文档库 最新最全的文档下载
当前位置:文档库 › MAX7400八阶、低通、椭圆函数、开关电容滤波器

MAX7400八阶、低通、椭圆函数、开关电容滤波器

MAX7400八阶、低通、椭圆函数、开关电容滤波器
MAX7400八阶、低通、椭圆函数、开关电容滤波器

General Description

The MAX7400/MAX7403/MAX7404/MAX7407 8th-order,lowpass, elliptic, switched-capacitor filters (SCFs) oper-ate from a single +5V (MAX7400/MAX7403) or +3V (MAX7404/MAX7407) supply. These devices draw 2mA of supply current and allow corner frequencies from 1Hz to 10kHz, making them ideal for low-power anti-aliasing and post-DAC filtering applications. They fea-ture a shutdown mode that reduces the supply current to 0.2μA.

Two clocking options are available: self-clocking (through the use of an external capacitor) or external clocking for tighter cutoff-frequency control. In addition,an offset adjustment pin (OS) allows for the adjustment of the DC output level.

The MAX7400/MAX7404 provide 82dB of stopband rejection and a sharp rolloff with a transition ratio of 1.5.The MAX7403/MAX7407 provide a sharper rolloff with a transition ratio of 1.2, while still delivering 60dB of stop-band rejection. The fixed response of these devices simplifies the design task to corner-frequency selection by setting a clock frequency. The MAX7400/MAX7403/MAX7404/MAX7407 are available in 8-pin SO and DIP packages.

Applications

ADC Anti-Aliasing Speech Processing Post-DAC Filtering Air-Bag Electronics

CT2 Base Stations

Features

o 8th-Order Lowpass Elliptic Filter o Low Noise and Distortion

-82dB THD + Noise (MAX7400)

o Clock-Tunable Corner Frequency (1Hz to 10kHz)o 100:1 Clock-to-Corner Ratio o Single-Supply Operation

+5V (MAX7400/MAX7403)+3V (MAX7404/MAX7407)o Low Power

2mA (Operating Mode)0.2μA (Shutdown Mode)

o Available in 8-Pin SO and DIP Packages o Low Output Offset: ±5mV

MAX7400/MAX7403/MAX7404/MAX7407

8th-Order, Lowpass, Elliptic, Switched-Capacitor Filters

________________________________________________________________Maxim Integrated Products 1

Typical Operating Circuit

19-4764; Rev 2; 6/99

Ordering Information continued at end of data sheet.

Pin Configuration

Ordering Information

For free samples & the latest literature: https://www.wendangku.net/doc/d210388042.html,, or phone 1-800-998-8800.For small orders, phone 1-800-835-8769.

M A X 7400/M A X 7403/M A X 7404/M A X 7407

8th-Order, Lowpass, Elliptic, Switched-Capacitor Filters 2_______________________________________________________________________________________

ABSOLUTE MAXIMUM RATINGS

ELECTRICAL CHARACTERISTICS—MAX7400/MAX7403

(V DD = +5V, filter output measured at OUT, 10k ?|| 50pF load to GND at OUT, SHDN = V DD , OS = COM, 0.1μF from COM to GND,f CLK = 100kHz, T A = T MIN to T MAX , unless otherwise noted. Typical values are at +25°C.)

Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

V DD to GND

MAX7400/MAX7403..............................................-0.3V to +6V MAX7404/MAX7407..............................................-0.3V to +4V IN, OUT, COM, OS, CLK............................-0.3V to (V DD + 0.3V)SHDN ........................................................................-0.3V to +6V OUT Short-Circuit Duration...................................................1sec

Continuous Power Dissipation (T A = +70°C)

SO (derate 5.88mW/°C above +70°C)..........................471mW DIP (derate 9.1mW/°C above +70°C)...........................727mW Operating Temperature Ranges

MAX740_C_A .....................................................0°C to +70°C MAX740_E_A ..................................................-40°C to +85°C Storage Temperature Range.............................-65°C to +150°C Lead Temperature (soldering, 10sec).............................+300°C

ELECTRICAL CHARACTERISTICS—MAX7400/MAX7403 (continued)

MAX7400/MAX7403/MAX7404/MAX74078th-Order, Lowpass, Elliptic, Switched-Capacitor Filters (V DD= +5V, filter output measured at OUT, 10k?|| 50pF load to GND at OUT, SHDN= V DD, OS = COM, 0.1μF from COM to GND,

f CLK= 100kHz, T A= T MIN to T MAX, unless otherwise noted. Typical values are at T A= +25°C.)

M A X 7400/M A X 7403/M A X 7404/M A X 7407

8th-Order, Lowpass, Elliptic, Switched-Capacitor Filters 4_______________________________________________________________________________________

ELECTRICAL CHARACTERISTICS—MAX7404/MAX7407 (continued)

(V DD = +3V, filter output measured at OUT, 10k ?|| 50pF load to GND at OUT, SHDN = V DD , OS = COM, 0.1μF from COM to GND,f CLK = 100kHz, T A = T MIN to T MAX , unless otherwise noted. Typical values are at T A = +25°C.)

ELLIPTIC (r =1.5) FILTER CHARACTERISTICS—MAX7400/MAX7404

(V DD = +5V for MAX7400, V DD = +3V for MAX7404; filter output measured at OUT; 10k ?||50pF load to GND at OUT; SHDN = V DD ;V COM = V OS = V DD / 2; f CLK = 100kHz; T A = T MIN to T MAX ; unless otherwise noted. Typical values are at T A = +25°C.)

8th-Order, Lowpass, Elliptic, Switched-Capacitor Filters

_______________________________________________________________________________________5

Note 1:The maximum f C is defined as the clock frequency, f CLK = 100 ·f C , at which the peak SINAD drops to 68dB with a

sinusoidal input at 0.2f C .

Note 2:DC insertion gain is defined as ?V OUT / ?V IN .

Note 3:OS voltages above V DD - 1V saturate the input and result in a 75μA typical input leakage current.

Note 4:For MAX7400/MAX7403, f OSC (kHz) ?38 ·103 / C OSC (pF). For MAX7404/MAX7407, f OSC (kHz) ?34 ·103 / C OSC (pF).Note 5:The input frequencies, f IN , are selected at the peaks and troughs of the frequency responses.

ELLIPTIC (r =1.2) FILTER CHARACTERISTICS—MAX7403/MAX7407

(V DD = +5V for MAX7403, V DD = +3V for MAX7407; filter output measured at OUT; 10k ?||50pF load to GND at OUT; SHDN = V DD ; V COM = V OS = V DD / 2; f CLK = 100kHz; T A = T MIN to T MAX ; unless otherwise noted. Typical values are at T A = +25°C.)

Typical Operating Characteristics

(V DD = +5V for MAX7400/MAX7403, V DD = +3V for MAX7404/MAX7407; V COM = V OS = V DD / 2; SHDN = V DD ; f CLK = 100kHz; T A = +25°C; unless otherwise noted.)

-120

-80-100-40-600-2020

1

2

3

4

5MAX7400/MAX7404 (r = 1.5)FREQUENCY RESPONSE

INPUT FREQUENCY (kHz)G A I N (d B )

-0.08

0-0.040.120.080.040.200.160.2402024046068081010MAX7400/MAX7404 (r = 1.5)PASSBAND FREQUENCY RESPONSE

INPUT FREQUENCY (Hz)G A I N (d B )-640

-480-560-240-320-400-80-1600

030060090012001500

MAX7400/MAX7404 (r = 1.5)

PHASE RESPONSE

INPUT FREQUENCY (Hz)

P H A S E S H I F T (D E G R E E S )

MAX7400/MAX7403/MAX7404/MAX7407

M A X 7400/M A X 7403/M A X 7404/M A X 7407

8th-Order, Lowpass, Elliptic, Switched-Capacitor Filters 6_______________________________________________________________________________________

Typical Operating Characteristics (continued)

(V DD = +5V for MAX7400/MAX7403, V DD = +3V for MAX7404/MAX7407; V COM = V OS = V DD / 2; SHDN = V DD ; f CLK = 100kHz; T A = +25°C; unless otherwise noted.)

1.51.81.71.61.9

2.02.12.22.32.42.52.5

3.5

3.0

4.0

4.5

5.0

5.5SUPPLY CURRENT vs. SUPPLY VOLTAGE

SUPPLY VOLTAGE (V)S U P P L Y C U R R E N T (m A )

1.97

1.991.98

2.012.002.022.03

-402040-200

6080100SUPPLY CURRENT vs. TEMPERATURE

TEMPERATURE (°C)S U P P L Y C U R R E N T (m A )-20

-15-10-505101520

2.5

3.53.0

4.0 4.5

5.0 5.5

OFFSET VOLTAGE vs. SUPPLY VOLTAGE

SUPPLY VOLTAGE (V)

O F F S E T V O L T A G E (m V )

-0.5

0.5

1.51.0

2.0

-40

-20

20

40

60

80

100

OFFSET VOLTAGE vs. TEMPERATURE

TEMPERATURE (°C)

O F F S E T V O L T A G E (m V )

-90

-70-80

-50-60-40-30-10-2000

1

2

3

4

5

THD PLUS NOISE vs. INPUT SIGNAL

AMPLITUDE (MAX7400)

AMPLITUDE (Vp-p)

T H D + N O I S E (d B )

-90

-70-80-50-60-40-30-10-200

012345

THD PLUS NOISE vs. INPUT SIGNAL

AMPLITUDE AND RESISTIVE LOAD (MAX7400)

AMPLITUDE (Vp-p)

T H D + N O I S E (d B )

-120

-80-100-60020-20-40400

1

2

3

4

5

MAX7403/MAX7407 (r = 1.2)FREQUENCY RESPONSE

INPUT FREQUENCY (kHz)

G A I N (d B )

-0.32

-0.16-0.24-0.080.160.240.0800.3202024046068081010MAX7403/MAX7407 (r = 1.2)PASSBAND FREQUENCY RESPONSE

INPUT FREQUENCY (Hz)G A I N (d B

)

-640

-480-560-400-160-80-240-3200

02404807209601200

MAX7403/MAX7407 (r = 1.2)

PHASE RESPONSE

INPUT FREQUENCY (Hz)

P H A S E S H I F T (D E G R E E S )

MAX7400/MAX7403/MAX7404/MAX7407

8th-Order, Lowpass, Elliptic, Switched-Capacitor Filters

_______________________________________________________________________________________7

-90

-70-80-50-60-40-30-10-2000

1

2

3

4

5

THD PLUS NOISE vs. INPUT SIGNAL

AMPLITUDE (MAX7403)

AMPLITUDE (Vp-p)

T H D + N O I S E (d B )

-90

-70-80-50-60-40-30-10-200

1

2

3

4

5

THD PLUS NOISE vs. INPUT SIGNAL

AMPLITUDE AND RESISTIVE LOAD (MAX7403)

TABLE A. THD PLUS NOISE vs. INPUT SIGNAL

AMPLITUDE (Vp-p)

T H D + N O I S E (d B )

Typical Operating Characteristics (continued)

(V DD = +5V for MAX7400/MAX7403, V DD = +3V for MAX7404/MAX7407; V COM = V OS = V DD / 2; SHDN = V DD ; f CLK = 100kHz; T A = +25°C; unless otherwise noted.)

-90

-70-80-40-50-60-10-20-300

0 1.00.5 1.5 2.0 2.5 3.0

THD PLUS NOISE vs. INPUT SIGNAL

AMPLITUDE AND RESISTIVE LOAD (MAX7404)

AMPLITUDE (Vp-p)

T H D +

N O I S E (d B )

-90

-70-80-40-50-60-10-20-3000

1.0

0.5

1.5

2.0

2.5

3.0

THD PLUS NOISE vs. INPUT SIGNAL

AMPLITUDE (MAX7407)

AMPLITUDE (Vp-p)

T H D

+ N O I S E (d B )

-90

-70-80

-40-50-60-10-20-300

1.0

0.5

1.5

2.0

2.5

3.0

THD PLUS NOISE vs. INPUT SIGNAL

AMPLITUDE AND RESISTIVE LOAD (MAX7407)

AMPLITUDE (Vp-p)

T

H D + N O I S E (d B )

-90

-70-80-40-50-60-10-20-3000

1.0

0.5

1.5

2.0

2.5

3.0THD PLUS NOISE vs. INPUT SIGNAL

AMPLITUDE (MAX7404)

AMPLITUDE (Vp-p)T H D + N O I S E (d B )

Pin Description

PIN Common Input. Biased internally at midsupply. Bypass externally to GND with a 0.1μF capacitor. To over-ride internal biasing, drive with an external https://www.wendangku.net/doc/d210388042.html, 1FUNCTION

NAME Filter Input IN 2Positive Supply Input: +5V for MAX7400/MAX7403, +3V for MAX7404/MAX7407V DD 4Ground

GND 3Offset Adjust Input. To adjust output offset, bias OS externally. Connect OS to COM if no offset adjustment is needed. Refer to Offset and Common-Mode Input Adjustment section.

OS 6Clock Input. To override the internal oscillator, connect to an external clock; otherwise, connect an external capacitor (C OSC ) from CLK to GND to set the internal oscillator frequency.

CLK

8

Shutdown Input. Drive low to enable shutdown mode; drive high or connect to V DD for normal operation.SHDN 7Filter Output

OUT 5M A X 7400/M A X 7403/M A X 7404/M A X 7407

8th-Order, Lowpass, Elliptic, Switched-Capacitor Filters 8_______________________________________________________________________________________

Typical Operating Characteristics (continued)

(V DD = +5V for MAX7400/MAX7403, V DD = +3V for MAX7404/MAX7407; V COM = V OS = V DD / 2; SHDN = V DD ; f CLK = 100kHz; T A = +25°C; unless otherwise noted.)

0.96

0.980.971.000.991.031.021.011.04

-40

-20

20

40

60

80

100

NORMALIZED OSCILLATOR FREQUENCY

vs. TEMPERATURE

TEMPERATURE (°C)

N O R M A L I Z E D O S C I L L A T O R F R E Q U E N C Y 0.80

0.850.900.951.001.051.101.151.202.5

3.5

3.0

4.0

4.5

5.0

5.5

NORMALIZED OSCILLATOR FREQUENCY

vs. SUPPLY VOLTAGE

SUPPLY VOLTAGE (V)

N O R M A L I Z E D O S C I L L A T O R F R E Q U E N C Y

0.11

100

10

1000

10,0000.01

10.1101001000INTERNAL OSCILLATOR FREQUENCY

vs. C OSC CAPACITANCE

C OSC CAPACITANCE (nF)

O S C I L L A T O R F R E Q U E N C Y (k H z )

Detailed Description The MAX7400/MAX7403/MAX7404/MAX7407 family of 8th-order, lowpass filters provides sharp rolloff with good stopband rejection. All parts operate with a 100:1 clock-to-corner frequency ratio and a 10kHz maximum corner frequency. These devices accept a single +5V (MAX7400/MAX7403) or +3V (MAX7404/ MAX7407) supply. Figure 1 shows the functional dia-gram.

Most switched-capacitor filters (SFCs) are designed with biquadratic sections. Each section implements two filtering poles, and the sections can be cascaded to produce higher-order filters. The advantage of this approach is ease of design. However, this type of design is highly sensitive to component variations if any section’s Q is high. The MAX7400 family uses an alter-native approach, which is to emulate a passive network using switched-capacitor integrators with summing and scaling. The passive network can be synthesized using CAD programs or can be found in many filter books. Figure 2 shows a basic 8th-order ladder elliptic filter structure.

A switched-capacitor filter that emulates a passive lad-der filter retains many of the same advantages. The component sensitivity of a passive ladder filter is low when compared to a cascaded biquadratic design, because each component affects the entire filter shape rather than a single pole-zero pair. In other words, a mismatched component in a biquadratic design has a concentrated error on its respective poles, while the same mismatch in a ladder filter design spreads its error over all poles.

Elliptic Characteristics Lowpass, elliptic filters such as the MAX7400/MAX7403/ MAX7404/MAX7407 provide the steepest possible rolloff with frequency of the four most common filter types (Butterworth, Bessel, Chebyshev, and Elliptic). Figure 3 shows the 8th-order elliptic filter response. The high Q value of the poles near the passband edge combined

with the stopband zeros allows for the sharp attenua-tion characteristic of elliptic filters, making these devices ideal for anti-aliasing and post-DAC filtering in single-supply systems (see the Anti-Aliasing and Post-DAC Filtering section).

In the frequency domain, the first transmission zero causes the filter’s amplitude to drop to a minimum level. Beyond this zero, the response rises as the frequency increases until the next transmission zero. The stopband begins at the stopband frequency, f S. At frequencies above f S, the filter’s gain does not exceed the gain at f S.The corner frequency, f C, is defined as the point where the filter output attenuation falls just below the passband ripple. The transition ratio is defined as the ratio of the stopband frequency to the corner frequency:

r = f S/ f C

The MAX7400/MAX7404 have a transition ratio of 1.5 and a typical stopband rejection of 82dB. The MAX7403/MAX7407 have a transition ratio of 1.2 (pro-viding the steepest rolloff) and a typical stopband rejection of 60dB.

Figure 1. Functional Diagram

Figure 2. 8th-Order Ladder Filter Network

MAX7400/MAX7403/MAX7404/MAX74078th-Order, Lowpass, Elliptic, Switched-Capacitor Filters

_______________________________________________________________________________________9

Figure 4. Offset Adjustment Circuit

M A X 7400/M A X 7403/M A X 7404/M A X 7407

8th-Order, Lowpass, Elliptic, Switched-Capacitor Filters 10

______________________________________________________________________________________

Clock Signal

External Clock

The MAX7400/MAX7403/MAX7404/MAX7407 SCFs were designed for use with external clocks that have a 40% to 60% duty cycle. When using an external clock,drive CLK with a CMOS gate powered from 0 to V DD .Varying the rate of the external clock adjusts the filter corner frequency:

f C = f CLK

/ 100Internal Clock

When using the internal oscillator, the capacitance (C OSC ) on the CLK pin determines the oscillator fre-where K = 38 for the MAX7400/MAX7403, and K = 34for the MAX7404/MAX7407. Since the capacitor value is in picofarads, minimize the stray capacitance at CLK so that it does not affect the internal oscillator frequen-cy. Varying the rate of the internal oscillator adjusts the filter’s corner frequency by a 100:1 clock-to-corner fre-quency ratio. For example, an internal oscillator fre-quency of 100kHz produces a nominal corner frequency of 1kHz.

Input Impedance vs. Clock Frequencies

The MAX7400/MAX7403/MAX7404/MAX7407’s input impedance is effectively that of a switched-capacitor resistor and is inversely proportional to frequency. The

input impedance determined by the following equation represents the average input impedance, since the input current is not continuous. As a rule, use a driver with an output source impedance less than 10% of the filter’s input impedance. Estimate the input impedance where f CLK =clock frequency and C IN =0.85pF.

Low-Power Shutdown Mode

These devices feature a shutdown mode that is activat-ed by driving SHDN low. Placing the filter in shutdown mode reduces the supply current to 0.2μA (typ) and places the output of the filter into a high-impedance state. For normal operation, drive SHDN high or con-nect to V DD .

Applications Information

Offset and Common-Mode

Input Adjustment

The voltage at COM sets the common-mode input volt-age and is internally biased at midsupply by a resistor-divider. Bypass COM with a 0.1μF capacitor and connect OS to COM. For applications requiring offset adjustment or DC level shifting, apply an external bias voltage through a resistor-divider network to OS, as shown in Figure 4. (Note: Do not leave OS unconnect-ed.) The output voltage is represented by the following equation:

V OUT = (V IN - V COM ) + V OS

Figure 3. Elliptic Filter Response

with V COM= V DD/ 2 (typical), and where (V IN- V COM) is lowpass filtered by the SCF, and V OS is added at the output stage. See the Electrical Characteristics for COM and OS input voltage ranges. Changing the volt-age on COM or OS significantly from midsupply reduces the filter’s dynamic range.

Power Supplies The MAX7400/MAX7403 operate from a single +5V supply. The MAX7404/MAX7407 operate from a single +3V supply. Bypass V DD to GND with a 0.1μF capaci-tor. If dual supplies are required, connect COM to the system ground and GND to the negative supply. Figure 5 shows an example of dual-supply operation. Single-supply and dual-supply performance are equivalent. For single-supply or dual-supply operation, drive CLK and SHDN from GND (V- in dual-supply operation) to V DD. For a ±2.5V supply, use the MAX7400 or MAX7403; for a ±1.5V supply, use MAX7404 or MAX7407. For ±5V dual-supply applications, use the MAX291–MAX297.

Input Signal Amplitude Range The ideal input signal range is determined by observ-ing the voltage level at which the total harmonic distortion plus noise (THD+N) is minimized for a given corner frequency. The Typical Operating Character-istics show THD+N response as the input signal’s peak-to-peak amplitude is varied. These measurements are made with OS and COM biased at midsupply.

Anti-Aliasing and Post-DAC Filtering When using the MAX7400/MAX7403/MAX7404/ MAX7407 for anti-aliasing or post-DAC filtering, syn-chronize the DAC and the filter clocks. If the clocks are not synchronized, beat frequencies may alias into the passband.

The high clock-to-corner frequency ratio (100:1) also eases the requirements of pre- and post-SCF filtering. At the input, a lowpass filter prevents the aliasing of fre-quencies around the clock frequency into the pass-band. At the output, a lowpass filter attenuates the clock feedthrough.

A high clock-to-corner frequency ratio allows a simple RC lowpass filter, with the cutoff frequency set above the SCF corner frequency, to provide input anti-aliasing and reasonable output clock attenuation.

Harmonic Distortion Harmonic distortion arises from nonlinearities within the filter. Such nonlinearities generate harmonics when a pure sine wave is applied to the filter input. Table 1 lists typical harmonic distortion values with a 10k?load and an input signal of 4Vp-p (MAX7400/MAX7403) or 2Vp-p (MAX7404/MAX7407), at T A= +25°C.

Figure 5. Dual-Supply Operation

Table 1. Typical Harmonic Distortion

MAX7400/MAX7403/MAX7404/MAX74078th-Order, Lowpass, Elliptic, Switched-Capacitor Filters

______________________________________________________________________________________11

M A X 7400/M A X 7403/M A X 7404/M A X 7407

8th-Order, Lowpass, Elliptic, Switched-Capacitor Filters

Package Information

TRANSISTOR COUNT: 1116

Ordering Information (continued)

Chip Information

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

12____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600?1999 Maxim Integrated Products

Printed USA

is a registered trademark of Maxim Integrated Products.

MATLAB窗函数法实现FIR的高通,带通和低通滤波器的程序

MATLAB窗函数法实现FIR的高通,带通和低通滤波器的程序 MATLAB 学院:地球物理与石油资源学院班级:姓名:学号:班内编号:指导教师:完成日期:测井11001大牛啊啊啊陈义群2013年6月3日课程设计报告一、题目FIR滤波器的窗函数设计法及性能比较 1. FIR滤波器简介数字滤波器是一种用来过滤时间离散信号的数字系统,通过对抽样数据进行数学处理来达到频域滤波的目的。根据其单位冲激响应函数的时域特性可分为两类:无限冲激响应滤波器和有限冲激响应滤波器。与IIR滤波器相比,FIR滤波器的主要特点为: a. 线性相位;b.非递归运算。 2. FIR 滤波器的设计FIR滤波器的设计方法主要有三种:a.窗函数设计法;b.频率

抽样发;c.最小平法抽样法;这里我主要讨论在MATLAB环境下通过调用信号分析与处理工具箱的几类窗函数来设计滤波器并分析与比较其性能。窗函数法设计FIR滤波器的一般步骤如下: a. 根据实际问题确定要设计的滤波器类型; b. 根据给定的技术指标,确定期望滤波器的理想频率特性;c. 求期望滤波器的单位脉冲响应;d. 求数字滤波器的单位脉冲响应; e. 应用。常用的窗函数有(1)Hanningwindoww(n)?[?((2)Hammingw indoww(n)?[?((3)Balckmanwindoww(n)?[ ?((4)KaiserwindowI0{?1?[2n/(N?1)]2}w(n )?RN(n)I0(?)式中I0(x)是零阶Bessel函数,可定义为()2?n4?n)?()]RN(n)N?1N?1()2?n)]RN(n)N ?1() ?nN?1)]RN(n)() (x/2)m2I0(x)?1??m!m?1? 当x?0时与矩形窗一致;当x?时与海明窗结果相同;当x?时与布莱克曼窗结果相同。3.窗函数的选择标准 1. 较低的旁瓣

详细解析电源滤波电容的选取与计算

电感的阻抗与频率成正比,电容的阻抗与频率成反比.所以,电感可以阻扼高频通过,电容可以阻扼低频通过.二者适当组合,就可过滤各种频率信号.如在整流电路中,将电容并在负载上或将电感串联在负载上,可滤去交流纹波.。电容滤波属电压滤波,是直接储存脉动电压来平滑输出电压,输出电压高,接近交流电压峰值;适用于小电流,电流越小滤波效果越好。电感滤波属电流滤波,是靠通过电流产生电磁感应来平滑输出电流,输出电压低,低于交流电压有效值;适用于大电流,电流越大滤波效果越好。电容和电感的很多特性是恰恰相反的。 一般情况下,电解电容的作用是过滤掉电流中的低频信号,但即使是低频信号,其频率也分为了好几个数量级。因此为了适合在不同频率下使用,电解电容也分为高频电容和低频电容(这里的高频是相对而言)。 低频滤波电容主要用于市电滤波或变压器整流后的滤波,其工作频率与市电一致为50Hz;而高频滤波电容主要工作在开关电源整流后的滤波,其工作频率为几千Hz到几万Hz。当我们将低频滤波电容用于高频电路时,由于低频滤波电容高频特性不好,它在高频充放电时内阻较大,等效电感较高。因此在使用中会因电解液的频繁极化而产生较大的热量。而较高的温度将使电容内部的电解液气化,电容内压力升高,最终导致电容的鼓包和爆裂。 电源滤波电容的大小,平时做设计,前级用4.7u,用于滤低频,二级用0.1u,用于滤高频,4.7uF的电容作用是减小输出脉动和低频干扰,0.1uF的电容应该是减小由于负载电流瞬时变化引起的高频干扰。一般前面那个越大越好,两个电容值相差大概100倍左右。电源滤波,开关电源,要看你的ESR(电容的等效串联电阻)有多大,而高频电容的选择最好在其自谐振频率上。大电容是防止浪涌,机理就好比大水库防洪能力更强一样;小电容滤高频干扰,任何器件都可以等效成一个电阻、电感、电容的串并联电路,也就有了自谐振,只有在这个自谐振频率上,等效电阻最小,所以滤波最好! 电容的等效模型为一电感L,一电阻R和电容C的串联, 电感L为电容引线所至,电阻R代表电容的有功功率损耗,电容C. 因而可等效为串联LC回路求其谐振频率,串联谐振的条件为WL=1/WC,W=2*PI*f,从而得到此式子f=1/(2pi*LC).,串联LC回路中心频率处电抗最小表现为纯电阻,所以中心频率处起到滤波效果.引线电感的大小因其粗细长短而不同,接地电容的电感一般是1MM为10nH左右,取决于需要接地的频率。 采用电容滤波设计需要考虑参数: ESR ESL 耐压值 谐振频率

开关电源相关 开关电容一次侧滤波高压电容计算

开关电源一次滤波大电解电容 开关电源决定一次侧滤波电容,主要影响电源的性能参数为输出低频交流纹波与保持时间. 滤波电容越大,电容器上的Vin(min)越高,可以输出较大功率的电源,但相对价格也提高了。 输入电解电容计算方法(举例说明): 1.因输出电压12V 输出电流2A, 故输出功率:Pout=Vo*Io=1 2.0V*2A=24W 。 2.设定变压器的转换效率约为80%,则输出功率为24W 的电源其输入功率:Pin=Pout/效率=W W 30% 8024=. 3.因输入最小交流电压为90VAC ,则其直流输出电压为: Vin=90*2=127Vdc 故负载直流电流为:I=Vin Pin =A Vac W 236.012730= (若电源的等级要求较高时, 可考虑如下参数进行推算; 因输入最小交流电压为90VAC ,则其最低输出直流电压为: Vin(min)=90*2-30(直流纹波电压)=97Vdc ,故最大负载直流电流为:I MAX =(min)Vin Pin =A Vac W 309.09730=) 4.设计允许30V PP 的直流纹波电压V ?,并且电容要维持电压的时间为半周期t (即半周期的工频率交流电压在约是8ms ,T=f 1=60 1=0.0167S=16.7 ms )则:C=uF V t I 9.6230 10*8*236.0*3 ==?- 62uH 在常用电容47-82uH 之间,因考虑成本问题。 故实际选择电容量47uF. 5.因最大输入交流电压为264Vac ,则最高直流电压为:V=264*2=373VDC. 实际选用通用型耐压400Vdc 的电解电容,此电压等级,电容有95%的裕度. 6.电容器的承受的纹波电流值决定电容器的温升,进而决定电容器的寿命.(电容器的最大纹波电流值与其体积,材质有关.体积越大散热越好耐受纹波电流值越高)故在选用电容器要考虑实际纹波电流值<电容器的最大纹波电流值. 7.开关源元器件温升一般较高,通常选用105℃电容器,在特殊情况无法克服温升时可选用125℃电容器. 故选用47uF,400v, 105℃电解电容器可以满足要求(在实际使用时还考虑安装机构尺寸,体种大小,散热环境好坏等)

实验四 用窗函数法设计FIR数字滤波器

实验四 用窗函数法设计FIR 数字滤波器 实验项目名称:用窗函数法设计FIR 数字滤波器 实验项目性质:验证性实验 所属课程名称:数字信号处理 实验计划学时:2 一. 实验目的 (1)掌握用窗函数法设计FIR 数字滤波器的原理与方法。 (2)熟悉线性相位FIR 数字滤波器的特性。 (3)了解各种窗函数对滤波特性的影响。 二. 实验容和要求 (1) 复习用窗函数法设计FIR 数字滤波器一节容,阅读本实验原理,掌握设计步骤。 (2) 用升余弦窗设计一线性相位低通FIR 数字滤波器,截止频率 rad c 4 π ω= 。窗口长度N =15,33。要求在两种窗口长度情况下,分别求出()n h ,打印出相应的幅频特性和相频特性曲线,观察3dB 带宽和20dB 带宽。总结窗口长度N 对滤波器特性的影响。 设计低通FIR 数字滤波器时,一般以理想低通滤波特性为逼近函数()ωj e H ,即 ()?????≤<≤=-π ωωωωωα ω c c j j d ,,e e H 0 其中2 1 -= N α ()() ()[]() a n a n d e e d e e H n h c j j j j d d c c --= = = ??- -- πωωπ ωπ ωαωω ωαωπ π ωsin 2121

(3) 33=N ,4πω=c ,用四种窗函数设计线性相位低通滤波器,绘制相应的幅频特性曲线,观察3dB 带宽和20dB 带宽以及阻带最小衰减,比较四种窗函数对滤波器特性的影响。 三. 实验主要仪器设备和材料 计算机,MATLAB6.5或以上版本 四. 实验方法、步骤及结果测试 如果所希望的滤波器的理想的频率响应函数为()ωj d e H ,则其对应的单位脉冲响应为 ()()ωπ ω ωπ πd e e H n h j j d d ?- = 21 (4.1) 窗函数设计法的基本原理是用有限长单位脉冲响应序列()n h 逼近 ()n h d 。由于()n h d 往往是无限长序列,而且是非因果的,所以用窗函数() n ω将()n h d 截断,并进行加权处理,得到: ()()()n n h n h d ω= (4.2) ()n h 就作为实际设计的FIR 数字滤波器的单位脉冲响应序列,其频率 响应函数()ωj e H 为 ()()n j N n j e n h e H ωω ∑-==1 (4.3) 式中,N 为所选窗函数()n ω的长度。 我们知道,用窗函数法设计的滤波器性能取决于窗函数()n ω的类型及窗口长度N 的取值。设计过程中,要根据对阻带最小衰减和过渡带宽度的

20170425-开关电源中的电感面积积设计公式(一)

开关电源中的电感面积积设计公式(一) 普高(杭州)科技开发有限公司 张兴柱 博士 A :直流滤波电感的面积积设计公式: (t i L t I I 图1: 一般化的直流滤波电感和其电流波形 图1是开关电源中的一个一般化的直流滤波电感和其电流波形。当该电感的电感量和电流已知时,我们可以通过适当的推导,得到上述一般化直流滤波电感的面积积设计公式。具体推导如下: 由电感的磁链公式,可得:m c L m L Lpeak B A N N LI =Φ= 所以有: m L Lpeak c B N LI A = (1) 其中:m B 为电感电流峰值所对应的磁密,其选取须保证sat m B B <。在电感采用(H ),电流采用(A ),磁密采用(Gass ),截面积采用2)(cm 这一单位制时,上式中要加一个系数,如下所示: 28)(10cm B N LI A m L Lpeak c ×= (2) 根据窗口方程: a Lrms L KW J I N = (3) 其中:J 为绕组的电流密度,K 为窗口系数,a W 为铁芯的窗口面积,所以有: KJ I N W Lrms L a = (4) 在电流采用(A ),电流密度采用2)/(mm A ,窗口面积采用2)(cm 这一单位制时,上式中要

加一个系数,如下所示: 22)(10cm KJ I N W Lrms L a ?×= (5) 从式(2)和式(5),可以得到: 46)(10cm KJ B I LI A W m Lpeak Lrms c a ××= × (6) 其中:Lrms I 为图1中电感电流的有效值,当电感电流的纹波较小时,L Lrms I I ≈;在电感电流纹波较大时,可通过计算获得该有效值电流。 B :交流滤波电感的面积积设计公式: (t i L 图2: 一般化的交流滤波电感和其电流波形 图2是开关电源中的一个一般化的交流滤波电感和其电流波形。它与直流滤波电感中的电流波形之区别在于:交流滤波电感电流中有两个频率分量,一个是开关频率分量,一个是输出低频分量,图中的峰值电感电流指的是包含开关纹波后的峰值电流值。当该电感的电感量和电流波形已知时,通过推导可获得交流滤波电感的面积积设计公式同样为(6)式,只是其有效值电流可用电流波形中的低频分量有效值近似。

实验四 窗函数法设计FIR数字滤波器

实验四 窗函数法设计FIR 数字滤波器 一、实验目的 1、掌握窗函数法设计FIR 数字滤波器的原理及具体方法。 2、掌握频率取样法设计FIR 数字滤波器的原理和基本方法。 3、学习利用窗函数法和频率取样法设计低通、带通、高通、带阻数字滤波器。 二、实验环境 计算机、MATLAB 软件 三、实验基础理论 窗函数设计FIR 滤波器 1.基本原理 窗函数设计法的基本思想为,首先选择一个适当的理想的滤波器()j d H e ω ,然后 用窗函数截取它的单位脉冲响应(n)d h ,得到线性相位和因果的FIR 滤波器。这种方法的重点是选择一个合适的窗函数和理想滤波器,使设计的滤波器的单位脉冲响应逼近理想滤波器的单位脉冲响应。 2.设计步骤 (1)给定理想滤波器的频率响应()j d H e ω ,在通带上具有单位增益和线性相位, 在阻带上具有零响应。一个带宽为()c c ωωπ<的低通滤波器由下式给定: π ωωωωωωω≤<=≤=-||,0)(,||,)(c j d c ja j d e H e e H 其中α为采样延迟,其作用是为了得到一个因果系统。 (2)确定这个滤波器的单位脉冲响应 ) ()) (sin()(a n a n n h c d --= πω 为了得到一个(n)h 长度为N 的因果的线性相位FIR 滤波器,我们令 2 1 -= N a (3)用窗函数截取(n)d h 得到所设计FIR 数字滤波器:)()()(n R n h n h N d = 3.窗函数的选择 常用的窗函数有矩形(Rectangular )窗,汉宁(Hanning )窗,海明(Hamming )窗、布莱克曼(Blackman )窗、凯瑟(Kaiser )窗等 表4-1 MATLAB 中产生窗函数的命令

浅谈开关电源输出电感的设计

――DC/DC 电路中电感的选择 原文:Fairchild Semiconductor AB-12:Insight into Inductor Current 下载 翻译:frm (注:只有充分理解电感在DC/DC电路中发挥的作用,才能更优的设计DC/DC电路。本文还包括对同步DC/DC及异步DC/DC概念的解释。) 本文PDF文档下载 简介 在开关电源的设计中电感的设计为工程师带来的许多的挑战。工程师不仅要选择电感值,还要考虑电感可承受的电流,绕线电阻,机械尺寸等等。本文专注于解释:电感上的DC电流效应。这也会为选择合适的电感提供必要的信息。 理解电感的功能 电感常常被理解为开关电源输出端中的LC滤波电路中的L(C是其中的输出电容)。虽然这样理解是正确的,但是为了理解电感的设计就必须更深入的了解电感的行为。 在降压转换中(Fairchild典型的开关控制器),电感的一端是连接到DC输出电压。另一端通过开关频率切换连接到输入电压或GND。 在状态1过程中,电感会通过(高边“high-side”)MOSFET连接到输入电压。在状态2过程中,电感连接到GND。由于使用了这类的控制器,可以采用两种方式实现电感接地:通过二极管接地或通过(低边“low-side”)MOSFET接地。如果是后一种方式,转换器就称为“同步(synchronus)”方式。 现在再考虑一下在这两个状态下流过电感的电流是如果变化的。在状态1过程中,电感的一端连接到输入电压,另一端连接到输出电压。对于一个降压转换器,输入电压必须比输出电压高,因此会在电感上形成正向压降。相反,在状态2过程中,原来连接到输入电压的电感一端被连接到地。对于一个降压转换器,输出电压必然为正端,因此会在电感上形成负向的压降。 我们利用电感上电压计算公式: V=L(dI/dt) 因此,当电感上的电压为正时(状态1),电感上的电流就会增加;当电感上的电压为负时(状态2),电感上的电流就会减小。通过电感的电流如图2所示: 通过上图我们可以看到,流过电感的最大电流为DC电流加开关峰峰电流的一半。上图也称为纹波电流。根据上述的公式,我们可以计算出峰值电流:

窗函数设计低通滤波器 电信课设

XXXX大学 课程设计报告 学生:xxx 学号:xxx 专业班级:电子信息工程 课程名称:数字信号处理课程设计

学年学期20XX——20XX 学年第X学期指导教师:xxx 2014年6月

课程设计成绩评定表

目录 1. 窗函数设计低通滤波器 1.1设计目的 (1) 1.2设计原理推导与计算 (1) 1.3设计容与要求 (2) 1.4设计源程序与运行结果 (3) 1.5思考题 (10) 2. 用哈明窗设计FIR带通数字滤波器 2.1设计要求 (14) 2.2设计原理和分析 (14) 2.3详细设计 (15) 2.4调试分析及运行结果 (15) 2.5心得体会 (17) 参考文献 (17)

1.窗函数设计低通滤波器 1.1设计目的 1. 熟悉设计线性相位数字滤波器的一般步骤。 2. 掌握用窗函数法设计FIR 数字滤波器的原理和方法。 3. 熟悉各种窗函数的作用以及各种窗函数对滤波器特性的影响。 4. 学会根据指标要求选择合适的窗函数。 1.2设计原理推导与计算 如果所希望的滤波器的理想的频率响应函数为() ωj d e H ,则其对应的单位脉冲响应为 ()() ωπ ωωπ π d e e H n h j j d d ?- = 21 (4.1) 窗函数设计法的基本原理是设计设计低通FIR 数字滤波器时,一般以理想低通滤波特性为逼近函数() ωj e H ,即 ()?????≤<≤=-π ωωωωωα ω c c j j d ,, e e H 0,其中21-=N α ()() ()[]() a n a n d e e d e e H n h c j j j j d d c c --= = = ??- -- πωωπ ωπ ωαωω ωαωπ π ωsin 2121 用有限长单位脉冲响应序列()n h 逼近()n h d 。由于()n h d 往往是无限长序列,而且是非因果的,所以用窗函数()n ω将()n h d 截断,并进行加权处理,得到: ()()()n n h n h d ω= (4.2) ()n h 就作为实际设计的FIR 数字滤波器的单位脉冲响应序列,其频率响应函 数() ωj e H 为 ()()n j N n j e n h e H ωω ∑-==10 (4.3) 式中,N 为所选窗函数()n ω的长度。

最有效的开关电源纹波计算方法

对滤波效果而言,电容的ESL和ESR参数都很重要,电感会阻止电流的突变,电阻则限制了电流的变化率,这些影响对电容的充放电显然都不利。优质的电容在设计及制造时都采取了必要的手段来降低ESL和ESR,故而横向比较起来,同样的容量滤波效果却不同。

漏电流小,ESR小,一般都是认为要选择低ESR的系列,不过也与负载有关,负载越大,ESR不变时,纹波电流变大,纹波电压也变大。我们从公式上来看看,dV=C*di*dt;dv就是纹波,di是电感上电流的值,dt是持续的时间。一般的开关电源书籍都会讲到怎么算纹波,大题分解为:滤波电容对电压的积分+滤波电容的ESR+滤波电容的ESL+noise,如下图: 一般对纹波的计算通常是估算 有关开关电源纹波的计算,原则上比较复杂,要将输入的矩形波进行傅立叶展开成各次谐波的级数,计算每个谐波的衰减,再求和。最后的结果不仅与滤波电感、滤波电容有关,而且与负载电阻有关。当然,计算时是将滤波电感和滤波电容看成理想元件,若考虑电感的直流电阻以及电容的ESR,那就更复杂了。所以,通常都是估算,再留出一定余量,以满足设计要求。对样机需要实际测试,若不能满足设计要求,则需要更改滤波元件参数。 以Buck电路为例,电感中电流连续和断续,开关电源的传递函数完全不同。电流连续时环路稳定,电流断续时未必稳定。而电感中电流是否连续,除与电感量等有关外,还与负载有关。更严重的是,电流是否连续还与占空比有关,而占空比是由反馈电路控制的。不仅Buck,其它如Boost以及由基本拓扑衍生出来的正激、反激等也是一样。 若要求所有可能产生的工作状态下都稳定,通常要加假负载以保证Buck电路电感电流总是连续(对Buck/Boost或反激则保证不会在连续断续之间转变),或者把反馈环路时间常数设计得非常大(这会在很大程度上降低开关电源的响应速度)。对输出电压可调整的开关电源(例如实验室用的0~30V输出电源),环路稳定的难度更大。对这类电源,往往要在开关电源之后再加一级线性调整。 电解电容的选择很重要 在输出端采用高频性能好、ESR低的电容,高频下ESR阻抗低,允许纹波电流大。可以在高频下使用,如采用普通的铝电解电容作输出电容,无法在高频(100kHz以上的频率)下工作,即使电容量也无效,因为超过10kHz时,它已成电感特性了。

开关电源设计技巧连载十六:推挽式变压器开关电源储能滤波电感、电容参数的计算

开关电源设计技巧连载十六:推挽式变压器开关电源储能滤波电感、电容参数的计算 1-8-1-3.推挽式变压器开关电源储能滤波电感、电容参数的计算 图1-33中,储能滤波电感和储能滤波电容参数的计算,与图1-2的串联式开关电源中储能滤波电感和储能滤波电容参数的计算方法很相似。 根据图1-33和图1-34,我们把整流输出电压uo和LC滤波电路的电压uc、电流iL画出如图1-35,以便用来计算推挽式变压器开关电源储能滤波电感、电容的参数。 图1-35-a)是整流输出电压uo的波形图。实线表示控制开关K1接通时,推挽式变压器开关电源开关变压器次级线圈N3绕组输出电压经整流后的波形;虚线表示控制开关K2接通时,推挽式变压器开关电源开关变压器次级线圈N3绕组输出电压经整流后的波形。Up表示整流输出峰值电压(正激输出电压),Up-表示整流输出最低电压(反激输出电压),Ua表示整流输出电压的平均值。 图1-35-b)是滤波电容器两端电压的波形图,或滤波电路输出电压的波形图。Uo表示输出电压,或滤波电容器两端电压的平均值;ΔUc表示电容充电电压增量,2ΔUc等于输出电压纹波。

1-8-1-3-1.推挽式变压器开关电源储能滤波电感参数的计算 在图1-33中,当控制开关K1接通时,输入电压Ui通过控制开关K1加到开关变压器线圈N1绕组的两端,在控制开关K1接通Ton期间,开关变压器线圈N3绕组输出一个幅度为Up(半波平均值)的正激电压uo,然后加到储能滤波电感L 和储能滤波电容C组成的滤波电路上,在此期间储能滤波电感L两端的电压eL 为: 式中:Ui为输入电压,Uo为直流输出电压,即:Uo为滤波电容两端电压uc的平均值。 在此顺便说明:由于电容两端的电压变化增量ΔU相对于输出电压Uo来说非常小,为了简单,我们这里把Uo当成常量来处理。 对(1-136)式进行积分得:

微波滤波器的发展历史趋势及种类

微波滤波器是一类无耗的二端口网络,广泛应用于微波通信、雷达、电子对抗及微波测量仪器中,在系统中用来控制信号的频率响应,使有用的信号频率分量几乎无衰减地通过滤波器,而阻断无用信号频率分量的传输。滤波器的主要技术指标有:中心频率,通带带宽,带内插损,带外抑制,通带波纹等。 微波滤波器的分类方法很多,根据通频带的不同,微波滤波器可分为低通、带通、带阻、高通滤波器;按滤波器的插入衰减地频响特性可分为最平坦型和等波纹型;根据工作频带的宽窄可分为窄带和宽带滤波器;按滤波器的传输线分类可分为微带滤波器、交指型滤波器、同轴滤波器、波导滤波器、梳状线腔滤波器、螺旋腔滤波器、小型集总参数滤波器、陶瓷介质滤波器、SIR(阶跃阻抗谐振器)滤波器、高温超导材料等。 发展历史: 在1937年,由W.P Mason和R.A.Sykes发表的文章中首先研究了微波滤波器,他们是利用了ABCD参数推导出了大量有用滤波器相位和衰减函数。应用映像参数方法当时主要在美国各大实验室中,例如在Mn’实验室里,他们重点研究波导滤波器,而在Harvard实验室重点研究宽带低通、带通同轴及窄带可调谐滤波器。映像参数方法的工作大多在MIT实验室由Fano和Lawson完成,他们的著作对于微波滤波器有比较清晰的介绍,甚至在40年后还有应用价值。在随后的微波滤波器理论的研究和发展过程中,许多专家和学者作出了重大的贡献。Cohn在集总元件低通滤波器原型机的基础上第一个提出了方便实用的直接耦合空腔滤波器理论。上世纪60年代,G.L.Matthaei在其专著中对微波滤波器的经典设计方法作出了较全面、系统的介绍,但主要针对最平坦型和契比雪夫型,未涉及椭圆函数型和广义契比雪夫型。70年代初,A.E.Williams和Kurzrok提出用于分析交叉耦合的低阶滤波器。A.E.Atia,A.E.Williams和R.W.Newcomb对交叉耦合合展开研究,总结出传输零点对称分布时的偶模网络和相应的偶模矩阵的综合方法。Levy建立了集总和分布原型的元件公式间的联系,给出了推导原型元件的简单而准确的公式;Rhode建立起了线性相位滤波器理论。1999年Richard J.Cameron把广义契比雪夫滤波器的传输零点由实数扩展到复数,从而将传输零点和时延结合起来研究,提出用循环递归的方法构成广义契比雪夫的传输和反射函数多项式,根据导纳矩阵和部分分式展开求取留数,再利用施密特正交变换的方法综合耦合矩阵,其矩阵综合和消零计算量较大。如何将不可实现或不是最简的耦合元素消零成为研究热点,但目前国际上主要采用相似变换(矩阵旋转)尽可能多地消去非零元。这一系列贡献,都可以说是微波滤波器发展史上的重大突破。

实验六、用窗函数法设计FIR滤波器分析解析

实验六 用窗函数法设计 FIR 滤波器 一、实验目的 (1) 掌握用窗函数法设计FIR 数字滤波器的原理和方法。 (2) 熟悉线性相位FIR 数字滤波器特性。 (3) 了解各种窗函数对滤波特性的影响。 二、实验原理 滤波器的理想频率响应函数为H d (e j ω ),则其对应的单位脉冲响应为: h d (n) = ?-π π ωωωπ d e e H n j j d )(21 窗函数设计法的基本原理是用有限长单位脉冲响应序列h(n)逼h d (n)。由于h d (n)往往是无 限长序列,且是非因果的,所以用窗函数。w(n)将h d (n)截断,并进行加权处理: h(n) = h d (n) w(n) h(n)就作为实际设计的FIR 数字滤波器的单位脉冲响应序列,其频率响应函数H(e j ω )为: H(e j ω ) = ∑-=-1 )(N n n j e n h ω 如果要求线性相位特性,则h (n )还必须满足: )1()(n N h n h --±= 可根据具体情况选择h(n)的长度及对称性。 用窗函数法设计的滤波器性能取决于窗函数w(n)的类型及窗口长度N 的取值。设计过程中,要根据对阻带最小衰减和过渡带宽度的要求选择合适的窗函数类型和窗口长度N 。 三、实验步骤 1. 写出理想低通滤波器的传输函数和单位脉冲响应。 2. 写出用四种窗函数设计的滤波器的单位脉冲响应。 3. 用窗函数法设计一个线性相位FIR 低通滤波器,用理想低通滤波器作为逼近滤波器,截止频率ωc =π/4 rad ,选择窗函数的长度N =15,33两种情况。要求在两种窗口长度下,分别求出h(n),打印出相应的幅频特性和相频特性曲线,观察3dB 带宽和阻带衰减; 4 用其它窗函数(汉宁窗(升余弦窗)、哈明窗(改进的升余弦窗)、布莱克曼窗) 设计该滤波器,要求同1;比较四种窗函数对滤波器特性的影响。 四、实验用MATLAB 函数 可以调用MATLAB 工具箱函数fir1实现本实验所要求的线性相位FIR-DF 的设计,调用一维快速傅立叶变换函数fft 来计算滤波器的频率响应函数。

开关电源中电感的设计

开关电源中电感的设计 在开关电源的设计中电感的设计为工程师带来的许多的挑战。工程师不仅要选择电感值,还要考虑电感可承受的电流,绕线电阻,机械尺寸等等。本文专注于解释:电感上的DC 电流效应。这也会为选择合适的电感提供必要的信息。 理解电感的功能 电感常常被理解为开关电源输出端中的LC 滤波电路中的L(C 是其中的输出电容)。虽然这样理解是正确的,但是为了理解电感的设计就必须更深入的了解电感的行为。 在降压转换中(Fairchild典型的开关控制器),电感的一端是连接到DC 输出电压。另一端通过开关频率切换连接到输入电压或GND。 在状态1 过程中,电感会通过(高边“high-side”)MOSFET连接到输入电压。在状态2 过程中,电感连接到GND。由于使用了这类的控制器,可以采用两种方式 实现电感接地:通过二极管接地或通过(低边“low-side”)MOSFET接地。如果是后 一种方式,转换器就称为“同步(synchronus)”方式。 现在再考虑一下在这两个状态下流过电感的电流是如果变化的。在状态1 过程中,电感的一端连接到输入电压,另一端连接到输出电压。对于一个降压转换器,输入电压必须比输出电压高,因此会在电感上形成正向压降。相反,在状态2 过程中,原来连接到输入电压的电感一端被连接到地。对于一个降压转换器,输出电压必然为正端,因此会在电感上形成负向的压降。 我们利用电感上电压计算公式: V=L(dI/dt) 因此,当电感上的电压为正时(状态1),电感上的电流就会增加;当电感上的电压为负时(状态2),电感上的电流就会减小。通过电感的电流如图2 所示:

通过上图我们可以看到,流过电感的最大电流为DC 电流加开关峰峰电流的一半。上图也称为纹波电流。根据上述的公式,我们可以计算出峰值电流: 其中,ton 是状态1 的时间,T 是开关周期(开关频率的倒数),DC 为状态1 的占空比。 警告:上面的计算是假设各元器件(MOSFET上的导通压降,电感的导通压降或异步电路中肖特基二极管的正向压降)上的压降对比输入和输出电压是可以忽略的。 如果,器件的下降不可忽略,就要用下列公式作精确计算: 同步转换电路: 异步转换电路:其中,Rs 为感应电阻阻抗加电感绕线电阻的阻。Vf 是肖特基二极管的正向压降。R 是Rs加MOSFET 导通电阻,R=Rs+Rm。

窗函数法设计FIR数字滤波器

数字信号处理实验报告 ---实验4窗函数法设计FIR数字滤波器 一、实验目的 1.了解常用的几种窗函数,能正确选择适当的窗函数进行滤波器设计; 2.掌握窗函数法设计数字低通滤波器。 二、实验原理 1.常用的窗函数: 矩形窗函数为boxcar和rectwin,调用格式: w= boxcar(N) w= rectwin(N) 其中N是窗函数的长度,返回值w是一个N阶的向量。 三角窗函数为triang,调用格式: w= triang(N) 汉宁窗函数为hann,调用格式: w= hann(N) 海明窗函数为hamming,调用格式: w= hamming(N) 2.各个窗函数的性能比较

三、实验内容 题一:生成四种窗函数:矩形窗、三角窗、汉宁窗、海明窗,并观察其频率响应。 题二:根据下列技术指标,设计一个FIR数字低通滤波器:wp=0.2π,ws=0.4π,ap=0.25dB, as=50dB,选择一个适当的窗函数,确定单位冲激响应,绘出所设计的滤波器的幅度响应。 四、上机程序及运行结果 题一:n=30; %矩形窗及其频响 window1=rectwin(n); [h1,w1]=freqz(window1,1); subplot(4,2,1); stem(window1);title('矩形窗');subplot(4,2,2); plot(w1/pi,20*log(abs(h1))/abs(h1(1)));title('矩形窗频响'); %三角窗及其频响 window2=triang(n); [h2,w2]=freqz(window2,1); subplot(4,2,3);stem(window2);title('三角窗'); subplot(4,2,4); plot(w2/pi,20*log(abs(h2))/abs(h2(1)));title('三角窗频响'); %汉宁窗及其频响 window3=hann(n); [h3,w3]=freqz(window3,1); subplot(4,2,5);stem(window3);title('汉宁窗'); subplot(4,2,6); plot(w3/pi,20*log(abs(h3))/abs(h3(1)));title('汉宁窗频响'); %海明窗频响 window4=hamming(n);

推挽式变压器开关电源储能滤波电容参数的计算

储能滤波电感和储能滤波电容参数的计算,与图1-2的串联式开关电源中储能滤波电感和储能滤波电容参数的计算方法很相似。根据图1-33和图1-34,我们把整流输出电压uo和LC滤波电路的电压uc、电流iL画出如图1-35,以便用来计算推挽式变压器开关电源储能滤波电感、电容的参数。 图1-35-a)是整流输出电压uo的波形图。实线表示控制开关K1接通时,推挽式变压器开关电源开关变压器次级线圈N3绕组输出电压经整流后的波形;虚线表示控制开关K2接通时,推挽式变压器开关电源开关变压器次级线圈N3绕组输出电压经整流后的波形。Up表示整流输出峰值电压(正激输出电压),Up-表示整流输出最低电压(反激输出电压),Ua表示整流输出电压的平均值。 图1-35-b)是滤波电容器两端电压的波形图,或滤波电路输出电压的波形图。Uo表示输出电压,或滤波电容器两端电压的平均值;ΔUc表示电容充电电压增量,2ΔUc等于输出电压纹波。 1-8-1-3-1.推挽式变压器开关电源储能滤波电感参数的计算 在图1-33中,当控制开关K1接通时,输入电压Ui通过控制开关K1加到开关变压器线圈N1绕组的两端,在控制开关K1接通Ton期间,开关变压器线圈N3绕组输出一个幅度为Up(半波平均值)的正激电压uo,然后加到储能滤波电感L 和储能滤波电容C组成的滤波电路上,在此期间储能滤波电感L两端的电压eL

为: eL = Ldi/dt = Up – Uo —— K1接通期间(1-136) 式中:Ui为输入电压,Uo为直流输出电压,即:Uo为滤波电容两端电压uc的平均值。 在此顺便说明:由于电容两端的电压变化增量ΔU相对于输出电压Uo来说非常小,为了简单,我们这里把Uo当成常量来处理。 对(1-136)式进行积分得: 式中i(0)为初始电流(t = 0时刻流过电感L的电流),即:控制开关K1刚接通瞬间,流过电感L的电流,或称流过电感L的初始电流。从图1-35中可以看出i(0)= Ix 。 当控制开关K由接通期间Ton突然转换到关断期间Toff的瞬间,流过电感L的电流iL达到最大值: (1-139)和(1-140)式就是计算推挽式变压器开关电源输出电压的表达式。式中,Uo为推挽式变压器开关电源输出电压,Ui为推挽式变压器开关电源输入电压,Up为推挽式变压器开关电源开关变压器次级线圈N3绕组的正激输出电压,Up-为推挽式变压器开关电源开关变压器次级线圈N3绕组的反激输出电压,n为开关电源次级线圈N3绕组与初级线圈N1绕组或N2绕组的匝数比。

开关电源中X电容和Y电容设计规则

开关电源中X电容和Y电容设计规则 开关电源的X电容设计准则: 参考AD1118X电容放置原则: 1.共模扼流圈前:105/275VA CMKP/X2 2.共模扼流圈后:474/275VA CMKP/X2 参考MWSP200-12X电容放置原则: 1.共模扼流圈前:1uF/275VA CMKP/X2 2.共模扼流圈后:0.33uF/275VA CMKP/X2 参考MWS145-12X电容放置原则: 1.共模扼流圈前:0.22uF/MKP-X2-250VA C/275VA CGS-L 2.共模扼流圈后:0.1uF/MKP-X2-250VA C/275VA CGS-L 一般两级X电容,前一级用0.47uF第二级用0.1uF;单级则用0.47uF.目前还没有比较方便的计算方法。电容容量的大小和电源的功率无直接关系) 开关电源的Y电容设计准则: 大地=PGNDorCHGND 参考AD1118Y电容放置原则: 1.市电输入L/N线对大地:2颗472/250VY2 2.市电经过一级共模扼流圈后的两线对大地:2颗472/250V 3.整流桥输出的低压端(变压器初级低压端)对大地:1颗222/250V 4.6组低压直流输出88V1对大地:各1颗103/1KVY1 5.6组低压输出辅助电源AGND变压器次级低压端)对大地:共用1颗103/1KVY1 6.变压器初级低压端对变压器次级低压端:共用1颗103/1kVY1

参考AD1043设计: 1.市电输入L/N线对大地:2颗222/250VY2 2.市电经过1级共模扼流圈后的两线对大地:2颗472/250VY2 参考康殊电子的设计: 1.市电输入L/N线对大地:2颗102/250VY2 2.市电经过2级共模扼流圈后的两线对大地:2颗102/250VY2 3.整流桥输出的低压端(变压器初级低压端无线数传模块)对大地:1颗332/250VY2 4.12V低压直流输出对大地:1颗223/1KVDISCY1 5.变压器初级低压端对变压器次级低压端:222/250VY1 参考MWS-145-12设计: 1.市电经过1级共模扼流圈后的两线对大地:2颗222/2kVY1 2.整流桥输出的低压端(变压器初级低压端)对大地:1颗222/2kVY1 3.12V低压直流输出GND对大地:1颗103/1KVY1 参考MWS-200-12设计: 1.市电输入L/N线对大地:2颗472/250VY2未上) 2.市电经过1级共模扼流圈后的两线对大地:2颗472/250VY2 2.整流桥输出的低压端(变压器初级低压端)对大地:1颗222/250VY2 3.PFC输出高压端对变压器初级地:1颗103/2kVY1 4.12V低压直流输出对大地:1颗103/1KVY1 5.12V低压直流输出GND对大地:1颗203/1KVY1 根据上述说明,Y电容设计规则如下:可适当选择) 1.市电输入L/N线对大地:2颗222/250VY2

微波射频滤波器归类

摘要:按微波滤波器的传输线的种类进行了分类,并按照这种分类方法对各种微波滤波器的性能指标、设计方法进行了详细的介绍。 关键词:微波滤波器;性能指标;设计方法 前言:随着现代微波通信,尤其是卫星通信和移动通信的发展,系统对通道的选择性越来越高,这对微波滤波器的设计提出了更高的要求,而微波滤波器作为通信系统中的重要部分,其性能的优劣往往决定了整个通信系统的质量。因此研究微波滤波器的性能指标和设计方法具有重要意义。 微波滤波器是一类无耗的二端口网络,广泛应用于微波通信、雷达、电子对抗及微波测量仪器中,在系统中用来控制信号的频率响应,使有用的信号频率分量几乎无衰减地通过滤波器,而阻断无用信号频率分量的传输。滤波器的主要技术指标有:中心频率,通带带宽,带内插损,带外抑制,通带波纹等。 微波滤波器的分类方法很多,根据通频带的不同,微波滤波器可分为低通、带通、带阻、高通滤波器;按滤波器的插入衰减地频响特性可分为最平坦型和等波纹型;根据工作频带的宽窄可分为窄带和宽带滤波器;按滤波器的传输线分类可分为微带滤波器、交指型滤波器、同轴滤波器、波导滤波器、梳状线腔滤波器、螺旋腔滤波器、小型集总参数滤波器、陶瓷介质滤波器、SIR(阶跃阻抗谐振器)滤波器、高温超导材料等。本文是按照传输线的分类来对各种微波滤波器的主要特性进行详尽的分析。 一、微带滤波器 主要性能指标: 频率范围:500MHz~6GHz 带宽:10%~30% 插入损耗:5dB(随带宽不同而不同) 输入输出形式:SMA、N、L16等 输入输出驻波:1.8:1 微带滤波器主要包括平行耦合微带线滤波器、发夹型滤波器、微带类椭圆函数滤波器。 半波长平行耦合微带线带通滤波器是微波集成电路中广为应用的带通滤波器形式。其结构紧凑、第二寄生通带的中心频率位于主通带中心频率的3倍处、适应频率范围较大、适用于宽带滤波器时相对带宽可达20%。其缺点为插损较大,同时,谐振器在一个方向依次摆开,

串联式开关电源储能滤波电感的计算

?串联式开关电源储能滤波电感的计算 ?串联式开关电源储能滤波电容的计算 串联式开关电源储能滤波电感的计算 从上面分析可知,串联式开关电源输出电压Uo与控制开关的占空比D有关,还与储能电感L的大小有关,因为储能电感L决定电流的上升率(di/dt),即输出电流的大小。因此,正确选择储能电感的参数相当重要。 串联式开关电源最好工作于临界连续电流状态,或连续电流状态。串联式开关电源工作于临界连续电流状态时,滤波输出电压Uo正好是滤波输入电压uo的平均值Ua,此时,开关电源输出电压的调整率为最好,且输出电压Uo的纹波也不大。因此,我们可以从临界连续电流状态着手进行分析。我们先看(1-6)式: 当串联式开关电源工作于临界连续电流状态时,即D = 0.5时,i(0) = 0,iLm = 2 Io,因此,(1-6)式可以改写为: 式中Io为流过负载的电流(平均电流),当D = 0.5时,其大小正好等于流过储能电感L最大电流iLm的二分之一;T为开关电源的工作周期,T正好等于2倍Ton。 由此求得: 或: (1-13)和(1-14)式,就是计算串联式开关电源储能滤波电感L的公式(D = 0.5时)。(1-13)和(1-14)式的计算结果,只给出了计算串联式开关电源储能滤波电感L的中间值,或平均值,对于极端情况可以在平均值的计算结果上再乘以一个大于1的系数。 如果增大储能滤波电感L的电感量,滤波输出电压Uo将小于滤波输入电压uo的平均值Ua,因此,在保证滤波输出电压Uo为一定值的情况下,势必要增大控制开关K的占空比D,以保持输出电压Uo的稳定;而

控制开关K的占空比D增大,又将会使流过储能滤波电感L的电流iL不连续的时间缩短,或由电流不连续变成电流连续,从而使输出电压Uo的电压纹波ΔUP-P进一步会减小,输出电压更稳定。 如果储能滤波电感L的值小于(1-13)式的值,串联式开关电源滤波输出的电压Uo将大于滤波输入电压uo的平均值Ua,在保证滤波输出电压Uo为一定值的情况下,势必要减小控制开关K的占空比D,以保持输出电压Uo的值不变;控制开关K的占空比D减小,将会使流过滤波电感L的电流iL出现不连续,从而使输出电压Uo的电压纹波ΔUP-P增大,造成输出电压不稳定。 由此可知,调整串联式开关电源滤波输出电压Uo的大小,实际上就是同时调整流过滤波电感L和控制开关K占空比D的大小。 由图1-4可以看出:当控制开关K的占空比D小于0.5时,流过滤波电感L的电流iL出现不连续,输出电流Io小于流过滤波电感L最大电流iLm的二分之一,滤波输出电压Uo的电压纹波ΔUP-P将显著增大。因此,串联式开关电源最好不要工作于图1-4的电流不连续状态,而最好工作于图1-3和图1-5表示的临界连续电流和连续电流状态。 串联式开关电源工作于临界连续电流状态,输出电压Uo等于输入电压Ui的二分之一,等于滤波输入电压uo的平均值Ua;且输出电流Io也等于流过滤波电感L最大电流iLm的二分之一。 串联式开关电源工作于连续电流状态,输出电压Uo大于输入电压Ui的二分之一,大于滤波输入电压uo的平均值Ua;且输出电流Io也大于流过滤波电感L最大电流iLm的二分之一。 串联式开关电源储能滤波电容的计算 我们同样从流过储能电感的电流为临界连续电流状态着手,对储能滤波电容C的充、放电过程进行分析,然后再对储能滤波电容C的数值进行计算。 图1-6是串联式开关电源工作于临界连续电流状态时,串联式开关电源电路中各点电压和电流的波形。图1-6中,Ui为电源的输入电压,uo为控制开关K的输出电压,Uo为电源滤波输出电压,iL为流过储能滤波电感电流,Io为流过负载的电流。图1-6-a)是控制开关K输出电压的波形;图1-6-b)是储能滤波电容C的充、放电曲线图;图1-6-c)是流过储能滤波电感电流iL的波形。当串联式开关电源工作于临界连续电流状态时,控制开关K的占空比D等于0.5,流过负载的电流Io等于流过储能滤波电感最大电流iLm的二分之一。 在Ton期间,控制开关K接通,输入电压Ui通过控制开关K输出电压uo ,在输出电压uo作用下,流过储能滤波电感L的电流开始增大。当作用时间t大于二分之一Ton的时候,流过储能滤波电感L的电流iL 开始大于流过负载的电流Io ,所以流过储能滤波电感L的电流iL有一部分开始对储能滤波电容C进行充电,储能滤波电容C两端电压开始上升。 当作用时间t等于Ton的时候,流过储能滤波电感L的电流iL为最大,但储能滤波电容C的两端电压并没有达到最大值,此时,储能滤波电容C的两端电压还在继续上升,因为,流过储能滤波电感L的电流iL 还大于流过负载的电流Io ;当作用时间t等于二分之一Toff的时候,流过储能滤波电感L的电流iL正好等于负载电流Io,储能滤波电容C的两端电压达到最大值,电容停止充电,并开始从充电转为放电。

相关文档