文档库 最新最全的文档下载
当前位置:文档库 › 大学物理下册第十七章

大学物理下册第十七章

大学物理下册第十七章
大学物理下册第十七章

第十七章 狭义相对论

17—1 设有一宇宙飞船,相对于地球作匀速直线运动,若在地球上测得飞船的长度为其静止长度的一半,问飞船相对地球的速度是多少?

[解] 飞船静止长度0l 为其固有长度,地球上测得其长度为运动长度,由长度收缩公式,有:

2

)(1020l c v

l l =?=

解得:

23=c v

即:c c v 866.02

3

==

17—2 宇宙射线与大气相互作用时能产生π介子衰变,此衰变在大气上层放出μ粒子,已知μ粒子的速率为v =0.998c ,在实验室测得静止μ粒子的平均寿命为s 6102.2?×,试问在8000m 高空产生的μ粒子能否飞到地面? [解] 地面上观测到的μ子平均寿命与固有寿命之间的关系

2

1??

?????=c v t t μ子运行距离m c c v t v vt l 1042998.01102.2998.0126

2

0=?××=??

?

????==?

μ子能飞到地面。

17—3 在S 系中观测到两个事件同时发生在x 轴上,其间距离为1m ,在S ,系中观测这两个事件之间的距离是2m 。求在S ,中测得的这两个事件发生的时间间隔。 [解] 在S 系中两事件时间间隔,0=Δt 由Lorentz 变换

2

22

)

/(1)/(1c u x c u t t c u ut x x ??

=

′??=

′ 得:????

?

??

?

?

?Δ?=?Δ?Δ=′Δ?Δ=?Δ?Δ=′Δ2

2222

2)/(1)/(1)/(1)/(1c u x c u c u x c u t t c u x c u t u x x 将m x m x 1,2=Δ=′Δ代入上两式,得

s t c u 91077.5,2

3?×?=′Δ=

17—4 远方一颗星体以0.80c 的速率离开我们,我们接收到它辐射来的闪光按5昼夜的周期变化,求固定在这星

体上的参考系中测得的闪光周期。 17—4 [解] 所求的为固有周期0T : 380.015)/(1220=?=?=c v T T (昼夜)

17—5 假设一飞船的速率可达u =0.5c ,它沿着广州和北京的连线飞行,已知广州到北京的直线距离为km 31089.1×,问飞船中的乘客观测到广州到北京的直线距离是多少? [解] 已知固有长度km l 301089.1×=

km c v l l 3232

106368.15.011089.11×=?××=??

?

????=

17—6 1966~1972年间,欧洲原子核研究中心(CERN)多次测量到储存环中沿“圆形轨道”运行的μ粒子的平均寿命,在μ粒子的速率为0.9965c 时,测得的平均寿命是s 61015.26?×。μ粒子固有寿命的实验值是610197.2?×s 。问实验结果与相对论理论值符合的程度如何? [解] μ粒子固有寿命理论值

s c v t t 6262

010186.29965.0110615.21??×=?××=??

?

????=

与实验值比较,相对误差0.5%,两者符合得极好。 或=?×=

??

?????=

?2

62

09965

.0110197.21c v t t

与实验值610615.2?×比较。

17—7 在惯性系S 中的同一地点发生A 、B 两个事件,B 晚于A 4s ,在另一惯性系中S ′中观测到B 晚于A 5s ,求:(1)这两个参考系的相对速率是多少?(2)在S ′系这两个事件发生的地点间的距离是多少? [解](1)由题意知,固有时s 40=τ,根据时间膨胀公式,

2

)

/(1c u ?=

ττ

有:5/4/)/(102

==?ττc u 由此得

,53=c u 即c u 5

3= (2)应用Lorentz 变换式,得: 2

)

/(1c u ut x x ??=

2

2

)

/(1)

/(1c u t u c u t u x x ?Δ?

=?Δ?Δ=

′Δ∴

c c 35

4453?=×?= 因而S'系中这两个事件发生地点间相距3c 。 17—8 有一宇航员乘速率为1000s km 的火箭由地球前往火星,宇航员测得他经40h 到达火星,求地面上观测者测得的时间与宇航员测得的时间差。

[解] 宇航员测得的是固有时间0t ,地面测得的时间

小时00022.4012

0=??

?????=

c v t t 小时400=t

所以小时40102.2?×=?t t

17—9 (1)火箭A 以0.8c 的速率相对于地球向东飞行,火箭 B 以0.6c 的速率相对地球向西飞行,求火箭B 测得火箭A 的速率的大小和方向。

(2)如果火箭A 向正北飞行,火箭B 仍然向西飞行,则由火箭B 测得火箭A 的速率大小中方向又如何? [解] (1)选地球为S 系,火箭B 为S’系,并设正东为X 轴正向,则对A 有:

0,8.0,

6.0===?=x y x v v c v c u

由速度变换公式,得:

c c c c c c v c

u

u v v x x

x 946.06.08.016.08.0122=×+

+=??=′

方向为正东。

(2)坐标系仍如(1)问,

c v v v c u y z x 8.0,0,

6.0===?=

由速度变换公式,有

c v c

u u v v x

x

x 6.012=??=′

c v c u c u v v x

y y 64.01)/(122

=??=′

0=′

z v

c v v v v z y x 877.02'2'2

'=++=′

有正东方向夹角为:

o 83.46877.06.0cos cos 1''

1

===??c

c

v v x θ

17—10 一空间飞船以0.5c 的速率从地球发射,在飞行中飞船又向前方相对自己以0.5c 的速率发射一火箭,问地球上的观测者测得火箭的速率是多少?

[解] 地面取为s 系,飞船取为s ′系,则c v 5.0=,c u x 5.0=′。对地面观测者而言火箭速率

c c c

c c c c

v u v u u x x x 8.05.05.015.05.0122

=×++=′++′=

17—11 半人马星座的口星距地球为16103.4×m ,设有一飞船以0.999c 的速率往返于。星与地球之间。由地球上观测,

飞船往返一次需多少时间?若在飞船上观测,往返一次需多少时间? [解]取地球为S 系,飞船为S’系,地球上观测飞船往返一次需时:

c u x t 999.0/103.42/2216××=Δ=Δ8

1087.2×=S 由Lorentz 变换,飞船上观测,往返一次需时:

72

21028.1)/(122×=?Δ?

Δ×=′Δc u x c u t t s

17—12 地球上的观测者发现,一只以速率0.60c 向东航行的宇宙飞船将在5s 后同一个以0.80c 速率向西飞行的慧星相撞。 (1)飞船中的人将观测到慧星以多大的速率向他们接近?(2)按照飞船上的钟,还有多少时间允许他们离开原来的航线避免相撞?

[解] 地球取为s 系,飞船取为s ′系,由已知条件,当取x 轴向东时,c v 6.0=,c u x 80.0?=,s t 5=Δ。飞船上人观测彗星速率

c c

c c

v u v u u x x x 946.060.080.0160.080.012

?=×+??=

??=

′ 负号表示彗星向西飞行。时间间隔t Δ在飞船中观测应为t ′Δ 2

21??

?????Δ?

Δ=

′Δc v c x

v t t 式中x Δ为相撞浅s 中彗星飞行距离。t u x x Δ=Δ 所以s t c v c v u c v c x

v t t x 25.91112

2

22=Δ??

???????=??

?

????Δ?

Δ=′Δ 17—13 设一火箭的静止质量为100t ,当它以第二宇宙速度飞行时,它的质量增加了多少? ’ [解] s m s km v 41012.12.11×==

m c v m m 0000000009.110312.11112

52

0=??

????×?=

??

?

????=

g m m m m 20100109109??×=×=?=Δ

17—14 要使电子的速率从s m 8102.1×增加到s m 8104.2×必须做多少功? [解] 由动能定理,外力所作的功为:

)

/(11)

/(11(

2

12

2202c v c v c m mc A ??

?=Δ=

代入数据,得:

J A 14141072.4)091.1667.1(10199.8??×=?×=

17—15 某粒子的静止质量为0m ,当其动能等于其静能时,其质量和动量各等于多少? [解] 动能为202c m mc E k ?= 由已知条件

20c m E k =,故 2)/(1/12=?c v

解出c v 2

3

=

,所以,有: 02

2)

/(1m c v m m =?=

c m mv p 03==

17—16 太阳的辐射能来自其内部的核聚变反应。太阳每秒钟向周围空间辐射出的能量约为s J ?×28105,由于这个原因,太阳每秒钟减少多少质量? [解] ()

kg c E m 122

82821056.5103105×=××=Δ=Δ

17—17 一颗核弹含有20kg 的钚,爆炸后的生成物的静止质量比原来的静止质量小410分之一,

求爆炸中释放的能量。 [解] 由质能关系,得:

2mc E Δ=Δ284)103(1020×××=?J 141080.1×=

17—18 假设一个静止质量为0m 、动能为202c m 的粒子同一个静止质量为02m ,处于静止状态的粒子相碰撞并结合在一起,试求碰撞后结合在一起的粒子的静止质量。 [解]依题意,得:

)1)/(11(

2

20??=c v c m E k 202c m =

故有:

c v c v 23

2

,3)/(112

=

=? 由动量守恒、能量守恒定律,得:

2

'02

0)

/(1)

/(1c v v m c v v m ′?′

=

?

2

2'02

2

020)/(1)/(112c v c

m c v c

m c m ′?=

?+ 可解得:0'

017m m =

17—19 在北京的正负电子对撞机中,电子可以被加速到动能为eV E k 9108.2×=。这种电子的速率与光速相差多大?一个电子的动量是多大?(电子的静止能量eV E 6010511.0×=)。

[解] 因为???????

???=1112

2

0βc m E k

所以

548010511.0108.211116

9

202=××+=+=?c m E k β

999999983.05480112

=???????=β ()1

89.4106.11???=×=?=?s m c c v c β

118312

0105.1000000083.01011.954801????×=×××=??

?????=

s m kg c c v v m p

17—20 静止质量为0M 的粒子在静止时衰变为静止质量为10m 和20m 的两个粒子。试求静止质量为10m 的粒子的能量1E 和速度1v 。

[解] 根据动量、能量守恒定律列出方程

()()

?????

?????????????+

???????=??

?

????+???????=21101112222021110222202

12102

0c v v m c v v m c v c m c v c m c M

令c v 11=β、c v 22=β,上两式化为

()()???

?

???

?+

?=?+?=411031122220211102

22021100ββββββm m m m M

从(4)式得 ()()512

1

2

10

21

2

20

2

1

2102

2ββββm

m m +?=

(5)式代入(3)式消去2β,经代数运算解出

12

2

20210200

10121???

????

????

?

?????+?=m m M M m β

12

2

20210200

10121???

????????

?

?????+?=m m M M m c v 202202102022210121c M m m M c m E ???

????

??+=?=

β

大学物理(下)十三章作业与解答

第十三章电磁感应 一. 选择题 1. 如图,两根无限长平行直导线载有大小相同方向相反的电流I,均以的变化率增长,一矩形线圈位于导线平面内,则 (A) 线圈中无感应电流 (B) 线圈中感应电流方向不确定 (C) 线圈中感应电流为顺时针方向 (D) 线圈中感应电流为逆时针方向 [ ] 2. 将形状完全相同的铜环和木环静止放置,并使通过两环面的磁通量随时间的变化率相等,则不计自感时 (A) 铜环中有感应电动势,木环中无感应电动势 (B) 铜环中感应电动势大,木环中感应电动势小 (C) 铜环中感应电动势小,木环中感应电动势大 (D) 两环中感应电动势相等 [ ] 3. 如图,M、N为水平面内两根平行金属导轨,ab与cd为 相互平行且垂直于导轨并可在其上自由滑动的两根直裸导线,外 磁场均匀垂直于水平面向上,当外力使ab向右平移时,cd应 (A) 不动 (B) 转动 (C) 向左移动 (D) 向右移动 [ ] 4. 如图所示,直角三角形金属框abc放在均匀磁场中,磁场平行于ab 边,bc的长度为l. 当金属框绕ab边以匀角速ω转动时,则回路中的感应电 动势和a、c两点间的电势差为 (A) , , (B) (C) ,

(D) , [ ] 5.在一无限长圆柱区域内,存在随时间变化的均匀磁场,图示为磁场空间的一个横截面,下列说法正确的是 (A) 圆柱形区域内有感生电场,区域外无感生电场 (B) 圆柱形区域内无感生电场,区域外有感生电场 (C) 圆柱形区域内有感生电场,区域外也有感生电场 (D) 圆柱形区域内无感生电场,区域外也无感生电场 [ ] 6. 一密绕螺线管的自感为L ,若将其锯为相等的两半,则这两个螺线管的自感 (A) 都等于 (B) 一个大于,一个小于 (C) 都大于 (D) 都小于 [ ] 7. 一自感系数为0.1H 的线圈中,当电流在(1/10)s 内由1A 均匀减小到零时,线圈中自感电动势的大小为 (A) 100V (B) 10V (C) -1V (D) 1V [ ] 8. 面积为S 和2S 的两圆线圈1、2如图放置,通有相同的电流, 线圈1中的电流所产生的通过线圈2的磁通为Φ21,线圈2中的电流所产生的通过线圈1的磁通为Φ12,则Φ21和Φ12的大小关系为 (A) Φ21 = 2Φ12 (B) Φ12 = Φ21 (C) Φ12 < Φ21 (D) Φ21 = Φ12 / 2 [ ] 9. 通有电流I 的半径为R 圆线圈,放在近似真空的空间里,圆心处的磁场能量密度是: (A) (B) (C) (D) [ ] 10. 下列情况位移电流为零的是:

大学物理 马文蔚 第五版 下册 第九章到第十一章课后答案

第九章振动 9-1一个质点作简谐运动,振幅为A,在起始时刻质点的位移为,且向x 轴正方向运动,代表此简谐运动的旋转矢量为() 题9-1图 分析与解(b)图中旋转矢量的矢端在x轴上投影点的位移为-A/2,且投影点的运动方向指向Ox轴正向,即其速度的x分量大于零,故满足题意.因而正确答案为(b). 9-2已知某简谐运动的振动曲线如图(a)所示,则此简谐运动的运动方程为() 题9-2图 分析与解由振动曲线可知,初始时刻质点的位移为–A/2,且向x轴负方向运动.图(b)是其相应的旋转矢量图,由旋转矢量法可知初相位为.振动曲线上给出质点从–A/2 处运动到+A处所需时间为 1 s,由对应旋转矢量图可知相应的相位差,则角频率,故选(D).本题也可根据振动曲线所给信息,逐一代入方程来找出正确答案. 9-3两个同周期简谐运动曲线如图(a)所示, x1 的相位比x2 的相位() (A)落后(B)超前(C)落后(D)超前 分析与解由振动曲线图作出相应的旋转矢量图(b)即可得到答案为(b).

题9-3图 9-4当质点以频率ν作简谐运动时,它的动能的变化频率为() (A)(B)(C)(D) 分析与解质点作简谐运动的动能表式为,可见其周期为简谐运动周期的一半,则频率为简谐运动频率ν的两倍.因而正确答案为(C). 9-5图(a)中所画的是两个简谐运动的曲线,若这两个简谐运动可叠加,则合成的余弦振动的初相位为() (A)(B)(C)(D) 分析与解由振动曲线可以知道,这是两个同振动方向、同频率简谐运动,它们的相位差是(即反相位).运动方程分别为和 .它们的振幅不同.对于这样两个简谐运动,可用旋转矢量法, 如图(b)很方便求得合运动方程为.因而正确答案为(D). 题9-5图 9-6 有一个弹簧振子,振幅,周期,初相.试写出它的运动方程,并作出图、图和图.

大学物理答案第11章

第十一章恒定磁场 11-1两根长度相同的细导线分别多层密绕在半径为R和r的两个长直圆筒上形成两个螺线管,两个螺线管的长度相同,R=2r,螺线管通过的电流相同为I,螺线管中的磁感强度大小满足() (A)(B)(C)(D) 分析与解在两根通过电流相同的螺线管中,磁感强度大小与螺线管线圈单位长度的匝数成正比.根据题意,用两根长度相同的细导线绕成的线圈单位长度的匝数之比 因而正确答案为(C). 11-2一个半径为r的半球面如图放在均匀磁场中,通过半球面的磁通量 为() (A)(B) (C)(D) 题11-2 图 分析与解作半径为r的圆S′与半球面构成一闭合曲面,根据磁场的高斯定理,磁感线是闭合曲线,闭合曲面的磁通量为零,即穿进半球面S 的磁通量等于穿出圆面S′的磁通量; .因而正确答案为(D). 11-3下列说法正确的是() (A)闭合回路上各点磁感强度都为零时,回路内一定没有电流穿过 (B)闭合回路上各点磁感强度都为零时,回路内穿过电流的代数和必定为零 (C)磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度必定为零

(D)磁感强度沿闭合回路的积分不为零时,回路上任意一点的磁感强度都不可能为零 分析与解由磁场中的安培环路定律,磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度不一定为零;闭合回路上各点磁感强度为零时,穿过回路的电流代数和必定为零.因而正确答案为(B). 11-4在图(a)和(b)中各有一半径相同的圆形回路L1 、L2 ,圆周内有电流I1 、I2 ,其分布相同,且均在真空中,但在(b)图中L2 回路外有电流I3 ,P1 、P2 为两圆形回路上的对应点,则() (A), (B), (C), (D), 题11-4 图 分析与解由磁场中的安培环路定律,积分回路外的电流不会影响磁感强度沿回路的积分;但同样会改变回路上各点的磁场分布.因而正确答案为(C). 11-5半径为R的圆柱形无限长载流直导体置于均匀无限大磁介质之中,若导体中流过的恒定电流为I,磁介质的相对磁导率为μr(μr<1),则磁介质内的磁化强度为()(A)(B) (C)(D) 分析与解利用安培环路定理可先求出磁介质中的磁场强度,再由M=(μr-1)H求得磁介质内的磁化强度,因而正确答案为(B). 11-6北京正负电子对撞机的储存环是周长为240 m的近似圆形轨道,当环中电子流强度为8 mA时,在整个环中有多少电子在运行?已知电子的速率接近光速.

大学物理(下)期末考试试卷

大学物理(下)期末考试试卷 一、 选择题:(每题3分,共30分) 1. 在感应电场中电磁感应定律可写成?-=?L K dt d l d E φ ,式中K E 为感应电场的电场强度。此式表明: (A) 闭合曲线L 上K E 处处相等。 (B) 感应电场是保守力场。 (C) 感应电场的电力线不是闭合曲线。 (D) 在感应电场中不能像对静电场那样引入电势的概念。 2.一简谐振动曲线如图所示,则振动周期是 (A) 2.62s (B) 2.40s (C) 2.20s (D) 2.00s 3.横谐波以波速u 沿x 轴负方向传播,t 时刻 的波形如图,则该时刻 (A) A 点振动速度大于零, (B) B 点静止不动 (C) C 点向下运动 (D) D 点振动速度小于零. 4.如图所示,有一平面简谐波沿x 轴负方向传 播,坐标原点O 的振动规律为)cos(0φω+=t A y , 则B 点的振动方程为 (A) []0)/(cos φω+-=u x t A y (B) [])/(cos u x t A y +=ω (C) })]/([cos{0φω+-=u x t A y (D) })]/([cos{0φω++=u x t A y 5. 一单色平行光束垂直照射在宽度为 1.20mm 的单缝上,在缝后放一焦距为2.0m 的会聚透镜,已知位于透镜焦平面处的屏幕上的中央明条纹宽度为2.00mm ,则入射光波长约为 (A )100000A (B )40000A (C )50000A (D )60000 A 6.若星光的波长按55000A 计算,孔镜为127cm 的大型望远镜所能分辨的两颗星2 4 1

大学物理学下册标准答案第11章

第11章 稳恒磁场 习 题 一 选择题 11-1 边长为l 的正方形线圈,分别用图11-1中所示的两种方式通以电流I (其中ab 、cd 与正方形共面),在这两种情况下,线圈在其中心产生的磁感应强度的大小分别为:[ ] (A )10B =,20B = (B )10B = ,02I B l π= (C )01I B l π= ,20B = (D )01I B l π= ,02I B l π= 答案:C 解析:有限长直导线在空间激发的磁感应强度大小为012(cos cos )4I B d μθθπ= -,并结合右手螺旋定则判断磁感应强度方向,按照磁场的叠加原理,可计 算 01I B l π= ,20B =。故正确答案为(C )。 11-2 两个载有相等电流I 的半径为R 的圆线圈一个处于水平位置,一个处于竖直位置,两个线圈的圆心重合,如图11-2所示,则在圆心O 处的磁感应强度大小为多少? [ ] (A )0 (B )R I 2/0μ (C )R I 2/20μ (D )R I /0μ 答案:C 解析:圆线圈在圆心处的磁感应强度大小为120/2B B I R μ==,按照右手螺旋定 习题11-1图 习题11-2图

则判断知1B 和2B 的方向相互垂直,依照磁场的矢量叠加原理,计算可得圆心O 处的磁感应强度大小为0/2B I R =。 11-3 如图11-3所示,在均匀磁场B 中,有一个半径为R 的半球面S ,S 边线所在平面的单位法线矢量n 与磁感应强度B 的夹角为α,则通过该半球面的磁通量的大小为[ ] (A )B R 2π (B )B R 22π (C )2cos R B πα (D )2sin R B πα 答案:C 解析:通过半球面的磁感应线线必通过底面,因此2cos m B S R B παΦ=?=。故正确答案为(C )。 11-4 如图11-4所示,在无限长载流直导线附近作一球形闭合曲面S ,当曲面S 向长直导线靠近时,穿过曲面S 的磁通量Φ B 将如何变化?[ ] (A )Φ增大,B 也增大 (B )Φ不变,B 也不变 (C )Φ增大,B 不变 (D )Φ不变,B 增大 答案:D 解析:根据磁场的高斯定理0S BdS Φ= =? ,通过闭合曲面S 的磁感应强度始终 为0,保持不变。无限长载流直导线在空间中激发的磁感应强度大小为02I B d μπ= ,曲面S 靠近长直导线时,距离d 减小,从而B 增大。故正确答案为(D )。 11-5下列说法正确的是[ ] (A) 闭合回路上各点磁感应强度都为零时,回路内一定没有电流穿过 (B) 闭合回路上各点磁感应强度都为零时,回路内穿过电流的代数和必定为零 (C) 磁感应强度沿闭合回路的积分为零时,回路上各点的磁感应强度必定为零 (D) 磁感应强度沿闭合回路的积分不为零时,回路上任意一点的磁感应强度 I 习题11-4图 习题11-3图

大学物理学 (第3版.修订版) 北京邮电大学出版社 下册 第十一章 习题11 答案

习题11 11.1选择题 (1)一圆形线圈在磁场中作下列运动时,那些情况会产生感应电流() (A )沿垂直磁场方向平移;(B )以直径为轴转动,轴跟磁场垂直; (C )沿平行磁场方向平移;(D )以直径为轴转动,轴跟磁场平行。 [答案:B] (2)下列哪些矢量场为保守力场() (A ) 静电场;(B )稳恒磁场;(C )感生电场;(D )变化的磁场。 [答案:A] (3) 用线圈的自感系数 L 来表示载流线圈磁场能量的公式22 1LI W m =() ( A )只适用于无限长密绕线管; ( B ) 只适用于一个匝数很多,且密绕的螺线环; ( C ) 只适用于单匝圆线圈; ( D )适用于自感系数L 一定的任意线圈。 [答案:D] (4)对于涡旋电场,下列说法不正确的是(): (A )涡旋电场对电荷有作用力; (B )涡旋电场由变化的磁场产生; (C )涡旋场由电荷激发; (D )涡旋电场的电力线闭合的。 [答案:C] 11.2 填空题 (1)将金属圆环从磁极间沿与磁感应强度垂直的方向抽出时,圆环将受到 。 [答案:磁力] (2)产生动生电动势的非静电场力是 ,产生感生电动势的非静电场力是 ,激发感生电场的场源是 。 [答案:洛伦兹力,涡旋电场力,变化的磁场] (3)长为l 的金属直导线在垂直于均匀的平面内以角速度ω转动,如果转轴的位置在 ,这个导线上的电动势最大,数值为 ;如果转轴的位置在 ,整个导线上的电动势最小,数值为 。 [答案:端点,2 2 1l B ω;中点,0] 11.3一半径r =10cm B =0.8T 的均匀磁场中.回路平面与B 垂直.当回路半 径以恒定速率 t r d d =80cm ·s -1 收缩时,求回路中感应电动势的大小. 解: 回路磁通 2 πr B BS m ==Φ

(完整版)大学物理下册期末考试A卷.doc

**大学学年第一学期期末考试卷 课程名称大学物理(下)考试日期 任课教师 ______________试卷编号_______ 考生姓名学号专业或类别 题号一二三四五六七总分累分人 签名题分40 10 10 10 10 10 10 100 得分 考生注意事项:1、本试卷共 6 页,请查看试卷中是否有缺页。 2、考试结束后,考生不得将试卷、答题纸和草稿纸带出考场。 部分常数:玻尔兹曼常数 k 1.38 10 23 J / K , 气体普适常数 R = 8.31 J/K.mol, 普朗克常量h = 6.63 10×34 J·s,电子电量e 1.60 10 19 C; 一、填空题(每空 2 分,共 40 分) 1. 一理想卡诺机在温度为 27℃和 127℃两个热源之间运转。若得分评卷人 使该机正循环运转,如从高温热源吸收1200J 的热量,则将向低 温热源放出热量 ______J; 2.1mol 理想气体经绝热自由膨胀至体积增大一倍为止,即 V22V1则在该过程中熵增S_____________J/k。 3.某理想气体的压强 P=105 Pa,方均根速率为 400m/s,则该气 体的密度 _____________kg/m3。 4.AB 直导体长为 L 以图示的速度运动,则导体中非静电性场强大小 ___________,方向为 __________,感应电动势的大小为 ____________。

5 5.平行板电容器的电容 C为 20.0 μ F,两板上的电压变化率为 dU/dt=1.50 × 10V/s ,则电容器两平行板间的位移电流为___________A。 6. 长度为 l ,横截面积为 S 的密绕长直螺线管通过的电流为I ,管上单位长度绕有n 匝线圈,则管内的磁能密度w 为 =____________ ,自感系数 L=___________。 7.边长为 a 的正方形的三个顶点上固定的三个点电荷如图所示。以无穷远为零电 势点,则 C 点电势 U C =___________;今将一电量为 +q 的点电荷 从 C点移到无穷远,则电场力对该电荷做功 A=___________。 8.长为 l 的圆柱形电容器,内半径为R1,外半径为R2,现使内极 板带电 Q ,外极板接地。有一带电粒子所带的电荷为q ,处在离 轴线为 r 处( R1r R2),则该粒子所受的电场力大小F_________________;若带电粒子从内极板由静止飞出,则粒子飞到外极板时,它所获得的动能E K________________。 9.闭合半圆型线圈通电流为 I ,半径为 R,置于磁感应强度为B 的均匀外磁场中,B0的方向垂直于AB,如图所示。则圆弧ACB 所受的磁力大小为 ______________,线圈所受磁力矩大小为__________________。 10.光电效应中,阴极金属的逸出功为2.0eV,入射光的波长为400nm ,则光电流的 遏止电压为 ____________V。金属材料的红限频率υ0 =__________________H Z。11.一个动能为40eV,质量为 9.11 × 10-31 kg的电子,其德布 罗意波长为nm。 12.截面半径为R 的长直载流螺线管中有均匀磁场,已知 dB 。如图所示,一导线 AB长为 R,则 AB导线中感生 C (C 0) dt 电动势大小为 _____________,A 点的感应电场大小为E。

大学物理 马文蔚 第五版 下册 第九章到第十一章课后答案汇总

第九章振动 9-1一个质点作简谐运动, 振幅为A,在起始时刻质点的位移为 2 A -,且向x轴正方向运动,代表此简谐运动的旋转矢量为() 题9-1图 分析与解(b)图中旋转矢量的矢端在x轴上投影点的位移为-A/2,且投影点的运动方向指向O x轴正向,即其速度的x分量大于零,故满足题意.因而正确答案为(b).9-2已知某简谐运动的振动曲线如图(a)所示,则此简谐运动的运动方程为()()()()() ()()()() cm π 3 2 π 3 4 cos 2 D cm π 3 2 π 3 4 cos 2 B cm π 3 2 π 3 2 cos 2 C cm π 3 2 π 3 2 cos 2 A ?? ? ?? ? + = ?? ? ?? ? - = ?? ? ?? ? + = ?? ? ?? ? - = t x t x t x t x 题9-2图 分析与解由振动曲线可知,初始时刻质点的位移为–A/2,且向x轴负方向运动.图(b)是其相应的旋转矢量图,由旋转矢量法可知初相位为3/π 2.振动曲线上给出质点从–A/2 处运动到+A处所需时间为 1 s,由对应旋转矢量图可知相应的相位差3/π 4 Δ=,则角频率()1s3/π4 Δ / Δ- = =t ω,故选(D).本题也可根据振动曲线所给信息,逐一代入方程来找出正确答案.

9-3 两个同周期简谐运动曲线如图(a ) 所示, x 1 的相位比x 2 的相位( ) (A ) 落后2π (B )超前2 π (C )落后π (D )超前π 分析与解 由振动曲线图作出相应的旋转矢量图(b ) 即可得到答案为(b ). 题9-3 图 9-4 当质点以频率ν 作简谐运动时,它的动能的变化频率为( ) (A ) 2 v (B )v (C )v 2 (D )v 4 分析与解 质点作简谐运动的动能表式为()?ωω+=t A m E k 222sin 2 1,可见其周期为简谐运动周期的一半,则频率为简谐运动频率ν的两倍.因而正确答案为(C ). 9-5 图(a )中所画的是两个简谐运动的曲线,若这两个简谐运动可叠加,则合成的余弦振动的初相位为( ) (A ) π2 3 (B )π21 (C )π (D )0 分析与解 由振动曲线可以知道,这是两个同振动方向、同频率简谐运动,它们的相位差 是π(即反相位).运动方程分别为t A x ωcos 1=和()πcos 2 2+= t ωA x .它们的振幅不同.对于这样两个简谐运动,可用旋转矢量法,如图(b )很方便求得合运动方程为t A x ωcos 21=.因而正确答案为(D ).

大学物理第11章习题答案(供参考)

第11章 电磁感应 11.1 基本要求 1理解电动势的概念。 2掌握法拉第电磁感应定律和楞次定律,能熟练地应用它们来计算感应电动势的大小,判别感应电动势的方向。 3理解动生电动势的概念及规律,会计算一些简单问题中的动生电动势。 4理解感生电场、感生电动势的概念及规律,会计算一些简单问题中的感生电动势。 5理解自感现象和自感系数的定义及物理意义,会计算简单回路中的自感系数。 6理解互感现象和互感系数的定义及物理意义,能计算简单导体回路间的互感系数。 7理解磁能(磁场能量)和磁能密度的概念,能计算一些简单情况下的磁场能量。 8了解位移电流的概念以及麦克斯韦方程组(积分形式)的物理意义。 11.2 基本概念 1电动势ε:把单位正电荷从负极通过电源内部移到正极时,非静电力所作的功,即 W q ε= 2动生电动势:仅由导体或导体回路在磁场中的运动而产生的感应电动势。 3感生电场k E :变化的磁场在其周围所激发的电场。与静电场不同,感生电场的电 场线是闭合的,所以感生电场也称有旋电场。 4感生电动势:仅由磁场变化而产生的感应电动势。 5自感:有使回路保持原有电流不变的性质,是回路本身的“电磁惯性”的量度。 自感系数L ://m L I N I =ψ=Φ 6自感电动势L ε:当通过回路的电流发生变化时,在自身回路中所产生的感应电动势。

7互感系数M :2112 12 M I I ψψ= = 8互感电动势12ε:当线圈2的电流2I 发生变化时,在线圈1中所产生的感应电动势。 9磁场能量m W :贮存在磁场中的能量。 自感贮存磁能:212 m W LI = 磁能密度m w :单位体积中贮存的磁场能量22111 222 m B w μH HB μ=== 10位移电流:D d d I dt Φ= s d t ?=??D S ,位移电流并不表示有真实的电荷在空 间移动。但是,位移电流的量纲和在激发磁场方面的作用与传导电流是一致的。 11位移电流密度:d t ?=?D j 11.3 基本规律 1电磁感应的基本定律:描述电磁感应现象的基本规律有两条。 (1)楞次定律:感生电流的磁场所产生的磁通量总是反抗回路中原磁通量的改变。楞 次定律是判断感应电流方向的普适定则。 (2)法拉第电磁感应定律:不论什么原因使通过回路的磁通量(或磁链)发生变化,回路 中均有感应电动势产生,其大小与通过该回路的磁通量(或磁链)随时间的变化成正比,即 m i d dt εΦ=- 2动生电动势:()B B K A A i εd d ==???E l v B l ,若0i ε>,则表示电动势方向由A B →;若 0i ε<,则表示电动势方向B A → 3感生电动势:m K l s i d Φd εd d dt dt = ?=- =-? ?B E l S (对于导体回路) B K A i εd =?E l (对于一段导体) 4自感电动势:L dI εL dt =- 5互感电动势:12212d ΨdI εM dt dt =-=- 6麦克斯韦方程组

大学物理课后答案第十一章

第十一章 机械振动 一、基本要求 1.掌握简谐振动的基本特征,学会由牛顿定律建立一维简谐振动的微分方程,并判断其是否谐振动。 2. 掌握描述简谐运动的运动方程)cos(0?ω+=t A x ,理解振动位移,振幅,初位相,位相,圆频率,频率,周期的物理意义。能根据给出的初始条件求振幅和初位相。 3. 掌握旋转矢量法。 4. 理解同方向、同频率两个简谐振动的合成规律,以及合振动振幅极大和极小的条件。 二、基本内容 1. 振动 物体在某一平衡位置附近的往复运动叫做机械振动。如果物体振动的位置满足)()(T t x t x +=,则该物体的运动称为周期性运动。否则称为非周期运动。但是一切复杂的非周期性的运动,都可以分解成许多不同频率的简谐振动(周期性运动)的叠加。振动不仅限于机械运动中的振动过程,分子热运动,电磁运动,晶体中原子的运动等虽属不同运动形式,各自遵循不同的运动规律,但是就其中的振动过程讲,都具有共同的物理特征。 一个物理量,例如电量、电流、电压等围绕平衡值随时间作周期性(或准周期性)的变化,也是一种振动。 2. 简谐振动 简谐振动是一种周期性的振动过程。它可以是机械振动中的位移、速度、加速度,也可以是电流、电量、电压等其它物理量。简谐振动是最简单,最基本的周期性运动,它是组成复杂运动的基本要素,所以简谐运动的研究是本章一个重点。 (1)简谐振动表达式)cos(0?ω+=t A x 反映了作简谐振动的物体位移随时间的变化遵循余弦规律,这也是简谐振动的定义,即判断一个物体是否作简谐振动的运动学根据。但是简谐振动表达式更多地用来揭示描述一个简谐运动必须

涉及到的物理量

大学物理下册期末考试B卷题目和答案

大学学年第二学期考试B卷 课程名称大学物理(下)考试日期 任课教师____________ 考生姓名学号专业或类别 题号一二三四五六七总分累分人 签名题分40101010101010 100 得分 考生注意事项:1、本试卷共 6 页,请查看试卷中是否有缺页。 2、考试结束后,考生不得将试卷、答题纸和草稿纸带出考场。 ε o =×10-12F·m-1、μ =4π×10-7H/m; k=×10-23 J·K-1、R= J·K-1·mol-1、 N A =×1023mol-1、e=×10-19C、电子静质量m e=×10-31kg, h=× 10-34J·s。 得分评卷人 一、填空题(每空2分,共40分) 1.体积为4升的容器内装有理想气体氧气(刚性分子),测得其压强为5×102Pa,则容器内氧气的平均转动动能总和为_______________J,系统的内能为_______________ J。 2.如图所示,一定质量的氧气(理想气体)由状态a 经b到达c,图中abc为一直线。求此过程中:气 体对外做的功为_ _______________;气体内能的增 加_______________;气体吸收的热量 _______________。 3.一绝热的封闭容器,用隔板分成相等的两部分,左 边充有一定量的某种气体,压强为p;右边为真空,若把隔板抽去(对外不漏气),

当又达到平衡时,气体的内能变化量为_______________J ,气体的熵变化情况是_______________(增大,不变,减小)。 4.有一段电荷线密度为λ长度为L 的均匀带电直线,,在其中心轴线上距O 为r 处P 点有一个点电荷q 。当r>>L 时,q 所受库仑力大小为_______________,当r<

大学物理2,13.第十三章思考题

1、如图13-9所示,薄膜介质的折射率为n 1,薄膜上下介质的折射率分别为n 1和n 3,并且n 2比n 1和n 3都大。单色平行光由介质1垂直照射在薄膜上,经薄膜上下两个表面反射的两束光发生干涉。已知薄膜的厚度为e , λ1为入射光在折射率为n 1的介质中的波长,则两束反射光的光程差等于多少? 【答案:2 21 12λn e n S - =?】 详解:由于入射光在上表面从光疏介质投射到光密介质上存在半波损失,因此反射光一的光程为 2 1λ = S 由于入射光在下表面从光密介质投射到光疏介质上没有半波损失,因此反射光二的光程为 e n S 222= 两束反射光的光程差为 2 2212λ - =-=?e n S S S 其中λ为光在真空的波长,它与介质1中的波长的关系为λ=n 1λ1,因此 2 21 12λn e n S - =? 2、在双缝干涉实验中,两缝分别被折射率为n 1和n 2、厚度均为e 的透明薄膜遮盖。波长为λ的平行单色光垂直照射到双缝上,在屏中央处,两束相干光的相位差等于多少? 【答案:λ ?e n n )(π212-= ?】 详解:设从双缝发出的两束光到屏中央处的距离为r ,依题意它们到达屏中央处的光程分别为 )(11e r e n S -+= )(22e r e n S -+= 它们的光程差为 12S S S -=?e n n )(12-= 因此,在屏中央处两束相干光的相位差为 n 3 图13-9

λ ?S ?= ?π2λ e n n )(π212-= 3、在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取哪些办法? 【答案:增大双缝与屏之间的距离D 、增大入射光波长λ、减小双缝间距d 、减小折射率n 】 详解:双缝干涉条纹间距为 dn D x λ = ? 因此,为使屏上的干涉条纹间距变大,可以增大双缝与屏之间的距离D 、改用波长λ较长的光进行实验、将两缝的间距d 变小、将实验装置放在折射率n 较小的透明流体中。 4、如图13-10所示,在双缝干涉实验中,屏幕E 上的P 点处是明条纹。如果将缝S 1 盖住,并在S 1 S 2连线的垂直平分面处放置一个高折射率玻璃反射面M ,则此时P 点处是明条纹还是暗条纹? 【答案:是暗条纹】 详解:设S 1、S 2到P 点的距离分别为r 1和r 2。由于P 点处原来是明条纹,因此 λk r r =-21 如果在S 1 S 2连线的垂直平分面处放置一个高折射率玻璃反射面M ,由于从S 2发出的光经M 反射时存在半波损失,因此到达P 点的反射光与直射光的光程差为 212 r r S -+ =?λ 2 λ λ+ =k 2 ) 12(λ +=k 即这两束光在P 点处干涉相消,形成暗条纹。 5、如图13-11所示,在双缝干涉实验中,如果单色光源S 到两缝S 1、S 2距离相等,则中央明条纹位于观察屏E 上O 点处。现在将光源S 向上移动到图中的S ' 位置,中央明条纹将向什么方向移动?此时条纹间距是否发生改变? 图13-11 S S 图13-10 P S 图13-11 S S P

大学物理_马文蔚__第五版_下册_第九章到第十一章课后答案

第九章 振动 9-1 一个质点作简谐运动,振幅为A ,起始时刻质点的位移为2 A - ,且向x 轴正方向运动,代表此简谐运动的旋转矢量为( ) 题9-1 图 分析与解(b )图中旋转矢量的矢端在x 轴上投影点的位移为-A /2,且投影点的运动方向指向O x 轴正向,即其速度的x 分量大于零,故满足题意.因而正确答案为(b ). 9-2 已知某简谐运动的振动曲线如图(a )所示,则此简谐运动的运动方程为( ) ()()()()()()()()cm π32π34cos 2D cm π32π34cos 2B cm π32π32cos 2C cm π32π32cos 2A ?? ????+=??????-=??????+=??????-=t x t x t x t x 题9-2 图 分析与解 由振动曲线可知,初始时刻质点的位移为 –A /2,且向x 轴负方向运动.图(b)是其相应的旋转矢量图,由旋转矢量法可知初相位为3/π2.振动曲线上给出质点从–A /2 处运动到+A 处所需时间为 1 s ,由对应旋转矢量图可知相应的相位差3/π4Δ =,则角频率()1s 3/π4Δ/Δ-==t ω,故选(D ).本题也可根据振动曲线所给信息,逐一代入方程来找 出正确答案.

9-3 两个同周期简谐运动曲线如图(a ) 所示, x 1 的相位比x 2 的相位( ) (A ) 落后2π (B )超前2 π (C )落后π (D )超前π 分析与解 由振动曲线图作出相应的旋转矢量图(b ) 即可得到答案为(b ). 题9-3 图 9-4 当质点以频率ν 作简谐运动时,它的动能的变化频率为( ) (A ) 2 v (B )v (C )v 2 (D )v 4 分析与解 质点作简谐运动的动能表式为()?ωω+=t A m E k 222sin 2 1,可见其周期为简谐运动周期的一半,则频率为简谐运动频率ν的两倍.因而正确答案为(C ). 9-5 图(a )中所画的是两个简谐运动的曲线,若这两个简谐运动可叠加,则合成的余弦振动的初相位为( ) (A ) π2 3 (B )π21 (C )π (D )0 分析与解 由振动曲线可以知道,这是两个同振动方向、同频率简谐运动,它们的相位差 是π(即反相位).运动方程分别为t A x ωcos 1=和()πcos 2 2+= t ωA x .它们的振幅不同.对于这样两个简谐运动,可用旋转矢量法,如图(b )很方便求得合运动方程为t A x ωcos 21=.因而正确答案为(D ).

《大学物理 》下期末考试 有答案

《大学物理》(下)期末统考试题(A 卷) 说明 1考试答案必须写在答题纸上,否则无效。请把答题纸撕下。 一、 选择题(30分,每题3分) 1.一质点作简谐振动,振动方程x=Acos(ωt+φ),当时间t=T/4(T 为周期)时,质点的速度为: (A) -Aωsinφ; (B) Aωsinφ; (C) -Aωcosφ; (D) Aωcosφ 参考解:v =dx/dt = -A ωsin (ωt+φ) ,cos )sin(2 4/?ω?ωπA A v T T t -=+?-== ∴选(C) 2.一弹簧振子作简谐振动,当其偏离平衡位置的位移的大小为振幅的1/4时,其动能为振动总能量的 (A) 7/6 (B) 9/16 (C) 11/16 (D )13/16 (E) 15/16 参考解:,1615)(221242122122 1221=-=kA k kA kA mv A ∴选(E ) 3.一平面简谐波在弹性媒质中传播,在媒质质元从平衡位置运动到最大位移处的过程中: (A) 它的动能转换成势能. (B) 它的势能转换成动能. (C) 它从相邻的一段质元获得能量其能量逐渐增大. (D) 它把自己的能量传给相邻的一段质元,其能量逐渐减小. 参考解:这里的条件是“平面简谐波在弹性媒质中传播”。由于弹性媒质的质元在平衡位置时的形变最大,所以势能动能最大,这时动能也最大;由于弹性媒质的质元在最大位移处时形变最小,所以势能也最小,这时动能也最小。质元的机械能由最大变到最小的过程中,同时也把该机械能传给相邻的一段质元。∴选(D )

4.如图所示,折射率为n 2、厚度为e 的透明介质薄膜 的上方和下方的透明介质的折射率分别为n 1和n 3,已知n 1 <n 2<n 3.若用波长为λ的单色平行光垂直入射到该薄膜 上,则从薄膜上、下两表面反射的光束①与②的光程差是 (A) 2n 2 e . (B) 2n 2 e -λ / 2 . (C) 2n 2 e -λ. (D) 2n 2 e -λ / (2n 2). 参考解:半波损失现象发生在波由波疏媒质到波密媒质的界面的反射现象中。两束光分别经上下表面反射时,都是波疏媒质到波密媒质的界面的反射,同时存在着半波损失。所以,两束反射光的光程差是2n 2 e 。 ∴选(A ) 5.波长λ=5000?的单色光垂直照射到宽度a=0.25mm 的单缝上,单缝后面放置一凸透镜,在凸透镜的焦平面上放置一屏幕,用以观测衍射条纹,今测得屏幕上中央明条纹一侧第三个暗条纹和另一侧第三个暗条纹之间的距离d=12mm ,则凸透镜的焦距f 为: (A) 2m (B) 1m (C) 0.5m (D) 0.2m ; (E) 0.1m 参考解:由单缝衍射的暗纹公式, asin φ = 3λ, 和单缝衍射装置的几何关系 ftg φ = d/2, 另,当φ角很小时 sin φ = tg φ, 有 1103 310500061025.0101232==?=---?????λa d f (m ) , ∴选(B ) 6.测量单色光的波长时,下列方法中哪一种方法最为准确? (A) 双缝干涉 (B) 牛顿环 (C) 单缝衍射 (D) 光栅衍射 参考解:从我们做过的实验的经历和实验装置可知,最为准确的方法光栅衍射实验,其次是牛顿环实验。 ∴选(D ) 7.如果两个偏振片堆叠在一起,且偏振化方向之间夹角为60°,光强为I 0的自然光垂直入射在偏振片上,则出射光强为 (A) I 0 / 8. (B) I 0 / 4. (C) 3 I 0 / 8. (D) 3 I 0 / 4. 参考解:穿过第一个偏振片自然光的光强为I 0/2。随后,使用马吕斯定律,出射光强 10201 60cos I I I == ∴ 选(A ) n 3

河北科技大学大学物理答案11章分解

习 题 11-1 面积很大的导体平板A 与均匀带电平面B 平行放置,如习题11-1图所示。已知A 与B 相距d ,两者相对的部分的面积为S 。(1)设B 面带电量为q ,A 板的面电荷密度为1s 及2s ,求A 板与B 面之电势差。(2)若A 板带电量为Q ,求1s 及2s 。 (1)d S q U 0 212/εσσ-+= ; (2)S q Q 21+=σ,S q Q 22-=σ 习题11-1图 习题11-2图 习题11-3图 11-2 如习题11-2图所示,有三块互相平行的导体板,外面的两块用导线连接,原来不带电。中间一块上所带总面电荷密度为521310.C m --醋。求每块板的两个表面的面电荷密度各 是多少? (忽略边缘效应。) 解:从上到下6个面一次为面1、2、3、4、5、6. 2 61σ σσ= =,8323σσσ= -=,8 554σ σσ=-= 11-3 如习题11-3图所示,半径为1R 的导体球带有电荷q ,球外有一个内、外半径为2R 、3R 的同心导体球壳,壳上带有电荷Q 。求:(1)两球的电势1j 及2j ;(2)两球的电势差j D ;(3)用导线把球和壳连接在一起后,1j ,2j 及j D 分别为多少? (4)在情形(1)、(2)中,若外球接地,1j ,2j 和j D 为多少?(5)设外球离地面很远,若内球接地,情况如何? 解:(1)3 024R Q q πε?+= ,2010301444R q R q R Q q πεπεπε?- ++=; (2)两球的电势差2 01 044R q R q U πεπε- = ; (3) 3 0214R Q q πε??+= =,0=U ;

大学物理第十三章课后答案

习题十三 13-1 衍射的本质是什么?衍射和干涉有什么联系和区别 ? 答:波的衍射现象是波在传播过程中经过障碍物边缘或孔隙时所发生的展衍现象? 其实质是 由被障碍物或孔隙的边缘限制的波阵面上各点发出的无数子波相互叠加而产生. 而干涉则是 由同频率、同方向及位相差恒定的两列波的叠加形成. 13-2 在夫琅禾费单缝衍射实验中,如果把单缝沿透镜光轴方向平移时,衍射图样是否会 跟着移动?若把单缝沿垂直于光轴方向平移时,衍射图样是否会跟着移动 ? 答:把单缝沿透镜光轴方向平移时, 衍射图样不会跟着移动. 单缝沿垂直于光轴方向平移时, 衍射图样不会跟着移动. 13-3 什么叫半波带?单缝衍射中怎样划分半波带 ?对应于单缝衍射第 3级明条纹和第4级暗 条纹,单缝处波面各可分成几个半波带 ? λ 答:半波带由单缝 A 、B 首尾两点向'方向发出的衍射线的光程差用 2 来划分?对应于第 3级明纹和第4级暗纹,单缝处波面可分成 7个和8个半波带. a Sin =(2k ? 1) “ =(2 3 ■ 1) “ =7 ?.?由 2 2 2 a Sin -4 ' - 8 — 2 13-4 在单缝衍射中,为什么衍射角 ,愈大(级数愈大)的那些明条纹的亮度愈小 ? 答:因为衍射角「愈大则 asin 「值愈大,分成的半波带数愈多,每个半波带透过的光通量 就愈小,而明条纹的亮度是 由一个半波带的光能量决定的,所以亮度减小. 13-5 若把单缝衍射实验装置全部浸入水中时,衍射图样将发生怎样的变化 ?如果此时用公 m λ asin = (2k 1) (k =1,2,) 式 2 来测定光的波长,问测出的波长是光在空气中的还是 在水中的波长? k ■ 解:当全部装置浸入水中时,由于水中波长变短,对应 asin 「= k ? = n ,而空气中为 asi n 「= k ? ,?. Si n 「=n Si n ",即「=n : ,水中同级衍射角变小,条纹变密. λ 如用 asin (2k ■ I) 2 (k = 1,2, …)来测光的波长,则应是光在水中的波长.(因 asin ‘ 只代表光在 水中的波程差)? 13-6 在单缝夫琅禾费衍射中,改变下列条件,衍射条纹有何变化 ?(1)缝宽变窄;(2)入 射光波长变长;(3)入射平行光由正入射变为斜入射. 解:(1)缝宽变窄,由 asin ' =k'知,衍射角「变大,条纹变稀; (2) , 变大,保持a , k 不变,则衍射角 「亦变大,条纹变稀; (3) 由正入射变为斜入射时, 因正入射时 asin 即=k ? ;斜入射时, a(Sin 「- Sin ^)^k -, 保持a ,'不变,则应有 ^ k 或k 二::k ?即原来的k 级条纹现为k 级. 13-7 单缝衍射暗条纹条件与双缝干涉明条纹的条件在形式上类似,两者是否矛盾 ?怎样 说明? λ 答:不矛盾?单缝衍射暗纹条件为.asin =k' =2k 2 ,是用半波带法分析(子波叠加问 题)? 相邻两半波 带上对应点向 '方向发出的光波在屏上会聚点一一相消, 而半波带为偶数,

大学物理课后习题答案(第十一章) 北京邮电大学出版社

习题十一 11-1 圆柱形电容器内、外导体截面半径分别为1R 和2R (1R <2R ),中间充满介电常数为ε 的电介质.当两极板间的电压随时间的变化k t U =d d 时(k 为常数),求介质内距圆柱轴线为r 处的位移电流密度. 解:圆柱形电容器电容 12 ln 2R R l C πε= 12ln 2R R lU CU q πε= = 1212ln ln 22R R r U R R r lU S q D εππε=== ∴ 12ln R R r k t D j ε=??= 11-2 试证:平行板电容器的位移电流可写成 t U C I d d d =.式中C 为电容器的电容,U 是电 容器两极板的电势差.如果不是平板电容器,以上关系还适用吗? 解:∵ CU q = S CU D = =0σ ∴ CU DS D ==Φ 不是平板电容器时 0σ=D 仍成立 ∴ t U C I D d d =还适用. 题11-3图 11-3 如题11-3图所示,电荷+q 以速度v 向O 点运动,+q 到O 点的距离为x ,在O 点处作半径为a 的圆平面,圆平面与v 垂直.求:通过此圆的位移电流. 解:如题11-3图所示,当q 离平面x 时,通过圆平面的电位移通量 )1(222a x x q D +-= Φ [此结果见习题8-9(3)] t U C t I D D d d d d ==Φ

∴ 23222)(2d d a x v qa t I D D +==Φ 题11-4图 11-4 如题11-4图所示,设平行板电容器内各点的交变电场强度E =720sin t π510V ·m -1,正 方向规定如图.试求: (1)电容器中的位移电流密度; (2)电容器内距中心联线r =10-2m 的一点P ,当t =0和t =51021-?s 时磁场强度的大小及方向 (不考虑传导电流产生的磁场). 解:(1) t D j D ??=,E D 0ε= ∴ t t t t E j D ππεπεε50550010cos 10720)10sin 720(?=??=??=2m A -? (2)∵ ?∑??+=?)(0d d S D l S j I l H 取与极板平行且以中心连线为圆心,半径r 的圆周r l π2=,则 D j r r H 22ππ= D j r H 2= 0=t 时0505106.3107202πεπε?=??=r H P 1m A -? 5 1021-?=t s 时,0=P H 11-5 半径为R =0.10m 的两块圆板构成平行板电容器,放在真空中.今对电容器匀速充电, 使两极板间电场的变化率为t E d d =1.0×1013 V ·m -1·s -1.求两极板间的位移电流,并计算电 容器内离两圆板中心联线r (r <R )处的磁感应强度Br 以及r =R 处的磁感应强度BR . 解: (1) t E t D j D ??=??=0ε 8.22≈==R j S j I D D D πA (2)∵ S j I l H S D l d d 0?+=??∑? 取平行于极板,以两板中心联线为圆心的圆周r l π2=,则 202d d 2r t E r j r H D πεππ== ∴ t E r H d d 20ε=

相关文档
相关文档 最新文档