶数的概率? (2)所得三位数为奇数的概率? (1){P 三位数为偶数}{P =尾数为偶数4},9 =

(2){ P三位数为奇数}{ P =尾数为奇数 5 }, 9 = 或{ P三位数为奇数}1{ P =-三位数为偶数 45 }1. 99 =-= 6.某办公室10名员工编号从1到10?任选3人记录其号码?求?(1)最小号码为5的概率?(2)最大号码为5的概率? 记事件A?{最小号码为5}, B?{最大号码为5}. (1) 2 5 3 10 1 (); 12 C P A C ==(2) 2 4 3 10 1 (). 20 C P B C == 7.袋中有红、黄、白色球各一个?每次从袋中任取一球?记下颜色后放回?共取球三次? 求下列事件的概率:A={全红}?B={颜色全同}?C={颜色全不同}?D={颜色不全同}?E={无黄色球}?F={无红色且无黄色球}?G={全红或全黄}. ☆.某班n个男生m个女生(m?n?1)随机排成一列? 计算任意两女生均不相邻的概率. ☆.在[0? 1]线段上任取两点将线段截成三段? 计算三段可组成三角形的概率. 第二次作业 1. 设A? B为随机事件? P(A)?? P(B)?? (|)0.85 P B A=? 求?(1)(|) P A B? (2)() P A B ∪? (1) ()() 0.85(|),()0.850.080.068, ()10.92 P AB P AB P B A P AB P A ====?= - (2)()()()() P A B P A P B P AB =+- U0.920.930.8620.988. =+-= 2. 投两颗骰子?已知两颗骰子点数之和为7?求其中有一颗为1点的概率. 记事件A?{(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)}, B?{(1,6),(6,1)}.

概率论与数理统计心得体会

概率课感想与心得体会 笛卡尔说过:“有一个颠扑不破的真理,那就是当我们不能确定什么是真的时候,我们就应该去探求什么是最最可能的。”随机现象在日常生活中随处可见,概率是研究随机现象规律的学科,它为人们认识客观世界提供了重要的思维模式和解决问题的方法,同时为统计学的发展提供了理论基础。 概率起源于现实生活,应用于现实生活,如我们讨论了摸球问题,掷硬币正反面的试验,拍骰子问题等等。都是接近生活实践的概率应用实例。 同时,通过概率课还了解了概率的意义,概率是用来度量随机事件发生可能性大小的一个量,而实际结果是事件发生或不发生这两种情况中的一种。但是我们不能根据随机事件的概率来断定某次试验出现某种结果或者不出现某种结果。同时,我们还可以利用概率来判定游戏规则,譬如,在各类游戏中,如果每个人获胜的概率相等,那么游戏就是公平的,这就是说,要保证所制定的游戏规则是公平的,需要保证每个人获胜的概率相等。概率教学中的试验或游戏结果,如果不进行足够多的次数,是很难得出比较接近概率的频率的,也就是说当试验的次数很多的时候,频率就逐渐接近一个稳定的值,这个稳定的值就是概率。我们说,当进行次数很多的时候,时间发生的次数所占的总次数的比例,即频率就是概率。换句话说,就是时间发生的可能性最大。 概率不仅在生活上给了我们很大的帮助,同时也能帮我们验证某些理论知识,譬如投针问题: ()行直线相交的概率. 平的针,试求该针与任一一根长度为线,向此平面上任意投的一些平行平面上画有等距离为a L L a <

我们解如下: 平行线的距离; :针的中心到最近一条 设:X 此平行线的夹角.:针与? 上的均匀分布;, 服从区间则随机变量?? ? ?? ? 20a X []上的均匀分布;服从区间随机变量π?,0相互独立.与并且随机变量?X ()的联合密度函数为 ,所以二维随机变量?X ()??? ??≤≤≤≤=. , 02 02 其它,,π?π?a x a x f {} 针与任一直线相交设:=A , . sin 2? ?? ???<=?L X A 则所以, ()? ?????<=?sin 2L X P A P 的面积的面积 D A =.22 sin 20 a L a d L ππ??π == ?

概率论与数理统计习题答案

习题五 1.一颗骰子连续掷4次,点数总和记为X .估计P {10

【解】令1,,0,i i X ?? ?若第个产品是合格品其他情形. 而至少要生产n 件,则i =1,2,…,n ,且 X 1,X 2,…,X n 独立同分布,p =P {X i =1}=. 现要求n ,使得 1 {0.760.84}0.9.n i i X P n =≤ ≤≥∑ 即 0.80.9n i X n P -≤≤≥∑ 由中心极限定理得 0.9,Φ-Φ≥ 整理得0.95,Φ≥?? 查表 1.64,10≥ n ≥, 故取n =269. 3. 某车间有同型号机床200部,每部机床开动的概率为,假定各机床开动与否互不影响,开动时每部机床消耗电能15个单位.问至少供应多少单位电能 才可以95%的概率保证不致因供电不足而影响生产. 【解】要确定最低的供应的电能量,应先确定此车间同时开动的机床数目最大值m ,而m 要满足200部机床中同时开动的机床数目不超过m 的概率为95%,

概率论与数理统计复习题--带答案

概率论与数理统计复习题--带答案

;第一章 一、填空题 1.若事件A?B且P(A)=0.5, P(B) =0.2 , 则P(A -B)=(0.3 )。 2.甲、乙各自同时向一敌机炮击,已知甲击中敌 机的概率为0.7,乙击中敌机的概率为0.8.求 敌机被击中的概率为(0.94 )。 3.设A、B、C为三个事件,则事件A,B,C中 不少于二个发生可表示为(AB AC BC ++)。 4.三台机器相互独立运转,设第一,第二,第三 台机器不发生故障的概率依次为0.9,0.8,0.7,则这三台机器中至少有一台发生故障的概率 为(0.496 )。 5.某人进行射击,每次命中的概率为0.6 独立 射击4次,则击中二次的概率为 ( 0.3456 )。 6.设A、B、C为三个事件,则事件A,B与C都 不发生可表示为(ABC)。 7.设A、B、C为三个事件,则事件A,B,C中 不多于一个发生可表示为(AB AC BC I I); 8.若事件A与事件B相互独立,且P(A)=0.5, P(B) =0.2 , 则P(A|B)=(0.5 );

9.甲、乙各自同时向一敌机炮击,已知甲击中敌机 的概率为0.6,乙击中敌机的概率为0.5.求敌机被击中的概率为(0.8 ); 10.若事件A与事件B互不相容,且P(A)=0.5, P(B) =0.2 , 则P(B A-)=(0.5 ) 11.三台机器相互独立运转,设第一,第二,第三 台机器不发生故障的概率依次为0.8,0.8,0.7,则这三台机器中最多有一台发生故障的概率为(0.864 )。 12.若事件A?B且P(A)=0.5, P(B) =0.2 , 则 P(B A)=(0.3 ); 13.若事件A与事件B互不相容,且P(A)=0.5, P(B) =0.2 , 则P(B A)=(0.5 ) 14.A、B为两互斥事件,则A B= U(S )15.A、B、C表示三个事件,则A、B、C恰 有一个发生可表示为 (ABC ABC ABC ++) 16.若()0.4 P AB A B= U P AB=0.1则(|) P B=,() P A=,()0.2 ( 0.2 ) 17.A、B为两互斥事件,则AB=(S ) 18.保险箱的号码锁定若由四位数字组成,则一次 )。 就能打开保险箱的概率为(1 10000

概率论与数理统计作业与解答

概率论与数理统计作业及解答 第一次作业 ★ 1.甲.乙.丙三门炮各向同一目标发射一枚炮弹?设事件ABC 分别表示甲.乙.丙 击中目标.则三门炮最多有一门炮击中目标如何表示? 事件E 丸事件A, B,C 最多有一个发生},则E 的表示为 E =ABC ABC ABC ABC;或工 ABU AC U B C;或工 ABU ACU BC; 或工 ABACBC ;或工 ABC_(AB C ABC A BC ). (和 A B 即并AU B,当代B 互斥即AB 二'时.AU B 常记为AB) 2. 设M 件产品中含m 件次品.计算从中任取两件至少有一件次品的概率 ★ 3.从8双不同尺码鞋子中随机取6只.计算以下事件的概率 A 二{8只鞋子均不成双}, B={恰有2只鞋子成双}, C 珂恰有4只鞋子成双}. C 6 (C 2 )6 32 C 8C 4(C 2)4 80 0.2238, P(B) 8 皆 0.5594, P(A) 8 /143 ★ 4.设某批产品共50件.其中有5件次品?现从中任取3件?求 (1) 其中无次品的概率-(2)其中恰有一件次品的概率‘ /八 C 5 1419 C :C 5 99 ⑴冷 0.724.⑵虫产 0.2526. C 50 1960 C 50 392 5. 从1?9九个数字中?任取3个排成一个三位数?求 (1) 所得三位数为偶数的概率-(2)所得三位数为奇数的概率? 4 (1) P {三位数为偶数} = P {尾数为偶数}=-, 9 ⑵P {三位数为奇数} = P {尾数为奇数} = 5, 9 或P {三位数为奇数} =1 -P {三位数为偶数} =1 -彳=5. 9 9 6. 某办公室10名员工编号从1到10任选3人记录其号码 求(1)最小号码为5的概率 ⑵ 最大号码为5的概率 记事件A ={最小号码为5}, B={最大号码为5}. 1 1 2 C m C M m C m m(2M - m -1) M (M -1) 6 — C 16 143 P(C)二 C 8 CJC 2 ) 30 0.2098. 143 C 16

概率论与数理统计知识点总结(详细)

《概率论与数理统计》 第一章概率论的基本概念 (2) §2.样本空间、随机事件..................................... 2.. §4 等可能概型(古典概型)................................... 3.. §5.条件概率.............................................................. 4.. . §6.独立性.............................................................. 4.. . 第二章随机变量及其分布 (5) §1随机变量.............................................................. 5.. . §2 离散性随机变量及其分布律................................. 5..§3 随机变量的分布函数....................................... 6..§4 连续性随机变量及其概率密度............................... 6..§5 随机变量的函数的分布..................................... 7..第三章多维随机变量. (7) §1 二维随机变量............................................ 7...§2边缘分布................................................ 8...§3条件分布................................................ 8...§4 相互独立的随机变量....................................... 9..§5 两个随机变量的函数的分布................................. 9..第四章随机变量的数字特征.. (10)

概率论与数理统计习题集及答案

《概率论与数理统计》作业集及答案
第 1 章 概率论的基本概念
§1 .1 随机试验及随机事件 1. (1) 一枚硬币连丢 3 次,观察正面 H﹑反面 T 出现的情形. 样本空间是:S=
(2) 一枚硬币连丢 3 次,观察出现正面的次数. 样本空间是:S= 2.(1) 丢一颗骰子. A:出现奇数点,则 A= ;B:数点大于 2,则 B= (2) 一枚硬币连丢 2 次, A:第一次出现正面,则 A= ; B:两次出现同一面,则= ; C:至少有一次出现正面,则 C= ;b5E2RGbCAP ;p1EanqFDPw .DXDiTa9E3d .
§1 .2 随机事件的运算
1. 设 A、B、C 为三事件,用 A、B、C 的运算关系表示下列各事件: (1)A、B、C 都不发生表示为: .(2)A 与 B 都发生,而 C 不发生表示为: .RTCrpUDGiT (3)A 与 B 都不发生,而 C 发生表示为: .(4)A、B、C 中最多二个发生表示为: .5PCzVD7HxA (5)A、B、C 中至少二个发生表示为: .(6)A、B、C 中不多于一个发生表示为: .jLBHrnAILg 2. 设 S ? {x : 0 ? x ? 5}, A ? {x : 1 ? x ? 3}, B ? {x : 2 ?? 4}:则 (1) A ? B ? (4) A ? B = , (2) AB ? , (5) A B = , (3) A B ? 。 ,
xHAQX74J0X
§1 .3 概率的定义和性质
1. 已知 P( A ? B) ? 0.8, P( A) ? 0.5, P( B) ? 0.6 ,则 (1) P( AB) ? , (2)( P( A B) )= 则 P( AB) = , (3) P( A ? B) = . .LDAYtRyKfE
2. 已知 P( A) ? 0.7, P( AB) ? 0.3,
§1 .4 古典概型
1. 某班有 30 个同学,其中 8 个女同学, 随机地选 10 个,求:(1)正好有 2 个女同学的概率, (2)最多有 2 个女同学的概率,(3) 至少有 2 个女同学的概率. 2. 将 3 个不同的球随机地投入到 4 个盒子中,求有三个盒子各一球的概率.
§1 .5 条件概率与乘法公式
1.丢甲、乙两颗均匀的骰子,已知点数之和为 7, 则其中一颗为 1 的概率是 2. 已知 P( A) ? 1 / 4, P( B | A) ? 1 / 3, P( A | B) ? 1 / 2, 则 P( A ? B) ? 。 。
§1 .6 全概率公式
1.
有 10 个签,其中 2 个“中” ,第一人随机地抽一个签,不放回,第二人再随机地抽一个签,说明两人 抽“中‘的概率相同。Zzz6ZB2Ltk 1 / 19

《概率论与数理统计》浙江大学第四版课后习题答案

概率论与数理统计习题答案 第四版 盛骤 (浙江大学) 浙大第四版(高等教育出版社) 第一章 概率论的基本概念 1.[一] 写出下列随机试验的样本空间 (1)记录一个小班一次数学考试的平均分数(充以百分制记分)([一] 1) ??? ????=n n n n o S 1001, ,n 表小班人数 (3)生产产品直到得到10件正品,记录生产产品的总件数。([一] 2) S={10,11,12,………,n ,………} (4)对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。 查出合格品记为“1”,查出次品记为“0”,连续出现两个“0”就停止检查,或查满4次才停止检查。 ([一] (3)) S={00,100,0100,0101,1010,0110,1100,0111,1011,1101,1110,1111,} 2.[二] 设A ,B ,C 为三事件,用A ,B ,C 的运算关系表示下列事件。 (1)A 发生,B 与C 不发生。 表示为: C B A 或A - (AB+AC )或A - (B ∪C ) (2)A ,B 都发生,而C 不发生。 表示为: C AB 或AB -ABC 或AB -C

(3)A ,B ,C 中至少有一个发生 表示为:A+B+C (4)A ,B ,C 都发生, 表示为:ABC (5)A ,B ,C 都不发生, 表示为:C B A 或S - (A+B+C)或C B A ?? (6)A ,B ,C 中不多于一个发生,即A ,B ,C 中至少有两个同时不发生 相当于C A C B B A ,,中至少有一个发生。故 表示为:C A C B B A ++。 (7)A ,B ,C 中不多于二个发生。 相当于:C B A ,,中至少有一个发生。故 表示为:ABC C B A 或++ (8)A ,B ,C 中至少有二个发生。 相当于:AB ,BC ,AC 中至少有一个发生。故 表示为:AB +BC +AC 6.[三] 设A ,B 是两事件且P (A )=0.6,P (B )=0. 7. 问(1)在什么条件下P (AB )取到最大值,最大值是多少?(2)在什么条件下P (AB )取到最小值,最小值是多少? 解:由P (A ) = 0.6,P (B ) = 0.7即知AB ≠φ,(否则AB = φ依互斥事件加法定理, P (A ∪B )=P (A )+P (B )=0.6+0.7=1.3>1与P (A ∪B )≤1矛盾). 从而由加法定理得 P (AB )=P (A )+P (B )-P (A ∪B ) (*) (1)从0≤P (AB )≤P (A )知,当AB =A ,即A ∩B 时P (AB )取到最大值,最大值为 P (AB )=P (A )=0.6, (2)从(*)式知,当A ∪B=S 时,P (AB )取最小值,最小值为 P (AB )=0.6+0.7-1=0.3 。 7.[四] 设A ,B ,C 是三事件,且0)()(,4 1 )()()(=== ==BC P AB P C P B P A P ,8 1 )(= AC P . 求A ,B ,C 至少有一个发生的概率。 解:P (A ,B ,C 至少有一个发生)=P (A +B +C )= P (A )+ P (B )+ P (C )-P (AB )-P (BC )

相关文档
相关文档 最新文档