文档库 最新最全的文档下载
当前位置:文档库 › 胶体和表面化学必会的题目及解答

胶体和表面化学必会的题目及解答

胶体和表面化学必会的题目及解答
胶体和表面化学必会的题目及解答

胶体与表面化学教学大纲

课程代码:0303181 课程英文名称:Colloid and Surface Chemistry 课程类别:专业选修课 课程负责人:王英滨 胶体与表面化学教学大纲 (总学时:40讲课:40) 一、课程教学目的 本课程是为材料化学专业开设的专业选修课,同时也可作为材料学、环境工程等专业的选修课。通过本课程的学习,学生在大学物理化学的基础上,进一步了解胶体与表面的基本理论问题,并能在以后的研究工作中加以应用。 二、课程教学基本内容、要求及学时分配 第一章绪论 2学时,了解胶体的定义与特点,胶体化学发展简史,胶体化学的研究对象和意义,胶体与表面化学的发展。 第二章胶体的制备和性质 6学时,掌握溶胶的制备和净化,溶胶的动力学性质,溶胶的光学性质,溶胶的电学性质和胶团结构,溶胶的稳定性和聚沉,流变性质。 第三章凝胶 6学时,掌握凝胶通性及分类,凝胶的形成与结构,胶凝作用及其影响因素,凝胶的性质,几种重要的凝胶。 第四章界面现象和吸附 8学时,掌握表面张力和表面能,弯曲界面的一些现象,润湿和铺展,固体表面的吸附作用,吸附等温方程式,固体-溶液界面吸附 第五章常用吸附剂的结构、性能和改性 6学时,掌握多孔性物质物理结构的测定方法,常用吸附剂的结构和性能,固体的表面改性第六章表面活性剂 6学时,掌握表面活性剂的分类和结构特点,表面活性剂在界面上的吸附,表面活性剂的体相性质,胶束理论,表面活性剂的亲水亲油平衡(HLB)问题,表面活性剂的作用 第七章乳状液 6学时,掌握乳状液的制备和物理性质,影响乳状液类型的因素和乳状液类型的鉴别,影响乳状液稳定性的因素,乳化剂的选择,乳状液的变形和破乳,乳状液的应用 三、本课程与其它课程的联系与分工 学习本课程需无机化学、有机化学、物理化学等课程基础。 四、教学方式 主要以课堂讲授方式进行,使用多媒体教学。 五、成绩评定方法 本课程的考核以课堂提问情况、完成作业等平时成绩和期末撰写读书报告成绩综合评

胶体与表面化学1-5

胶体与表面化学 第一章 绪论 化学:无机化学、有机化学、物理化学、分析化学 无机化学:(元素化学,研究无机物的制备、合成与性能) 如:H 2O 有机化学:(生命化学,研究C 、O 、P 、S 等少量元素形成的 种类极多的化合物 ,就简单元素的复杂化学。) 小分子:甲烷 如: 大分子:淀粉 杀虫剂: 医药: 液晶: 物理化学:(用物理模型、数学概念化的手段研究化学) 物理:量子间的相互作用 化学:是量子间结合与排列。 热力学:状态——状态:能量转化的过程, 几千种状态方程。 动力学:物质间反应速度的问题(有时热力学 分支极多: 能进行但动力学不能进行) 电化学:电池:Fe+HCl ——FeCl 2+H 2 电子转移 形成电池(Li +) 高能电池 Fe 2+,Fe 3+(提纯难99.99%~99.9999%) 胶体与表面化学:气液固按不同形式混合, 泥土在水中分层,纳米材料, 牙膏,原油,化妆品。 理论化学:(非实验的推算来解释或预测化合物的各种现 象。) 如:用计算机模拟模型推算是否可以达到预期目的,在校 正 合成。

分析化学:(研究物质的组成、含量、结构和形态等化 学信息的分析方法一门科学) 如:三聚氰胺事件分析手段差蛋白质含量(N)一、基本概念 相:体系中物理化学性质完全相同的均匀部分 界面:相与相的交接面 表面:一相为气相的界面 比表面:单位体积或重量物体的表面积。 S0=S/V 对于立方体:S0=6L2/L3=6/L 对于球体:S0=3/R 胶体化学:是研究胶体体系的科学。它是物理化学的一个重要分支。随着胶体化学的发展,它已经成为一门独立的学科。 表面化学:研究发生在表面或界面上的物理和化学现象的一门科学。是胶体化学的分支。 (原油催化裂化) 二、胶体体系 小实验:泥土置于水中沉降。1、分类及定义:分散相粒子半径在1 ~100 nm 的分散体系。 2、特点 (1)特有的分散程度——多相项多分散体 粒子的大小在10-9~10-7m之间,扩散较慢,不能透过半透膜。 (2)多相不均匀性 由许多离子或分子聚结而成,结构复杂,有的保持了该难溶盐的原有晶体结构,而且粒子大小不一,与介质之间有明显的相界面,比表面很大。 (3)热力学不稳定性 因为粒子小,比表面大,表面自由能高,是热力学不稳定体系,有自发降低表面自由能的趋势,即小粒子会自动聚结成大粒子。

中南大学物化课后习题答案 11章 表面化学与胶体化学

第11章表面化学与胶体化学 1.在293 K时,把半径为1×10st1:chmetcnv TCSC="0" NumberType="1" Negative="True" HasSpace="False" SourceValue="3" UnitName="m">-3m的水滴分散成半径为1×10-6m的小水滴,比表面增加多少倍?表面吉布斯自由能增加多少?环境至少需做功多少?已知293 K时 。 (答案:9.15×10-4 J) 解:一滴大水滴可分散成N个小水滴: 小水滴的面积为:,大水滴的面积为:4π 面积增加倍数为: 2.在298 K时,1,2—二硝基苯(NB)在水中所形成的饱和溶液的浓度为5.9×10-3mol·L-1,计算直径为1×10-8m的NB微球在水中的溶解度。已知298 K时NB/水的表面张力为25.7 mN·m-1,NB 的密度为1 566 kg·m-3。 (答案:2.625×10-3 mol·dm-3) 解:根据开尔文公式:,将数值代入,得: 3.373 K时,水的表面张力为58.9 mN·m-1,密度为958.4 kg·m-3,在373 K时直径为

1×10-7m的气泡内的水蒸气压为多少?在101.325 kPa外压下,能否从373 K的水中蒸发出直径为1×10-7m的气泡? (答案:99.89kPa) 解:气泡为凹面,且r = 0.5×10-7m 因p r p外,故不能蒸发出直径为1×10-7m的气泡。 4.水蒸气骤冷会发生过饱和现象。在夏天的乌云中,用干冰微粒撒于乌云中使气温骤降至293 K,此时水气的过饱和度(p/ps)达4,已知293 K时, ρ(H2O)=997 kg·m-3。求算:(1)开始形成雨滴的半径;(2)每一滴雨中所含的水分子数。 (答案:7.8×10-10 m,66个) 解:(1)据开尔文公式得: (2) 设雨滴为球形,则一个雨滴的体积为: 雨滴中的水分子数为: (个) 5.已知293 K时,,,。试判断水能否在汞表面上铺展开来?

上海大学胶体与表面化学考试知识点

1、胶体的基本特性 特有的分散程度;粒子大小在1nm~100nm之间 多相不均匀性:在超级显微镜下可观察到分散相与分散介质间存在界面。 热力学不稳定性;粒子小,比表面大,表面自由能高,是热力学不稳定体系,有自发降低表面自由能的趋势,即小粒子会自动聚结成大粒子。 2、胶体制备的条件: 分散相在介质中的溶解度须极小 必须有稳定剂存在 3、胶体分散相粒子大小分类 分子分散系统 胶体分散系统 粗分散系统 二、 1、动力学性质布朗运动、扩散、沉降 光学性质是其高度分散性与不均匀性的反映 电学性质主要指胶体系统的电动现象 丁达尔实质:胶体中分散质微粒散射出来的光 超显微镜下得到的信息 (1)可以测定球状胶粒的平均半径。 (2)间接推测胶粒的形状和不对称性。例如,球状粒子不闪光,不对称的粒子在向光面变化时有闪光现象。 (3)判断粒子分散均匀的程度。粒子大小不同,散射光的强度也不同。 (4)观察胶粒的布朗运动、电泳、沉降和凝聚等现象 观察到胶粒发出的散射光,可观察布朗运动电泳沉降凝聚,只能确定质点存在和位置(光亮点),只能推测不能看到大小和形状 2、胶体制备的条件 溶解度稳定剂 3、溶胶的净化 渗析法、超过滤法 4、纳米颗粒粒径在1-100之间纳米颗粒的特性与粒子尺寸紧密相关,许多特性 可表现在表面效应和体积效应两方面。 5、布朗运动使胶粒克服重力的影响, 6、I反比于波长λ的四次方 7、溶胶产生各种颜色的原因;溶胶中的质点对可见光产生选择性吸收。溶胶对光吸收显示特定波长的补色不吸收显示散射光的颜色 agcl&agbr光透过浅红垂直淡蓝雾里黄灯减散,入射白光散射光中蓝紫色光散射最强天蓝是太阳散射光,早傍晚红色是透射光有宇散射作用 8、 9、胶粒带电原因:吸附、电离、同晶置换(晶格取代)、摩擦带电。 10、胶团结构:一定量难溶物分子聚结成中心称为胶核、然后胶核选择性的吸附稳定剂中的一种离子,形成紧密吸附层;由于正、负电荷相吸,在紧密层外形成反号离子的包围圈,从而形成了带与紧密层相同电荷的胶粒;胶粒与扩散层中的反号离子,形成一个电中性的胶团。 11、热力学电势和电动电势的区别: 发生在不同的部位、一般情况电动电势是热力学电势一部分绝对值小于热力学电势、热力学

胶体和表面化学必会的题目及解答

胶体化学 研究胶体体系的科学。是重要的化学学科分支之一。 表面活性剂 使表面张力在稀溶液范围内随浓度的增加而急剧下降,表面张力降至一定程度后(此时溶液浓度仍很稀)便下降很慢,或基本不再下降,这种物质被称为表面活性剂。 3固体表面吸附 是固体表面对其他物质的捕获,任何表面都有自发降低表面能的倾向,由于固体表面难于收缩,所以只能靠降低界面张力的办法来降低表面能,这就是固体表面产生吸附作用的根本原因。 润湿 是用一种流体取代固体表面上存在的另一种流体的过程。 固体表面改性 通过物理或化学的方法,使固体表面性质发生改变的过程。 吸附剂 能够通过物理的或化学的作用,吸附其它物质的物质。 乳状液的变型 乳状液的变型也叫反相,是指O/W型(W/O型)乳状液变成W/O型(O/W型)乳状液的现象。 触变作用 凝胶振动时,网状结构受到破坏,线状粒子互相离散,系统出现流动性;静置时,线状粒子又重新交联形成网状结构。 净吸力 在气液界面,液体表面分子受到体相分子的拉力大,受到气相分子的拉力小,所以表面分子受到一个垂直于液体表面、指向液体内部的合吸力,称为"净吸力"。 Krafft 点 离子型表面活性剂在水中的溶解度随着温度的变化而变化。当温度升高至某一点时,表面活性剂的溶解度急剧升高,该温度称为krafft点。 浊点 加热非离子型表面活性剂的透明水溶液,其在水溶液中的溶解度随温度上升而降低,在升至一定温度值时出现浑浊,这个温度被称之为该表面活性剂的浊点。 表面张力 表面张力是为增加单位面积所消耗的功。 临界胶束浓度: 在表面活性剂溶液中,开始大量形成胶束的表面活性剂浓度。 起泡剂 在气液分散体系中,使泡沫稳定的表面活性剂,称为起泡剂。 凝胶 一定浓度的溶胶体系,在一定的条件下失去流动性而形成的半固体物质。 高分子溶液 分散相是高分子物质的分散体系。 比表面积 对于粉末或多孔性物质,1g固体所占有的总表面积为该物质的比表面。

胶体与表面化学 试题

一、是非题 1.表面超量的英文具体描述: The surface excess of solute is that the number of moles of solute in the sample from the surface minus the number of moles of solute in the sample from the bulk under a condition of the same quantity of solvent or the surface excess of solvent has been chosen to be zero. 2.囊泡的形成途径: The final surfactant structures we consider as models for biological membranes are vesicles. These are spherical or ellipsoidal particles formed by enclosing a volume of aqueous solution in a surfactant bilayer. Vesicles may be formed from synthetic surfactants as well. 3.絮凝与聚焦之间的区别: Coalescence :the process that many small particles take together to form a new big particle,total surface area of the dispersion system decreases. Aggregation:the process by which small particles clump together like a bunch of grapes (an aggregate), but do not fuse into a new particle,total surface area of the dispersion system do not decrease as well. 4.胶束micelle :A monophasic, fluid, transparent, isotropic and thermodynamically stable system composed by surfactant and water, the particle has some linear dimension between 10-9-10-6m. 5.乳液emulsion :A multiphasic, no-transparent and thermodynamically unstable system composed by surfactant, cosurfactant, oil and water. 6.微乳液microemulsion :A monophasic, fluid, transparent, isotropic and thermodynamically stable system composed by surfactant, cosurfactant, oil and water. 7.囊泡vesicle :能不能直接从双联续制备转换过来?(√) 8.憎水溶胶 亲水溶胶 连续相与分散相有没有明显界限?(没有) 9.胶束体系的稳定性与哪些因素有关?与哪些因素无关? 10.瑞利散射:条件 粒子大小 11.表面吸附超量γ:物理意义 溶剂的量是不是都为零?(×) 12.TEM 、SEM 都需要把样品放入真空中,最后结果都可以表明原来分散度。(×) 13.在Langmuir 膜、LB 膜 单层 理想气体方程式 能否用理想气体关系式描述?(能) 二、多项选择题 1.表面吉布斯自由能: The Gibbs equation:multicomponent systems γμAd dn SdT V G i i ++ =∑-dp From Gibbs-Duhen equation:∑μi dn i =0 注:S G G G G ++=β α ; ∑+-+=i i i n TS pV E G μ; ∑+-+=i i i s s s n TS A E G μγ; dA Ad d n dn SdT TdS Vdp pdV dE dG i i i s i i i γγμμβ α++++-++=∑∑∑)-(,,; dA Ad w d n dn dG pV nom s i i i i i i γγδμμβ α++++=∑∑∑)-SdT -(Vdp -,,; γμμβ αAd d n dn SdT Vdp dG i i i s i i i +++= ∑∑∑)-(,,; ∑+=i i i dn SdT Vdp dG μ-

表面化学习题

表面化学习题 1. 在293K 时,把半径为1mm 的水滴分散为半径为1μm 的小水滴,问表面积增加了多少倍?表面吉布斯自由能增加了多少?完成该变化时,环境至少需做功若干?已知293K 时水的表面自由能为0.072882 -?mol J 解 半径为1mm 水滴的表面积为A 1,体积为V 1,半径为R 1;半径为1μm 水滴 的表面积为A 2,体积为V 2,半径为R 2,因为V 1=NV 2,所以34πR 3=N 34 π3 2R , 式中N 为小水滴个数N=93 33 2 1 101011=??? ???=? ??? ??-m m m m R R 104421 22 12=?=rR R N A A ππ92 11??? ??mm m μ=1000 △G A =γdA=0.072882 -?mol J ?4π(N 2122R R -) =9.145?10-4J W f =—△G A =—9.145?10-4J 2. 已知汞溶胶中粒子(设为球形)的直径为22nm ,每dm 3溶胶中含Hg 为8?10-5kg 的汞滴分散为上述溶胶时表面吉布斯自由能增加多少?已知汞的密度 为13.63-?dm kg ,汞—水界面张力为0.3751 -?m N 。 解 直径为22nm 的汞的粒子体积为V=34 πR 3=3 3102223 4? ?? ????-m π =5.576?10-24m 3 每1cm 3的溶胶粒子数N 为 N=12 24 3332510054.110576.516.131011108?=????????-----dm kg dm dm kg A 总=N ?4πR 2=1.054?1012?4π?2 9 102 22? ?? ???-m =1.603?10-3m 2 △G A =γ?△A=0.375 1 -?m N ?(1.603?10-3m 2-4π2 0R )=5.95?10-4J (式中R 0为8?10-5kg 汞成一个汞滴时 的半径,等于1.12?10-3m) 3. 在298 K ,101.325 kPa 下,将直径为1 μm 的毛细管插入水中,问需在管内加多大压力才能防止水面上升?

胶体与表面化学知识点整理

第一章 1.胶体体系的重要特点之一是具有很大的表面积。 通常规定胶体颗粒的大小为1-100nm(直径) 2.胶体是物质存在的一种特殊状态,而不是一种特殊物质,不是物质的本性。 胶体化学研究对象是溶胶(也称憎液溶胶)和高分子溶液(也称亲液溶胶)。 气溶胶:云雾,青烟、高空灰尘 液溶胶:泡沫,乳状液,金溶胶、墨汁、牙膏 固溶胶:泡沫塑料、沸石、冰淇淋,珍珠、水凝胶、红宝石、合金 第二章 一.溶胶的制备与净化 1.溶胶制备的一般条件:(1)分散相在介质中的溶解度必须极小(2)必须有稳定剂存在 2.胶体的制备方法:(1)凝聚法(2)分散法 二.溶胶的运动性质 1.扩散:过程为自发过程 ,此为Fick第一扩散定律,式中dm/dt表示单位时间通过截面A扩散的物质数量,D为扩散系数,单位为m2/s,D越大,质点的扩散能力越大 扩散系数与质点在介质中运动时阻力系数之间的关系为:(为阿伏加德罗常数;R为气体常数) 若颗粒为球形,阻力系数=6(式中,为介质的黏度,为质点的半径)故,此式即为Einstein第一扩散公式 浓度梯度越大,质点扩散越快;就质点而言,半径越小,扩散能力越强,扩散速度越快。 2.布朗运动:本质是分子的热运动 现象:分子处于不停的无规则运动中 由于布朗运动是无规则的,因此就单个粒子而言,它们向各方向运动的几率是相等的。在浓度高的区域,单位体积的粒子较周围多,造成该区域“出多进少”,使浓度降低,这就表现为扩散。扩散是布朗运动的宏观表现,而布朗运动是扩散的微观基础 Einstein认为,粒子的平均位移与粒子半径、介质黏度、温度和位移时间t之间的关系:,此式常称为Einstein-Brown位移方程。式中是在观察时间t内粒子沿x轴方向的平均位移;r为胶粒的半径;为介质的粘度;为阿伏加德罗常数。 3.沉降

物理化学各章概念总结、公式总结电子版1 表面化学与胶体

第8章 表面化学与胶体 8.1 重要概念和规律 1.比表面能与表面张力 物质的表面是指约几个分子厚度的一层。由于表面两侧分子作用力不同,所以在表面上存在一个不对称力场,即处在表面上的分子都受到一个指向体相内部的合力,从而使表面分子具有比内部分子更多的能量。单位表面上的分子比同样数量的内部分子多出的能量称为比表面能(也称比表面Gibbs函数)。表面张力是在表面上的相邻两部分之间单位长度上的相互牵引力,它总是作用在表面上,并且促使表面积缩小。表面张力与比表面能都是表面上不对称力场的宏观表现,即二者是相通的,它们都是表面不对称力场的度量。它们是两个物理意义不同,单位不同,但数值相同,量纲相同的物理量。 2.具有巨大界面积的系统是热力学不稳定系统 物质表面所多余出的能量γA称表面能(亦叫表面Gibbs函数),它是系统Gibbs函数的一部分,表面积A越大,系统的G值越高。所以在热力学上这种系统是不稳定的。根据热力学第二定律,在一定温度和压力下,为了使G值减少,系统总是自发地通过以下两种(或其中的一种)方式降低表面能γA:①在一定条件下使表面积最小。例如液滴呈球形,液面呈平面;②降低表面张力。例如溶液自发地将其中能使表面张力降低的物质相对浓集到表面上(即溶液的表面吸附),而固体表面则从其外部把气体或溶质的分子吸附到表面上,从而改变表面结构,致使表面张力降低。 3.润湿与铺展的区别 润湿和铺展是两种与固—液界面有关的界面过程。两者虽有联系,但意义不同。润湿是液体表面与固体表面相互接触的过程1因此所发生的变化是由固—液界面取代了原来的液体表面和固体表面。润湿程度通常用接触角表示,它反映液、固两个表面的亲密程度。当θ值最小(θ=0o)时,润湿程度最大,称完全润湿。铺展是指将液体滴洒在固体表面上时,液滴自动在表面上展开并形成一层液膜的过程,因此所发生的变化是由固—液界面和液体表面取代原来的固体表面。铺展的判据是上述过程的?G:若?G<0,则能发生铺展;若?G≥0,则不能铺展。显然,如果能发生铺展,则必然能够润湿;但能够润湿(θ<90°),则不一定发生铺展。只有完全润湿时才能铺展。因此润湿与铺展是两个不同的概念。 4.溶液的表面吸附量 在一定条件下为了使表面张力最小,溶液能自动地将其中引起表面张力减小的物质相对浓集到表面上,因此表面相的浓度与溶液本体不同,这种现象称表面吸附。达吸附平衡时,单位表面上溶质的物质的量与同量溶剂在溶液本体中所溶解的溶质的物质的量的差值,称为表面吸附量,用符号Γ表示。Γ也常叫做表面超量,单位为mol.m-2。Γ反映溶液表面吸附的性质和强弱:Γ>0表示正吸附(表面活性物质属于这种情况),且Γ值越大表示正吸附程度越大;Γ<0,表示负吸附,且Γ值越负表示负吸附程度越大。Γ值可由Gibbs吸附方程求出。当浓度很大时,表面吸附量不再随浓度而变化,此时称最大吸附量或饱和吸附量。 5.表面活性剂 表面活性剂是一类能够显著降低水表面张力的物质,其特点是加入量很小而降低表面张力的收效很大,所以它们在溶液表面具有很强的正吸附。表面活性剂分子具有不对称性结构,其一端是有极性的亲水基,另一端是无极性的憎水基,所以它们在表面上呈定向排列,其憎水基朝外,亲水基朝向液体内部。在溶液内部,表面活性剂分子缔合成胶束。表面活性剂在水溶液中开始形成胶束时的浓度称临界胶束浓度CMC。有关胶束的实验及理论研究是目前一个十分活跃的领域。表面活性剂在生产、生活及科研活动中具有广泛的应

胶体与表面化学的简答题

1.什么是气凝胶?有哪些主要特点和用途?当凝胶脱去大部分溶剂,使凝胶中液体含量比固体含量少得多,或凝胶的空间网状结构中充满的介质是气体,外表呈固体状,这即为干凝胶,也称为气凝胶。气凝胶是一种固体物质形态,世界上密度最小的固体。气凝胶貌似“弱不禁风”,其实非常坚固耐用。它可以承受相当于自身质量几千倍的压力,在温度达到1200摄氏度时才会熔化。此外它的导热性和折射率也很低,绝缘能力比最好的玻璃纤维还要强39倍。 用途:(1)制作火星探险宇航服(2)防弹不怕被炸 (3)过滤与催化(4)隔音材料(5)日常生活用品 2.试述凝胶形成的基本条件? ①降低溶解度,使被分散的物质从溶液中以“胶体分散状态”析出。②析出 的质点即不沉降,也不能自由行动,而是构成骨架,在整个溶液中形成连续的网状结构。2.简述光学白度法测定去污力的过程。 将人工制备的污布放在盛有洗涤剂硬水的玻璃瓶中,瓶内还放有橡皮弹子,在机械转动下,人工污布受到擦洗。在规定温度下洗涤一定时间后,用白度计在一定波长下测定污染棉布试片洗涤前后的光谱反射率,并与空白对照。 4.试述洗涤剂的发展趋势。 液体洗涤剂近几年的新的发展趋势: (1)浓缩化 (2)温和化、安全化(3)专业化 (4)功能化(5)生态化: ①无磷化②表面活性剂生物降解③以氧代氯 5.简述干洗的原理 干洗是在有机溶剂中进行洗涤的方法,是利用溶剂的溶解力和表面活性剂的加溶能力去除织物表面的污垢。 3. 脂肪酶在洗涤剂中的主要作用是什么? 脂肪酶,人的皮脂污垢如衣领污垢中因含有甘油三脂肪酸酯而很难去除,在食品污垢中也含有甘油三脂肪酸酯类的憎水物质,脂肪酶能将这些污垢分解成甘油和脂肪酸。 4.在洗涤剂中作为柔和剂的SAA主要是什么物质?用作柔和剂的表面活性剂主要是两性表面活性剂 8.用防水剂处理过的纤维为什么能防水?织物防水原理:将纤维织物用防水剂进行处理,可使处理后的纤维不表面变为疏水性,防水织物由于表面的疏水性使织物与水之间的接触角θ>90°,在纤维与纤维间形成的“毛细管”中的液面成凸液面,凸液面的表面张力的合力产生的附加压力△P的方向指向液体内部因此有阻止水通过毛细管渗透下来的作用。 5.请举出几个润湿剂的应用实例。 (1)润温剂在农药中的应用。加入润湿剂后,药液在蜡质层上的润湿状况得到改善甚至可以在其上铺展。 (2)润湿剂在原油开采中的应用。溶有表面活性剂的水,称之为活性水,活性水中添加的表面活性剂主要是润湿剂。它具有较强的降低油—水界面张力和使润湿反转的能力 (3)润湿剂在原油集输中的应用。在稠油开采和输送中,加入含有润湿剂的水溶液,即能在油管、抽油杆和输油管道的内表面形成—层亲水表面,从而使器壁对稠油的流动阻力降低,以利于稠油的开采和辅送。这种含润湿剂的水溶液 即为润湿降阻

研究生胶体与表面化学题

研究生胶体与表面化学题 1、下列物系中哪一种为非胶体? ①牛奶②烟雾③人造红宝石④空气 2、溶胶的基本特性之一是 ①热力学上和动力学上皆属稳定的物系 ②热力学上和动力学上皆为不稳定的物系 ③热力学上稳定而动力学上不稳定的物系 ④热力学上不稳定而动力学上稳定的物系 3、溶胶有三个最基本的特性,下列哪点不在其中? ①分散性②聚结不稳定性③多相性④动力稳定性 4、丁铎尔(Tyndall)现象是光射到粒子上发生下列哪种现象的结果? ①散射②反射③透射④折射 5、在外加电场作用下,胶体粒子在分散介质中移动的现象称为 ①电渗②电泳③流动电势④沉降 6、下列各性质中哪个不属于溶胶的动力学性质? ①布朗运动②扩散 ③电泳④沉降平衡 7、对于AgI的水溶胶,当以KI为稳定剂时其结构可以写成 [(AgI)m nI-(n-x)K+]x-x K+ 则被称为胶粒的是指: 8、在AS2S3溶胶中加入等体积,等当量浓度的下列不同电解质溶液,则使溶胶 聚沉最快的是 ①LiC1 ②NaC1 ③CaCI2 ④A1C13 9、在Al2O3溶胶中加入等体积,等当量浓度的下列不同电解质溶液,则使溶胶 聚沉得最快的是 ①KC1 ②KNO3 ③K3[Fe(CN)6] ④K2C2O4 10、在一定量的AgI溶胶中加入下列不同电解质溶液,则使溶胶在一定时间内完 全聚沉所需电解质的量最少者为

①La(NO3)3 ②Mg(NO3)2 ③NaNO3 ④KNO3 11、下列各点哪一点不属于电动现象? ①电导②电泳 ③电渗④沉降电位 12、对于电动电位即ξ电位的描述,哪一点是不正确的? ①ξ电位表示了胶粒溶剂化层界面到均匀液相内的电位 ②ξ电位的绝对值总是大于热力学电位? ③ξ电位的值易为少量外加电解质而变化 ④当双电层被压缩到溶剂化层相合时,ξ电位为零。 13、为测定大分子溶液中大分子化合物的平均分子量,下列各方法中哪一种是不 宜采用的? ①渗透压法②光散射法 ③冰点降低法④粘度法 14、乳状液、泡沫、悬浮液等作为胶体化学研究的内容,一般地说是因为它们 ①具备胶体所特有的分散性、不均匀性和聚结不稳定性 ②充分具备胶体的分散性及不均匀性 ③充分具备胶体的分散性及聚结不稳定性 ④充分具备胶体的不均匀性及聚结不稳定性 15、大分子溶液与溶胶在性质上的最根本区别是 ①前者粘度大,后者粘度小 ②前者是热力学稳定物系,后者是热力学不稳定物系 ③前者是均相的而后者是不均匀的多相物系 ④前者对电解质稳定性大后者加入微量电解质即能引起聚沉 16、在大分子溶液中加入多量的电解质,使大分子溶液发生聚沉的现象被称为盐 析。它主要是因为 ①大量电解质的离子发生强烈水化作用而使大分子去水化 ②降低了动电位 ③电解质加入使大分子溶液处于等电点

胶体与表面化学练习题

胶体练习题 一、判断题: 1.溶胶在热力学和动力学上都是稳定系统。 2.溶胶与真溶液一样是均相系统。 3.能产生丁达尔效应的分散系统是溶胶。 4.通过超显微镜可以看到胶体粒子的形状和大小。 5.ζ电位的绝对值总是大于热力学电位φ的绝对值. 6.加入电解质可以使胶体稳定,加入电解质也可以使肢体聚沉;二者是矛盾的。7.晴朗的天空是蓝色,是白色太阳光被大气散射的结果。 8.旋光仪除了用黄光外,也可以用蓝光。 9.大分子溶液与溶胶一样是多相不稳定体系。 二、单选题: 1.雾属于分散体系,其分散介质是: (A) 液体;(B) 气体;(C) 固体;(D) 气体或固体。2.将高分子溶液作为胶体体系来研究,因为它: (A) 是多相体系;(B) 热力学不稳定体系; (C) 对电解质很敏感;(D) 粒子大小在胶体范围内。 3.溶胶的基本特性之一是: (A) 热力学上和动力学上皆属于稳定体系; (B) 热力学上和动力学上皆属不稳定体系; (C) 热力学上不稳定而动力学上稳定体系; (D) 热力学上稳定而动力学上不稳定体系。 4.溶胶与大分子溶液的区别主要在于: (A) 粒子大小不同;(B) 渗透压不同; (C) 丁铎尔效应的强弱不同;(D) 相状态和热力学稳定性不同。 5.大分子溶液和普通小分子非电解质溶液的主要区分是大分子溶液的: (A) 渗透压大;(B) 丁铎尔效应显著; (C) 不能透过半透膜;(D) 对电解质敏感。 6.以下说法中正确的是: (A) 溶胶在热力学和动力学上都是稳定系统; (B) 溶胶与真溶液一样是均相系统; (C) 能产生丁达尔效应的分散系统是溶胶; (D) 通过超显微镜能看到胶体粒子的形状和大小。 7.对由各种方法制备的溶胶进行半透膜渗析或电渗析的目的是: (A) 除去杂质,提高纯度; (B) 除去小胶粒,提高均匀性; (C) 除去过多的电解质离子,提高稳定性; (D) 除去过多的溶剂,提高浓度。 8.在AgNO3溶液中加入稍过量KI溶液,得到溶胶的胶团结构可表示为: (A) [(AgI)m·n I-·(n-x) ·K+]x-·x K+;(B) [(AgI)m·n NO3-·(n-x)K+]x-·x K+;

物理化学表面及胶体习题

界面与胶体化学习题课 (一) 界面与胶体化学主要公式 1. 表面张力(表面自由能) B n P T A G ,,)(??=γ(单位 N/m,J/m 2) 2. 弯曲表面下的附加压力(Young-Laplace ) gh R P s ργ?==2 (R 为曲率半径,?ρ为弯曲表面两边的物质密度差) (肥皂泡R P s γ4=) 毛细管中g R g R h ????=???=ρθγργcos 22,(R 毛细管半径,θ接触角) 3. 弯曲表面下的蒸气压(Kelvin ) )11(2ln 1 212R R M P P RT -?=ργ (小液滴,大液滴,土壤中的毛细管吸附水,不同粒度物质的溶解度) 4. 吸附等温式Langmuir ,BET 等(注意使用条件): 5. 吉布斯表面吸附等温式:da d RT a γ?-=Γ (讨论正、负吸附) 6. 接触角:0<θ<90o 固体被液体润湿; θ>90o 固体不为液体润湿。 7. 胶体中沉降平衡时粒子随高度分布公式: )()(3 4ln 120312X X N g r N N RT -??--=介质粒子ρρπ 8. Rayleigh 散射公式:散射光强度与入射光波长的四次方成 反比例。 胶团构造:(AgI ) [(AgI)m ·nI -,(n-x)K +]x-·xK + 胶核,胶粒,胶团,双电层,电泳,电渗,流动电势,沉降电 势。

(二) 习题 1. 293K 时,把半径为1.0mm 的水滴分散成半径为1.0μm 的小液滴, 试计算(已知293K 时水的表面Gibbs 自由能为0.07288J/m 2): (1)表面积是原来的多少倍? (2) 表面Gibbs 自由能增加多少? (3)完成该变化时环境至少需做多少功? 答:(1)1000; (2)A G ??=?γ=9.145×10-4J (3)Wf =9.145×10-4J 6. 在298K 和101.325kPa 压力下,将直径为1.0μm 的毛细管插入水中, 问需在管内加多大压力才能防止水上升?若不加压力,水面上升,平 衡时管内液面上升多高?(已知298K 时水的表面张力为0.072N/m , 水密度为1000kg/m 3,设接触角为0度,重力加速度g 为9.8m/s 2) 答:gh R P s ργ?==2,Ps=288kPa ,h=29.39m 8. 已知在298K ,平面水的饱和蒸汽压为3168Pa ,求在相同温度下, 半径为3nm 的小液滴的饱和蒸汽压,已知298K 时水的表面张力为 0.072N/m ,水密度为1000kg/m 3,水的摩尔质量为18g/mol ) 答; )11(2ln 1 212R R M P P RT -?=ργ主要密度,摩尔质量单位 得到P2=4489.7pa 10. 水蒸气骤冷会发生过饱和现象,在夏天的乌云中,用飞机撒干冰 微粒,使气温骤降至293K ,水汽的过饱和度(P/Ps )达4。已知在293K 时水的表面张力为0.07288N/m ,水密度为997kg/m 3,试计算:(1)在此 时开始形成雨滴的半径。(2)每滴所含水的分子数。 答:(1))11(2ln 1 212R R M P P RT -?=ργ (P1为Ps ,R1=∞)求得R2=7.79×10-10m ;(2)66343=??=L M R N ρπ

胶体与表面化学第四版重点

胶体与表面化学(第四版) 1.绪论 分散系统:一种物质以细分散状态分散在另一种物质中构成的系统。 分散相:分散系统中被分散的不连续相。 分散介质:分散系统中的连续相。 比表面:单位质量分散相物质所具有的面积。 缔合胶体:多个分子的缔合体构成胶体分散相。 胶体体系:分散相粒子至少在一个尺度上的大小处在1-100nm 范围内的分散系统。 溶胶:把分散介质是液体的胶体系统称为液溶胶,介质是水为水溶胶;介质是固体为固溶胶。 2.胶体与纳米粒子的制备 胶体制备:分散法(机械、电分散、超声波、胶溶)、凝聚法(还原、氧化、水解、复分解)晶核-晶体成长 条件:1)分散相在介质中的溶解度必须极小;2)必须有稳定剂的存在 净化:1)渗析:利用羊皮纸或火棉胶制成的半透膜,将溶胶与纯分散介质隔开。 2)超过滤:利用半透膜代替普通滤纸在压差下过滤溶胶的方法。 3)渗透:借半透膜将溶液和溶剂隔开,此膜只允许溶剂分子通过,胶粒和溶质不能通过。 反渗透:渗透平衡时在浓相一侧施加外压,则浓相中的溶剂分子向稀相迁移。 单分散溶胶:特定条件下制取的胶粒尺寸、形状和组成皆相同的溶胶。 胶体晶体:由一种或多种单分散胶体粒子组装并规整排列的二维或三维类似于晶体的有序结构。 光子晶体:在各个方向能阻止一定频率范围的光传播。 纳米粒子特性:比表面积大;易形成聚团;熔点低;磁性强;光吸收强;热导性能好 制备:气相、液相、固相 纳米气泡:在液体中或固液界面上存在的纳米尺度的气泡。 3.胶体系统的基本性质(N A =6.5*1023mol -1,R=8.314,T=273K) 运动 扩散:扩散系数:爱因斯坦第一扩散公式:r 61πη?=A N RT D 爱因斯坦布朗运动:r 3t t 2πη?==A N RT D X 沉降:大气压随高度分布:RT M gh -p p ln 0h = 光学 散射现象:当质点大小在胶体范围内时。反射:质点直径远大于入射光波长。 丁道尔现象:以一束强烈的光线射入溶胶后,在入射光的垂直方向可以看到一道明亮的光带。 Rayleigh 散射:022 1222122423)2(c 24I n n n n v I ?+-?=λπ 电学 电动现象:电泳:带负电的胶粒向正极移动,带正电的胶粒向负极移动。 电渗析:水在外加电场作用下,通过黏土颗粒间的毛细通道向负极移动的现象。 沉降电势:在无外加电场作用下,使分散相粒子在分散介质中快速沉降,则在沉降管两端产生电势差。 流动电势:用压力将液体挤过毛细管网或由粉末压成的多孔塞,在毛细管网两端产生电势差。 质点荷电原因:电离;离子吸附;晶格取代 双电层结构:胶粒表面带电时,在液相中必有与表面电荷数量相等且符号相反的离子存在,这些离子称为反离子。反离子一方面受静电引力作用向胶体表面靠近,另一方面受分子热运动及扩散作用有在整个液体中均匀分布的趋势。结果使反离子在胶粒表面区域的液相中形成平衡,越靠近界面反离子浓度越高,越远离界面反离子浓度越低。胶粒表面电荷与周围介质中的反离子构成双电层。胶粒表面与液体内部的电势差

胶体与表面化学试卷

胶体与表面化学 考试题型 一,选择题(15Χ2‘,共30分) 二,判断题(15Χ1‘,共15分) 三, 简答题(共6道题目,共30分) 四, 计算题(共5道题目,共25分) 例题------选择题 1.雾属于分散体系,其分散介质是 A 固体 B 气体 C 液体 D 气体或固体 2.区别溶胶与真溶液和悬浮液最简单灵敏的方法是: A 乳光计测定粒子浓度 C 超显微镜测定粒子大小 B 观察丁铎尔效应 D 观察ζ电位 3.固体物质与极性介质(如水溶液)接触后,在相之间出现双电层,所产生的电势是指 A 滑动液与本体液之间的电势差 C 紧密层与扩散层之间的电势差 B 固体表面与本体溶液间的电势差 D 小于热力学电位φ 4.下列性质中既不属于溶胶动力学性质又不属于电动性质的是: A 沉降平衡 B 布朗运动 C 沉降电势 D 电导 5.当溶胶中加入大分子化合物时: A 一定使溶胶更稳定 C 对溶胶稳定性影响视加入量而定 B 一定使溶胶更容易为电解质所聚沉 D 对溶胶稳定性没有影响 6. 同一体系,比表面自由能和表面张力都用σ表示,它们 A 物理意义相同,数值相同 C 物理意义相同,单位不同 B 量纲和单位完全相同 D 前者是标量,后者是矢量 7.对处于平衡状态的液体,下列叙述不正确的是 A 凸液面内部分子所受压力大于外部压力 B 凹液面内部分子所受压力小于外部压力 C 水平液面内部分子所受压力大于外部压力 D 水平液面内部分子所受压力等于外部压力 8.胶束的出现标志着表面活性剂的: A 降低表面张力的作用下降 C分子远未排满溶液表面 B 溶解已达到饱和 D分子间作用超过它与溶剂的作用 9.有机液体与水形成W/O型还是O/W型乳状液与乳化剂的HLB值有关,一般是: A HLB值大,易形成W/O型 C HLB值大,易形成O/W型 B HLB值小,易形成O/W型 D HLB值小,不易形成W/O型 10. 将分散系统按离子大小分类时,胶体离子的大小范围是: A 直径大于10-9m; B 直径介于10-7~10-5m; C 直径介于10-9~10-7m; D 直径小于10-5m。 11. 通常称为表面活性剂的物质是指将其加入液体中后: ( ) (A)能降低液体的表面张力; (B)能增大液体的表面张力; (C)能显著增大腋体的表面张力; (D)能显著降低液体的表面张力。 12. 下述现象中与表面活性物质无关的是: ( ) (A)乳化; (B)润湿; (C)起泡; (D)溶解。 13. 插在液体中的玻璃毛细管里面液面上升或下降决定于该液体的: ( )

2011表面化学与胶体化学试卷

2011年武汉理工大学资源与环境工程学院环境工程专业 硕士研究生表面与胶体化学考试题 (本试卷共10题,每题10分,共100分) 1、表面张力与自由能的关系是什么,影响表面张力的因素有些?F= 2 γ L 其中γ代表液体的表面张力系数,即垂直通过 液体表面上任一单位长度与液面相切的力。 简称表面张力(surface tension )是液体 基本物化性质之一,通常以mN/m为单位。 表面 (过剩)自由能: 对一定量的液体,在恒 T.P下体系增加单位表面积外界所做的功。即 增加单位表面积体系自由能的增量。 dG = -SdT + VdP + γdA 注意:表面自由能并非表面分子总能量,而是 表面分子比内部分子自由能之增值。 表面张力与表面自由能的区别 所用的符号相同,量纲相同,单位适宜时数 值相同。 单位不同(mN/m, mJ/m2) 物理意义不同:分别是力学/热力学方法在表

面现象中物理量。 表面张力与分子间作用力密切相关 极性物质的γ>非极性物质 结构相似时,分子量越大,γ越高 芳环或共轭双键一般>饱和碳氢化合物 一般有机液体的γ在20-50 mN/m 水是常见液体中表面张力最高的约72 mN/m 熔盐及液体金属γ最高。 Hg 486.520, Fe 18801550, He 0.3651K 一般液体的表面张力皆随温度升高而降低 (几乎全部,有特例) 表面张力可看作分子间作用力的一种度量。 温度升高,分子动能增加,分子间吸引力部 分被克服。故 dγ/ dT < 0。当达到临界温度 时γ消失。个别液体的表面张力温度系数为正 值例如液体金属铜和锌。 温度变化不大时(10-20°C)有近似的线性关 系:γ=γ0(1-bT) 通常压力对表面张力影响不大 (dV/dA) T.P.n= ( dγ/dP)A.T.n 2、简要解释Laplace与Kevin方程,并说明其主要用途。 1)液体压力与曲率的关系-Laplace公式

胶体与表面化学 课程大纲及重点

胶体与表面化学

第一章绪论(2学时) 1.1胶体的概念 什么是胶体,胶体的分类 1.2胶体化学发展简史 1.3胶体化学的研究对象 表面现象,疏液胶体,缔合胶体,高分子溶液。 重点:胶体、分散系统、分散相、分散介质的概念。 难点:胶体与表面化学在矿物加工工程中的作用及意义。 教学方法建议:启发式教学,引导学生对胶体及表面化学的兴趣。第二章胶体与纳米材料制备(4学时) 2.1胶体的制备 胶体制备的条件和方法,凝聚法原理。 2.2胶体的净化 渗析、渗透和反渗透。 2.3单分散溶胶 单分散溶胶的定义及制备方法。 2.4胶体晶体 胶体晶体的定义及制备方法 2.5纳米粒子的制备 什么是纳米材料,纳米粒子的特性及制备方法 重点:胶体的制备、溶胶的净化、胶体晶体的制备。 难点:胶体制备机理。 教学方法建议:用多媒体教学,注重理论联系实际。 第三章胶体系统的基本性质(8学时) 3.1溶胶的运动性质 扩散、布朗运动、沉降、渗透压和Donnan平衡。 3.2溶胶的光学性质 丁道尔效应和溶胶的颜色。 3.3溶胶的电学性质

电动现象、双电层结构模型和电动电势(ζ电势) 3.4溶胶系统的流变性质 剪切速度越切应力,牛顿公式,层流与湍流,稀胶体溶液的黏度。 3.5胶体的稳定性 溶胶的稳定性、DLVO理论、溶胶的聚沉、高聚物稳定胶体体系理论。 3.6显微镜及其对胶体粒子大小和形状的测定 显微镜的类型及基本作用 重点:沉降、渗透压、电泳、电渗、ζ电势的计算、双电层结构模型、DLVO理论、溶胶的聚沉。 难点:双电层结构模型。 教学方法建议:多媒体教学和板书教学相结合。 第四章表面张力、毛细作用与润湿作用(6学时) 4.1表面张力和表面能 净吸力和表面张力的概念、影响表面张力的因素、液体表面张力和固体表面张力的 测定方法。 4.2液-液界面张力 Anntonff规则、Good-Girifalco公式、Fowkes理论和液-液界面张力的测定。 4.3毛细作用与Laplace公式和Kelvin公式 毛细作用,Laplace公式和Kelvin公式的应用,曲界面两侧的压力差及与曲率半径的关系,毛细管上升或下降现象,弯曲液面上的饱和蒸气压。 4.4润湿作用和杨氏方程 润湿现象、润湿角,润湿角的测量方法、润湿角的影响因素、铺展、杨方程、润湿热的计算。 4.5固体表面能 固体表面能的特点与表面张力的区别 重点:润湿现象、润湿角、润湿角的计算;Laplace公式和Kelvin公式的计算公式;润湿热的计算。 难点:Fowkes理论和杨方程。 教学方法建议:启发性讲解与讨论式教学相结合,板书与多媒体教学相结合。

相关文档