文档库 最新最全的文档下载
当前位置:文档库 › 带数字的歌曲

带数字的歌曲

带数字的歌曲

带数字的歌曲

两只老虎,999朵玫瑰,爱你一万年,爱上一个不回家的人,雪人,千千阙歌,相约1997

山路十八弯说你也一样爱这我默默孤

单摩天轮

一生爱你千百回对手泪了够爱

一千年以后走火入魔舍不得放手新歌

吻到一公裏之外

编号89757 123木头人数到五答应我

十个男人九个坏

江南B小调雨后SHE 《五月天》疯了疯了

越来越爱一眼万年一生有你九十九

次我爱他

星晴唯一罗志祥《搞笑》小小大人物

恒星龙卷风蜗牛爱在西元前

千年等一回风中有朵雨做的云

数字音频广播系统

数字音频广播系统简介 功能概述 【对讲】控制中心可点对点进行对讲。 【广播】控制指挥中心可点到面进行广播。 【音乐播放】进行井下数字音乐播放、新闻播报(电子版稿件可以用我们提供的软件转换后直接进行女声或者男声播放)、声音扩播等。 【传输距离】传输距离可以达到6000米。 【传输方式】采用数字音频传输,数字功放。 【传输介质】数字音频传输可以采用煤矿现有的电话线传输,也可以使用独立电缆传输。【使用数量】数量不受限制。 【线路诊断】指挥中心随时可以了解和发现矿井通讯的电话线路是否畅通,保障通信安全。 地面控制中心图案

井下大功率隔爆音响分站 型号的组成及代表意义 KX H 127 (L) 设计序号

最高工作电压 主要特征代号,信号器 产品类型代号,矿用信号设备 【使用环境条件】装置在下列条件下可靠工作 a.环境温度:0℃~+40℃; b.平均相对湿度:不大于95%(+25℃); c.大气压力:80~110kPa; 80dB 环境噪声:不大于d. e.有爆炸性混合物,但无破坏绝缘的腐蚀性气体的场合。 【使用电源条件】 a.额定工作电压:AC127V b.额定工作电流:500mA 【本安输出参数】 a.最高开路电压:DC12.5V b.最大短路电流:2.5A(每路) c.引入电缆外径:8-12mm 数字音频广播系统的使用方法 DAS是一个基于TCP/IP网络的数字广播系统服务端软件,具有灵活的任务编排功能,可编制单次和周期性的音频播放任务,将计算机上的音频文件通过网络传输给网络上的音频终端播放,利用其对讲和广播功能可以方便实现对设备的人为启停预警。 4.1 使用前的设置 使用DAS前,应该根据系统工程的实际情况,进行设备分组,设置软件工作参数,设置音频终端工作参数,设置声卡模拟输入通道等,以便DAS正常工作。 【设备分组】进行设备分组主要是为了方便播放任务的编排。通常根据设备的分布或设备所属的 区域,对设备进行分组。 按键,弹出“系统配置”窗口,切换的“分组管理”DAS 运行软件后,点击页面。 【创建新的分组】 第一步,点击页面下方的“新建分组” ,软件创建了一个“新的分组”并显示在分组栏中,如图中序号②。 第二步,点击“新的分组”,在右边信息栏中,显示了这个分组的名称与组号。 第三步,修改新的分组的名称,用户可根据实际情况给新的分组重新命名。 第四步,软件自动的给新的分组分配一个未被占用的组号,用户可根据需要修改组号, 个组号,建议用户采纳软件自动199,共199~1但不能与之前使用的组号冲突。组号范围.

实验13、CoolEdit数字音频处理剖析

实验13、CoolEdit数字音频处理 实验课时: 课内:2课时;课外:1课时 实验目的: 了解音频数据的特性及其获取和处理的方法,学会使用音频编辑工具CoolEdit进行音频数据的录制、编辑和播放 实验内容: 操作准备 1.在D:或E:分区创建一个以你的“完整学号+姓名”命名的文件夹(名称应类似: 198009010001文立斌),我们把这个文件夹简称为“你的文件夹” 2.以下操作步骤中所涉及的198009010001、文立斌均应替换成你的学号、姓名 3.准备好音频实验环境,个别人物需要准备麦克风、音箱(或耳机) 任务一、音频提取 1.打开CoolEditPro软件 2.如下图所示,单击工具栏最左边的按钮切换到波形编辑界面 → 3.依次执行菜单命令【文件】→【从视频文件中提取】,通过系统显示的“选择视频文件” 对话框选定“说唱脸谱.dat”文件后单击【打开】按钮,系统开始从“说唱脸谱.dat” 中提取音频 4.等待系统提取音频结束后,执行菜单命令【文件】→【另存为】,将提取到的波形保存 为类似“文立斌A.wma”(.wma格式)的文件 任务二、淡入淡出 1.打开CoolEditPro软件 2.如下图所示,单击工具栏最左边的按钮切换到波形编辑界面 → 3.依次执行菜单命令【文件】→【打开】,通过系统显示的“打开波形文件”对话框选定 “最炫民族风.mp3”文件后单击【打开】按钮打开该文件,原始波形编辑面板类似:

4.单击视窗左下角录播工具面板中的播放按钮,试听歌曲,确定演唱(人声)从何时(第 几秒)开始——大约是第23秒! 5.如下图所示,在波形编辑面板中以鼠标拖拽的方式选定最前面23秒波形: 如果需要精确选定波形区域,您还可以借助视窗右下角的如下面板,直接输入始末时间: 6.依次执行菜单命令【效果】→【波形振幅】→【渐变】,如下图所示,在“波形振幅” 对话框中,选择“Fade in”(淡入),然后单击【确定】按钮: 7.系统进行淡入处理后的波形类似: 您应该对照一下处理前后的前23秒波形的异同 8.试听,您应该能听到淡入处理的效果(音量越来越大)才对! 9.从4分20秒位置开始选定直到音频结束处的波形,为选定的波形添加淡出效果,处理 第2页

数字音频工作站

数字音频工作站 工作站是一种用来处理、交换信息、查询数据的计算机系统。数字音频工作站(Digital Audio Workstation,简称DAW)是一种用来处理、交换音频信息的计算机系统。它是随着数字技术的发展和计算机技术的突飞猛进,将两者相结合的新型设备。数字音频工作站的出现,实现了广播系统高质量的节目录制自动化播出,同时也创造了更加良好的高效的工作环境。 90年代中期以来,随着采用数字技术处理音频信号技术的出现和成熟,尤其是计算机软硬件技术和多媒体技术的日趋完善,各种性能优、功能齐、质量好的自动化程序高的数字化产品纷纷面市。最近几年,数字音频工作站(DAW)已经发展成为专门的计算机化硬盘录音系统,且基于它们能够实现基本和先进的编辑和信号处理功能在多媒体数字音频应用中,使用音频工作站有很多优点,下面列出一些: 1.处理长样本文件的能力。硬盘录音时间只受硬盘本身大小的限制(通常44.1KHz取样频率、16比特精度下1分钟立体声信号需要10.5MB硬盘存储器)。 2.随机存取编辑。因为信号记录在硬盘上,节目中任何点可以随即访问,不论它们以什么顺序记录。无损编辑在丝毫不改变或影响原始录音文件的情况下允许信号片段安排在节目中的任何次序上。一旦编辑结束,这些片段可以连续重放来产生一个演奏,或者个别的在一个指定的SMPTE时间码地址上重放。 3.DSP数字信号处理可以在一个片断或整个样本文件上实现,不

管是实时的还是非实时的,这一切都对信号没有损害。 除了上述这些优点之外,以计算机为基础的数字音频设备还能够综合进行与数字视频、音频和MIDI制作有关的一些工作。 计算机音频工作站主要用于对声音信号的录音、剪辑、处理和缩混。但细分起来,它的应用可以分为经下几个方面: 1.声音剪辑和CD刻录 在这种场合下,计算机音频工作站不是用于从头制作音乐,而是主要对现成的音乐进行剪辑处理,或是将现成的音乐制成CD唱片。比如,它可以使音乐进行重新剪接、为歌曲伴奏移调(但不改变音乐速度)、变化舞蹈音乐的长度(但不改变音乐的音调)、将音乐中的噪声去除,或是将各种现成音乐制作成CD唱片等。因此,在这种场合中计算机音频工作站需要录放和处理的音频轨数只要立体声2个音轨就可以了。 2.日常音乐录制 这时,计算机音频工作站主要用于录制各种日常所用的音乐,例如歌曲伴奏、舞蹈音乐、晚会音乐、影视音乐等。 在这种场合下,计算机音频工作站不会对音乐中的每一种乐器或音色进行单轨录音,一般它是将已做好的MIDI音乐录为立体声的两个音频轨,将MIDI音乐中需要单独调整的个别音色为音独的几个音频轨,再录几个轨的人声和声学乐器。 因此,在这种场合中计算机音频工作站需要录放和处理的音频轨数为8个到16个左右。计算机音频工作站的这种应用方式是目前国

数字音频处理器参数

1. 扩声系统升级改造 (1)新增2台数字音频处理器。该处理器需要和原有视频会议系统、数字会议系统、讲台话筒、现场图传背包TVU系统、无线麦克风、控制室电脑、有线电视等信号源(原调音台连接图附件1图1所示)和新增录播系统进行音频集成,实现各系统音频信号的任意路由和控制。处理器具备12进8出,12路输入通道带AEC回声消除功能,拥有AVB网络接口,支持多达128X128AVB网络,具备 Speech Sense (语音触发技术)和 Sona AEC (回声消除技术)的新型处理算法,信号处理可通过软件直观的配置和控制,如:信号路由和混音、均衡、滤波、动态处理、延迟等。 (2)新增会场前后方音箱。在大厅前方选用2只柱状线列阵音箱,铰接列阵与线性列阵技术的结合,在大厅中后场两侧柱子上壁挂两只补声音箱,以满足中后场的声压级。 整个扩声系统改造后需要符合会场声学环境要求,声音清楚无回声,声音大小符合会场扩声需求。声学特性指标按中华人民共和国国家标准GB50371-2006《厅堂扩声系统设计规范》要求,列表如下: 2. 中控系统升级改造 新购一套中控系统,系统需具有双网卡功能,局域网端口用于连接主机到外部网络,ICSLAN端口连接AMX设备或其他第三方A/V设备使其独立于主要网络;同时支持IPv6和网络标准和特性;支持灵活的编程应用实现(RPM,NetLinx和Java);具有向后和跨平台的兼容性;具有自动诊断功能,能自动检测断线或连接错误的串口和红外端口;程序文件支持从USB驱动器导入/导出。 中控系统需要和原有及新增系统高度集成,将音频、视频、灯光、升降器、大屏控制等进行集中控制管理,能完成所有原系统控制部分的操作,支持一键式的模式切换,同时可支持此项目新购系统的统一控制。原中控系统连接示意图如下图所示:

网络数字化音频系统

网络数字化音频系统

启拓专业手拉手会议,矩阵切换厂商-全球抗干扰专家 网络数字化音频系统——“一线通” 1 “一线通”系统解析 1.1 数字化集成化的产品 所谓数字化、集成化,是从传声器到音箱(除了传声器拾音头和音箱单元)全部采用数字化产 品,用数字可编程处理器(DSP)替代模拟产品, 并将多个设备集成在一台设备中。在音频产品中 常见的数字处理器,有Peaver媒体矩阵,BIAMP. BSS. QSC等音频处理器,还有各品牌的数字调音台。从音频设备发展情况分析,数字化产品(除换能设备——传声器拾音头和音箱单元)将最终替代模拟产品,高度集成化的产品也将成为现实。QITUO数字化音频处理器、带有RHAON功能的Renkus- Heinz数字处理扬声

器系统和数字化传声器交换系统,以及数字化网络化接口面板,共同组成了全数字化AV音频系统“一线通”。 图1 系统原理图 1.2 标准化的网络音频交换 网络化也是电子技术发展的一个重点,如果能建立一个标准化的网络平台,所有的设备都成为网络的一个结点,在任何一个地方都可以按功能需要接入传声器、音箱、调音台和处理设备,并能根据需要任意组织信号路由,这样的音频系统将最大限度满足用户的功能要求。通过整合目前成熟的、通用的、基于以太网的CobraNet 网络音频技术的全系列扩声产品,从数字化网络化传声器接口面板到BIAMP数字音频处理器

再到具有RHAON功能的Renkus-Heinz数字处理扬声器系统,加上QITUO具备CobraNet 功能的数字调音台,解决了从传声器、调音台、处理器、功放和音箱全面的数字化、网络化扩声系统。 1.3 网络化的系统集中控制 由于所有产品都采用以太网TC P/IP控制技术,由一台电脑对全系统设备集中控制、远程控制就成为可能。通过集中管理和控制,最大化地降低了现场操控的要求,让音频扩声系统的真正无人值守成为了现实。 2 网络数字化音频系统解决方案 下面结合四川电力疗养院会议中心多功能会议厅分布式多媒体会议系统的实例,说明网络数字化音频系统解决方案的实际运用。 2.1 功能定位

数字音视频处理

实验报告 课程名称数字音视频原理 实验题目MATLAB音频文件处理 专业电子信息工程 班级3班 学号09080323 学生姓名王志愿 实验成绩 指导教师吴娱 2012年3月 一、实验目的 1、掌握录制语音信号的基本过程; 2、掌握MATLAB编程对语音信号进行简单处理的方法并分析结果。 二、实验要求

上机完成实验题目,独立完成实验报告。 三、实验内容 1、问题的提出:数字语音是信号的一种,我们处理数字语音信号,也就是对一种信号的处理,那信号是什么呢? 信号是传递信息的函数。离散时间信号(序列)——可以用图形来表示。 按信号特点的不同,信号可表示成一个或几个独立变量的函数。例如,图像信号就是空间位置(二元变量)的亮度函数。一维变量可以是时间,也可以是其他参量,习惯上将其看成时间。信号有以下几种: (1)连续时间信号:在连续时间范围内定义的信号,但信号的幅值可以是连续数值,也可以是离散数值。当幅值为连续这一特点情况下又常称为模拟信号。实际上连续时间信号与模拟信号常常通用,用以说明同一信号。 (2)离散时间信号:时间为离散变量的信号,即独立变量时间被量化了。而幅度仍是连续变化的。 (3)数字信号:时间离散而幅度量化的信号。 语音信号是基于时间轴上的一维数字信号,在这里主要是对语音信号进行频域上的分析。在信号分析中,频域往往包含了更多的信息。对于频域来说,大概有8种波形可以让我们分析:矩形方波,锯齿波,梯形波,临界阻尼指数脉冲波形,三角波,余弦波,余弦平方波,高斯波。对于各种波形,我们都可以用一种方法来分析,就是傅立叶变换:将时域的波形转化到频域来分析。 2、设计方案: 首先要对声音信号进行采集,Windows自带的录音机程序可驱动声卡来采集语音信号,并能保存成.WAV格式文件,供MATLAB相关函数直接读取、写入或播放。 利用MATLAB中的wavread命令来读入(采集)语音信号,将它赋值给某一向量。再将该向量看作一个普通的信号,对其进行FFT变换实现频谱分析,再依据实际情况对它进行滤波。对于波形图与频谱图(包括滤波前后的对比图)都可以用MATLAB画出。我们还可以通过sound/wavplay命令来对语音信号进行回放,以便在听觉上来感受声音的变化。 3、主体部分: (1)语音的录入与打开: [x,fs,bits]=wavread('d:\1.wav');%用于读取语音,采样值放在向量x中,fs 表示采样频率(Hz),bits表示量化位数。

ROLAND VS2400CD数字音频工作站

ROLAND VS-2400CD 数字音频工作站 产品简介: VS-2400数字音频工作站以更低价格提供专业24轨录制和CD烧录功能。这款小巧的设备继承了ROLAND旗舰级VS-2480CD的许多功能——如优秀的模拟部分,自动马达推子和强大的软件控制——另外还增加了一些新的功能,如RSS 3-D声像,以及同视频产品整合的V-LINK功能。内建效果和内部CD驱动可使你进行专业的混音和母带处理 特性介绍: ●24轨/24比特/96千赫音频录制工作站 ●24轨回放16轨同时录音;384个虚拟轨 ●48通道全自动数字混音器,13个自动马达推子 ●VGA显示器输出,通过鼠标操作,软件风格编辑 ●通过自带的鼠标和选配的键盘直接进行“拖拽”编辑 ●新型的RSS 3-D声像可以创建三围声音效果 ●V-LINK功能可以与视频设备同步或者是控制视频设备 ●优秀的模拟部分,包括8 XLR/平衡 TRS输入,HI-Z输入 ●直接从CD-ROM导入WAV/AIFF文件;导出格式为WAV格式 ●两个立体声效果器,COSM MIC、扬声器和吉他扩声模拟,外带母带处理工具 ●8通道R-BUS端口,以备不同格式的模拟/数字I/0扩展。 详细介绍: 通过VS-2400CD,你可以录制和回放达24轨的原始24比特声音。对于想独自做鼓加吉他、贝司和人声的操作来说已经足够了。通过384个虚拟轨,使你的编辑更为方便。 弹性的48通道混音/自动推子 VS-2400不仅仅是一个录音设备,它还完全是一个48通道的数字混音器。包括16个输入通道,24个音轨通道,和8个效果返回通道。怎么样来直接控制它们呢,这就是13个自动马达推子

基于以太网的数字音频网络

基于以太网的数字音频网络 目前比较成熟的以太网音频传输技术主要是CobraNet和EtherSound。前者已经开发和使用多年,用户较多,交互性好,缺点是网络延时长;后者解决了延时的问题,但是开发和使用普及程度稍差。本文之目的通过客观地分析数字音频网络的机理,对比各种传输技术,以求证哪一种传输网络更适合大家。 二. 音频网络的内部结构 OSI参考模型是数据网络工作的基础,它为每一层之间的通信规定了公共的方式,以OSI模型作为基础使音频网络简单化。相对于构成OSI模型的七个层,音频网络可以简单分解为两大主要部分:控制和传输。配置、监控以及实时设备控制都可以归入控制类别,并且用了几个标准的通信协议。传输顾名思义,就是把数字音频搬来搬去。 控制申请可以在应用层的标准协议中找到。音频中的应用层协议有Telnet、HTTP以及简单网络管理协议(SNMP)。Telnet是网络电传的缩写,是最早的英特网协议之一。它规定了机器通信的命令行格式。百威媒体矩阵,使用了这种技术,称为RATC,作为遥控媒体矩阵中设备的一种方法。SNMP是网络上用于监控的一个协议,在网络运行中心(NOC)的监控中是一个关键技术。它是应用层协议,通过UDP/IP协议与网络上的设备进行通信,可以沟通多重数据传输技术。在大多数情况下,当音频信号传输时,基于TCP/IP协议的控制可以在同一网络上运行,如CobraNet和Dante设计为允许数据通信与音频通信共存。 组织并管理音频比特是音频传输的工作,通常是由音频协议完成的。Aviom、CobraNet以及EtherSound 等都是为在网络上传输而组织比特的协议。传输可以分为两种:物理传输和逻辑传输。 纯粹的物理层技术,像Aviom,使用硬件来组织和移动数字比特。通常会用一块专利芯片用来组织并控制它们。基于以太网的技术把音频分包,然后发送到数据链接层和物理层,就可以在以太网设备上传输。以太网既是逻辑技术也是物理技术,在数据链接层把音频进行分包或者“分帧”,然后发送到物理层以便于移动到网络上的另一台设备上去。 三. 以太网结构的数字音频网络 数字音频网络由音频输入模块、以太网Switch、计算机、音频传输设备组成。音频输入模块把模拟信号转换为数字信号,或者用于接收AES信号源信号,计算机运行并配置系统软件。网络中专门有一台音频传输设备起着传导器的作用,让其他所有设备同步、有序、及时地传输组包信息,信号流的传输方式可以是点到点的单播形式,也可以是点到多点的多播方式。 国际标准化组织ISO制订的网络互联模型OSI中,以太网帧结构归属于数据层。在以太网构建的局域网中,MAC帧则是最大的一个数据包了,其它所有的同步或非同步信息都是包含在这个数据包中进行传输的,表1是标准以太网(即DIX格式)MAC帧的格式。 需要注意的是MAC帧只是完成了数据层(OSI第二层)协议的工作,当数据传输到目的地以后,MAC 帧就已经被打开,而只将上图中“数据”这个部分传输到上层协议中,上层协议(或处理单元)还要继续分析这个数据包。如CobraNet数据包样被“封装”在MAC帧中,但由于MAC帧中标注的协议类型号是X’88-19,只限于数据链路层,所以这个数据包不会再向网络层或更高层传送而直接被送到了CobraNet的同步解码器。在每个MAC帧的最后还有4个字节的帧校验序列FCS(Frame Check Sequence),负责检查整个MAC帧的数据的准确性。这个检查是非常必要的,对于整个数据帧,1bit的错误信息就有99.9%的概率被检测出来。而对于这些错误,更高级的协议(如TCP)甚至可以要求源服务器重发这个帧。 四. 几种基于太网架构传输技术的比较 尽管以太网是决定音频网络效率高低和协作性能好坏的基础,模拟音频信号还是不能很容易地被转换成数据并在标准的以太网络中传输,这是因为音频信号时效性极强。在音频网络中,数据包的延迟发送将导致音频信号的流失和不连贯。以太网是一种异步技术,不具备实时概念,传送管理也是“非确定性的”,这意味着以太网不能百分之百地保证某一数据包的及时送达。因此为了音频数据实时、稳定的传输,网络必须要有某种确定性的时效传输技术。Avoim 、EtherSound、CobraNet以及Dante技术就可以提供这样的

网络数字化音频系统

启拓专业手拉手会议,矩阵切换厂商-全球抗干扰专家 网络数字化音频系统——“一线通” 1 “一线通”系统解析 1.1 数字化集成化的产品 所谓数字化、集成化,是从传声器到音箱(除了传声器拾音头和音箱单元)全部采用数字化产品,用数字可编程处理器(DSP)替代模拟产品,并将多个设备集成在一台设备中。在音频产品中常见的数字处理器,有Peaver媒体矩阵,BIAMP. BSS. QSC等音频处理器,还有各品牌的数字调音台。从音频设备发展情况分析,数字化产品(除换能设备——传声器拾音头和音箱单元)将最终替代模拟产品,高度集成化的产品也将成为现实。QITUO数字化音频处理器、带有RHAON功能的Renkus- Heinz数字处理扬声器系统和数字化传声器交换系统,以及数字化网络化接口面板,共同组成了全数字化AV音频系统“一线通”。 图1 系统原理图 1.2 标准化的网络音频交换 网络化也是电子技术发展的一个重点,如果能建立一个标准化的网络平台,所有的设备都成为网络的一个结点,在任何一个地方都可以按功能需要接入传声器、音箱、调音台和处理设备,并能根据需要任意组织信号路由,这样的音频系统将最大限度满足用户的功能要求。通过整合目前成熟的、通用的、基于以太网的CobraNet网络音频技术的全系列扩声产品,

从数字化网络化传声器接口面板到BIAMP数字音频处理器再到具有RHAON功能的 Renkus-Heinz数字处理扬声器系统,加上QITUO具备CobraNet功能的数字调音台,解决了从传声器、调音台、处理器、功放和音箱全面的数字化、网络化扩声系统。 1.3 网络化的系统集中控制 由于所有产品都采用以太网TC P/IP控制技术,由一台电脑对全系统设备集中控制、远程控制就成为可能。通过集中管理和控制,最大化地降低了现场操控的要求,让音频扩声系统的真正无人值守成为了现实。 2 网络数字化音频系统解决方案 下面结合四川电力疗养院会议中心多功能会议厅分布式多媒体会议系统的实例,说明网络数字化音频系统解决方案的实际运用。 2.1 功能定位 四川电力疗养院位于四川省都江堰市翠月湖风景区内。其会议中心可承接国内外大型会议、学术交流和商务活动,拥有同声传译系统、多媒体演示系统等现代化设施。 位于一层的多功能会议厅作为独立大厅使用日寸,主要承载着大型的会议服务功能,可以容纳700多人,主要以会议服务为主,同时兼顾中小型文艺演出、学术报告、演讲等。根据实际使用的需要,可将大厅划分成3个会议室,为不同的会议需求服务而互不干涉。整个多功能会议厅由三大系统构成:会议发言管理系统、会场现场扩声系统、数字多轨录音备份还原系统。二层的智能会议室,可容纳30人召开电视电话会议、高清视频会议,配备高清视频会议系统,可实现自动视频跟踪摄像功能。 2.2 技术指标 一层多功能厅扩声技术要求达到GB50371-2006《厅堂扩声系统设计规范》中多用途类扩声系统声学特性指标一级。 2.3 系统设计

教你怎样使用数字音频处理器

怎样使用数字音频处理器现在数字音频处理器越来越多地运用到工程当中了,对于有基础有经验的人来说,处理器是一个很好用的工具,但是,对于一些经验比较欠缺的朋友来说,看着一台处理器,又是一大堆英文,不免有点无从下手。其实不用慌,我来介绍一下处理器使用步骤,以一个2进4出的处理器控制全频音箱+超低音音箱的系统为例 1、首先是用处理器连接系统,先确定好哪个输出通道用来控制全频音箱,哪个输出通道用来控制超低音音箱,比如你用输出1、2通道控制超低音,用输出3、4通道控制全频。接好线了,就首先进入处理器的编辑(EDIT)界面来进行设置,进入编辑界面不同的产品的方法不同,具体怎么进入,去看说明书。 2、利用处理器的路由(ROUNT)功能来确定输出通道的信号来自哪个输入通道,比如你用立体声方式扩声形式,你可以选择输出通道1、3的信号来自输入A,输出通道的2、4的信号来自输入B。信号分配功能不同的产品所处的位置不同,有些是在分频模块里,有些是在增益控制模块里,这个根据说明书的指示去找。 3、根据音箱的技术特性或实际要求来对音箱的工作频段进行设置,也就是设置分频点。处理器上的分频模块一般用CROSSOVER或X-OVER表示,进入后有下限频率选择(HPF)和上限频率选择(LPF),还要滤波器模式和斜率的选择。首先先确定工作频段,比如超低音的频段是40-120赫兹,你就把超低音通道的HPF设置为40,LPF设置为120。全频音箱如果你要控制下限,就根据它的低音单元口径,设置它的HPF大约在50-100Hz,。处理器滤波器形式选择一般有三种,bessel,butterworth和linky-raily,我以前有帖子专门说明过三种滤波器的不同之处,这里不赘述。常用的是butterworth和linky-raily两种,然后是分频斜率的选择,一般你选24dB/oct就可以满足大部分的用途了。 4、这个时候你需要检查一下每个通道的初始电平是不是都在0dB位置,如果有不是0的,先把它们都调到0位置上,这个电平控制一般在GAIN功能里,DBX的处理器电平是在分频器里面的,用G表示。 5、现在就可以接通信号让系统先发出声音了,然后用极性相位仪检查一下音箱的极性是否统一,有不统一的,先检查一下线路有没有接反。如果线路没接反,而全频音箱和超低音的极性相反了,可以利用处理器输出通道的极性翻转功能(polarity或pol)把信号的极性反转,一般用Nomal或“+”表示正极性,用INV或“-”表示负极性。 6、接下来就要借助SIA这类工具测量一下全频音箱和超低音的传输时间,一般来说是会有差异的,比如测到全频的传输时间是10ms,超低音是18ms,这个时候就要利用处理器的延时功能对全频进行延时,让全频和低音的传输时间相同。处理器的延时用DELAY或DLY表示,有些用m(米)有些用MS(毫秒)来显示延时量,SIA软件也同时提供了时间和距离的量,你可以选择你需要的数据值来进行延时 7、接下来就该进行均衡的调节了,可以配合测试工具也可以用耳朵来调,处理器的均衡用EQ来表示,一般都是参量均衡(PEQ),参量均衡有3个调节量,频率(F),带宽(Q 或OCT),增益(GAIN或G)。具体怎么调,就根据产品特性、房间特性和主观听觉来调了,这个就自己去想了。 8、均衡调好后,就要进行限幅器的设置了,处理器的限幅器用LIMIT来表示,进去以后一般有限幅电平(THRESHOLD),压缩比(RA TIO)的选项,你要做限幅就要先把压缩比RA TIO设置为无穷大(INF),然后配合功放来设置限幅电平,变成限幅器后,启动时间A TTACK和恢复时间RELEASE就不用去理了。DBX处理器的限幅器用PEAKSTOP来表示,启动后,直接设置限幅电平就可以了,至于怎么调限幅器,我有专门的帖子,自己去看。 9、都调好了就要保存数据,处理器的保存一般用STORE或SA VE表示,怎么存,就看产品说明书了。

AES数字音频接口标准简介

万方数据

万方数据

AES/EBU数字音频接口标准简介 作者:王戎 作者单位:福州广播电视集团技术中心 刊名: 东南传播 英文刊名:SOUTHEAST COMMUNICATION 年,卷(期):2007(10) 参考文献(2条) 1.彭泽安;郭育扬浅谈数字音频接口技术和D/A转换器 2.李清斌浅谈数字音频接口技术及标准 2001(05) 本文读者也读过(10条) 1.汪波.许卫行.WANG Bo.X(U) Wei-hang AES/EBU数字音频的参数及测量技术[期刊论文]-电声技术2005(4) 2.泰克科技(中国)有限公司数字音频和嵌入音频[期刊论文]-现代电视技术2004(10) 3.甄占京数字音频AES/EBU通道状态介绍[期刊论文]-现代电视技术2005(3) 4.陈浩.CHEN Hao AES/EBU数字音频格式在现场扩声系统中的应用[期刊论文]-电声技术2007,31(10) 5.姜路.李臻AES/EBU数字音频传输的测量[期刊论文]-广播电视信息2010(10) 6.张抒数字音频接口及连接[期刊论文]-有线电视技术2001,8(23) 7.汤伟AEs数字音频接口标准及其在音频系统应用的特点[期刊论文]-音响技术2008(3) 8.刘红数字音频信号的传输与测量[期刊论文]-广播电视信息2010(5) 9.谢科.钱泓毅数字音频接口标准简介[期刊论文]-音响技术2002(4) 10.牛睿数字音频技术的兼容与发展[期刊论文]-科技信息2010(16) 本文链接:https://www.wendangku.net/doc/d910360285.html,/Periodical_dncb200710082.aspx

Dante数字音频传输技术

浅谈Dante数字音频传输技术 1.概述 Dante数字音频传输技术是一种基于3层的IP网络技术,为点对点的音频连接提供了一种低延时、高精度和低成本的解决方案[4][5]。Dante技术可以在以太网(100M或者1000M)上传送高精度时钟信号以及专业音频信号并可以进行复杂的路由。与以往传统的音频传输技术相比,它继承了CobraNet与EtherSound所有的优点,如无压缩的数字音频信号,保证了良好的音质效果;解决了传统音频传输中繁杂的布线问题,降低了成本;适应现有网络,无需做特殊配置;网络中的音频信号,都以“标签”的形式进行标注等。同时具备自身独特的优势: 1)更小的延时。在100M网络带宽,总传输音频通道为3个时,延时仅为34μs。Dante系统可自动调节可用的网络带宽,以便将延时时间降低到最小[7]。 2)采用了IEEE1588精密时钟协议进行时钟同步。 3)采用了zeroconf(Zero Configuration Networking)[6][7]协议,利用自动配置服务器自动检查接口设备、标识标签以及区分IP地址等工作,无需启动高层级别的DNS或者DHCP服务,同时节省了复杂的手工网络配置。 4)网络的高兼容特性。Dante技术可以允许音频信号和控制数据以及其他不相干的数据流共享在同一个网络中而不受干扰,用户可以最大限度的利用现有网络而无需为音频系统建立专网。如,在Dante网络中可以加入现有的普通TCP/IP设备(PC机等),或者一些音频处理软件等。 5)自愈系统。为了避免意外导致的音频传输中断,Dante系统可以设定多重自我修复机制,例如时钟丢失、网络故障等。 6)音频通道的传输模式可以是单播或是多播。Dante技术可以通过IGMP(Internet Group Message Protocol)进行管理,可根据接收点的需要过滤或屏蔽广播音频通道,这使得多播音频的路由变得可控。 这些独特的优势,将成为Dante技术在专业音频领域及其他工程领域的奠基石。 2.Dante音频传输技术 目前的IT产业中有很多网络技术可供选用,但以太网仍然是最为稳定可靠和广泛使用的协议。所以Audinate将Dante运行于以太网上也成了合理的、迎合市场的选择。Dante 音频传输技术可以任由音频信号在以太网中使用TCP/IP方式任意传送,而且在这个过程中保持了信号的精确还原。 3.1基本原理 采用Audinate公司新推出的Dante-MY16-AUD卡[8][9],将其插到语音服务器主机上,并与交换机相连,如下图所示,即可实现基于Dante技术的数字音频传输。真正实现了音频网络达到“即插即用”的功能,方便那些不了解任何网络技术的人。

音频工作站软件CuBase控制专业级声卡Octa_Capture

CuBase控制Octa-Capture声卡报告 2012年4月12日

目录 目录 (2) 图表目录 (2) 1.简介 (4) 1.1Octa-Capture音频采集器 (4) 1.2CuBase数字音频工作软件 (4) 2.安装 (4) 2.1Octa-Capture声卡驱动 (4) 2.2CuBase数字音频软件 (4) 3.实现多路模拟、数字混合输入+多路独立输出 (5) 3.1步骤1:连接麦克(模拟输入),音箱(模拟输出),打开声卡电源 5 3.2步骤2:打开声卡驱动软件,对其进行初始配置 (5) 3.3步骤3:打开Cubase软件,对其进行初始配置 (7) 3.4步骤4:把wave文件定向到合适的输出端口 (12) 3.5步骤5:增加一个采集模拟信号的通道 (13) 3.6步骤6:通过软件混音器控制各通道 (14) 4.采集通道实验测评 (15) 4.1无连线,部软件采集 (15) 4.2有连线,自发自采 (16) 图表目录 图表1Octa Capture采集器背面 (5) 图表2Octa-Capture驱动控制面板 (5) 图表3Direct Mix 控制面板 (6) 图表4Patch Bay 控制面板 (6) 图表5Cubase初始选择 (7) 图表6新建工程选项 (7) 图表7Cubase初始面板 (8) 图表8设备菜单项 (8) 图表9选择音频系统硬件 (9) 图表10设备菜单 (9) 图表11VST连接界面 (10) 图表12添加输入总线 (10) 图表13绑定输入端口 (10)

图表14输入端口最终界面 (11) 图表15输出端口最终界面 (11) 图表16添加轨道的弹出菜单项 (12) 图表17添加音频轨对话框 (12) 图表18添加6路音轨后的状态 (13) 图表19继续增加音轨的界面 (13) 图表20录音盒监听控制按钮示意图 (14) 图表21Cubase自带软件混音器界面 (14) 图表22发送波形图 (15) 图表23无连接时接收波形 (15) 图表24无线输入9通道的相位变化 (16) 图表25无线输入10通道的相位变化 (16) 图表26有连接时的接收波形 (17) 图表27有连接时1通道相位跟踪结果 (17) 图表28有连接时2通道相位跟踪结果 (18) 图表29有连接时3通道相位跟踪结果 (18) 图表30有连接时4通道相位跟踪结果 (19) 图表31有连接时5通道相位跟踪结果 (19) 图表32有连接时6通道相位跟踪结果 (20) 图表33有连接时7通道相位跟踪结果 (20) 图表34有连接时8通道相位跟踪结果 (21)

(完整版)数字音频处理

数字语音实验 吕佩壕 10024134 一、实验要求 1.编程实现一句话语音的短时能量曲线,并比较窗长、窗口形状(以直 角窗和和哈明窗为例)对短时平均能量的影响 ; 2. 编程分析语音信号的短时谱特性,并比较窗长、窗口形状(以直角窗 和和哈明窗为例)对语音短时谱的影响 ; 3. 运用低通滤波器、中心削波和自相关技术估计一段男性和女性语音信 号的基音周期,画出基音轨迹曲线,给出估计准确率。 二、实验原理及实验结果 1.窗口的选择 通过对发声机理的认识,语音信号可以认为是短时平稳的。在5~50ms 的范围内,语音频谱特性和一些物理特性参数基本保持不变。我们将每个短时的语音称为一个分析帧。一般帧长取10~30ms 。我们采用一个长度有限的窗函数来截取语音信号形成分析帧。通常会采用矩形窗和汉明窗。图1.1给出了这两种窗函数在窗长N=50时的时域波形。 图1.1 矩形窗和hamming 窗的时域波形 矩形窗的定义:一个N 点的矩形窗函数定义为如下: {1,00,()n N w n ≤<=其他 Hamming 窗的定义:一个N 点的hamming 窗函数定义为如下: 0.540.46cos(2),010,()n n N N w n π-≤<-??? 其他 = 这两种窗函数都有低通特性,通过分析这两种窗的频率响应幅度特性可以发 0.2 0.40.60.811.2 1.41.61.82矩形窗 sample w (n ) 0.1 0.20.30.40.50.6 0.70.80.91hanming 窗 sample w (n )

现(如图1.2):矩形窗的主瓣宽度小(4*pi/N ),具有较高的频率分辨率,旁瓣峰值大(-13.3dB ),会导致泄漏现象;汉明窗的主瓣宽8*pi/N ,旁瓣峰值低(-42.7dB ),可以有效的克服泄漏现象,具有更平滑的低通特性。因此在语音频谱分析时常使用汉明窗,在计算短时能量和平均幅度时通常用矩形窗。表1.1对比了这两种窗函数的主瓣宽度和旁瓣峰值。 图1.2 矩形窗和Hamming 窗的频率响应 2.短时能量 由于语音信号的能量随时间变化,清音和浊音之间的能量差别相当显著。因此对语音的短时能量进行分析,可以描述语音的这种特征变化情况。定义短时能量为: 2 2 1 [()()] [()()]n n m m n N E x m w n m x m w n m ∞ =-∞ =-+= -= -∑∑ ,其中N 为窗长 特殊地,当采用矩形窗时,可简化为: 2 () n m E x m ∞ =-∞ = ∑ 图2.1和图2.2给出了不同矩形窗和hamming 窗长,对所录的语音“我是吕佩壕”的短时能量函数: (1)矩形窗(从上至下依次为“我是吕佩壕”波形图,窗长分别为32,64,128,256,512的矩形窗的短时能量函数): 00.10.20.3 0.40.50.60.70.80.91 -80 -60-40-20 0矩形窗频率响应 归一化频率(f/fs)幅度/d B 00.10.20.3 0.40.50.60.70.80.91 -100 -50 Hamming 窗频率响应 归一化频率(f/fs) 幅度/d B

数字音频作业及其答案

第一次作业: 1:、声音可分为两种:纯音和复合音,平常人们说话的声音属于哪一种语音的频率范围是多少音频通常包括哪几种声音信号其频率范围是多少 2、请说明音频信号数字化的三个步骤 3、如何理解“量化是信号数字化过程中重要的一步,而这一过程又是引入噪声的主要根源”这句话的含义通过哪些途径可以减小量化误差 4对双极性信号若采用均匀量化,则量化信噪比SNR与量化比特数之间的关系为:SNR=+,试分析此式对实际量化与编码的指导意义 5:、A/D、D/A转换器的技术指标有哪些 答:1:人们说话的声音为复合音,语言的频率范围为300HZ-3000HZ。音频暴多语音、音乐、效果声等声音信号,频率范围为20HZ-20KHZ。 2:1取样:对连续信号按一定的时间间隔取样。奈奎斯特取样定理认为,只要取样频率大于等于信号中所包含的最高频率的两倍,则可以根据其取样完全恢复出原始信号,这相当于当信号是最高频率时,每一周期至少要采取两个点。但这只是理论上的定理,在实际操作中,人们用混叠波形,从而使取得的信号更接近原始信号。2量化:取样的离散音频要转化为计算机能够表示的数据范围,这个过程称为量化。量化的等级取决于量化精度,也就是用多少位二进制数来表示一个音频数据。一般有8位,12位或16位。量化精度越高,声音的保真度越高。以8位的举例稍微说明一下其中的原理。若一台计算机能够接收八位二进制数据,则相当于能够接受256个十进制的数,即有256个电平数,用这些数来代表模拟信号的电平,可以有256种,但是实际上采样后的某一时刻信号的电平不一定和256个电平某一个相等,此时只能用最接近的数字代码表示取样信号电平。3编码:对音频信号取样并量化成二进制,但实际上就是对音频信号进行编码,但用不同的取样频率和不同的量化位数记录声音,在单位时间中,所需存贮空间是不一样的。波形声音的主要参数包括:取样频率.量化位数.声道数.压缩编码方案和数码率等,未压缩前,波形声音的码率计算公式为:波形声音的码率=取样频率*量化位数*声道数/8。波形声音的码率一般比较大,所以必需对转换后的数据进行压缩。 3:量化是按四舍五入对采样的样本值进行计量的,这个过程会产生误差可对噪声进行整形,提高采样频率等方法减小量化误差 4:量化比特数增加一位,则信噪比提高6dB,信噪比提高意味着声音动态范围的加宽,若采用量化比特N=16的A/D变换器的数字声记录在磁带上可以扩展到98dB,接近于交响乐动态范围,若将量化比特提高到N=20,可扩至人儿的122dB动态范围。 5:A/D的技术指标有:分辨率、转换速率、量化误差、偏移误差、满刻度误差和线性度误差等。D/A转换器的技术指标有:分辨率和建立时间。 第二次作业: 1.什么叫最小可闻阈什么叫掩蔽阈什么叫频域掩蔽什么叫时域掩蔽掩蔽效应的一般规律是什么 2.何谓临界频带简述它在音频编码中的应用。 3.音频编码通常分为哪几类它们各有什么优缺点 4.声音压缩的依据是什么MPEG-1音频编码利用了听觉系统的什么特性 5.子带编码的基本思想是什么进行子带编码的好处是什么 6 .在MUSICAM的MPEG Layer I编码器的比特分配中,请读/写出32位“标题”:1111 1111 1111 0010 1101 0001 0101 1101 所表示的信息。 7.什么叫做声道环绕立体声 8.MUSICAM音频比特流数据帧中的比例因子起什么作用

基于DSP的数字音频系统

基于DSP的数字音频系统 *** ********,** 摘要:随着数字化的发展,信号的处理更加追求用数字化的方式,数字信号相对于模拟信号有更多的优势,解决了模拟处理方法所不能解决的问题,本文综述DSP技术在数字音频领域的应用。简单介绍音频系统的组成,介绍FIR数字滤波器的设计方法. 关键词:dsp,FIR,MATLAB 1、模拟信号与数字信号 近几年,数字化几乎涉及到人类的方方面面——数字化信息系统、数字化交通系统、数字化图书馆、数字化家电等,数字化带来的优质服务为人们的生活带来极大地便利。 过去,人们通过模拟的方式来处理信号,但这种方法有很多缺陷:设计好后改动困难,缺少灵活性;由于用硬件的方式实现,精确地受仪器的限制;易受环境的影响,如湿度、天气等,往往在不同的环境下表现出不同的性能;不便于大规模集成。 为克服这些,出现了数字信号处理(DSP)的方法。数字信号处理系统有很多优点:精度高、灵活性高、可靠性强、便于大规模集成、时分复用、可获得高性能指标、可二维或多维处理等。这些突出特点,使得它在通信、语音、雷达、地震测报、声呐、遥感、生物医学、电视、仪器中得到越来越多的应用。 2、音频信号的数字化 2.1概述 传统的模拟录音技术是把各种声音、音乐转换成模拟电压信号,通过录音机等设备录音,把模拟电压信号转换为磁信号记录在磁性媒介上。重放时,可以通过放音设备等设备把磁信号重新变为模拟电压信号,通过功率放大器推动扬声器来重现声音。但模拟磁性录音性能受电磁性的影响较大,模拟电压信号在放大和传输过程中会受到各种噪声和干扰的影响等等,这些都会影响音质。 数字音频技术是指把模拟声音信号通过采样、量化和编码过程转换成数字信号,然后再进行记录、传输以及其他加工处理;在重放时再将这些记录的数字音频信号还原为模拟信号,获得连续的声音。模拟信号在时间和幅度上都是连续的,幅度的微小变化都会引起声音质量的变化。而数字音频技术是通过把模拟信号进行时间上的离散化和幅度上的量化处理以后,变为一连串数字信号加以存储或传输。理论上除了把模拟信号转变为数字信号的数字化过程和把数字信号重新还原为模拟信号的过程会引入一些误差以外,在对数字信号的存储和传输过程中不会引起音质的变化,这是越来越多采用数字音频技术的主要原因之一。计算机的飞速发展也促进了数字音频技术的广泛应用。 2.2 音频信号数字化的方法及原理 信号的数字化就是将连续变化的模拟信号转换成离散的数字信号,一般需要采样、量化

相关文档