文档库 最新最全的文档下载
当前位置:文档库 › 超精密单点金刚石车削加工有限元仿真

超精密单点金刚石车削加工有限元仿真

超精密单点金刚石车削加工有限元仿真
超精密单点金刚石车削加工有限元仿真

超精密单点金刚石车削加工有限元仿真

作者:王浩杜雪张志辉

1 概述

超精密加工,在精度等级上代表了发展的最高阶段。通常,按加工精度等级,可将机械加工分为普通加工、精密加工、超精密加工三个不同阶段。随着生产技术的不断发展,划分的界限也逐渐向前推移。就加工精度等级而言,当前普遍认为:精密加工的精度为1-0.1mμ、表面粗糙度为Ra 0.1-0.025mμ;超精密加工的精度高于0.1mμ、表面粗糙度Ra小于0.025mμ。精密和超精密加工主要包括下列三种不同的工艺技术:(1)超精密切削加工;(2)精密和超精密磨削和研磨;(3)精密特种加工,如电子束、离子束加工技术等。单点金刚石车削(SPDT)加工技术(图1)是超精密加工中常用的技术。由于金刚石的硬度高、耐磨性强、导热性优越,金刚石刀具的刃口可以非常锋利(刃口半径可以小于0.05mμ甚至更小),而且金刚石与有色金属的亲和力小。对于铜、铝等有色金属以及塑料可以采用单点金刚石车削的方法,进行数控加工,直接得到超精密的光学表面。

图1 金刚石刀具与单点金刚石车削设备

有限单元法作为一种计算机仿真技术与求解方法,已经被广泛应用于科学研究的各个领域。计算机仿真实验的方法减少了物理实验的成本,加速了实验的过程。近年来,有限元仿真方法也被广泛的应用于加工过程的仿真中,作为一种预测切削力与工件表面质量的工具。本文主要介绍使用MSC.Marc进行单点金刚石车削原理的仿真方法。

2 超精密单点金刚石车削原理

理想状态下,采用圆弧刃单点金刚石刀具进行超精密撤销加工时,在工件加工表面形成轮廓峰和轮廓谷,它们之间的距离,就是所谓的理论残留高度或者理论粗糙度(如图2a)。

图2 单点金刚石切削原理示意图

在实际超精密切削塑性金属时,主切削刃和前刀面的主要任务是去除金属,切削层在前刀面

的挤压作用下发生剪切滑移和塑性变形,然后形成切屑沿前刀面流出(如图2b)。前刀面的形状直接影响塑性变形的程度、切屑的卷曲形式和切屑刀具之间的摩擦特性,并直接对切削力、切削温度、切屑的折断方式和加工表面质量形成显著影响。主切削刃是前刀面和后刀面的交线。实际上前刀面和后刀面的交线不可能为理想直线,而是一微观交接的曲线。该曲线的形状可以近似用与其在不同位置的法平面相交成交线的平均曲率半径来反映,称其为刃口半径ρ。切削时刃前区的应力状态十分复杂,应力集中造成金属中位错集中,导致金属产生塑性变形和滑移分离,一部分金属成为切屑沿前刀面流出,另一部分金属经后刀面熨压留在已加工表面。因为两部分金属运动方向不同,必然使刀具刃口前金属呈拉伸状态,拉应力使刃前区金属的抗剪能力下降,在刀刃的直接作用下,金属产生滑移分离。刃口半径越小,应力越集中,变形越容易,切削力越小,加工表面质量越好。另外,切削层金属被通过分流点O且平行于已加工表面的分流线分为两部分,分流线以上的材料沿前刀面流出,分流线以下的塑性变形层被O点以下的刀刃熨压后成为已加工表面。经过熨压以后,刀刃下方的材料产生严重的压缩变形,对已加工表面质量产生直接的影响。

3 切削过程的有限元仿真

3.1 有限元仿真平台的选择

有限元仿真的大型的通用商业软件有NASTRAN、ASKA、SAP、ANSYS、MARC、ABAQUS、JIFEX等,这些软件包含了众多的单元形式、材料模型及分析能力,并具有网格自动划分、结果分析和显示等前后处理功能[2]。切削过程的有限元仿真属于非线性问题,材料将发生大变形,需要仿真平台需要具有网格自适应重划分功能。MSC.Marc的全局网格重划分功能为此需求提供了必要的支持,而且MSC.Marc具有强大的求解非线性问题的能力,也为用户提供了丰富的用户子程序接口,使得用户可以通过Fortran程序进行二次开发,自定义复杂的材料模型。相比较以往采用ABAQUS、Deform2D、ThirdwaveAdvantEdge等软件进行的有限元仿真模型,MSC.Marc为用户提供了更强大而且更简便的解决方案。

3.2 切削模型的建立

切削过程的有限元仿真的关键问题之一是对切削产生的原理进行建模仿真。旧有的建模方法要在切屑与工件之间预先设定分离准则(包括几何分离准则和物力分离准则),即当变形达到某一预设条件或某一物理量(如应力、等效塑性应变、或应变能密度等)达到预定值的时候,切屑将从预设的位置进行断开。

由于MSC.Marc提供了强大的二维、三维的全局网格重划分功能,切削模型将不依赖于分离准则,这也使得切削模型更能描述实际的加工过程。此外,MSC.Marc具有强大的接触模拟功能,这也使得利用MSC.Marc建模时在定义刀具与工件接触的问题上较之ABAQUS等其它软件大大简化。

图3 切削几何模型与边界条件

根据实际加工条件利用Mentat进行二维几何建模如图3所示。其中,工件左侧的所有节点水平位移及工件底面所有节点在平面内两个方向的位移全部设定为零。右侧的刀具假定为刚体,工件材料利用MSC.Marc提供的宏观弹塑性模型输入相应的材料常数,并对工件模型采用网格全局重划分。在模型中假定了刀具的刃口半径为零,改变刀具的前角进行切削仿真可以得出如图4所示的应力分布结果图。

图4 不同刀具前角二维切削仿真结果比较

图5 三维仿真结果图

如二维仿真类似,单点金刚石正交切削过程可以抽象为平面应变问题进行三维有限元仿真。模型采用了四面体单元对工件进行网格划分。仿真结果如图5所示。利用Mentat后处理功能,可以得出切削过程的切削力变化图(图6)。

图6 切削力变化结果图

4 总结

本文利用有限元仿真技术,对单点金刚石车削过程进行了二维、三维建模仿真,模拟了切屑的产生及生长过程,分析了加工过程中工件内部的应力分布情况以及刀具的切削力的变化,也在二维仿真中讨论了不同刀具前角对切屑形态的影响。(end)

光学超精密车削软件-DIFFSYS

DIFF SYS? 光学超精密金刚石车削软件 简介: DIFFSYS为Western Isle公司产品,该公司位于英国北威尔士,DIFFSYS软件的开发已有10多年的历史,现今仍在持续的研发升级。DIFFSYS软件是目前世界上唯一商业化的单点金刚石非球面车削软件,除非球面以外还可以完成衍射元件及自由曲面的编辑,并且可以与其他的计量仪器一起对加工数据进行误差校正(如:Taylor Hobson轮廓仪)及CAD数据导入。 主要特性: ?软件采用模块化设计,可根据客户不同的需求选取不同的搭配方案; ?DIFFSYS输出文件格式为ASCII,适应目前所有主流机型; ?操作简易,并且给出明确的图像分析; ?可导入多种不同格式的数据; ?刀具的校正功能,确保加工精度(强大的实用性,几乎可以输入任何一个与加工有关的 参数,之后对参数进行校正,确保加工精度); ?有着优秀的研发人员,可确保良好的技术支持及售后服务。

软件操作界面 应用类别 主要设计类型:非球面,衍射光学元件,离轴非球面,环面,自由曲面。软件采用模块化设计可针对不同的几何形体,使用不同的软件模块。 分区选项:衍射元件,菲涅尔元件,混合元件。 3D选项:离轴非球面,环面,柱面,多项式自由曲面,泽尼克表面,微透镜阵列。 非球面的设计 关于非球面的设计采用标准的非球面公式: z=Cx2/ [1+sqrt(1-(1+k)·C2x2)]+a[2]x2+a[3]x2+... 其中:a[2]、a[3]...为常数,C是半径的倒数,K是圆锥系数,x为x轴坐标值,镜片的高度为Z。

微透镜阵列 ①②③ 图①~③分别为自由曲面、离轴非球面及柱面的设计方案MC2/MC3选项:可导入2D/3D表面或测量数据。 2D数据导入(Taylor Hobson) 3D数据的导入及面型图像 以上可以根据用户的不同需求来调整搭配方案,方便客户的使用。

有限元分析基本理论问答 基础理论知识

1. 诉述有限元法的定义 答:有限元法是近似求解一般连续场问题的数值方法 2. 有限元法的基本思想是什么 答:首先,将表示结构的连续离散为若干个子域,单元之间通过其边界上的节点连接成组合体。其次,用每个单元内所假设的近似函数分片地表示求解域内待求的未知厂变量。 3. 有限元法的分类和基本步骤有哪些 答:分类:位移法、力法、混合法;步骤:结构的离散化,单元分析,单元集成,引入约束条件,求解线性方程组,得出节点位移。 4. 有限元法有哪些优缺点 答:优点:有限元法可以模拟各种几何形状复杂的结构,得出其近似解;通过计算机程序,可以广泛地应用于各种场合;可以从其他CAD软件中导入建好的模型;数学处理比较方便,对复杂形状的结构也能适用;有限元法和优化设计方法相结合,以便发挥各自的优点。 缺点:有限元计算,尤其是复杂问题的分析计算,所耗费的计算时间、内存和磁盘空间等计算资源是相当惊人的。对无限求解域问题没有较好的处理办法。尽管现有的有限元软件多数使用了网络自适应技术,但在具体应用时,采用什么类型的单元、多大的网络密度等都要完全依赖适用者的经验。 5. ?梁单元和平面钢架结构单元的自由度由什么确定 答:每个节点上有几个节点位移分量,就称每个节点有几个自由度 6. ?简述单元刚度矩阵的性质和矩阵元素的物理意义 答:单元刚度矩阵是描述单元节点力和节点位移之间关系的矩阵 单元刚度矩阵中元素aml的物理意义为单元第L个节点位移分量等于1,其他节点位移分量等于0时,对应的第m个节点力分量。 7. 有限元法基本方程中的每一项的意义是什么 答:整个结构的节点载荷列阵(外载荷、约束力),整个结构的节点位移列阵,结构的整体刚度矩阵,又称总刚度矩阵。 8. 位移边界条件和载荷边界条件的意义是什么 答:由于刚度矩阵的线性相关性不能得到解,从而引入边界条件。 9. ?简述整体刚度矩阵的性质和特点 答:对称性;奇异性;稀疏性;对角线上的元素恒为正。 11. 简述整体坐标的概念 答:单元刚度矩阵的坐标变换式把平面刚架的所有单元在局部坐标系X’Y’Z’下的单元刚度矩阵变换到一个统一的坐标系xOy下,这个统一的坐标系xOy称为整体坐标系。 13. 简述平面钢架问题有限元法的基本过程 答:力学模型的确定,结构的离散化,计算载荷的等效节点力,计算各单元的刚度矩阵,组集整体刚度矩阵,施加边界约束条件,求解降价的有限元基本方程,求解单元应力,计算结果的输出。 14. 弹性力学的基本假设是什么。 答:连续性假定,弹性假定,均匀性和各向同性假定,小变形假定,无初应力假定。 15.弹性力学和材料力学相比,其研究方法和对象有什么不同。 答:研究对象:材料力学主要研究杆件,如柱体、梁和轴,在拉压、剪切、弯曲和扭转等作用下的应力、形变和位移。弹性力学研究各种形状的弹性体,除杆件外,还研究平面体、空间体,板和壳等。因此,弹性力学的研究对象要广泛得多。研究方法:弹性力学和材料力学

基于ansys的切削加工受力分析

1绪论 金属切削是机械制造行业中的一类重要的加工手段。美国和日本每年花费在切削加工方面的费用分别高达1000 亿美元和10000亿日元。中国目前拥有各类金属切削机床超过300 万台, 各类高速钢刀具年产量达 3.9 亿件, 每年用于制造刀具的硬质合金超过5000吨。可见切削加工仍然是目前国际上加工制造精密金属零件的主要办法。19世纪中期, 人们开始对金属切削过程的研究, 到现在已经有一百多年历史。由于金属切削本身具有非常复杂的机理, 对其研究一直是国内外研究的重点和难点。过去通常采用实验法, 它具有跟踪观测困难、观测设备昂贵、实验周期长、人力消耗大、综合成本高等不利因素。本文利用材料变形的弹塑性理论, 建立工件材料的模型,借助大型商业有限元软件ANSYS, 通过输入材料性能参数、建立有限元模型、施加约束及载荷、计算, 对正交金属切削的受力情况进行了分析。以前角10°、后角8°的YT 类硬质合金刀具切削45号钢为实例进行计算。切削厚度为 2 mm时形成带状切屑。提取不同阶段应力场分布云图, 分析了切削区应力的变化过程。这种方法比传统实验法快捷、有效, 为金属切削过程的研究开辟了一条新的道路。 2设计要求 根据有限元分析理论,根据ANSYS的求解步骤,建立切削加工的三维模型。对该模型进行网格划分并施加约束边界条件,最后进行求解得出应力分布云图,并以此云图分析得出结论。 3金属切削简介[3] 金属切削过程,从实质讲,就是产生切屑和形成已加工表面的过程。产生切屑和形成已加王表面是金属切削时密切相关的两个方面。 3.1切削方式 切削时,当工件材料一定,所产生切屑的形态和形成已加工表面的特性,在很大程度上决定于切削方式。切削方式是由刀具切削刃和工件间的运动所决定,可分为:直角切削、斜角切削和普通切削三种方式。 3.2切屑的基本形态 金属切削时,由于工件材料、刀具几何形状和切削用量不同,会出现各种不同形态的切屑。但从变形观点出发,可归纳为四种基本形态。 1.带状切屑切屑呈连续状、与前刀面接触的底层光滑、背面呈毛葺状。

有限元分析理论基础

有限元分析概念 有限元法:把求解区域看作由许多小的在节点处相互连接的单元(子域)所构成,其模型给出基本方程的分片(子域)近似解,由于单元(子域)可以被分割成各种形状和大小不同的尺寸,所以它能很好地适应复杂的几何形状、复杂的材料特性和复杂的边界条件 有限元模型:它是真实系统理想化的数学抽象。由一些简单形状的单元组成,单元之间通过节点连接,并承受一定载荷。 有限元分析:是利用数学近似的方法对真实物理系统(几何和载荷工况)进行模拟。并利用简单而又相互作用的元素,即单元,就可以用有限数量的未知量去逼近无限未知量的真实系统。 线弹性有限元是以理想弹性体为研究对象的,所考虑的变形建立在小变形假设的基础上。在这类问题中,材料的应力与应变呈线性关系,满足广义胡克定律;应力与应变也是线性关系,线弹性问题可归结为求解线性方程问题,所以只需要较少的计算时间。如果采用高效的代数方程组求解方法,也有助于降低有限元分析的时间。 线弹性有限元一般包括线弹性静力学分析与线弹性动力学分析两方面。 非线性问题与线弹性问题的区别: 1)非线性问题的方程是非线性的,一般需要迭代求解; 2)非线性问题不能采用叠加原理; 3)非线性问题不总有一致解,有时甚至没有解。 有限元求解非线性问题可分为以下三类:

1)材料非线性问题 材料的应力和应变是非线性的,但应力与应变却很微小,此时应变与位移呈线性关系,这类问题属于材料的非线性问题。由于从理论上还不能提供能普遍接受的本构关系,所以,一般材料的应力与应变之间的非线性关系要基于试验数据,有时非线性材料特性可用数学模型进行模拟,尽管这些模型总有他们的局限性。在工程实际中较为重要的材料非线性问题有:非线性弹性(包括分段线弹性)、弹塑性、粘塑性及蠕变等。 2)几何非线性问题 几何非线性问题是由于位移之间存在非线性关系引起的。 当物体的位移较大时,应变与位移的关系是非线性关系。研究这类问题一般都是假定材料的应力和应变呈线性关系。它包括大位移大应变及大位移小应变问题。如结构的弹性屈曲问题属于大位移小应变问题,橡胶部件形成过程为大应变问题。 3)非线性边界问题 在加工、密封、撞击等问题中,接触和摩擦的作用不可忽视,接触边界属于高度非线性边界。 平时遇到的一些接触问题,如齿轮传动、冲压成型、轧制成型、橡胶减振器、紧配合装配等,当一个结构与另一个结构或外部边界相接触时通常要考虑非线性边界条件。 实际的非线性可能同时出现上述两种或三种非线性问题。

有限元分析理论基础

有限元分析概念 有限元法:把求解区域瞧作由许多小的在节点处相互连接的单元(子域)所构成,其模型给出基本方程的分片(子域)近似解,由于单元(子域)可以被分割成各种形状与大小不同的尺寸,所以它能很好地适应复杂的几何形状、复杂的材料特性与复杂的边界条件 有限元模型:它就是真实系统理想化的数学抽象。由一些简单形状的单元组成,单元之间通过节点连接,并承受一定载荷。 有限元分析:就是利用数学近似的方法对真实物理系统(几何与载荷工况)进行模拟。并利用简单而又相互作用的元素,即单元,就可以用有限数量的未知量去逼近无限未知量的真实系统。 线弹性有限元就是以理想弹性体为研究对象的,所考虑的变形建立在小变形假设的基础上。在这类问题中,材料的应力与应变呈线性关系,满足广义胡克定律;应力与应变也就是线性关系,线弹性问题可归结为求解线性方程问题,所以只需要较少的计算时间。如果采用高效的代数方程组求解方法,也有助于降低有限元分析的时间。 线弹性有限元一般包括线弹性静力学分析与线弹性动力学分析两方面。 非线性问题与线弹性问题的区别: 1)非线性问题的方程就是非线性的,一般需要迭代求解; 2)非线性问题不能采用叠加原理; 3)非线性问题不总有一致解,有时甚至没有解。 有限元求解非线性问题可分为以下三类:

1)材料非线性问题 材料的应力与应变就是非线性的,但应力与应变却很微小,此时应变与位移呈线性关系,这类问题属于材料的非线性问题。由于从理论上还不能提供能普遍接受的本构关系,所以,一般材料的应力与应变之间的非线性关系要基于试验数据,有时非线性材料特性可用数学模型进行模拟,尽管这些模型总有她们的局限性。在工程实际中较为重要的材料非线性问题有:非线性弹性(包括分段线弹性)、弹塑性、粘塑性及蠕变等。 2)几何非线性问题 几何非线性问题就是由于位移之间存在非线性关系引起的。 当物体的位移较大时,应变与位移的关系就是非线性关系。研究这类问题一般都就是假定材料的应力与应变呈线性关系。它包括大位移大应变及大位移小应变问题。如结构的弹性屈曲问题属于大位移小应变问题,橡胶部件形成过程为大应变问题。 3)非线性边界问题 在加工、密封、撞击等问题中,接触与摩擦的作用不可忽视,接触边界属于高度非线性边界。 平时遇到的一些接触问题,如齿轮传动、冲压成型、轧制成型、橡胶减振器、紧配合装配等,当一个结构与另一个结构或外部边界相接触时通常要考虑非线性边界条件。 实际的非线性可能同时出现上述两种或三种非线性问题。 有限元理论基础

金刚石车削

Machining A s s e m b l y Inspection Expertise, experience and machinery for sub-micron accuracies

Flat lapping A full range of lapping equipment is available for ferrous and non-ferrous materials. Assessment of flatness by monochromatic light source as well as other techniques is available.Required services for cleaning are also in place. Capacity: 300mm diameter Precision assembly Precision assembly is a key Taylor Hobson strength. Our experience in electro-optical-mechanical assembly is instrumental to our success in the metrology industry. The nature of our business dictates that our assembly staff be flexible, highly skilled and able to cope with complex tasks involving multi-stage testing and sign-off. Graticule laboratory The Taylor Hobson graticule laboratory has the capability to manufacture glass and metal gratings and a range of other components based on deposition and etching technology. We use these components in our own measuring instruments and also undertake sub-contract manufacture for a number of prestigious companies. Diamond turning machines epitomise the melding of technology and craftsmanship at Taylor Hobson. Our expertise at precision assembly provides the Ultraform 250with performance more likely found in measuring instruments than machine tools.? Feedback resolution: 8.60nm ? Form accuracy:<0.20μm ? Radial motion error: <0.05μm ? Axial motion error: < 0.05μm

有限元分析中的一些问题

有限元分析的一些基本考虑-—-—-单元形状对于计算精度的影响 笔者发现,在分析复杂问题时,我们所可能出现的错误,竟然是一些很根本的错误,这些根本错误是由于对有限元的基本理论理解不清晰而造成的。 鉴于这个原因,笔者决定对一些基本问题(例如单元形状问题,单元大小问题,应力集中问题等)展开调查,从而形成了一系列文章,本篇文章是这些系列文章中的第一篇. 本篇文章先考虑有限元分析中的第一个基本问题:单元形状问题。 我们知道,单元形状对于有限元分析的结果精度有着重要影响,而对单元形状的衡量又有着诸多指标,为便于探讨,这里首先只讨论第一个最基本的指标:长宽比(四边形单元的最长尺度与最短尺度之比),而且仅考虑平面单元的长宽比对于计算精度的影响。 为此,我们给出一个成熟的算例。该算例是一根悬臂梁,在其端面施加竖直向下的抛物线分布载荷,我们现在考察用不同尺度的单元划分该梁时,对于A点位移的影响。 这五种不同的划分方式,都使用矩形单元,只不过各单元的长宽比不同。 例如第一种(1)AR=1.1,就是长宽比接近1; 第二种(2)AR=1.5,就是长宽比是1。5.其它类推。 第五种(5)AR=24,此时单元的长度是宽度的24倍。 现在我们看看按照这五种单元划分方式对于A点位移的影响,顺便我们也算出了B点的位移,结果见下表.

我们现在仔细查看一下上表,并分析其含义。 我们先考虑第一行,它是第一种单元划分情况,此时每个单元的长宽比是1。1,由此我们计算出A点,B点的垂直位移,可以看到,A点的竖直位移是—1.093英寸,而B点的竖直位移是-0。346英寸。而这两点我们都是可以用弹性力学的方式得到精确解的,其精确解分别是-1。152以及—0。360。这样,我们可以得到此时A点位移误差的百分比是[(—1.093)—(-1。152)]/1。152 =5。2%. 对于其它情况,也采用类似的方式得到A点位移误差的百分比。 从上表可以看出来,随着长宽比的增加,位移误差越来越大,竟然大到56%.因此,如果我们是用长宽比为24的单元进行划分的话,那么我们的结果可以说是完全错误的. 下面按照上表绘制出一张图,该图从形象的角度表达了上表的含义.

第1章 金刚石钻头基本知识

第一章金刚石钻头基本知识 第一节概述 1.1金刚石钻头的发展历史 金刚石钻头是不同于牙轮钻头的另一类钻井破岩工具,其使用可以追溯到19世纪60年代。最初人们以天然金刚石为切削元件制作打炮眼和挖掘隧道的工具,后来出现了用于石油钻井的钢体鱼尾式天然金刚石全面钻进钻头和取心钻头。早期的金刚石钻头是将天然金刚石冷镶在低碳钢上的。由于天然金刚石来源有限,价格昂贵,加之本身尺寸、性能方面的原因以及当时落后的制造工艺,大大限制了金刚石钻头在石油钻井工业中的应用。 随着粉末冶金技术的发展,出现了采用烧结碳化钨作为钻头体的胎体式金刚石钻头。这种技术的出现使金刚石钻头的制造水平大大提高。胎体式金刚石钻头具有耐冲蚀、耐磨损的特点,具有良好的使用性能,其制造工艺也不复杂,因此一经出现就迅速推广开来。 人造聚晶金刚石的研制成功,对金刚石钻头技术的发展起了巨大的推动作用。人造聚晶金刚石复合片钻头(PDC钻头)的出现一度被称为20世纪80年代钻井工业技术的一大突破,这种新技术对石油钻井业的发展产生了巨大的影响。现场使用证明,软到中等硬度地层钻井用PDC钻头具有机械钻速高、进尺多、寿命长、工作平稳、井下事故少、井身质量好等优点,并能与井下动力钻具配合用于高速钻井。合理使用金刚石钻头可以大大缩短建井周期,降低钻井成本,提高钻井经济效益。 1.2金刚石钻头的发展前景 经过近二十多年的发展,金刚石钻头已经成为继牙轮钻头之后的又一重要破岩工具。时至今日,PDC钻头在石油钻头市场所占的份额越来越大,几乎每年以30%的速度侵吞牙轮钻头市场。随着新的设计理论、设计方法和材料等技术的发展,PDC钻头的适用范围也在不断扩展,以前被认为不适用于PDC钻头的地层现在也广泛使用,比如我国中原油田的文留区块的沙二至沙三地层由于地质情况复杂、夹层多,可钻性差,以前一直被认为是PDC钻头的禁区,在这里钻的井除了取心之外用的都是牙轮钻头。可是从2000年开始,PDC钻头在这个区块的使用量逐渐增多,效果也很好,而2001年底我公司的一只8 1/2 BK542-4型PDC钻

ABAQUS金属切削实例

CAE联盟论坛精品讲座系列【二】 ABAQUS金属切削实例 主讲人:fuyun123CAE联盟论坛—ABAQUS版主 背景介绍: 切削过程是一个很复杂的工艺过程,它不但涉及到弹性力学、塑性力学、断裂力学,还有热力学、摩擦学等。同时切削质量受到刀具形状、切屑流动、温度分布、热流和刀具磨损等影响,切削表面的残余应力和残余应变严重影响了工件的精度和疲劳寿命。利用传统的解析方法,很难对切削机理进行定量的分析和研究。计算机技术的飞速发展使得利用有限元仿真方法来研究切削加工过程以及各种参数之间的关系成为可能。近年来,有限元方法在切削工艺中的应用表明,切削工艺和切屑形成的有限元模拟对了解切削机理,提高切削质量是很有帮助的。这种有限元仿真方法适合于分析弹塑性大变形问题,包括分析与温度相关的材料性能参数和很大的应变速率问题。ABAQUS作为有限元的通用软件,在处理这种高度非线性问题上体现了它独到的优势,目前国际上对切削问题的研究大都采用此软件,因此,下面针对ABAQUS的切削做一个入门的例子,希望初学者能够尽快入门,当然要把切削做好,不单单是一个例子能够解决问题的,随着深入的研究,你会发现有很多因素影响切削的仿真的顺利进行,这个需要自己去不断探索,在此本人权当抛砖引玉,希望各位切削的大神们能够积极探讨起来,让我们在切削仿真的探索上更加精确,更加完善。 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 切削参数:切削速度300m/min,切削厚度0.1mm,切削宽度1mm 尺寸参数:本例作为入门例子,为了简化问题,假定刀具为解析刚体,因为在切削过程中,一般我们更注重工件最终的切削质量,如应力场,温度场等,尤其是残余应力场,而如果是要进行刀具磨损或者涂层刀具失效的分析的话,那就要考虑建立刀具为变形体来进行分析了。工件就假定为一个长方形,刀具设置前角10°,后角6°,具体尺寸见INP文件。 下面将切削过程按照ABAQUS的模块分别进行叙述,并对注意的问题作出相应的解释。 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 建模:建模过程其实没有什么好注意的,对于复杂的模型,我一般用其他三维软件导入进来,注意导入的时候尽量将格式转化为IGES格式,同时要把一些不必要的东西去掉,比如一些尖角,圆角之类的,如果不是分析那个部位的应力集中的话就没必要导入它,如果导入,还要进行一些细化,大大降低了计算的效率。我一般做的是二维切削,模型相对比较简单,所以一般都是直接在ABAQUS中进行建模。由于此处为刚体,要在part里面建立刚体参考点,而且注意不要在装配模块建立参考点,因为有时候ABAQUS找不到装配模块相应的参考点。 1、工件

轮胎面透镜的单点金刚石车削加工工艺技术研究

轮胎面透镜的单点金刚石车削加工工艺技术研究 【摘要】基于较成熟的旋转对称非球面的单点金刚石车削加工工艺,通过大量工艺试验,对工装夹具、车削刀具、切削参数等进行研究,总结出了一套实用的单点金刚石车削轮胎面光学元件的加工工艺。该工艺方法也可以适用于其它离轴非球面的单点金刚石车削加工。 【关键词】单点金刚石车削;轮胎面透镜;离轴;工艺技术 1.引言 轮胎面透镜可用于光束束腰置远、光束偏转小角度等方面,在保证传输中的光束直径、消象散等方面具有传统光学元件难以具备的功能,被日益广泛地应用在国防军事、航空航天、通讯、医疗等领域。本工艺研究基于较成熟的旋转对称非球面的金刚石车削加工工艺,通过大量工艺试验,对工装夹具、车削刀具、切削参数等进行研究,总结出了一套实用的,行之有效的在单点金刚石车床上车削轮胎面光学元件的加工工艺。 2 .金刚石车削加工原理 本文的讨论是基于英国Taylor Hobson公司的Ultraform350单点金刚石车床。该车床是两轴机床,可加工最大直径为350mm的平面、球面、非球面等各类轴对称光学元件。其车削加工原理是,被加工件通过工装夹具吸附于主轴的真空吸盘上,并且光轴和车床Z轴重合,主轴带动被加工元件高速旋转,利用TPG刀具轨迹发生器生成程序,使刀具X、Z两轴插补联动按照光学元件子午曲线轨迹运动,对被加工光学元件进行车削,形成轴对称光学曲面。其中主轴与被加工光学元件的动平衡将影响零件的形状误差和表面波纹度[1]。 图1 单点金刚石车床车削原理简图 3.轮胎面的车削加工工艺 3.1 轮胎面的特点 轮胎面光学元件是非对称光学元件,以光轴为中心,其子午方向和弧矢方向具有不同的曲率半径,在精确要求两个曲率半径的同时,还需要具有很好的面形和表面粗糙度。 3.2 工装夹具 根据金刚石车床加工的特点,夹具采用回转对称结构[2]。设计的工装夹具简图如下: 图2 工装夹具简图 其中轮胎面母体是一椭球体,其子午和弧矢方向的曲率半径分别与被加工轮胎面的两个曲率半径相同。根据被加工轮胎面的外形尺寸,在母体的对称位置去除表面作为轮胎面的定位面,去除深度与被加工轮胎面匹配。轮胎面母体的旋转轴与夹具底座的旋转轴严格重合。夹具上设计了高精度定位槽(与轮胎面的台阶相匹配),确保轮胎面光学元件Ry与台阶之间角度满足轮胎面的设计要求。采用光胶法使被加工轮胎面元件与夹具紧密贴合并粘结轮胎面底面。夹具底座吸附面为高精度研磨面,面形精度PV值小于1um。夹具底座外圆经过精车,垂直度要求0.01mm以内,确保重复定位精度。 根据被加工轮胎面的参数,可以选择2个、4个或6个定位面,即同时加工2个、4个或6个相同的轮胎面。 3.3 车削刀具

金刚石切削技术及其应用

金刚石车削技术及其应用 2008/1/16/15:01 来源:慧聪网五金行业频道 1.金刚石车床的技术关键 金刚石车床与镜面铣床相比,其机械结构更为复杂,技术要求更为严格。除了必须满足很高的运动平稳性外,还必须具有很高的定位精度和重复精度。镜面铣削平面时,对主轴只需很高的轴向运动精度,而对径向运动精度要求较低。金刚石车床则须兼备很高的轴向和径向运动精度,才能减少对工件的形状精度和表面粗糙度的影响。 目前市场上提供的金刚石车床的主轴大多采用气体静压轴承,轴向和径向的运动误差在50nm以下,个别主轴的运动误差已低于25nm。金刚石车床的滑台在90年代以前绝大部分采用气体静压支承,荷兰的Hembrug公司则采用液体静压支承。进入90年代以来,美国的Pneumo公司(现已与Precitech公司合并)的主要产品Nanoform600和250也采用了具有高刚性、高阻尼和高稳定性的液体静压支承滑台。 2.金刚石车床的布局 金刚石车床的布局最初沿袭了传统车床的结构,主轴固定在床身上,横向沿台(X轴)装在纵向滑台(Z轴)上。因为纵、横滑台的导轨相互垂直,故又被称为十字滑台布局。其优点是技术成熟,结构紧凑,荷兰Hembrug公司的super-mikroturn就一直采用这种结构(图1)。十字滑台布局的缺点在于纵横两滑台运动时相互影响,当对动态精度要求高时,这种缺点就尤为突出。 金刚石车床的基本数据如表1所示。 表1金刚石车床技术参数和性能示例 最大车削直径和长度/mm400×200 最高转速r/mm3000、5000或7000 最大进给速度mm/min5000 数控系统分辩率/mm0.0001或0.00005 重复精度(±2σ)/mm≤0.0002/100 主轴径向圆跳动/mm≤0.0001

abaqus-铝合金A357切削加工有限元模拟

铝合金A357切削加工有限元模拟 1铝合金A357切削加工有限元模型 金属切削加工有限元模拟,是一个非常复杂的过程。这是因为实际生产中,影响加工精度、表面质量的因素很多,诸如:刀具的儿何参数、装夹条件、切削参数、切削路径等。这些因素使模拟过程中相关技术的处理具有较高的难度。本文建立的金属正交切削加工热力耦合有限元模型是基于以下的假设条件: (1)刀具是刚体且锋利,只考虑刀具的温度传导; (2)忽略加工过程中,由于温度变化引起的金相组织及其它的化学变化; (3)被加工对象的材料是各向同性的; (4)不考虑刀具、工件的振动; (5)由于刀具和工件的切削厚度方向上,切削工程中层厚不变,所以按平面应变来模拟; 1.1材料模型 1.1.1A357的Johnson-Cook 本构模型 材料本构模型用来描述材料的力学性质,表征材料变形过程中的动态响应。在材料微观组织结构一定的情况下,流动应力受到变形程度、变形速度、及变形温度等因素的影响非常显著。这些因素的任何变化都会引起流动应力较大的变动。因此材料本构模型一般表示为流动应力与应变、应变率、温度等变形参数之间的数学函数关系。建立材料本构模型,无论是在制定合理的加工工艺方面,还是在金属塑性变形理论的研究方面都是极其重要的。在以塑性有限元为代表的现代塑性加工力学中,材料的流动应力作为输入时的重要参数,其精确度也是提高理论分析可靠度的关键。在本课题研究中,材料本构模型是切削加工数值模拟的必要前提,是预测零件铣削加工变形的重要基础,只有建立了大变形情况下随应变率和温度变化的应力应变关系,才能够准确描述材料在切削加工过程的塑性变形规律,继而才能在确定的边界条件和切削载荷下预测零件的变形大小及趋势。 在切削过程中,工件在高温、大应变下发生弹塑性变形,被切削材料在刀具的作用下变成切屑时的时间很短,而且被切削层中各处的应变、应变速率和温度并不均匀分布且梯度变化很大。因此能反映出应变、应变速率、温度对材料的流动应力影响的本构方程,在切削仿真中极其关键。当前常用的塑性材料本构模型主要有:Bodner-Paton 、Follansbee-Kocks 、Johnson-Cook 、 Zerrilli-Armstrong 等模型,而只有Johnson-Cook 模型描述材料高应变速率下热粘塑性变形行为。Johnson —Cook 模型认为材料在高应变速率下表现为应变硬化、应变速率硬化和热软化效应,Johnson —Cook 模型如下所示: 01ln 1m n r m r T T A B c T T εσεε??????????-?? ?????=++- ????? ?-????????? ? 式中第一项描述了材料的应变强化效应,第二项反映了流动应力随对数应变速率增加的关系,第三项反映了流动应力随温度升高指数降低的关系。o ε? 、Tr 分别表示参考应变速率和参考温度,Tm 为材料熔点。式中A 、B 、n 、C 、m 、D 、k 是7 个待定参数;A 、B 、n 表征材料应变强化项系数;C 表征材料应变速率强化项系数;m 表征材料热软化系数;t θ,m θ分别为常温材料熔点。 1.1.2材料失效准则 实现切屑从工件分离,本文采用的是剪切失效模型。剪切失效模型是基于等效塑性应变在积分点的值,当损伤参数达到1时,单元即失效,失效参数定义如下:

高速切削有限元模拟加工温度场

高速切削有限元模拟加工温度场分析 黄晓华 (苏州工业职业技术学院 精密制造工程系 江苏 苏州 215008) 摘 要: 以高速切削条件下的数控车刀为研究对象,利用ANSYS有限元仿真软件对刀具的温度场进行模拟和分析,得出温度场的分布规律,验证切削速度对温度场的影响,为优化切削参数,延长刀具寿命提供一定的依据。 关键词: 切削热;切削温度;有限元 中图分类号:TG506 文献标识码:A 文章编号:1671-7597(2012)1110012-01 0 引言 切削过程中,由变形和摩擦所消耗功的98%~99%都转变为热能,即若切削热不及时传散,则切削区的平均温度将大幅度地上升。切削温度的升高一方面会加剧刀具的磨损,影响刀具的使用寿命,另一方面会使工件和机床产生热变形,影响零件的加工精度,因此切削温度的研究至关重要。高速切削加工状态下的切削温度和切削热不同于传统切削加工过程,利用有限元软件对高速切削状态下的温度场进行仿真模拟分析,为延长刀具使用寿命及刀具变形分析提供一定的数值依据。 1 刀具热变形的ANSYS计算步骤 高速切削刀具热变形有限元仿真主要包括以下主要步骤:前处理(即三维建模)、定义单元类型并设定单元属性、定义单元实常数、定义材料热性能参数、创建几何模型并划分网格、热载荷计算、热载荷及边界条件加载。 2 高速切削刀具热变形有限元模型的建立 2.1 刀具高速车削温度模型建立的假设条件 1)假设刀具、工件组成的系统温度场不随时间变化,即达到了稳态传热。 2)第一变形区切削热是切削层的变形热,第二变形区的切削热是切屑与前刀面的摩擦热,假设刀具高速车削温度场分析属于平面热源传热模型。 2.2 刀具高速车削ANSYS分析试验条件 选用GSK980TDb 型高速数控车床,确定载荷工况1:主轴转速V c =500m/min ,进给量f=0.5mm/r ,背吃刀量a p =3mm ;确定载荷工况2:主轴转速V c =200m/min ,进给量f=0.5mm/r ,背吃刀量a p =3mm 。选用的车刀刀杆是几何尺寸为B×H=16×25,L=200的45钢,刀片材料为涂层硬质合金YT15,查文献[1]得刀具材料的强度极限σb =600MPa ,屈服极限σs =355Mpa ,弹性模量E=206GPa ,泊松比μ=0.27,导热系数=67W/(m ·oC )。车刀主要角度:主偏角K γ=75゜,副偏角K γ'=10゜,前角γ0=5゜,后角α0=α0'=8゜,刃倾角λs =-5゜。被加工材料为σb =637MPa 的碳素结构钢。 3 热载荷计算及加载 由于切削过程中,切屑发生塑性变形所消耗的功率主要转化为热量,因此要计算热载荷就必须依次进行切削力、切削功率、切削热和热流密度的计算。本文主要是详细进行了载荷工况1的热载荷计算,载荷工况2的热载荷计算从略。 3.1 切削力的计算 硬质合金车刀车削外圆过程中产生的切削合力F r 可以分解为三个分力,即主切削力F C ,进给抗力F f 和切深抗力F p 。查文献式中: a p 为背吃刀量,mm ;f 为进给量,mm/r ;v c 为切削速度,m/min ; C Fc 、C Fp 、C Ff 表示取决于被加工材料和切削条件的系数;xF 、yF 表示各参数对切削力影响程度的指数; K F 表示实际加工条件各种因素对切削力的修正系数的乘积。 以上系数和指数可通过查文献[3]而得,并代入切削分力计算公式,得各切削分力如下: 3.2 切削功率的计算 查文献[4]得刀具切削功率的计算公式: P m =F z V c +F x n w f ∕1000 式中: F z 表示主切削力;V c 表示切削速度;F x 表示进给力,n w 表示工件转速;f 表示进给量。 由于F x 相对于F z 消耗的功率一般很小,可忽略不计,因而可得切削功率: P m =F z V c =1860×500∕60=15500W 3.3 切削热的计算 由于切削过程中,绝大部分热量由切屑带走,车削过程中10%~40%的热量由车刀传出[2],根据传入刀具的热量Q 的计算公式可得: Q= K 1·K 2·P m =0.99×0.1×15500=1534.5W 式中:K 1为切削功率转化为切削热的比重;K 2为车刀中传出切削热的比重。 3.4 热流密度的计算 切削过程中切屑与刀具前刀面主要接触面积约为刀片面积的1∕5,结合刀片的实际测量面积,计算得出热载荷作用面积-62约为19.2×10m 。根据热流密度μ的计算公式可得: 7-62 μ= Q ∕A=1534.5∕19.2×10=7.99×10W/m 式中:A 为切屑与前刀面的主要接触面积,即热流密度载荷主要作用面积。 3.5 施加载荷 2施加刀具上表面的对流换热载荷为2000W/(m ·℃),下2表面的对流换热载荷为10W/(m ·℃),其余侧表面的对流换2热载荷为1000W/(m ·℃),施加刀具初始温度为20℃,并在前刀面上施加热流载荷。 4 ANSYS模拟结果及后处理 通过仿真模拟分析,得到载荷工况1和载荷工况2的刀具温[2]得切削力的经验计算公式为: 度场分布情况分别如图1和如图2所示。由图中可以看出,金属 (下转第52页)

单点金刚车快刀伺服加工微透镜阵列工艺探讨

单点金刚车快刀伺服加工微透镜阵列工艺探讨 【摘要】单点金刚石车的快刀伺服加工技术可实现复杂面形光学零件的高效优质加工。文中介绍了单点金刚车削以及快刀伺服的技术特点,以及对于加工微透镜的技术工艺路线予以分析和探讨,最后进行了零件的加工试验。 【关键词】单点金刚车;快刀伺服;微透镜阵列 0.引言 随着科学技术和信息化的迅猛发展,红外光学系统得到了飞速发展以及广泛的应用。红外光学元件主要包括红外晶体软脆性材料光学元件和玻璃、碳化硅SiC等硬脆性光学元件,由于红外晶体类光学元件在特定运行条件下,晶体内自发的Raman散射光通过表面时会得到放大。因此,晶体作为优质的光学材料,被较广泛地应用于红外光电仪器等非线性光学领域。但由于晶体材料本身具有质软,易潮解,脆性高,对温度变化敏感,易开裂的特点,因此晶体材料的加工周期很长,而且非常难以加工。尤其光学元件被业界公认为是最难加工的,随着对光学性能指标的要求不断提高,传统的光学元件加工方式已无法满足高精度的晶体材料光学元件的加工要求。 而快刀伺服FTS(Fast Tool Servo)加工技术则是通过驱动金刚石刀具产生高频响,小范围的快速精度进刀运动,并配合高精度的主轴回转和径向进给运动,来完成复杂面形零件的精密高效加工。这种加工方法具有高频响,高刚度,高定位精度等特点,可以重复加工出具有复杂形状的各种异形元件,一次加工即可获得较高的尺寸精度,形状精度和极佳的表面粗糙度,从而能够实现复杂光学面形的高效高精度加工。 1.技术特点 目前,准分子激光加工微投透镜的方法主要是准分子与激光与动态二元掩模法相结合(二元掩模法是指通过使用二元掩模制造微透镜的方法。其主要加工特点为:(1)制造过程简单,(2)制造速度快,(3)制造成本低。但由于自身的特点,所以其本身也有加工上的缺点:制造出的微透镜为非球面微透镜。 而相对来说,使用了单点金刚车的快刀伺服技术由于与有色金属亲和力好,其硬度、耐磨性以及导热性都非常优越,且刀具刃口极为锋利,刃口半径为0.5~0.01μm,同时可适用于加工非金属材料。相对而言,使用了单点金刚车的快刀伺服技术生产效率更高,加工精度更高,重复性好,适合批量生产,加工成本比传统的加工技术明显降低。而且可实现球面和非球面的精密加工。 本文所探讨的是基于单点金刚石车削的快刀伺服技术在微透镜阵列加工的新型工艺研究。微透镜是最重要的微光学元件之一,其几乎被用于所有的微光学系统。目前对于微透镜的定于较多,没有形成统一的定义。通常所说的微透镜一

超精密单点金刚石车削原理和有限元仿真技术

1 概述 超精密加工,在精度等级上代表了发展的最高阶段。通常,按加工精度等级,可将机械加工分为普通加工、精密加工、超精密加工三个不同阶段。随着生产技术的不断发展,划分的界限也逐渐向前推移。就加工精度等级而言,当前普遍认为:精密加工的精度为1-0.1mμ、表面粗糙度为Ra 0.1-0.025mμ;超精密加工的精度高于0.1mμ、表面粗糙度Ra小于0.025mμ。精密和超精密加工主要包括下列三种不同的工艺技术:(1)超精密切削加工;(2)精密和超精密磨削和研磨;(3)精密特种加工,如电子束、离子束加工技术等。单点金刚石车削(SPDT)加工技术(图1)是超精密加工中常用的技术。由于金刚石的硬度高、耐磨性强、导热性优越,金刚石刀具的刃口可以非常锋利(刃口半径可以小于0.05mμ甚至更小),而且金刚石与有色金属的亲和力小。对于铜、铝等有色金属以及塑料可以采用单点金刚石车削的方法,进行数控加工,直接得到超精密的光学表面。 图1 金刚石刀具与单点金刚石车削设备 有限单元法作为一种计算机仿真技术与求解方法,已经被广泛应用于科学研究的各个领域。计算机仿真实验的方法减少了物理实验的成本,加速了实验的过程。近年来,有限元仿真方法也被广泛的应用于加工过程的仿真中,作为一种预测切削力与工件表面质量的工具。本文主要介绍使用MSC.Marc进行单点金刚石车削原理的仿真方法。 2 超精密单点金刚石车削原理 理想状态下,采用圆弧刃单点金刚石刀具进行超精密撤销加工时,在工件加工表面形成轮廓峰和轮廓谷,它们之间的距离,就是所谓的理论残留高度或者理论粗糙度(如图2a)。

图2 单点金刚石切削原理示意图 在实际超精密切削塑性金属时,主切削刃和前刀面的主要任务是去除金属,切削层在前刀面的挤压作用下发生剪切滑移和塑性变形,然后形成切屑沿前刀面流出(如图2b)。前刀面的形状直接影响塑性变形的程度、切屑的卷曲形式和切屑刀具之间的摩擦特性,并直接对切削力、切削温度、切屑的折断方式和加工表面质量形成显著影响。主切削刃是前刀面和后刀面的交线。实际上前刀面和后刀面的交线不可能为理想直线,而是一微观交接的曲线。该曲线的形状可以近似用与其在不同位置的法平面相交成交线的平均曲率半径来反映,称其为刃口半径ρ。切削时刃前区的应力状态十分复杂,应力集中造成金属中位错集中,导致金属产生塑性变形和滑移分离,一部分金属成为切屑沿前刀面流出,另一部分金属经后刀面熨压留在已加工表面。因为两部分金属运动方向不同,必然使刀具刃口前金属呈拉伸状态,拉应力使刃前区金属的抗剪能力下降,在刀刃的直接作用下,金属产生滑移分离。刃口半径越小,应力越集中,变形越容易,切削力越小,加工表面质量越好。另外,切削层金属被通过分流点O且平行于已加工表面的分流线分为两部分,分流线以上的材料沿前刀面流出,分流线以下的塑性变形层被O点以下的刀刃熨压后成为已加工表面。经过熨压以后,刀刃下方的材料产生严重的压缩变形,对已加工表面质量产生直接的影响。 3 切削过程的有限元仿真 3.1 有限元仿真平台的选择 有限元仿真的大型的通用商业软件有NASTRAN、ASKA、SAP、ANSYS、MARC、ABAQUS、JIFEX等,这些软件包含了众多的单元形式、材料模型及分析能力,并具有网格自动划分、结果分析和显示等前后处理功能[2]。切削过程的有限元仿真属于非线性问题,材料将发生大变形,需要仿真平台需要具有网格自适应重划分功能。MSC.Marc的全局网格重划分功能为此需求提供了必要的支持,而且MSC.Marc具有强大的求解非线性问题的能力,也为用户提供了丰富的用户子程序接口,使得用户可以通过Fortran程序进行二次开发,自定义复杂的材料模型。相比较以往采用ABAQUS、Deform2D、Thirdwave AdvantEdge等软件进行的有限元仿真模型,MSC.Marc为用户提供了更强大而且更简便的解决方案。 3.2 切削模型的建立 切削过程的有限元仿真的关键问题之一是对切削产生的原理进行建模仿真。旧有的建模方法要在切屑与工件之间预先设定分离准则(包括几何分离准则和物力分离准则),即当变形达到某一预设条件或某一物理量(如应力、等效塑性应变、或应变能密度等)达到预定值的时候,切屑将从预设的位置进行断开。

黑色金属金刚石超精密车削技术

黑色金属金刚石超精密车削技术 应用与研究 1 相关背景概述 金刚石超精密切削主要加工:铝合金、无氧铜、黄铜、非电解镍等有色金属和非金属材料。

金刚石车削黑色金属时,切削温度高,切削力大,车刀磨损速度过快,不能保证被加工零件的加工表面质量和加工精度,使得加工成本过高。

?天然金刚石刀具切削黑色金属时,刀具磨损主要原因: ?金刚石对铁的稳定性较差,高温时,极易与铁发生化学反应,对金刚石表面产生热 腐蚀。 ?高温时,金刚石被空气氧化,碳原子极易向铁中扩散,使金刚石刀刃强度削弱。 ?高温时,铁的催化作用使金刚石立方晶体极易向六方层状结构转化,发生碳化。 ?传统黑色金属的磨削、研磨和抛光等超精密加工 ?立方氮化硼(CBN)、精密陶瓷等传统刀具,受其机械物理性能制约,无法加工出 精密零件。金刚石刀具可以磨出尖锐的刃口,切削极薄的切屑,可以加工出表面质量及加工精度极高的表面。 ?非球面、非对称金属零件和军用光学器件等形状复杂、精度要求高的钢及其合金零 件迫切需要单点金刚石超精密车削;

2 基本原理 ? 2.1机械磨损机理 ?机械摩擦磨损 原因:碳化物硬质颗粒,积屑瘤,切屑 后果:极小一部分,不是主要原因 ?疲劳磨损 原因:刃磨、抛光后的表面及亚表面损伤,金刚石颗粒内部组织结构缺陷,刀具加工后的残留内应力和自身脆性大,取决于金刚石刀具加工工艺。 ? 2.2化学磨损机理 ?石墨化 现象: 金刚石刀具与工件接触面积小,摩擦界面温度很高,使金刚石发生组织结构转变为石墨,导致硬度下降,受热磨损 原因: 温度:高于1000K, 催化:铁原子 机理:碳原子从金刚石正四面体结构中被铁原子拖曳出来,渗入到钢铁材料中,金刚石原有结构生成稳定的石墨片层状结构 ?粘滞磨损

相关文档
相关文档 最新文档