文档库 最新最全的文档下载
当前位置:文档库 › 单光子计数试验

单光子计数试验

单光子计数试验
单光子计数试验

单光子计数实验讲义

一 实验目的

1. 掌握使用光子技术的方法对微弱信号进行检测及实验的操作过程;

2. 2.了解光子计数方法的基本原理光电倍增管(PMT )的工作原理。

二 实验仪器

光源,PMT ,制冷器,外光路,计算机。

三 实验原理

在弱光信号检测中,当光强微弱到一定程度时,光的量子特征开始突出起来。例如:He-Ne 激光光源,其每个光子的能量为3.19 10-19焦耳。当光功率小于10-11瓦时,相当光子的发射率为108光子数/秒,即光子的发射周期约为10-8秒,刚好是PMT 输出脉冲可分辨的极限宽度(即PMT 响应时间)。这样,PMT 的输出呈现出脉冲序列的特点,可测得一个个不重叠的光子能量脉冲。光子计数器就是利用光信号脉冲和噪声脉冲之间的差异,如幅度上的差异,通过一定的鉴别手段进行工作,从而达到提高信噪比的目的。单光子试验框图入

图1所示。

(一)基本原理

单光子计

数法利用在弱

光下光电倍增管输出信号自然离散化的特点,采用精密的脉冲幅度甄别技术和数字计数技术,可把淹没在背景噪声中的弱光信号提取出来。当弱光照射到光电子阴极时,每个入射光子以一定的概率(即量子效率)使光阴极发射一个电子。这个光电子经倍增系统的倍增最

后在阳极回路中形成一个电流脉冲,通过负载

电阻形成一个电压脉冲,这个脉冲称为单光子

脉冲。如图1所示,横坐标表示PMT 输出的

噪声与单光子的幅度电平(能量),纵坐标表

示其幅度电平的分布概律。可见,光电子脉冲

与噪声分布位置不同。由于信号脉冲增益相

近,其幅度相当好的集中在一个特定的范围

内,光阴机反射的电子形成的脉冲幅度较大,

图1 单光子实验框图

图2 PMT 输出脉冲分布

而噪声脉冲则比较分散,它在阳极上形成的脉冲幅度较低,因而出现了“单光电子峰”。用脉冲幅度鉴别器把幅度低于的脉冲抑制掉,只让幅度高于的脉冲通过就实现了单光子计数。

放大器的功能是把光电子脉冲和噪声脉冲线性放大,应友谊顶的增益,上升时间≤3ns,这就要求放大大器的通频带宽达到100MHz,并且有较宽的线性动态范围和较低的热噪声,经过放大后的信号要便于脉冲幅度鉴别器的鉴别。

脉冲幅度甄别器的主要任务就是剔除噪声脉冲,把淹没在噪声信号中的光子信号筛选出来,以达到真正的光子计数的目的。在脉冲幅度甄别器里设置有一个连续可调的比较电压Vh。只有高于Vh的脉冲,才能通过甄别器得到输出。如果把甄别电平选在图2的谷点对应的脉冲高度上,就能去掉大部分噪声脉冲而只有光电子脉冲通过,从而提高信噪比。以上为一般模式(积分模式)下甄别器工作原理,图3—a为放大后信号脉冲,图3—b为甄别后输出脉冲。

图3—a 图3—b

图4—a 图4—b

在另外一种模式下(微分模式),仪器提供两个鉴别电平,即Vh及VL。在该模式下,仪器只对VL 及Vh-VL的值进行控制。即逐步增加VL的值,另外提供Vh-VL的一个常量,在这里我们把Vh-VL的这个常量称为道宽。图4—a和图4—b描述了微分模式下甄别器的工作原理。它反应的是在某个信号高度,信号拥有脉冲数的多少。图4—a为鉴别前信号,4—b为鉴别后输出脉冲,其中平行于X轴的两条线分别表示上甄电平和下甄电平,平行线间的电平差值称为道宽。脉冲幅度怎别电平稳定;灵敏度高;死时间小,建立时间短,脉冲对分辨率小于10ns,以保证不漏。甄别器输出经过整形的脉冲。

计数器的作用是在规定的测量时间间隔内

将甄别器的输出脉冲累加计数。

(二)光最倍增及其在探测弱光时输出信号的特

1、光电倍增管(英文简称PMT )的结构与工作

原理

一个典型的PMT 的结构如图5所示,其供电

原理如图6所示。当一个光子入射到光阴极K

上,可能使光阴极上以几率η逸出电子称为量子

效率。这个光电子继续被更高的电压加速而飞向

第二倍增极。若每一前级光电子打出m 2个次级电子,如此下去,到达阳极时总电子数可倍增管的效益 A =m 1.m 2 m n-1.m n , (1)

给出,式中n 为倍增级的数目。如是,当光阴极

上逸出一个光电子,将在阳极回路中输出电荷Q a

=A ?1.6?10-19库仑。

由于各光电子到达一倍增极的时间和路径不

完全相同(称为渡越时间的离散)而使输出的阳

极电流脉冲d Qa /d t 呈一定的宽度τR [图7(a )]。

τR 的典型值为10~20ns (纳秒)。为简单起见,

设输入脉冲呈矩形[图7(b )],其半高宽为t ω,

则电流Ia =Q a /t ω。对t ω=10ns 的情况且管增益

A =105时

I a =1.6?10-14/10-8=1.6Ma , (2)

I a 在负载电阻R a 上产生一个电压脉冲,称为单光子电压脉冲。τR 决定于PMT 的时间特性及阳极回路的时

间常数R a C a (C a 为阳极回路的分布电容和放大器输入电容之和)。在光子计数器中宜用较低的负载电阻以获得大的时间常数将输入脉冲积分成一个高的直流信号形成对照[图7(c )]。当选用R a =50Ω,则前面所举例中光电倍增管的输出脉冲幅度V a =I a ?R a =1.6?10-6?50=80μV 。

除入射光子产生光脉冲外,光电倍增管的光阴极还因热而发射电子产生阳极输出脉冲。在相同的工作条件下,这种脉冲也约为80μV ,难以与真正的光信号脉冲相区别。只有通过选择适当的光电倍增管(要

求低暗电流、小的光阴面积、最小的红波响应等)和采用致冷技术对它加以限制。各倍增极的热发射电子图5 光电倍增管结构

图6 光电倍增管负高压供电及阳极电路

也会在阳极回路中形成热发射噪声脉冲,但其倍增次数比光电子少,因而在阳极上形成脉冲幅度较低,可用甄别器将它去除而不进入计数系统。

图7 光电倍增管的阳极波形

此外,各倍增极的倍增系数m 不是

常数而遵从泊松分布。因此,光电子脉

冲和噪声脉冲幅度也有一个分布。图8

为光电倍增管阳极回路输出脉冲计效率

?N 随脉冲幅度大 小的分布。

曲线表示脉冲幅度在V 至V +?V 间的

脉冲计数串?N 与脉冲幅度V 的关系。

图中脉冲幅度较小的主要是热发射噪声

信号。而光阴极发射的电子(包括光电

子和热发射电子)形成的脉冲幅度大部

集中于横坐标中部,形成“单光电子峰”。将脉冲幅度用甄别器将高于V h 的脉冲鉴别输出,并采取措施限制热发射电子的产生,就可实现单光子计数。

2、光电倍增管探测弱光时输出信号的特征

应当指出,只有在入射光很弱,入射的光子流是一个一个离散地入射到光阴极上时,才能在阳极回路中得到一系列分立的脉冲信号。图9是用示波器

观察到的光电倍增管弱光输出信号经放大器放大后

的波形。

当≈P 10-13W 时,光电子信号是一叠加有闪烁

噪声的直流电平,如图(a );当≈P 10-14W 时,直

流电平减小,脉冲重叠减少,但仍在基线上起伏,

如图(b );光流继续下降达≈P 10-15

时,基线形如图8 光电倍增管输出脉冲幅度分布(微分)曲线

图9 各种不同光强下光电倍增管输出信号波形

P10-16时,脉冲无重叠,直流电平趋于零。如图(d)。由图9可知,稳定,重叠脉冲极少,如图(c);当≈

P10-16时,虽然光信号是持续照射的,但光电倍增管输出的光电信号却是分立的尖脉冲。当光流量降至≈

这些脉冲的平均计数率与光子的流量成正比。可见光子计数器在探测弱光时发挥其优越性。

3、单光子计数系统对光电倍增管的要求

光电倍增管的性能直接关系到计数系统能否正常工作,除要求光电倍增管要有小的暗电流、快的响应速度和光阴极稳定性高(低的热发射率)外,还需采取下列技术措施以提高信噪比:(1) 对电磁噪声的屏蔽,光子计数易受电磁噪声的干扰,必须加以屏蔽,其方法是在光电倍增管的金屑外套内衬以玻莫合金;

(2)光电倍增的供电,用于光子计数器的光电倍增管常采用如图6中描述的高压供电电路,即阳极输出电流信号,光阴极和外壳接地。

对于一定的光照强度,光电倍增管的阳极输出计数率(正比于阳极电流)随所加工作电压而变化,如图10中曲线(1)。由图可见,当加速电压较低时,计数率随加速电压增大而直线上升。然后计数率变化缓慢形成“平台”,最后又随加速电压迅速上升。而PMT的暗计数(主要来自光阴和各倍增极热电子发射)随加速电压的变化如曲线(2)。为了获得最佳信噪比(SNR)和稳定的计数率,光电倍增管的工作电压应选在平台的前端,此处计数率不因加速电压的不稳定而产生大的变化,且暗计数较小。

图10 光子计数率(曲线1)和暗计数(曲线2)随光电倍增管工作电压的变化

(三)光子计数器的计数误差

计数误差主要来自噪声。因此,系统的信噪比总是人们最关心的问题。下面将分析几个主要误差源以及它们对光子计数信噪比(SNR)的影响。

1、光子流的统计性

用光电倍增管探测热光源发射的光子,相邻的光子打到光阴极上的时间间隔是随机的。对于大量粒子的统计结果服从泊松分布。即在探测到一个光子后的时间间隔t内,现探测到n个光子的几率P(n,t)为

!!)(),(n e N n e Rt t n p N n

Rt n --==ηη, (3) 式中η是光电倍增管的量子效率,R 是单位时间内的光子流量,N =ηRt 是在时间间隔t 内光电倍增管的光阴极发射的光电子平均数。由于这种统计特性,测量到的信号计数将有一定的不确定度,通常以均方根偏差σ来表示。经计算,Rt N ησ==

。这种不确定性称为统计噪声。统计噪声使得测量信号中固有

的信噪比SNR 为 Rt N N N SNR η===, (4)

上式表明,固有统计噪声的信噪比正比于测量时间间隔的平方根。

2、背景计数

光最倍增管的光阴极和各倍增极的热电子发射在信号检测中形成暗计数,即在没有入射时的背景计数。背景计数还包括杂散光的计数。选用小面积光阴极管、降低管子的工作温度以及选择适当的甄别电平,可使暗计数率R d 降到最小,但相对极微弱的光信号,仍是一个不可忽略的噪声源。如果PMT 的第一倍增极具有很高的增益,各倍增极及放大器的噪声已被甄别器去除,则上述暗计数使信号中的噪声成分增加至t R Rt d +η。信噪比因此而降为d d R r t

R t R Rt Rt

SNR +=+=ηηηη(6)如果背景计数在光信号

累记计数中保持不变,则可很容易地从实际计数中扣除。

3、累积信噪比

在两个相同的时间间隔t 内,分别测量背景计数N d 和信号与背景的总计数N t ,则信号计数N p 为

Rt N N N d t p η=-=, (5)

而 t R N d d =,

按照误差理论,测量结果的信号计数中的总噪声应为

t R Rt N N d d t 2+=+η, (6)

使测量结果的信噪比

d d t p R R t R N N N SNR 2+=+=ηη , (9)

若信号计数远小于背景计数N d ,可能使SNR<1,测量结果毫无意义。故称SNR =1时对应的接收信号功率P min 。为光子计数器的探测灵敏度。

由上分析可知,光子计数器测量结果的信噪比SNR 与测量时间间隔的平方根t 成正比。因此在弱光测量中,为了达到一定的信噪比,可增加测量时间t 。

4、脉冲堆积效应及脉冲甄别器

a .脉冲堆积效应

能够区分两相继发生的事件的最短时间间隔称为分辨时间。它是光子计数器最关键的性能之一。分辨时间由光电倍增管的分辨时间路和电子学系统(主要是甄别器)的死时间t d 决定。光电倍增的时间分辨时间t R 通常为10-40ns 。当在t R 内相继有两个或两个以上的光子入射到光阴极上时,由于它们的时间间隔小于t R ,光电倍增管只能输出一个脉冲(假定量子效率为1)。结果,光电子脉冲的输出计数率比单位时间入射到光阴极上的光子数少。同样,若在死时间t d 内输入脉冲到放大一-甄别系统,其输出计数率也要损失。以上现象统称为脉冲堆积效应。脉冲堆积效应造成的输出脉冲计数率误差可以如下估算。对光电倍增管,每当其光阴要发射一光电子经tR 时间后再发射一光电子,都将产生一个输出脉冲,即要求在t R 内是零光电子发射。这一几率据式(3)为

)exp(),(R i R t R t o p -= , (10)

其中R i =R η,是入射光子单位时间内使光阴极发射光电子数。而在t R 时间内入射光子的几率为)exp(1R i t R --,则由于脉冲堆积效应使单位时间输出的光电子脉冲数R 0为

)exp(.),0(.0R i Rt R t p R R ηη-== (11)

由图6-7可见,R 0随入射光子流量R 增大而增大,至R i t R =1时,R 0达最大值。以后R 0随R 的增加而下降,一直到零。当入射光强增至一定数值,光电倍增管的输出已不再呈离散状态,只能用直流的方法来检测光信号。

图11 光电倍增管和甄别器的输出计数率R 0和输入计数率R i 的关系

光电倍增管因分辨时间t R 造成的计数误差可表达为

)exp(1)exp(10R R i i

i PMT Rt t R R R R ηε--=--=-=, (12) 对于甄别器,其死时间t d 是一常数(不随入射光子流R 的增加而增加)。在测量时间t 内。输入甄别器的总脉冲数为R i t R ,从甄别器输出的脉冲数为R 0t 则在t 时间内甄别器不以接受脉冲的总“死”时间为R 0.t.t d 。总的“活”时间为t -R 0.t.t d 。因而

)..R -(00d i t t t R t R = , (13)

由于甄别器的死时间t d 造成的脉冲堆积,使输出脉冲计数率下降为

d

i t R R R +=10, (14) 由图11可见,当R i ≥1时,R 0趋向饱和,即R 0不再随R 的增加而明显地变化。由于甄别器的死时间t d 而造成的相对误差

d

i i d i i i DLS t R t R t R R R R +=--=-=11110ε , (15) 当计数率较低,有1<

当甄别器的死时间t d 与光电倍增管的分辨时间t 相当(近似相等)时,光电倍增管引起的计数误差占主导地位,因为它限制了对甄别器的最大输入脉冲数。因此,实际测量时,并非甄别器的死时间越短越好。如果选择死时间t d 很短以致在光电倍增管输出仍

处在脉冲堆积状态时,甄别器已处于可触发状态,

易于被噪声触发而产生假计数,从而又引入了新

的误差源。

当计数率低又使用快带光电倍增管时,脉冲堆积

效应引起的误差主要取决于甄别器。此时

d d i D LS Rt t R ηεε===。一般认为,计数差ε小于

1%的工作状态称为单光子计数状态。处在这种状

态下的系统就称为单光子计数系统。

b .脉冲甄别器

脉冲幅度甄别器的主要任务就是剔除噪声脉

冲,把淹没在噪声信号中的光子信号筛选出来,以达到真正的光子计数的目的。在脉冲幅度甄别器的设有一个连续可调的比较电压Vh 。如下所示,图2-2a 为放大后信号脉冲,2-2b 为甄别后输出脉冲。

图12 CR110光电倍增管的光谱响应曲线——倍增管在波长532nm 的量子效应

需要注意的是:当用单电平的脉冲高度甄别输出时,对应某一电平值V,得到的脉冲幅度大于或等于V的脉冲总计数率,因而只能得到积分曲线(见图6-8),其斜率最小值对应的V就是最佳甄别电平Vh,在高于最佳甄别电平Vh的曲线斜率最大处的电平Vh后的一段为单光子峰。

四实验装置

1、光源

用高亮度绿LED作为光源,配以电压控制电路,从而可以改变入射光功率。为提高入射光的单色性,在光源的出口处加有干涉滤光片。

2、接收器

接收器采用CR110光电倍增管作为接收器。实验时如果打开制冷装置,降低光电倍增管的工作温度(最低可以达到—25℃),可以使倍增管的暗计数得到大幅度的降低。下图为CR110光电倍增管的光谱响应曲线。

3、光路

实验系统的光路如图13所示:

图13 单光子计数实验光路

实验系统中,光阑筒的使用是为了减小杂散光和背景计数对计数的影响。它是由三片光阑组成,在筒的另外具有用来和减光片组固定的螺纹接口,实验者可以根据需要放置减光片。本实验系统具备了3个减光片和一块干涉滤光片,其具体参数标示于各元件的外壳上,实验者可以很方便的选用。

为了标定入射到光电倍增管上功率P O,本实验系统先用光功率指示器测量出入射到光的入射功率P i,并按照下式计算P0,

P0=T1×T2×T i×P i(Ω1/Ω2),

T i(i=1,2,3......)——减光片的透过率

式中Ω1为功率指示计接收面积相对于光源中心所张的立体角。Ω2为光电倍增管的光阑面积相对于光源中心的立体角。

Ω1=πr12/S12 r1=0.5mm 光程1=S1=360mm

Ω2=πr22/S22 r2=0.5mm 光程2=S2=(337-Sx)mm

Ω1/Ω2=(πr12/S12)×(πr22/S22)

这个公式计算的入射到光电倍增管上的光功率P0就是实验中所射入到光电倍增管上的入射光功率。五实验内容和步骤

1、测定光最倍增管输出脉冲幅度分布的微分曲线:

把单光子计数实验系统测量方式设定为微分测量,调节入射功率,使其为10-15W。设定微分时间为1秒,取不同的阈值电压,测量记数强度。记下所显示的单光子的数据,并画出它的微分曲线。横坐标为光子计数率R,纵坐标为输入电平值V。

2、测定光电倍增管输出脉冲高度分布的积分曲线:

把单光子计数实验系统测量方式设定为积分测量,调节光源功率,使其为10-15W。设定微分时间为1秒,取不同的阈值电压,测量记数强度。记下所显示的单光子的数据,并画出它的积分曲线。横坐标为脉冲计数率 R,纵坐标为脉冲幅度V。

3、测量暗计数R d,光计数率R p随光电倍增管工作温度的关系曲线,研究工作温度的关系曲线,研究工作温度对暗计数率和光计数率的影响。

把单光子计数实验系统测量方式设定为积分测量,调节入射功率,使其为10-15W,积分时间为1秒。打开制冷开关,设定制冷温度为-20后开始制冷。记录温度指示器的读数T,与其相应的暗计数R d和加光信号时的光计数率R p,直至T趋于稳定。画出R d-T和R p-T曲线。

4、有兴趣的实验者可以通过更换减光片,把入射功率变成10-14-10-17等,再进行以上三组实验,比对试验结果,总结,得出自己的结论。

5、平台区的测量

把单光子计数实验系统测量方式设定为积分测量,调节入射功率,使其为10-15W,积分时间为1秒,高压为0V,下甄值调节在噪声脉冲和光子脉冲幅度分布的中间位置,逐步增加高压(当增加到1000V时最好不要再往上加压),做出计数值与高压的关系曲线,找出倍增管的平台区。

单光子计数

鲁东大学物理与光电工程学院——近代物理实验(Ⅱ)学号 姓名 班级 日期 单光子计数实验系统 1.实验目的 (1)了解单光子计数器的结构和工作原理; (2)学习用单光子计数系统检验微弱光信号的方法; (3)研究鉴别电压对系统性能的影响,确定最佳鉴别电压(阈值); (4)了解光子计数器的信噪比,测试光子计数器的最低暗计数率和最小可检测光计数率; 2.实验原理 2.1光子流量和光流强度 光具有波粒二像性,其粒子性特征物理量(能量E 和动量p )与波动性特征物理量(频率ν和波长λ)的关系是 /;//E hv hc p h E c λλ==== (1) 式中h 是普朗克常量,c 是光速。 在弱光情况下,光的量子性特征明显,即光子。一束单色光可以看成是光子流,光子流量R (CPS )定义为单位时间内通过某一截面的光子数(单位:秒-1,或Hz),光流强度是单位时间内通过某一截面的光能量E ,用光功率P 表示。单色光的光功率P 等于光子流量R 乘以单光子能量(本实验所用单色光500nm ,光子能量E=4×10-19J),即 P RE = (2) 测得入射光子流量R ,即可计算出相应的入射光功率P 。 表1光子流量R(CPS)和光功率P(W)之间的对应数值关系及检测方法 2.2单光子计数 在量子通讯、量子光学、生物化学发光分析等领域中,辐射光强度极其微弱,光子流量 为1~103,光电管的阴极受光照射产生光电子,经过多级倍增在阳极产生一系列分立的尖脉冲(光电子脉冲),再对脉冲进行放大、甄别后进行脉冲计数。脉冲的平均数量与光子流量成正比,在一定的时间内对光脉冲计数,便可检测到光子流量,这种测量光强的方法称为光子计数。实际的光电管中,入射光子是以一定概率(量子效率η)产生光电子,考虑到光电倍增管的量子效率η,可由脉冲计数率R p (CPS)换算出光子流量R /p R R η= (CPS) (3) 光子计数器主要由光源、光阑筒、光电倍增管、放大器、甄别器、计数器等组成,图1. 图1单光子计数器原理

用单光子计数器检测微弱光

项目四用单光子计数器检测微弱光 I、项目简介 光子计数也就是光电子计数,是微弱光(低于10-14W)信号探测中的一种新技术。它可以探测弱到光能量以单光子到达时的能量。目前已被广泛应用于喇曼散射探测、医学、生物学、物理学等许多领域里微弱光现象的研究。 [项目对象] 本项目可面向理、工、农、林各专业。 [项目目的] 1、介绍微弱光的检测技术,使学生了解SGD-1实验系统的构成原理; 2、了解单光子计数的基本原理、基本实验技术和弱光检测中的一些主要问题以及了解 微弱光的概率分布规律。 [项目任务] 使用SGD-1型单光子计数器实验系统检测微弱光,观察不同强度的光线入射时光电倍增管的输出波形分布并推算出相应的光功率。 [项目成果要求] 最后以项目论文形式给出结论(注:论文中需包含检测所得的图像)。

II、实验讲义 单光子计数也就是单光电子计数,是微弱光(低于10-14W)信号探测中的一种新技术。它可以探测弱到光能量以单光子到达时的能量。目前已被广泛应用于喇曼散射探测、医学、生物学、物理学等许多领域里微弱光现象的研究。单光子计数方法,是利用弱光照射下光电倍增管输出电流信号自然离散化的特征,采用了脉冲高度甄别技术和数字计数技术。与模拟检测技术相比有以下优点: 1、测量结果受光电倍增管的漂移、系统增益的变化及其它不稳定因素影响较小。 2、基本上消除了光电倍增管高压直流漏电流和各倍增级的热发射噪声的影响,提高了 测量结果的信噪比。可望达到由光发射的统计涨落性质所限制的信噪比值。 3、有比较宽的线性动态范围。 4、光子计数输出是数字信号,适合与计算机接口作数字数据处理。 所以采用光子计数技术,可以把淹没在背景噪声中的微弱光信息提取出来。目前一般光子计数器的探测灵敏度优于10-17W,这是其它探测方法所不能比拟的。 一、项目任务 使用SGD-1型单光子计数器实验系统检测微弱光,观察不同强度的光线入射时光电倍增管的输出波形分布并推算出相应的光功率。 二、仪器介绍 本实验使用的是SGD-1型单光子计数器。 主要由光电倍增管、电源、放大系统、光源 组成,采用USB接口。 光信号输入器————————————— (内含光电倍增管) 单光子计数器电源 (内含放大系统、甄别器等)—————— USB接口—————————— 高压输入————————————————— Y轴输入————————————————

单光子计数

单光子计数 摘要:单光子计数是测量弱光信号最灵敏和有效的实验手段,采用光电倍增管作为光子到电子的变换器,通过分辨单个光子在光电倍增管中激发出来的光电子脉冲,利用脉冲高度甄别技术和数字计数技术,把光信号从热噪声中以数字话的方式提取出来。 关键词:光电倍增管光电子脉冲 一、引言 通常在一些基本的科研领域,特别是某些前沿学科,诸如高分辨率光谱学、非线性光学、拉曼光谱学、表面物理学的研究方面,都会遇到极微弱的光信息(简称弱光)检测问题。所谓弱光是指光流强度比光电倍增管本身的热噪声(10-14W)还要低,以致用一般的直流检验方法已经很难从这种噪声中检测出信号。 与模拟检测技术相比,单光子计数技术有如下的优点: 1、消除了光电倍增管高压直流漏电流和各倍增极的热发射噪声的影响,提高了测量的信噪比。 2、时间稳定性好。在单光子计数系统中,光电倍增管漂移、系统增益的变化,零点漂移和其他因素对计数影响不大。 3、可输出数字信号,能够直接输出给计算机进行分析处理。 4、有比较宽的探测灵敏度,目前一般的光子计数器探测灵敏度优于10-17W,这是其他探测方法达不到的。 二、实验原理 1、光子流量和光流强度 光是由光子组成的光子流,单个光子的能量ε与光波频率ν的关系是 (1) 式中c是真空中的光速,h是普朗克常数,λ是波长。 光子流量可用单位时间内通过的光子数R表示,光流强度是单位时间内通过的光能量,常用光功率P表示。单色光的光功率P与光子流量R的关系是 =(2) P Rε 如果光源发出的是波长为630nm的近单色光,可以计算出一个光子的能量ε为 ε = 3.13×10-19J 当光功率为P=10-16W时,这种近单色光的光子流量R为 R = 3.19×102s-1 当光流强度小于10-16W时通常称为弱光,此时可见光的光子流量可降到一毫秒内不到一个光子。因此实验中要完成的将是对单个光子进行检测,进而得出弱光的光流强度,这就是单光子计数。 2、测量弱光时光电倍增管的输出特性 当光子入射到光电倍增管的光阴极上时,光阴极吸收光子后将发射出一些光子,光阴极产生的光电子数与入射到阴极上的光子数之比成为量子效率。大多数材料的量子效率都在

稳态瞬态荧光光谱仪(FLS 920)操作说明书

稳态/瞬态荧光光谱仪(FLS 920)操作说明书 中级仪器实验室 一、仪器介绍 1.FLS 920稳态/瞬态荧光光谱仪具有两种功能 稳态测量:激发光谱(荧/磷光强度~激发波长)、发射光谱(荧/磷光强度~发射波长)、同步扫描谱(固定波长差、固定能量差、可变角)。 瞬态测量:荧光(磷光)寿命(100ps—10s)。 适合各类液体和固体样品的测试。 2.主要应用 高分子和天然高分子自然荧光的研究 溶液中大分子分子运动的研究 固体高分子取向的研究 高聚物光降解和光稳定的研究 光敏化过程的研究 3.主要性能指标 光谱仪探测范围:(光电倍增管, 190-870nm;Ge探测器,800-1700nm) 荧光寿命测量范围:100ps-10s 信噪比:6000:1(水峰Raman) 可以配用制冷系统,为样品提供变温环境 液氮系统(77K-320K) 使用Glan棱镜,控制激发光路、发射光路的偏振状态 使用450W氙灯和纳秒、微秒脉冲闪光灯做激发光源 F900系统软件:控制硬件,包括变温系统,数据采集、分析

4. 仪器主要部分结构图

5.仪器光路图 二、仪器测试原理(SPC) 时间相关单光子计数原理是FLS920测量荧光寿命的工作基础。 时间相关单光子计数法(time-correlated single photon counting)简称“单光子计数(SPC)法”,其基本原理是,脉冲光源激发样品后,样品发出荧光光子信号,每次脉冲后只记录某特定波长单个光子出现的时间t,经过多次计数,测得荧光光子出现的几率分布P(t),此P(t)曲线就相当于激发停止后荧光强度随时间衰减的I(t)曲线。这好比一束光(许多光子)通过一个小孔形成的衍射图与单个光子一个一个地通过小孔长时间的累计可得完全相同的衍射图的原理是一样的。

时间相关单光子计数荧光寿命测量中数据获取和处理

第18卷 第2期 核电子学与探测技术Vo l.18N o.21998年3月N uclear Electr onics &D etectio n T echno lo gy M ar ch 1998 时间相关单光子计数荧光寿命 测量中数据获取和处理 龚达涛 刘天宽 虞孝麒 沈广德 施朝淑 邓杰 杨炳忻 (中国科学技术大学近代物理系,合肥,230027) 本文介绍了时间相关单光子计数荧光寿命测量中的数据获取系统和数据分析方法。 关键词:时间相关单光子计数 荧光寿命 最小二乘曲线拟合 多指数函数拟合 1 引言 时间相关单光子计数技术[1]是测量纳秒级荧光寿命的一种方法,具有时间分辨好,灵敏度高等优点,在物理学、化学、生物医学等领域有广泛的应用。下面介绍我校物理系和近代物理系 合作建立的一套时间相关单光子计数荧光寿命测量系统中的数据获取系统和数据处理方法。图1 脉冲放电光源作为激发源的荧光谱仪的系统组成框图 2 数据获取系统 使样品产生荧光的激发源可以是激光、脉冲 放电光、同步辐射光、放射源等。图1是脉冲放电 光源作为激发源的荧光谱仪的系统组成框图。 激发光单色仪和荧光单色仪分别选取合适波 长的激发光和出射荧光。调节光通量使进入光电 倍增管的荧光为单光子。样品发射荧光经光电倍 增管、快放大器、恒比定时甄别器作为时幅变换器 (TAC )的启动信号(START ),脉冲光源的光经 光电倍增管、快放大器、恒比定时甄别器、延时器 作为TAC 的停止信号(ST OP)。用荧光作T AC 的启动信号可避免有激发光无荧光时T AC 超时 引起的死时间。模数变换器(ADC )、微机输入接 口卡和微计算机组成了计算机化的多道分析器, 用以测量样品的荧光衰变时间谱。微机输入接口卡还通过对两个恒比定时甄别器的输出信号计数来测量激发光和荧光的计数率,以监测样品的荧光激发效率。其中微机输入接口卡是我们自行研制的。 荧光谱仪的时间分辨主要由光电倍增管、快脉冲放大器、恒比定时甄别器、TAC 、ADC 等部件的时间晃动决定。测试表明,在其他部件仔细选择的情况下,该谱仪的时间分辨主要由光电倍增管的时间晃动决定[2]。119

光子计数技术

光子计数技术 光子计数技术,是检测极微弱光的有力手段,这一技术是通过分辨单个光子在检测器(光电倍增管)中激发出来的光电子脉冲,把光信号从热噪声中以数字化的方式提取出来。这种系统具有良好的长时间稳定性和很高的探测灵敏度。目前,光子技术系统广泛应用于科技领域中的极微弱光学现象的研究和某些工业部分中的分析测量工作,如在天文测光、大气测污、分子生物学、超高分辨率光谱学、非线性光学等现代科学技术领域中,都涉及极微弱光信息的检测问题。 现代光子计数技术的优点是: 1.有很高的信噪比。基本上消除了光电倍增管的高压直流漏电流和各倍增极的热电子发射形成的暗电流所造成的影响。可以区分强度有微小差别的信号,测量精度很高。 2.抗漂移性很好。在光子计数测量系统中,光电倍增管增益的变化、零点漂移和其他不稳定因素对计数影响不大,所以时间稳定性好。 3.有比较宽的线性动态范围,最大计数率可达106s-1. 4.测量数据以数字显示,并以数字信号形式直接输入计算机进行分析处理。 一.实验的目 1.学习光子计数技术的原理,掌握光子计数系统中主要仪器的基本操作。 2.掌握用光子计数系统检测微弱光信号的方法。了解弱光检测中的一些特殊问题。 二.实验原理 (一)光子流量和光流强度 光是由光子组成的光子流,光子是一种没有静止质量,但有能量(动量)的粒子。一个频率为(或波长为)的光子,其能量为 (2-8-1)式中普朗克常量, 光速(m/s)。以波长=6.310m的氦—氖激光为例,一个光子的能量为: =(J) 一束单色光的功率等于光子流量乘以光子能量,即 (2-8-2) 光子的流量R(光子个数/S)为单位时间内通过某一截面的光子数,如果设法测出入射光子的流量R,就可以计算出相应的入射光功率P。 有了一个光子能量的概念,就对微弱光的量级有了明显的认识,例如,对于氦—氖激光器而言,1mW的光功率并不是弱光范畴,因为光功率P=1mW,则

单光子计数

单光子计数 摘要:本文简单介绍了单光子计数的原理、单光子计数器的主要性能及其操作方法,并用单光子计数器检测了微弱光信号。 关键词:单光子;单光子计数器;微弱光信号 1.引言 通常在一些基本的科研领域,特别是某些前沿学科,诸如高分辨率光谱学、非线性光学、拉曼光谱学、表面物理学的研究方面,都会遇到极微弱的光信息(简称弱光)检测问题。所谓弱光是指光电流强度比光电倍增管本身的热噪声(10^-14W)还要低,以致用一般的直流检测方法已很难从这种噪声中检测出信号。 单光子计数是目前测量微弱光信号最灵敏和有效的实验手段,这种技术中,一般都采用光电倍增管作为光子到电子的变换器(近年来,也有用微通道板和雪崩光电二极管的),通过分辨单个光子在光电倍增管中激发出来的光电子脉冲,利用脉冲高度甄别技术和数字计数技术,把光信号从热噪声中以数字化的方式提取出来。与模拟检测技术相比,单光子计数技术有如下的优点: 1.消除了光电倍增管高压直流漏电流和各倍增极的热发射噪声的影响,提高了测量的信噪比。 2.时间稳定性好。在单光子计数系统中,光电倍增管漂移、系统增益的变化,零点漂移和其他不稳定因素的计数影响不大。 3.可输出数字信号,能够直接输出给计算机进行分析处理。 4.有比较宽的线性动态范围,最大计数率可达10^6s^-1。 5.有很高的探测灵敏度,目前一般的光子计数器探测灵敏度优于10^-17W,这是其他探测方法达不到的。 2.实验目的 1.了解单光子计数工作原理。 2.了解单光子计数器的主要性能,掌握其基本操作方法。 3.了解用单光计数器系统结检测微弱光信号的方法。 3.实验原理 3.1光子流量和光流强度

SR400光子计数器

光子计数器-SR400 门控光子计数器(双通道) 双九位计数器 三个扫描鉴别器 200MHz计数率 5ns脉冲对分辨率 门控和连续计数方式 内置鉴别器 门和鉴别器输出 GPIB和RS—232接口 SR400 双通道门控光子计数器提供了一种简便、集成的计数方法,摒弃了老式计数系统的复杂操作及昂贵的价格。你不再需要将放大器、鉴别器、门发生器和计数器配在一起,SR400已经将这些模块组合到一个集成的、微处理控制的仪器中。使用SR400可以轻松地实现减小背景噪声、同步探测、光源补偿以及积存修正等复杂的测量。

计数器 SR400有两个独立通道,计数率可达200MHz。它提供了不同的计数模式:你可以设定固定的计数时间,直到达到一定的计数量;也可以设定固定的触发次数。它的每路计数通道都有各自的门发生器,最短5ns,最长达1s。门可以设定在与触发信号相关的固定位置、按测量寿命扫描或者恢复时变波形。 计数器的实际输入可通过鉴别器以NIM电平脉冲输出到前面板上进行观察。鉴别脉冲为0V-0.7V取负值。DISC输出对校准鉴别器域值或门定时非常有用。 信号输入和鉴别器 两路模拟信号输入(A和B)被截至到50Ω。可被接收的输入信号在正负300mV 之间并被±5V的直流电所保护。每路带直流电的信号输入到300MHz的放大器中,最小可探测到的脉冲为10mV。如果需要提高灵敏度则可以使用远程预放大器(如SR445A)。鉴别器为每路信号提供了-300mV到+300mV,步长为0.2mV的可选域值。脉冲对的分辨率为5ns,任一极上的脉冲都可能被探测到。可对每个域值进行编程以实现在任意方向、可选步长下的扫描。这样可以得到脉冲高度分析输出,有利于选择光电倍增管的偏置和鉴别器的电平。 计数周期 在一次扫描中,SR400可编程实现1到2000次计数周期的循环。在程控扫描结束时,计数器可能停止也可能重新启动扫描。连续的计数周期被“停留时间”所分开,你可设定停留时间从2ms到60s。在这段时间里,计数停止,你可以传输数据或改变外部参数。停留输出为TTL信号,它在整个停留时间内保持高电平,以便于在试验中连接其它设备。 输出 前面板的显示可达109。可以分别显示每个计数器也可以显示A+B或A-B。前面板的D/A输出给出了一个由技术模式决定的、与A,B,A-B或A+B成比例的模拟信号。比例可为对数的或是线性的。 计算机接口 内置的RS-232接口GPIB接口便于控制设备和取回数据。当SR400扫描时,计数器A和B的计数值将被存储于一个2000点的内部缓冲器中。这个缓冲器可以进行点对点的传输,也可通过任一接口一次清空。

单光子计数

单光子计数 【摘要】本实验主要学习了以PMT 为探测器的光子计数技术的基本实验方法,测量出了以中心波长为500nm 的发光二极管作为光源时,系统最佳甄别电平为300mV ;在此甄别电平下研究了信噪比R SN 与测量时间t 和入射光光功率P 0的关系,得出了测量时间越大、入射光功率越小,信噪比越大的结论;最后研究了工作温度T 对暗计数率的影响,发现温度降低暗计数率减小至一定值后保持稳定的较小值,得出可以通过降温增大信噪比的结论。 【关键词】单光子计数,信噪比,甄别电平,暗计数率 一、引言 现代科学技术许多领域都会涉及微弱光信息的检测问题,微弱光信号是时间的上的比较分散的光子,因而由检测器(通常是光电倍增管,以下简称PMT )输出的将是自然离散化的电信号。针对这一特点发展起来的单光子计数技术,采用脉冲放大、脉冲甄别和数字计数技术,大大提高了弱光探测的灵敏度,一般可以优于10-17,这是其他弱信号探测方法所不能比拟的。 光子计数计数有如下优点:第一,有很高的信噪比,基本消除了PMT 的高压直流漏电流和各倍增极的热点子的发射形成的暗电流所造成的影响,可以区分强度有微小差别的信号,测量精度很高;第二:抗漂移性很好,在光子计数测量系统中,PMT 增益的变化/零点漂移和其他不稳定因素影响不大,所以时间稳定性好;第三:有比较宽的线性动态范围,最大计数率可单位多达107/s 。 本实验学习以PMT 为探测器的光子计数技术基本实验方法并通过实验了解光子计数方法和弱光检测中的一些特殊问题,确定了弱光测量需要的最佳甄别电平,研究了信噪比R SN 与积分时间t 和入射光功率P 0和的关系,以及工作温度T 对暗计数率的影响。 二、实验原理 (一)物理原理 1、光子流量与光流强度 光是由光子组成的光子流,单个光子的能量是E p 与光波频率ν的关系是 p hc E h νλ == (1) 其中,光子流量R 表示单位时间内通过的光子数,光流强度P 是单位时间内通过的光能量即光功率,且有 p P RE =(2) 当光流强度小于16 10 W -时通常称为弱光,此时可见光的光子流量可见到1ms 内不到一个光子,因此实 验中的要完成的将是对单个光子进行进检测,进而得出弱光的光流强度,这就是单光子计数。 2、PMT 输出的信号波形 PMT 是一种从紫外到近红外都有极高的灵敏度和超快时间响应的真空电子管类光探测器件,用于各种

3.4 单光子计数

实验3.4 单光子计数 一、引言 通常在一些基本的科研领域,特别是某些前沿学科,诸如高分辨率光谱学、非线性光学、拉曼光谱学、表面物理学的研究方面,都会遇到极微弱的光信息(简称弱光)检测问题。所谓弱光是指光流强度比光电倍增管本身的热噪声(10-14W)还要低,以致用一般的直流检验方法已经很难从这种噪声中检测出信号。 单光子计数是目前测量弱光信号最灵敏和最有效的实验手段,这种技术中,一般都采用光电倍增管作为光子到电子的变换器(近年来,也有用微通道管和雪崩光电二极管的),通过分辨单个光子在光电倍增管中散发出来的光电子脉冲,利用脉冲高度甄别技术和数字计数技术,把光信号从热噪声中以数字化的方式提取出来。与模拟检测技术相比,单光子计数技术有如下的优点: 1.消除了光电倍增管高压直流漏电流和各倍增极的热发射噪声的影响,提高了测量的信噪比。 2.时间稳定性好。在单光子计数系统中,光电倍增管漂移、系统增益的变化,零点漂移和其他因素对计数影响不大。 3.可输出数字信号,能够直接输出给计算机进行分析处理。 4.有比较宽的线性动态范围,最大计数率可达106s-1。 5.有很宽的探测灵敏度,目前一般的光子计数器探测灵敏度优于10-17W,这是其他探测方法达不到的。 二、实验目的 1. 了解单光子计数工作原理。 2. 了解单光子计数的主要性能,掌握其基本操作方法。 3. 了解用单光计数系统检测微弱光信号的方法。 三、实验原理 1. 光子流量和光流强度 光是由光子组成的光子流,单个光子的能量ε与光波频率ν的关系是 ε=hν=hc/λ

式中c是真空中的光速,h是普朗克常数,λ是波长。 光子流量可用单位时间内通过的光子数R表示,光流强度是单位时间内通过的光能量,常用光功率P表示。单色光的光功率P与光子流量R的关系是 P=Rε 如果光源发出的是波长为630nm的近单色光,可以计算出一个光子的能量ε为 ε=3.13×10-19J 当光功率为P=10-16W时,这种近单色光的光子流量R为 R=3.19×102s-1 当光流强度小于10-16W时通常称为弱光,此时可见光的光子流量可降到一毫秒内不到一个光子。因此实验中要完成的将是对单个光子进行检测,进而得出弱光的光流强度,这就是单光子计数。 2.测量弱光时光电倍增管的输出特性 光电倍增管在实验1.2中已作介绍,其结构原理如图1所示。当光子入射到光电倍增管的光阴极上时,光阴极吸收光子后将发射出一些光子,光阴极产生的光电子数与入射到阴极上的光子数之比成为量子效率。大多数材料的量子效率都在30%以下。在弱光下光电倍增管输出的光电子脉冲基本上不重叠,所以光子计数实际上是将光电子产生的脉冲逐个记录下来的一种探测技术。当然,从统计意义上说也是单光子的计数。 图1 盒栅式光电倍增管 如图1所示,光阴极上发射出的光电子,经聚焦和加速达到第一倍增极上,将在第一倍增极上“打出”几倍于入射电子数目的二次电子。这些二次电子被加速后打到第二倍增极上……接连经过十个倍增极的增殖作用后,电子数目最高可增加到108。最后由阳极收集所有的电子,在阳极回路中形成一个电脉冲信号,如图2所示,脉冲宽度t w与光电倍增管的

光名词中英文

美国颐光科技有限公司是一家集开发、制造和销售光学元器件、光谱仪器、光电设备和与光学系统有关的仪器设备为一体的高新技术企业,同时也是多家美国、德国、英国、意大利、韩国等光学产品公司的中国区代理。 产品涉及单色仪,分光光度计,各种光谱仪器,时间相关荧光光谱测量,皮秒激光和皮秒光源,CCD,ICCD,红外面阵探测器,高速雪崩二极管探测器,光电倍增管,光学元器件,光学镀膜产品,各种光源,太阳模拟器,电光源及LED测量系统等。 一、光谱仪器 我公司光谱仪器,信噪比高,性能稳定,技术先进,对光谱测试过程实现计算机控制自动化,过程简单方便,测试结果在行业内也会具有一定的权威性和说服力。 凭借测试系统的高性价比以及全面的技术服务,我公司光谱测试系统已在国内很多单位的实验室投入使用,包括清华大学等知名大学、国家权威计量单位、中国科学院等研究机构以及众多的相关企业,经过大量客户对我公司光谱测试系统的使用,证明了我公司的光谱仪器及光谱测试系统的成熟。 1. 宽带光源,具有光谱范围宽,性能稳定,易于集成系统等优点。 卤钨灯,主要应用于可见到红外波段光谱测试。 氘灯,主要应用于紫外波段光谱测试。 氙灯,主要应用于紫外到红外波段光谱测试。 红外灯,主要应用于红外波段光谱测试。 混合光源,采用钨灯和氘灯混合,光谱范围可以覆盖185nm-2500nm. 积分球光源,通过配备积分球,使光源输出更均匀。 我公司宽带光源 2. 窄带光源,具有精度高,杂散光低,易于集成系统等优点。 波长连续可调卤钨灯光源 波长连续可调氘灯光源 波长连续可调氙灯光源 波长连续可调混合光源 波长连续可调其他光源 光谱校准灯

3. 单色仪,较同类产品具有计算机控制自动化,精度高,准确度高,重复性高,杂散光低,性能稳定,耐用等优点,性价比高也是我公司单色仪产品的突出优点。 CM110微型单单色仪 CM112微型双单色仪 CM系列微型单色仪附件 CM系列单色仪标准光栅 DK240 1/4米单单色仪 DK242 1/4米双单色仪 DK480 1/2米单色仪 DK系列单色仪附件 DK系列单色仪标准光栅 4. 分光光度计,波长涉及紫外,可见及红外波段,较同类产品具有精度高,杂散光低,性能稳定等优点,与计算机的数据传输采用USB口,使用方便,测量简单。 SM200 OEM CCD分光光度计 SM240 CCD分光光度计 SM241 红外分光光度计 SM242 分光光度计 SM520 高分辨率分光光度计 SM301 硫化铅/硒化铅分光光度计 SM302 铟稼砷分光光度计 5. 光度计 Spectroradiometers PR-670 SpectraScan PR-655 SpectraScan PR-705/715 SpectraScan PR-650 SpectraScan PR-1980B SpectraScan Photometers PR-524 –LiteMate PR-525 ColorMate

光子计数器原理

光子计数器原理 现代光测量技术已步入极微弱发光分析时代。在诸如生物微弱发光分析、化学发光分析、发光免疫分析等领域中,辐射光强度极其微弱,要求对所辐射的光子数进行计数检测。对于一个具有一定光强的光源,若用光电倍增管接收它的光强,如果光源的输出功率及其微弱,相当于每秒钟光源在光电倍增管接收方向发射数百个光子的程度,那么,光电倍增管输出就呈现一系列分立的尖脉冲,脉冲的平均速率与光强成正比,在一定的时间内对光脉冲计数,便可检测到光子流的强度,这种测量光强的方法称为光子计数。 光子计数器是主要由光电倍增管、电源、放大系统、光源组成。 1.电倍增管的工作原理 光电倍增管是一个由光阴极、阳极和多个倍增极(亦称打拿极)构成的特殊电子管。它的前窗对工作在可见光区及近紫外区的用紫外玻璃:而在远紫外区则必须使用石英。 (1)光阴极:光阴极的作用是将光信号转变成电信号,当外来光子照射光阴极时,光阴极便可以产生光电子。产生电子的多少与照射光的波长及强度有关。当照射光的波长一定时,光阴极产生光电流的强度正比于照射光的强度,这是光电倍增管测定光强度的基础。各种不同的光电倍增管具有不同的光谱灵敏度。目前很少用单一元素制作光阴极,常用的有AgOCs、Cs3Sb、BiAgOCs、Na2KSb、K2CsSb等由多元素组成的光阴极材料。 (2)倍增极:倍增极也称打拿极,所用的材料与阴极相同。倍增极的作用实质上是放大电流,即在受到前一级发出的电子的打击后能放出更多的次级电子。普通光电倍增管中倍增极的数目,一般为11个,有的可达到20个。倍增极数目越大,倍增极间的电位降越大,PMT的放大作用越强。

(3)阳极:大部分由金属网做成,置于最后一级打拿级附近,其作用是接受最后一个倍增极发出的电子。但接受后,不象倍增极那样再射出电子,而是通导线以电流的形式输出。 光电倍增管的工作原理如图1所示,在光电倍增管的阴极和阳极间加一高电压,且阳极接地,阴极接在高压电源的负端。另外,在阳极和阴极之间串接一定数目的固定电阻,这样在每个倍增级上都产生一定的电位降(一般为50V到90V),使阴极最负(图中假定为·400V),每一倍增极-300V,顺次增高,至阳极时为 Jf0”V。当一束光线照射阴极时,假设产生一个光电子,这个光电子在电场的作用下,向第一倍增极射去。由于第一倍增极的电位比光阴极要正100V,所以电子在此期间会被加速。当其撞击第一倍增极时,会溅射出数目更多的二次电子(图中假定为2个)。依此类推,电子数目越来越多。目前,一般光电倍增管的电子数总增益G约为106,有的甚至高达108~101~,由于其放大作用很强,所以适用于微弱光信号的测量。这里 G=dN (1) 式中d是每一个入射光电子能打出的二次电子的平均数,叫做二次发射系数。此二次发射系数与倍增级材料及倍增极间的电位降有关,式中n为倍增极的数目。

单光子计数

单光子计数 物理学系刘录081120076 一、引言 通常在一些基本的科研领域,特别是某些前沿学科,诸如高分辨率光谱学、非线性光学、拉曼光谱学、表面物理学的研究方面,都会遇到极微弱的光信息(简称弱光)检测问题。所谓弱光是指光流强度比光电倍增管本身的热噪声(10-14W)还要低,以致用一般的直流检验方法已经很难从这种噪声中检测出信号。 单光子计数是目前测量弱光信号最灵敏和有效的实验手段,这种技术中,一般都采用光电倍增管作为光子到电子的变换器(近年来,也有微通道板和雪崩光电二极管),通过分辨率单个光子在光电倍增管中激发出来的光电子脉冲,利用脉冲高度甄别技术和数字计数技术,把光信号从热噪声中以数字话的方式提取出来。与模拟检测技术相比,单光子计数技术有如下的优点: 1.消除了光电倍增管高压直流漏电流和各倍增极的热发射噪声的影响,提高了测量的 信噪比。 2.时间稳定性好。在单光子计数系统中,光电倍增管漂移、系统增益的变化,零点漂 移和其他因素对计数影响不大。 3.可输出数字信号,能够直接输出给计算机进行分析处理。 4.有比较宽的探测灵敏度,目前一般的光子计数器探测灵敏度优于10-17W,这是其他 探测方法达不到的。 二、实验目的 1.了解单光子计数工作原理。 2.了解单光子计数器的主要功能,掌握其基本操作方法。 3.了解用单光子计数系统检验微弱光信号的方法。 三、实验原理 1.光子流量和光流强度 光是有光子组成的光子流,单个光子的能量ε与光波频率ν的关系是 ε=hν=hc/λ (1) 式中c是真空中的光速,h是普朗克常数,λ是波长。 光子流量可用单位时间内通过的光子数R表示,光流强度是单位时间内通过的光能量,常用光功率P表示。单色光的光功率P与光子流量R的关系是: P=Rε (2) 如果光源发出的是波长为630nm的近单色光,可以计算出一个光子的能量ε为 Ε=3.13×10-19J 当光功率为10-16W时,这种近单色光的光子流量为 R=3.19×102s-1 当光流强度小于10-16W时通常称为弱光,此时可见光的光子流量可降到一毫秒内不到一个,

单光子计数实验

实验十七单光子计数实验 光子计数也就是光电子计数,即当光流强度小于10?16W时,光的光子流量可降到一毫秒内不到一个光子,因此该实验系统要完成的是对单个光子进行检测,进而得出弱光的光流强度,这就是单光子计数.它是微弱光信号探测中的一种新技术。它可以探测弱到光能量以单光子到达时的能量。目前已被广泛应用于喇曼散射探测、医学、生物学、物理学等许多领域里微弱光现象的研究。 通常的直流检测方法不能把淹没在噪声中的信号提取出来。微弱光检测的方法有:锁频放大技术、锁相放大技术和单光子计数方法。最早发展的锁频,原理是使放大器中心频率f0与待测信号频率相同,从而对噪声进行抑制。但这种方法存在中心频率不稳、带宽不能太窄、对待测信号缺乏跟踪能力等缺点。后来发展了锁相,它利用待测信号和参考信号的互相关检测原理实现对信号的窄带化处理,能有效的抑制噪声,实现对信号的检测和跟踪。但是,当噪声与信号有同样频谱时就无能为力,另外它还受模拟积分电路漂移的影响,因此在弱光测量中受到一定的限制。单光子计数方法,是利用弱光照射下光电倍增管输出电流信号自然离散化的特征,采用了脉冲高度甄别技术和数字计数技术。与模拟检测技术相比有以下优点: 1、测量结果受光电倍增管的漂移、系统增益的变化及其它不稳定因素影响较小。 2、基本上消除了光电倍增管高压直流漏电流和各倍增级的热发射噪声的影响,提高了测量结果的信噪比。可望达到由光发射的统计涨落性质所限制的信噪比值。 3、有比较宽的线性动态范围。 4、光子计数输出是数字信号,适合与计算机接口作数字数据处理。 所以采用光子计数技术,可以把淹没在背景噪声中的微弱光信息提取出来。目前一般光子计数器的探测灵敏度优于10-17W,这是其它探测方法所不能比拟的。 一、实验目的 1、介绍这种微弱光的检测技术;了解SGD-2实验系统的构成原理。 2、了解光子计数的基本原理、基本实验技术和弱光检测中的一些主要问题。 3、了解微弱光的概率分布规律。 二、实验原理 1、光子 光是由光子组成的光子流,光子是静止质量为零、有一定能量的粒子。与一定的频率υ相对应,一个光子的能量E p可由下式决定: E p=hυ=hc/λ (2-1) 式中c=3×108m/s,是真空中的光速;h=6.6×10-34J·s,是普朗克常数。例如,实验中所用的光源波长为λ=500 nm的近单色光,则E p=3.96×10-19J。光流强度常用光功率P 表示,单位为W。单色光的光功率与光子流量R(单位时间内通过某一截面的光子数目)的关系为: P=R·E p (2-2) R=10个光子所以,只要能测得光子的流量R,就能得到光流强度。如果每秒接收到4 P=R E?=104×3.96×10-19=3.96×10-15W。 数,对应的光功率为 p 2、测量弱光时光电倍增管输出信号的特征

单光子计数数据处理

五.数据处理 (1)阈值方式(测量实验阈值) 无冷却时: (1)没有电流输入测量阈值:31,光子数38099 (2)有电流输入测量阈值:63,光子数135465 有冷却时: (3)没有电流输入测量阈值:31,光子数14695 (4)有电流输入测量阈值:63,光子数130945 得出结论:无论是否冷却,阈值的大小都受电流输入的影响,有电流输入比没电流输入时的阈值要大;而光子数则受冷却和电流的影响,有冷却时的光子数比没冷却的要少,有电流输入时的光子数要比没电流输入的光子数要多很多。 (2)不同光功率测得的光子数 设施采样间隔100ms,积分时间1000ms。

光子数与光功率的关系曲线如下所示: 由上图可知,在其他条件相同的情况下,单位时间内检测到的光子数随着光功率的增大而逐渐增加,二者基本成正比关系。 (3)不同积分时间测得的光子数 设置采样间隔500ms,积分时间500ms。得如下所示的图。

由表格对比可知:在其他条件相同的情况下,积分时间会影响所测量光子的数目。积分时间越长,所测得的光子数越多,二者呈线性关系。理论上可推导,当光子的出射流量基本不变时,积分时间越长,累积的光子数就越多,所测得的光子也就越多。而且积分时间越长,所测得数据的的波动小,稳定性也就更加好。 (4)不同采样间隔的光子数 设置采样间隔为500ms,积分时间为200ns。 近,采样间隔对光子数的影响不大。但采样间隔越大,所测得的数据波动性较小,出射光子较稳定。所以在测量时,应采用较大的采样间隔。 七.实验结论 通过实验,讨论了在不同温度,不同光功率,不同积分时间以及不同采样间隔情况下对实验所测得的光子数的影响。由数据处理总结如下: 1、在其他条件相同的情况下,给阴极冷却降温可以有效抑制出射光电子的数量。

TCSPC荧光寿命工作原理

Techcomp Ltd TCSPC 时间相关单光子计数技术基本原理说明 Dr. Hailin Qiu 2011-9-3

qwertyuiopasdfghjklzxcvbnmqwertyu iopasdfghjklzxcvbnmqwertyuiopasdfg hjklzxcvbnmqwertyuiopasdfghjklzxcv bnmqwertyuiopasdfghjklzxcvbnmqw ertyuiopasdfghjklzxcvbnmqwertyuiop asdfghjklzxcvbnmqwertyuiopasdfghjk lzxcvbnmqwertyuiopasdfghjklzxcvbn mqwertyuiopasdfghjklzxcvbnmqwert yuiopasdfghjklzxcvbnmqwertyuiopas dfghjklzxcvbnmqwertyuiopasdfghjklz xcvbnmqwertyuiopasdfghjklzxcvbnm qwertyuiopasdfghjklzxcvbnmqwertyu iopasdfghjklzxcvbnmqwertyuiopasdfg hjklzxcvbnmqwertyuiopasdfghjklzxcv bnmrtyuiopasdfghjklzxcvbnmqwertyu iopasdfghjklzxcvbnmqwertyuiopasdfg hjklzxcvbnmqwertyuiopasdfghjklzxcv bnmqwertyuiopasdfghjklzxcvbnmqw TCSPC 时间相关单光子计数技术 基本原理说明 2011-9-3 Dr. Hailin Qiu

光子计数器

光子计数器的基本原理 及其应用研究 2011/6/20 分析了单光子计数器的基本原理,主要组成部件。重点介绍了光电倍增管,放大器,甄别器,计数器等各部件在微光信号检测中的功能。及光子计数器的应用。

光子计数器的基本原理及其应用研究 摘要: 分析了单光子计数器的基本原理,主要组成部件。重点介绍了光电倍增管,放大器,甄别器,计数器等各部件在微光信号检测中的功能。介绍了光子计数器的主要误差来源。总结出光子计数器的优点从而介绍其在科学技术总的广泛应用,侧重的说明了光子计数技术在激光脉冲探测中的应用还有光子图像的探测技术。关键词: 光子计数;光电倍增管;激光脉冲探测;光子图像 一、引言 随着近代科学技术的发展,人们对极微弱光的信息检测产生越来越浓厚的兴趣。单光子探测技术再高分辨率的光谱测量,非破坏性物质分析,高速现象检测,精密分析,大气测污,生物发光,放射探测,高能物理,天文测光,光时域反射,量子密钥分发系统等领域有着广泛应用。它已经成为各个发达国家光电子学界研究的课题之一。 所谓弱光,是指光电流强度比光电倍增管本身在室温下的热噪声水平(10-14W)还要低的光。因此,用通常的直流测量方法,已不能把淹没在噪声中的信号提取出来。近年来,由于锁定放大器在信号频带很宽或噪声与信号有同样频谱时就无能为力了,而且它还受模拟积分电路飘移的影响,因此锁定放大器在弱光测量受到一定的限制。 现代光子计数技术的优点是:有很高的信噪比。基本上消除了光电倍增管的高压直流漏电流和各倍增极的热电子发射形成的暗电流所造成的影响。可以区分强度有微小差别的信号,测量精度很高。抗漂移性很好。在光子计数测量系统中,光电倍增管增益的变化、零点漂移和其他不稳定因素对计数影响不大,所以时间稳定性好。有比较宽的线性动态范围,最大计数率可达测106s-1。量数据以数字显示,并以数字信号形式直接输入计算机进行分析处理。 基本原理 1、光子的量子特性 光是由光子组成的光子流,光子是静止质量为零,有一定能量的粒子。一个光子的能量可用下式确定 0hc E hνλ == 式中=3.0×108m/s是真空中的光速,h=6.6×10-34J.S是普朗克常数。光流强度常用光功率表示,单位为W。单色光的光功率可用下式表示 p R E =? 式中R为单位时间通过某一截面的光子数。即只要测得R,就可得到。 2、光子计数器原理 光子计数器主要由光电倍增管、放大器、甄别器和计数器组成。

时间相关单光子计数法测量荧光寿命-2011

时间相关单光子计数法测量荧光寿命 (一)实验目的与要求 目的:1、了解时间相关单光子计数法测量荧光寿命的原理和方法 2、学习时间相关单光子计数荧光光度计的使用方法 要求:1、掌握时间相关单光子计数法测量荧光寿命的原理; 2、理解荧光寿命测量在物质定性及定量分析中的应用; 3、了解时间分辨荧光光光度计的基本组成,各部件的作用; 4、学习利用Origin软件处理实验数据。 (二)实验原理 1 时间相关单光子计数器工作原理 TCSPC(Time-Correlated Single Photon Counting)是目前主要应用的荧光寿命测定技术。1975 年由PTI(Photon Technology International) 公司首先商品化,此外,Edinburgh Instruments、IBH、HORIBA 等公司也在生产基于TCSPC 的时间分辨荧光光谱仪。 TCSPC 的工作原理如图1 所示,光源发出的脉冲光引起起始光电倍增管产生电信号,该信号通过恒分信号甄别器1 启动时辐转换器工作,时幅转换器产生一个随时间线性增长的电压信号。另外,光源发出的脉冲光通过激发单色器到达样品池,样品产生的荧光信号再经过发射单色器到达终止光电倍增管,由此产生的电信号经由恒分信号甄别器2 到达时幅转换器并使其停止工作。这时时幅转换器根据累积电压输出一个数字信号并在多道分析仪(Multichannel Analyzer) 的相应时间通道计入一个信号,表明检测到寿命为该时间的一个光子。几十万次重复以后,不同的时间通道累积下来的光子数目不同。以光子数对时间作图可得到如图2 所示直方图,此图经过平滑处理得到荧光衰减曲线。

最新3、单光子计数实验讲义汇总

3、单光子计数实验讲 义

单光子计数实验讲义(以课本为主) 一 实验目的 1. 掌握使用光子技术的方法对微弱信号进行检测及实验的操作过程; 2. 了解光子计数方法的基本原理光电倍增管(PMT )的工作原理。 二 实验仪器 光源,PMT ,制冷器,外光路,计算机。 三 实验原理 在弱光信号检测中,当光强微弱到一定程度时,光的量子特征开始突出起来。例如:He-Ne 激光光源,其每个光子的能量为3.19 10-19焦耳。当光功率小于10-11瓦时,相当光子的发射率为108光子数/秒,即光子的发射周期约为10-8秒,刚好是PMT 输出脉冲可分辨的极限宽度(即PMT 响应时间)。这样,PMT 的输出呈现出脉冲序列的特点,可测得一个个不重叠的光子 能量脉冲。光 子计数器就是 利用光信号脉 冲和噪声脉冲 之间的差异,如幅度上的差异,通过一定的鉴别手段进行工作,从而达到提高信噪比的目的。单光子试验框图入图1所示。 (一)基本原理 单光子计数法利用在弱光下光电倍增管 输出信号自然离散化的特点,采用精密的脉 冲幅度甄别技术和数字计数技术,可把淹没 在背景噪声中的弱光信号提取出来。当弱光 图1 单光子实验框

照射到光电子阴极时,每个入射光子以一定的概率(即量子效率)使光阴极发射一个电子。这个光电子经倍增系统的倍增最后在阳极回路中形成一个电流脉冲,通过负载电阻形成一个电压脉冲,这个脉冲称为单光子脉冲。如图1所示,横坐标表示PMT输出的噪声与单光子的幅度电平(能量),纵坐标表示其幅度电平的分布概律。可见,光电子脉冲与噪声分布位置不同。由于信号脉冲增益相近,其幅度相当好的集中在一个特定的范围内,光阴机反射的电子形成的脉冲幅度较大,而噪声脉冲则比较分散,它在阳极上形成的脉冲幅度较低,因而出现了“单光电子峰”。用脉冲幅度鉴别器把幅度低于的脉冲抑制掉,只让幅度高于的脉冲通过就实现了单光子计数。 放大器的功能是把光电子脉冲和噪声脉冲线性放大,应友谊顶的增益,上升时间≤3ns,这就要求放大大器的通频带宽达到100MHz,并且有较宽的线性动态范围和较低的热噪声,经过放大后的信号要便于脉冲幅度鉴别器的鉴别。 脉冲幅度甄别器的主要任务就是剔除噪声脉冲,把淹没在噪声信号中的光子信号筛选出来,以达到真正的光子计数的目的。在脉冲幅度甄别器里设置有一个连续可调的比较电压Vh。只有高于Vh的脉冲,才能通过甄别器得到输出。如果把甄别电平选在图2的谷点对应的脉冲高度上,就能去掉大部分噪声脉冲而只有光电子脉冲通过,从而提高信噪比。以上为一般模式(积分模式)下甄别器工作原理,图3—a为放大后信号脉冲,图3—b为甄别后输出脉冲。 图3—a 图3—b

相关文档