文档库 最新最全的文档下载
当前位置:文档库 › 高速摄像机的图像传感器的现状及发展趋势

高速摄像机的图像传感器的现状及发展趋势

高速摄像机的图像传感器的现状及发展趋势
高速摄像机的图像传感器的现状及发展趋势

图像传感器作为一种基础器件,因能实现信息的获取、转换和视觉功能的扩展,并能给出直观、真实、层次多、内容丰富的可视图像信息,在现代社会中得到了越来越广泛地应用。

20世纪60年代以前,摄像是用各种电子束摄像管来实现,60年代后期,各种固态图像传感器得到了迅速的发展。固态图像传感器主要分为两类:一类是电荷耦合式图像传感器(CCDS),它从70年代开始就一直在图像传感领域占据支配地位,如今在市场上依然保持着优势;另一类是CMOS图像传感器,虽在60年代就出现,但因其性能差,像素面积相对较大而没有被当时的市场所接受。从90年代初开始,亚微米CMOS工艺的实用性、CMOS制造工艺的成熟和低噪声有源像素传感新概念的出现,都促成了现今高性能CMOS图像传感器的迅速发展。在未来的电子消费市场里,人们需要的是一种高分辨率、高速、低功耗、低成本、小型化和高集成数字式的图像系统,而CCDS存在一些自身技术无法克服的缺点,因此,尚未成熟但更有发展空间的CMOS图像传感器设计

日益得到人们的重视。

固态图像传感器是指将布设在半导体衬底上许多能实现光-电信号转换的小单元,用所控制的时钟脉冲实现读取的一类功能器件。感光小单元简称为“像元”或“像点”。它们本身在空间和电气上是彼此独立的。固态图像传感器具有体积小、重量轻、解析度高、功耗低和可低电压驱动等优点,目前已广泛应用于电视、图像处理、测量、自动控制和机器人等领域。

图2.1是光导摄像管与固态图像传感器的基本原理的比较。如图2.1(a)所示,当入射光信号照射到摄像管中间电极表面时,其上将产生与各点照射光量成比例的电位分布。若用电子束扫描中间电极,负载R 上便会产生变化的放电电流。由于光量不同而使负载电流发生变化,这就是所需的输出电信号。

而图2.1(b)所示的固态图像传感器的输出信号的产生,不需外加扫描电子束,它可以直接由自扫描半导体衬底上诸像素而获得。输出电信号与像素的位置对应,因而,再生图像失真度极小。显然,光导摄像管等图像传感器,由于扫描电子束偏转畸变或聚焦变化等原因所引起的再生图像的失真,往往是很难避免的。

图2.1摄像管与固态图像传感器原理比较

(a)光导摄像管;(b)固态图像传感器。

失真度极小的固态图像传感器,非常适合测试技术及图像识别技术。此外,固态图像传感器与摄像管相比,还有体积小、重量轻、坚固耐用、抗冲击、耐振动、抗电磁干扰能力强以及耗电少等许多优点。固态图像传感器所用的敏感器件为电荷耦合器件(CCD)、电荷注入器件(CID)、戽链式件(BBD)、互补金属氧化物半导体器件(CMOS)等,它们大都可以在半导体集成器件的流水线上进行生产(例如:MOS、BBD用标准MOS工艺流程就能制造),因此,固态图像传感器的成本也较低。

从2001年到2003年相继进入市场或即将进入市场的高速录像看,CMOS 传感器占有90%的份额,很多研究机构都正在利用自定义的标准对CMOS进行研究和生产。以产品类别区分,图像传感器产品主要分为CCD、CMOS以及CIS 传感器三种。这里主要简介CCD以及CMOS传感器的技术。

2.1.1CCD图像传感器

CCD(Charged Coupled Device)于1969年在贝尔试验室研制成功,之后由日本开始量产,其发展历程已经有30多年,从初期的10多万像素已经发展至目前主流应用的500万像素。CCD类型又可分为线阵(Linear)与面阵(Area)两种,其中线阵应用于影像扫描器及传真机上,而面阵主要应用于数码相机(DSC)、摄录影机、监视摄影机等多项影像输入产品上。

1.CCD传感器的优点

(1)高解析度(High Resolution):像点的大小为微米量级,可感测及识别精细物体,获得较高的影像品质。芯片尺寸从早期的1英寸、1/2英寸、2/3

英寸、1/4英寸到最近推出的1/9英寸,像素数目从初期的10多万增加到现在的400万~500万。

(2)低噪声(Low Noise)、高灵敏度:CCD具有很低的读出噪声和暗电流噪声,因此具有较高的信噪比(SNR)。同时又具有高灵敏度,在低照度的情况下也能探测到入射光信号,使CCD的应用较少受天气的约束。

(3)动态范围宽(High Dynamic Range):同时探测及分辨强光和弱光,增强了系统对不同光照环境的适应能力,利于表现被摄物应有的明暗层次及清晰度。

(4)良好的线性特性曲线(Linearity):入射光源强度和输出信号大小成良好的正比关系。

(5)高的光子转换效率(High Quantum Efficiency):很微弱的入射光都能被记录下来。若配合影像增强管及投光器,即使在黑夜,远处的景物仍然还可以探测到。

(6)感光面积大(High Field of View):利用半导体技术已可制造大面积的CCD晶片,目前与传统底片尺寸相当的35mm的CCD已经开始应用在数码相机中,成为取代专业光学相机的关键元件。

(7)光谱响应广(Broad Spectral Response):能够检测出很宽范围内不同波长的光,增加系统使用弹性,扩大系统应用领域。

(8)影像失真低(Low Image Distortion):使用CCD传感器,其影像处理不会有失真的情形,使原物体信息被真实地反应出来。

(9)体积小、重量轻:可容易地装置在人造卫星及各式导航系统上。低耗能,不受强电磁场影响。电荷传输效率高:该效率系数影响信噪比、解像率,若电荷传输效率不高,影像将变模糊。

(10)可大批量生产,品质稳定,结构紧凑、牢固,不易老化,既使用方便又容易保养。

2.CCD技术的发展趋势

(1)高分辨率:目前CCD像元数已从100万像元提高到2000万像元以上,大面阵、小像元的CCD摄像机层出不穷。随着超大规模微加工技术的发展,CCD传感器的分辨率将越来越高。

(2)高速度:对于某些特殊高速瞬态成像场合(如拍高速飞行弹头的飞行姿态),要求CCD具有更高的工作速度和灵敏度。CCD频率特性受电荷转移速度的限制,时钟脉冲电压变化太快,电荷来不及完全转移就会造成转移效率大幅度降低。为保证器件具有较高的转移效率,时钟电压变化必须有一个上限频率,即CCD的高工作频率。因此,提高电荷转移效率和提高器件频率特性是提高CCD 质量的关键。

(3)微型、超小型化:微型、超小型化CCD的发展是CCD技术向各个领域渗透的关键。随着国防科学、生物医学工程、显微科学的发展,十分需要超小型的CCD传感器。CCD芯片的微型化能够提高它的分辨率、硅片的利用率、产品的质量及降低成本。

(4)新型器件结构:为了提高CCD像传感器的性能,扩大使用范围,需要不断地研究新的器件结构和信号采集、处理方法,赋予CCD图像传感器更强的功能。在器件结构方面,有帧内线转移CCD(FITCCD)、虚像CCD(VPCCD)、

亚电子噪声CCD(NSEC-CD)等。此外,随着VLSIMOS工艺的日益完善,MOS光电二极管阵列发展前景很是乐观,由此产生的电荷驱动器件(CPD)已经用于单片彩色摄像机中。

(5)微光CCD:由于夜空的月光和星光辐射主要是可见光和近红外光,其波段正好在硅CCD响应范围内。当前的微光CCD的最低照度可达10~61x,分辨力优于510TVL。

(6)多光谱:除可见光CCD图像传感器外,目前红外及微光CCD技术已经得到应用。正在研究X射线CCD、紫外CCD、多光谱红外CCD等,以拓展CCD的应用领域。

2.1.2CMOS图像传感器

CMOS图像传感器最早出现于1969年,它是一种用CMOS工艺方法将光敏元件、放大器、A/D转换、存储器、数字信号处理器和计算机接口电路等集成在一块硅片上的图像传感器,这种器件具有结构简单、处理功能多、成品率高和价格低廉等特点,有着广泛的应用前景。

CMOS图像传感器虽然比CCD还早一年出现,但在相当长的时段内,由于它存在成像质量差、像敏单元尺寸大、填充系数小、响应速度慢等缺点,因此只能用于图像质量要求较低的场合。早期CMOS器件为“无源像敏单元”结构,每个像单元主要由一个光敏元件和一个像敏单元寻址开关构成,无信号放大和处理电路,性能较差。1989年之后,出现了“有源像敏单元”结构。它不仅有光敏元件和像敏单元寻址开关,而且还有信号放大和处理等电路,提高了光电灵敏度,减小了噪声,扩大了动态范围,使它的一些性能参数与CCD图像传感器相

接近,并在功能、功耗、尺寸和价格等方面要优于CCD图像传感器,所以应用越来越广泛。

与CCD产品相比,CMOS采用标准工艺制造,可利用现有的半导体设备,不需额外的投资设备,且品质可随着半导体技术的提升而进步。同时,全球芯片厂的CMOS生产线较多,量产时也有利于成本的降低。另外,CMOS传感器的巨大优势,是它具有高度系统整合的条件。理论上,所有图像传感器所需的功能,例如垂直转移、水平转移寄存器、时序控制、CDS、ADC等,都可集成在一个芯片上,甚至包括后端芯片(Back-end Chip)、快闪记忆体(Flash RAM)等都可整合在一起,形成片上系统(SYSTEM-ON-A-CHIP),以达到降低整机生产成本的目的。

20世纪90年代以来,VLSI技术的发展和市场对小型化、低功耗和低成本成像系统的需求,使CMOS图像传感器得到迅速发展。目前CMOS图像传感器的研究与发展趋势主要有以下几个方面:

(1)多功能、智能化:传统的图像传感器仅仅局限于获取被摄对象的图像,图像的传输、处理需要单独的硬件和软件来完成。由于CMOS图像传感器在系统集成上的优点,可以从系统级水平来设计芯片。如可以在芯片内集成相应的功能部件应用于特定领域。也可以从通用角度考虑,在芯片内部集成通用微处理器。为了消除数字图像传输的瓶颈,还可以将高速图像传输技术(如Firewire、USB、基于LVDS的高速并行传输)集成到同一块芯片上,形成片上系统型数字相机(Digital Camera System on Chip)和智能CMOS图像传感器(Intelligent CMOS Image Sensor)。

(2)高帧频:由于CMOS图像传感器具有访问灵活的优点,可以通过只读出感光面上感兴趣的很小区域来提高帧速率。同时,CMOS图像传感器本身在动态范围和光敏感度上的提高,也有利于帧速率的提高。

(3)动态范围宽:VLSI系统研究中心将用于CCD和TDICCD的自适应传感技术用于CMOS传感器中,使CMOS传感器的整个动态范围可达84dB,并在一个64×64的芯片上进行了实验。NASA的JPL实验室也致力于将TDICCD 的工作模式用于CMOS图像传感器中。

(4)高分辨率:目前CMOS图像传感器分辨率可达3170×2120,约66M像素。

(5)低噪声技术。目前用于科学研究的高性能CCD能达到的噪声水平为(3~5)个电子,而CMOS图像传感器则为(300~500)个电子。JPL实验室采用APS技术的图像传感器能达到14个电子。

(6)MCSI(Multiple Capture Single Image)技术。Stanford大学电子工程与心理学系研究提出NCSI技术。该技术在同一块芯片上加工出一个2×2的CMOS成像阵列,阵列上的每个成像单元可以独立对场景成像,不同成像单元的输出信号经过可控方式合成,再经过A/D转换输出数字图像,由于各个成像单元的成像属性不同,输出信号为各个成像单元输出信号在时间和空间上的一种累加结果,改善了CMOS图像传感器在恶劣的光线环境下的成像质量。

(7)模块化、低功耗:由于CMOS图像传感器便于小型化和集成,可以根据特定应用场合,将相关的功能集成在一起,并通过优化设计,以进一步降低功耗。

CMOS图像传感器主要朝着高分辨率、高灵敏度、大动态范围、微型化、数字化和多功能化的方向发展。通过提高CMOS制造工艺,可以不断提高CMOS 传感器的分辨率;通过采用新工艺和改善相关双采样电路,可以有效降低固定模式噪声,缩小暗电流;通过采用棱镜或在光敏元下使用掺杂层可以有效提高填充系数,可达100%;一种阶跃的复位栅电压技术使采用APS技术的CMOS图像传感器的动态范围提高到90dB;采用ASIC技术的薄膜图像传感器允许增强局部像元对比度,使动态范围达到120dB;新型USB计算机接口及红外接口技术在图像传感器中的应用,增强了系统开发的灵活性。可以预见,CMOS图像传感器将在越来越广泛的领域得到应用,并将进一步推动数字图像技术的发展。

武汉中创联达科技有限公司,专业从事光电子影像产品(低照度相机、高速摄像机,超高速摄像机,高分辨率相机及其图像分析软件)的销售、研发,提供特殊环境下的拍摄、成像服务。经过多年的市场经验及技术积累,公司为国内客户提供燃烧、PIV、纤维成像、焊接、等离子体放电、材料拉伸变形、仿生学等领域提供详细、专业的解决方案。

(完整版)传感器的目前现状与发展趋势综述

传感器的目前现状与发展趋势 吴伟 1106032008 材控2班 摘要:传感器是高度自动化系统乃至现代尖端技术必不可少的一个关键组成部分。传感器技术是世界各国竞相发展的高新技术,也是进入21 世纪以来优先发展的十大顶尖技术之一。传感器技术所涉及的知识领域非常广泛,其研究和发展也越来越多地和其他学科技术的发展紧密联系。本文首先介绍了传感器的基本知识和传感器技术的发展历史。之后,综述了近几年高端前沿的光电传感器技术和生物传感器技术的主要研究状况。最后,展望了现代传感器技术的发展和应用前景。 关键词:传感器技术;传感器;研究现状;趋势 引言 当今社会的发展,是信息化社会的发展。在信息时代,人们的社会活动将主要依靠对信息资源的开发及获取、传输与处理。而传感器是获取自然领域中信息的主要途径与手段,是现代科学的中枢神经系统。它是指那些对被测对象的某一确定的信息具有感受(或响应)与检出功能,并使之按照一定规律转换成与之对应的可输出信号的元器件或装置的总称。传感器处于研究对象与测控系统的接口位置,一切科学研究和生产过程所要获取的信息都要通过它转换为容易传输和处理的电信号。如果把计算机比喻为处理和识别信息的“大脑”,把通信系统比喻为传递信息的“神经系统”,那么传感器就是感知和获取信息的“感觉器官”。 传感器技术是现代科技的前沿技术,发展迅猛,同计算机技术与通信技术一起被称为信息技术的三大支柱,许多国家已将传感器技术列为与通信技术和计算机技术同等重要的位置。现代传感器技术具有巨大的应用潜力,拥有广泛的开发空间,发展前景十分广阔。 1 传感器的基本知识

1.1 传感器的定义和组成 广义地说,传感器是指将被测量转化为可感知或定量认识的信号的传感器。从狭义方面讲,感受被测量,并按一定规律将其转化为同种或别种性质的输出信号的装置。传感器一般由敏感元件、转换元件、测量电路和辅助电源四部分组成,其中敏感元件和转换元件可能合二为一,而有的传感器不需要辅助电源。 1.2 传感器技术的基本特性 在测试过程中,要求传感器能感受到被测量的变化并将其不失真地转换成容易测量的量。被测量有两种形式:一种是稳定的,称为静态信号;一种是随着时间变化的,称为动态信号。由于输入量的状态不同,传感器的输入特性也不同,因此,传感器的基本特性一般用静态特性和动态特性来描述。衡量传感器的静态特性指标有线性度、灵敏度、迟滞、重复性、分辨率和漂移等。影响传感器的动态特性主要是传感器的固有因素,如温度传感器的热惯性等,动态特性还与传感器输入量的变化形式有关。 2 传感器技术的发展历史与回顾 传感器技术是在20世纪的中期才刚刚问世的。在那时,与计算机技术和数字控制技术相比,传感技术的发展都落后于它们,不少先进的成果仍停留在实验研究阶段,并没有投入到实际生产与广泛应用中,转化率比较低。在国外,传感器技术主要是在各国不断发展与提高的工业化浪潮下诞生的,并在早期多用于国家级项目的科研研发以及各国军事技术、航空航天领域的试验研究。然而,随着各国机械工业、电子、计算机、自动化等相关信息化产业的迅猛发展,以日本和欧美等西方国家为代表的传感器研发及其相关技术产业的发展已在国际市场中逐步占有了重要的份额。 我国从20世纪60年代开始传感技术的研究与开发,经过从“六五”到“九五”的国家攻关,在传感器研究开发、设计、制造、可靠性改进等方面获得长足的进步,初步形成了传感器研究、开发、生产和应用的体系,并在数控机床攻关中取得了一批可喜的、为世界瞩目的发明专利与工况监控系统或仪器的成果。但从总体上讲,它还不能适应我国经济与科技的迅速发展,我国不少传感器、信号

传感器的发展

传感器的发展 摘要 传感技术作为当今世界迅猛发展起来的技术之一,已经成为一个国家科学技术水平发展的重要标志。传感器朝着灵敏、精巧、适应性强、智能化、网络化方向发展。 全球的传感器市场在不断变化的创新之中呈现出快速增长的趋势。有关专家指出,传感器领域的主要技术将在现有基础上予以延伸和提高,各国将竞相加速新一代传感器的开发和产业化,竞争也将日益激烈。新技术的发展将重新定义未来的传感器市场,比如无线传感器、光纤传感器、智能传感器和金属氧化传感器等新型传感器的出现与市场份额的扩大。 一、传感器的定义 现如今,信息处理技术取得的进展以及微处理器和计算机技术的高速发展,都需要在传感器的开发方面有相应的进展。微处理器现在已经在测量和控制系统中得到了广泛的应用。随着这些系统能力的增强,作为信息采集系统的前端单元,传感器的作用越来越重要。传感器已成为自动化系统和机器人技术中的关键部件,作为系统中的一个结构组成,其重要性变得越来越明显。最广义地来说,传感器是一种能把物理量或化学量转变成便于利用的电信号的器件。国际电工委员会(IEC:InternationalElectrotechnical Committee)的定义为:“传感器是测量系统中的一种前置部件,它将输入变量转换成可供测量的信号”。按照Gopel等的说法是:“传感器是包括承载体和电路连接的敏感元件”,而“传感器系统则是组合有某种信息处理(模拟或数字)能力的传感器”。传感器是传感器系统的一个组成部分,它是被测量信号输入的第一道关口。进入传感器的信号幅度是很小的,而且混杂有干扰信号和噪声。为了方便随后的处理过程,首先要将信号整形成具有最佳特性的波形,有时还需要将信号线性化,该工作是由放大器、滤波器以及其他一些模拟电路完成的。在某些情况下,这些电路的一部分是和传感器部件直接相邻的。成形后的信号随后转换成数字信号,并输入到微处理器。 传感器系统的性能主要取决于传感器,传感器把某种形式的能量转换成另一种形式的能量。有两类传感器:有源的和无源的。有源传感器能将一种能量形式直接转变成另一种,不需要外接的能源或激励源。.无源传感器不能直接转换能量形式,但它能控制从另一输入端输入的能量或激励能传感器承担将某个对象或过程的特定特性转换成数量的工作。其“对象”可以是固体、液体或气体,而它们的状态可以是静态的,也可以是动态(即过程)的。对象特性被转换量化后可以通过多种方式检测。对象的特性可以是物理性质的,也可以是化学性质的。按照其工作原理,传感器将对象特性或状态参数转换成可测定的电学量,然后将此电信号分离出来,送入传感器系统加以评测或标示。各种物理效应和工作机理被用于制作不同功能的传感器。传感器可以直接接触被测量对象,也可以不接触。用于传感器的工作机制和效应类型不断增加,其包含的处理过程日益完善。因此常将传感器的功能与人类5大感觉器官相比拟:光敏传感器——视觉;声敏传感器——听觉;气敏传感器——嗅觉;化学传感器——味觉;压敏、温敏、流体传感器——触觉。虽然与当代的传感器相比,人类的感觉能力好得多,但也有一些传感器比人的感觉功能优越,例如人类没有能力感知紫外或红外线辐射,感

传感器的发展前景

传感器的发展前景 近年来,传感器正处于传统型向新型传感器转型的发展阶段。传感器正向着微型化、高精度、高可靠性、低功耗、智能化、数字化发展。这不仅促进了传统产业的改造,而且可导致建立新型工业,是21世纪新的经济增长点。 向微型化发展:各种控制仪器设备的功能越来越大,要求各个部件体积能占位置越小越好,因而传感器本身体积也是越小越好,这就要求发展新的材料及加工技术,目前利用硅材料制作的传感器体积已经很小。如传统的加速度传感器是由重力块和弹簧等制成的,体积较大、稳定性差、寿命也短,而利用激光等各种微细加工技术制成的硅加速度传感器体积非常小、互换性可靠性都较好 向高精度发展:随着自动化生产程度的不断提高,对传感器的要求也在不断提高,必须研制出具有灵敏度高、精确度高、响应速度快、互换性好的新型传感器以确保生产自动化的可靠性。目前能生产万分之一以上的传感器的厂家为数很少,其产量也远远不能满足要求。 向高可靠性、宽温度范围发展:传感器的可靠性直接影响到电子设备的抗干扰等性能,研制高可靠性、宽温度范围的传感器将是永久性的方向。提高温度范围历来是大课题,大部分传感器其工作范围都在-20℃~70℃,在军用系统中要求工作温度在-40℃~85℃范围,而汽车锅炉等场合要求传感器的温度要求更高,因此发展新兴材料(如陶瓷)的传感器将很有前途。 向微功耗及无源化发展:传感器一般都是非电量向电量的转化,工作时离不开电源,在野外现场或远离电网的地方,往往是用电池供电或用太阳能等供电,开发微功耗的传感器及无源传感器是必然的发展方向,这样既可以节省能源又可以提高系统寿命。目前,低功耗损的芯片发展很快,如T12702运算放大器,静态功耗只有1.5μA,而工作电压只需2~5V。 向智能化数字化发展:随着现代化的发展,传感器的功能已突破传统的功能,其输出不再是一个单一的模拟信号(如0~10mV),而是经过微电脑处理好后的数字信号,有的甚至带有控制功能,这就是所说的数字传感器。智能传感器具有信息处理功能的传感器。智能传感器带有微处理机,具有采集、处理、交换信息的能力,是传感器集成化与微处理机相

2016年光纤传感器现状研究及发展趋势重点

2016-2021年中国光纤传感器市场深度调查分析及发展趋势研究报告 报告编号:1675509 行业市场研究属于企业战略研究范畴,作为当前应用最为广泛的咨询服务,其研究成果以报告形式呈现,通常包含以下内容:

一份专业的行业研究报告, 注重指导企业或投资者了解该行业整体发展态势及经济运行状况,旨在为企业或投资者提供方向性的思路和参考。 一份有价值的行业研究报告,可以完成对行业系统、完整的调研分析工作,使决策者在阅读完行业研究报告后,能够清楚地了解该行业市场现状和发展前景趋势,确保了决策方向的正确性和科学性。 中国产业调研网 https://www.wendangku.net/doc/d410398048.html, 基于多年来对客户需求的深入了解, 全面系统地研究了该行业市场现状及发展前景, 注重信息的时效性, 从而更好地把握市场变化和行业发展趋势。 一、基本信息 报告名称:2016-2021年中国光纤传感器市场深度调查分析及发展趋势研究报告 报告编号:1675509←咨询时,请说明此编号。 优惠价:¥ 7650 元可开具增值税专用发票

网上阅 读:https://www.wendangku.net/doc/d410398048.html,/R_JiXieDianZi/09/GuangXianChuanGanQiWeiLaiFaZhanQ uShi.html 温馨提示:如需英文、日文等其他语言版本,请与我们联系。 二、内容介绍 光纤传感器是以光学量转换为基础,以光信号为变换和传输的载体,利用光导纤维输送光信号的一种传感器。光纤传感器主要由光源、光导纤维、光检测器和附加装置等组成。光源种类很多, 常用光源有钨丝灯、激光器和发光二极管等。光纤很细、较柔软、可弯曲,是一种透明的能导光的纤维。 光纤之所以能进行光信息的传输,是因为利用了光学上的全反射原理,即入射角大于全反射的临界角的光都能在纤芯和包层的界面上发生全反射, 反射光仍以同样的角度向对面的界面入射,这样,光将在光纤的界面之间反复地发生全反射而进行传输。附加装置主要是一些机械部件,它随被测参数的种类和测量方法而变化。 《 2016-2021年中国光纤传感器市场深度调查分析及发展趋势研究报告》在多年光纤传感器行业研究的基础上,结合中国光纤传感器行业市场的发展现状,通过资深研究团队对光纤传感器市场资讯进行整理分析, 并依托国家权威数据资源和长期市场监测的数据库,对光纤传感器行业进行了全面、细致的调研分析。 中国产业调研网发布的《 2016-2021年中国光纤传感器市场深度调查分析及发展趋势研究报告》可以帮助投资者准确把握光纤传感器行业的市场现状,为投资者进行投资作出光纤传感器行业前景预判,挖掘光纤传感器行业投资价值,同时提出光纤传感器行业投资策略、营销策略等方面的建议。 正文目录 第一章光纤传感器产业概述 1.1 光纤传感器定义及产品技术参数

传感器的应用现状及发展趋势-论文2011-11-16

传感器技术的研究应用现状与发展前景 传感器技术作为信息技术的三大基础之一,是当前各发达国家竞相发展的高技术是进入21 世纪以来优先发展的十大顶尖技术之一。传感器在科学技术领域、工农业生产以及日常生活中发挥着越来越重要的作用。人类社会对传感器提出的越来越高的要求是传感器技术发展的强大动力,而现代科学技术突飞猛进则提供了坚强的后盾。传感器是信息系统的源头, 在某种程度上是决定系统特性和性能指标的关键部件。本文回顾了传感器技术的发展历史,综述了近几年高端前沿的光电传感器技术和生物传感器技术的主要研究应用状况,并通过简述当前的应用实例,展望了现代传感器技术的发展和应用前景。 1.引言 传感器是将物理、化学、生物等自然科学和机械、土木、化工等工程技术中的非电信号转换成电信号的换能器。当今社会的发展是信息化社会的发展,在信息时代人们的社会活动将主要依靠对信息资源的开发及获取、传输与处理,而传感器是获取自然领域中信息的主要途径与手段,是现代科学的中枢神经系统,它是指那些对被测对象的某一确定的信息具有感受(或响应)与检出功能,并使之按照一定规律转换成与之对应的可输出信号的元器件或装置的总称。传感器处于研究对象与测控系统的接口位置一切科学研究和生产过程所要获取的信息都要通过它转换为容易传输和处理的电信号。如果把计算机比喻为处理和识别信息的大脑,把通信系统比喻为传递信息的神经系统,那么传感器就是感知和获取信息的感觉器官。传感器技术是现代科技的前沿技术,发展迅猛,同计算机技术与通信技术一起被称为信息技术的三大支柱,许多国家已将传感器技术列为与通信技术和计算机技术同等重要的位置现代传感器技术具有巨大的应用潜力拥有广泛的开发空间,发展前景十分广阔。 2.传感器的发展历史及分类 2.1传感器技术的发展历史 传感器技术是20世纪的中期才刚刚问世的,在那时与计算机技术和数字控制技术相比,传感技术的发展都落后于它们,不少先进的成果仍停留在实验研究阶段并没有投入到实际生产与广泛应用转化率比较低。在国外,传感器技术主要是在各国不断发展与提高的工业化浪潮下诞生的,并在早期多用于国家级项目

传感器产业未来格局分析重点

传感器产业未来格局分析 传感器技术是现代科技的前沿技术,传感器产业也是国内外公认的具有发展前途的高技术产业,它以其技术含量高、经济效益好、渗透能力强、市场前景广等特点为世人瞩目。我国自动化方面的专家呼吁:目前复杂系统越来越复杂,自动化已经陷入低谷,其主要原因之一是传感技术的落后,一方面表现为传感器在感知信息方面的落后;另一方面也表现为传感器自身在智能化和网络化方面的技术落后。分析仪器产业迫切需要新型传感器。分析仪器是我国科技、经济和社会持续发展的基础,无论在工业过程控制、设施农业、生物医学、环境控制、食品安全乃至航空航天、国防工程等领域,均迫切需要各类新型传感器作为信息摄取源的小型化、专用化、简用化、家庭化(甚至个人化)的新一代分析仪器,实现更灵敏、更准确、更快速、更可靠地实时检测,以迅速改变我国分析仪器的落后状况。而技术推动是加速传感器技术发展的保证和机遇。几十年来,以微电子技术为基础,促进了传感器技术的发展。未来10~20年,传统硅技术将进入成熟期(预测为2014年~2017年)。届时,直径300mm硅晶片将大量用于生产,使得硅的低成本制造技术和硅的应用技术将得到空前的发展,这无疑将为研制生产微型传感器、智能传感器等新型传感器提供技术保障。从总体发展看,传统硅技术将一直延续到2047年(即晶体管发明100周年)才趋于饱和(即达到芯片特征尺寸的极限)和衰退。而当前微电子技术仍将依循“等缩比原理”和“摩尔定律”两条基础规律走下去,在尽力逼近传统硅技术极限中,不断扩展硅的跨学科横向应用(如MEMS等)和突破“非稳态物理器件”(量子、分子器件),而上述微电子技术发展中的两大方向正是当前乃至未来20年传感器技术的主要发展方向。同时,多学科、多种高新技术的交叉融合,推动了新一代传感器的诞生与发展。例如:当前我国正在重点开发的MEMS(微电子与微机械的结合)、MOMES(MEMS与微光学的结合)、智能传感器(MEMS与CPU、信息控制技术的结合)、生物化学传感器(MEMS与生物技术、电化学的结合)等以及今后将大力开发的网络化传感器(MEMS网络技术的结合)、纳米传感器(纳米技术与传感技术的结合)均是多学科、多种学科技术交叉融合的新一代传感 器。 (1)传感器产业化发展模式要加速形成从传感器研究开发到大生产一条龙的产业化发展模式,走自主创新和国际合作相结合的跨越式发展道路,使我国成为世界传感器的生产大国。 (2)传感器产品结构向全面、协调、持续发展。产品品种要向高技术、高附加值倾斜,尤其要填补“空白”品种。 (3)企业生产规模(年生产能力)向规模经济或适宜规模经济发展。量大面广的通用传感器的生产规模将以年亿只计,一些中档传感器的生产规模将以年产1000万只(含以上)计;而一些高档传感器和专用传感器的生产规模将以年产几十万只~几百万只 计。 (4)生产格局向专业化发展。专业化生产的内涵为: 1.生产传感器门类少而精; 2.专门生产某一应用领域需要的某一类传感器系列产品,以获得较高的市场占有率; 3.各传感器企业的专业化合作生产。 5.传感器大生产技术向自动化发展。传感器的门类、品种繁多,所用的敏感材料各异,决定了传感器制造技术的多样性和复杂性。综观当前传感器工艺线的概况,多数工艺已实现单机自动化,但距离生产过程全自动化尚存在诸多困难,有待今后广泛采用

MEMS传感器的现状及发展前景

M E M S传感器的现状及 发展前景 集团标准化小组:[VVOPPT-JOPP28-JPPTL98-LOPPNN]

毕 业 设 计 指 导 课 论 文 MEMS传感器的现状及发展前景 摘要:MEMS传感器是随着纳米技术的发展而兴起的新型传感器,具有很多新的特性,相对传统传感器其具有更大的优势。在追求微型化的当代,其具有良好的发展前景,必将受到各个国家越来越多的重视。文章首先介绍了MEMS传感器的分类和典型应用,然后着重对几个传感器进行了介绍,最后对MEMS传感器的发展趋势与发展前景进行了分析。 关键词:MEMS传感器;加度计;陀螺仪;纳米技术;微机构;微传感器StatusandDevelopmentProspectofMEMSSensors Abstract:MEMSsensorisanewtypeofsensorwiththedevelopmentofnanotechnology.Ithasma nynewfeatures,whichhasagreatadvantageovertraditionalsensors.Inthepursuitofminia turizationofthecontemporary,itsgoodprospectsfordevelopment,willbesubjecttomorea

ndmoreattentioninvariouscountries.Firstly,theclassificationandtypicalapplicatio nofMEMSsensorareintroduced.Then,severalsensorsareintroduced.Finally,thedevelopm enttrendanddevelopmentprospectofMEMSsensorareanalyzed. Keywords:MEMSsensor;accelerometer;gyroscope;nanotechnology;micro- mechanism;micro-sensor 目录 一、引言 MEMS传感器是采用微机械加工技术制造的新型传感器,是MEMS器件的一个重要分支。1962年,第一个硅微型压力传感器的问世开创了MEMS技术的先河,MEMS技术的进步和发展促 进了传感器性能的提升。作为MEMS最重要的组成部分,MEMS传感器发展最快,一直受到各发达国家的广泛重视。美、日、英、俄等世界大国将MEMS传感器技术作为战略性的研究领域之一,纷纷制定发展计划并投入巨资进行专项研究。 随着微电子技术、集成电路技术和加工工艺的发展,MEMS传感器凭借体积小、重量轻、功耗低、可靠性高、灵敏度高、易于集成以及耐恶劣工作环境等优势,极大地促进了传感器的微型化、智能化、多功能化和网络化发展。MEMS传感器正逐步占据传感器市场,并逐渐取代传统机械传感器的主导地位,已得到消费电子产品、汽车工业、航空航天、机械、化工及医药等各领域的青睐。

传感器未来发展趋势报告

传感器课程报告 ——————之传感器的未来发展发现及其四大重要领域的论述马竞怡 在当今社会,传感器与人类的生活息息相关,可以说,21世纪将是传感器的时代。总体说来,传感器的未来发展趋势可概括为五化:智能化、集成化、微型化、多样化、可移动化。随着材料科学、纳米技术、微电子等领域前沿技术的突破以及经济社会发展的需求,将有四大领域可能成为传感器技术未来发展的重点。 第一种领域是可穿戴式应用。以谷歌眼镜为代表的可穿戴设备是最受关注的硬件创新。谷歌眼镜内置多达10余种的传感器,包括陀螺仪传感器、加速度传感器、磁力传感器、线性加速传感器等,实现了一些传统终端无法实现的功能,如使用者仅需眨一眨眼睛就可完成拍照。它的主要结构包括,眼镜前方悬置的一台摄像头和一个位于镜框右侧的宽条状的电脑处理器装置,还有一条可横置于鼻梁上方的平行鼻托和鼻垫感应器,鼻托可调整,以适应不同脸型。在鼻托里植入了电容,它能够辨识眼镜是否被佩戴的。根据环境声音在屏幕上显示距离和方向,在两块目镜上分别显示地图和导航信息技术的产品。音响系统采用骨导传感器。眼镜的主要功能是通过一个微型投影仪实现,简单来讲,这是一个微型投影仪,我们的视网膜是幕布。 当前,可穿戴设备的应用领域正从外置的手表,眼镜,鞋子,戒指等向更广阔的领域扩展,如apple watch,小米手环,智能运动鞋,甚至智能戒指,电子肌肤等。日本东京大学已开发出一种可以贴在肌肤上的柔性可穿戴式传感器。设想用于保健、医疗、体育、社会福利等领域,还计划嵌入体内使用。 第二个领域是无人驾驶领域。以谷歌公司的无人驾驶车辆项目开发为例,通过车内安装的照相机、雷达传感器和激光测距仪,以每秒20次的间隔,生成汽车周边区域的实时路况信息,并利用人工智能软件进行分析,预测相关路况未来动向,同时结合谷歌地图来进行道路导航。另外无人飞行器,无人探测器,无人航天等也有上升空间。 第三个领域是医护和健康监测。 红外传感器是我们生活中常用的传感器,我们可用它来进行监测,预防森林火灾,可用来设备故障监测,甚至名画防伪。 现在一种全新的医疗监测技术正在到来,由传统的电荷耦合设备(CCD)图像传感器技术到基于标准CMOS 技术的新型图像传感器技术的过渡。基于CMOS的新型图像传感器技术以其高度灵活性、出色的静态和动态特性以及在各种系统环境下表现出的易集成性在医用电子产品行业中开创出了一个全新领域,为用户提供了更多选择。CMOS传感器相比于CCD而言,它的系统集成度更高,动力要求较低,图像抓取功能更为灵活界面智能化程度更高,动态范围更大,感光度更高,拥有更高的系统集成度。此外CCD需要数种工作电压、外部时钟发生器以及高级驱动力和分析电子元件,这对空间和电能消耗有很高的要求。因此,CCD图像传感器在性能特性以及使用的灵活性等方面已不能完全满足当今市场的系统需求,从CCD图像传感器到CMOS区域传感器的改朝换代已在所难免。 CMOS已经开始席卷了医疗领域,内窥镜将会chip to tip ,它将很小的传感器芯片移到内窥镜顶端以减小内窥镜尺寸,为传递电信号用细线代替光纤,为简化插入操作而提高柔软度。低成本CMOS传感器还有望实现一次性内窥镜。这是因为,存在购买新的内窥镜比消毒成本更低以及消毒不到位等情况。通过更好的设计,像素的灵敏度和信噪比将得到改善。对于内窥镜无法到达的小肠,胶囊内镜是对这一部位进行检查的唯一一种无创方法,对于胶囊内镜等以此种传感器为基础开发的生物的生物测量应用需求将会越来越大。 极大型传感器面积代表着另外一种发展趋势。这类传感器可用作操作过程复杂的传统X射线胶片的替代品。

未来传感器的发展趋势

未来传感器的发展趋势 课程论文 论文题目:未来传感器的发展趋势学院: 专业: 姓名: 学号: 指导老师: 二零一二年五月六日

目录 中文摘要 (3) 英文摘要 (3) 一、引言 (4) 二、传感器的历史 (5) 三、未来传感器的发展趋势 (7) (一)未来传感器的特点 (7) (二)未来传感器的几大方向 (8) (三)几个热门的研究方向 (8) 四、结束语 (9)

摘要:在人类进入信息时代的今天,人们的一切社会活动都是以信息获取与信息转换为中心的,传感器作为信息获取与信息转换的重要手段,是信息科学最前端的一个阵地,是实现信息化的基础技术之一。在工程科学与技术领域里,可以认为:传感器是人体“五官”的工程模拟物。 当前,我国传感器产业正处于由传统型向新型传感器发展的关键阶段,它体现了新型传感器向微型化、多功能化、数字化、智能化、系统化和网络化发展的总趋势。我国在传感器生产产业化过程中,应该兼顾引进国外和自主创新两方面。在引进国外先进技术中,可以提高自己的技术,同时也满足了国内市场的需求,形成了传感器生产产业规模。发现新效应,开发新材料、新功能;研研究生物感官、开发仿生传感器等为主要寻求传感器技术发展的新途径。 关键词:信息获取信息转换信息化关键趋势 Abstract:In the information age in human today, people of all social activities are based on information acquisition and information conversion as the center, sensor information acquisition and information conversion as the important means of information science is the same a position, is the foundation to realize the information technical one. In the engineering science and technology field, can think: sensor is human body \"facial features,\" engineering simulation objects. At present, our country sensors from the traditional industry is in the key of the development of new sensors stage, it reflects the new sensor to miniaturization, muti_function change, digital, intelligent, systematic and network the general trend of development. Our country in the sensor in the process of industrialization of production, should give consideration to the introduction of foreign and independent innovation two aspects. In introducing foreign advanced technology, can improve their technology, but also meet the demand of the domestic market, formed the sensor manufacturing industry scale. Find new effects, the development of new materials, new function; Research on biological research, develop bionic sensors senses as the main seek sensor technology development new way. Keywords: information acquisition information conversion informatization key trend

绝缘在线监测未来发展的几种新型方法

绝缘在线监测未来发展的几种新型方法 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

绝缘在线监测未来发展的几种新型方法 摘要:针对目前绝缘在线监测技术的现状,分析了现有设备的不足,设想了几种在线监测技术未来发展新型技术,并分析了其可行性,主要包括开发新的计算方法,采用新型材料,运用人工智能等方向。 关键词:在线监测;传感器件;人工智能 中图分类号: SeveralNew Ideas of the Future Development for Insulation Online Monitoring Zhang Chao,LU Enze (Wuhan University,Institute of Electrical Engineering,Wuhan 430072,China) Abstract:aim at the actuality of the current insulation online monitoring technique, analyze the shortage of the existing equipments,conceive several new ideas of the future development for online monitoring and analyse the feasibility,including the direction of developing the new calculation method, adopting the new material, making use of the artificial intelligence etc. key words:online monitoring;sensor apparatus;artificial intelligence 一.绝缘在线监测的意义 所谓绝缘在线监测是指在电气设备不停电、不脱离系统的运行状态下,利用技术手段对设备绝缘状况进行自动化的、连续的或定时的绝缘特性检测和监督,目的是了解和掌握被监测设备是否处于正常运行状态,以便确定该设备是否需要检修,如何检修。 高压电气设备运行中绝缘会发生老化,使电气强度降低。为了掌握运行中高压电气设备的绝缘状况,必须定期对电气设备进行绝缘试验和监督,根据试验结果分析、评估被试设备的绝缘状态确定是继续运行还是需要检修以及检修的时间。至今为止,绝缘监督管理主要是以预防性离线试验(即对高压电气设备在停电状态、脱离系统方式下孤立进行的试验)为依据。而预防试验并不能完全反映设备在运行综合状态下的绝缘特性。 定期停电进行预防性试验的不足之处,主要表现在以下几方面。 a.不能及时发现设备内部的绝缘隐患。 b.:定期停电试验,不能真实反映设备的绝缘状态。 c.每年在预防试验期间,要投入大量的人力、物力,并因停电试验造成较大的经济损失。

探讨未来传感器的发展方向

探讨未来传感器的发展方向 1、开发新式传感器 新式传感器,大致应包含:①选用新原理;②添补传感器空白;③仿生传感器等诸方面。它们之间是互相联络的。传感器的作业机理是根据各种效应和规律,由此启示大家进一步探究具有新效应的灵敏功用资料,并以此研发出具有新原理的新式物性型传感器材,这是开展高功用、多功用、低成本和小型化传感器的主要途径。构造型传感器开展得较早,现在日趋老练。构造型传感器,通常说它的构造杂乱,体积偏大,报价偏高。物性型传感器大致与之相反,具有不少诱人的长处,加之曩昔开展也不行。世界各国都在物性型传感器方面投入很多人力、物力加强研究,从而使它变成一个值得注意的开展意向。其中运用量子力学诸效应研发的低活络阈传感器,用来检查弱小的信号,是开展新意向之一。 2、集成化、多功用化、智能化 传感器集成化包含两种界说,一是同一功用的多元件并排化,行将同一类型的单个传感元件用集成技能在同一平面上摆放起来,排成1维的为线性传感器,CCD图象传感器就归于这种状况。集成化的另一个界说是多功用一体化,行将传感器与放大、运算以及温度抵偿等环节一体化,组装成一个器材。 跟着集成化技能的开展,各类混合集成和单片集成式压力传感器相继呈现,有的已经变成产品。集成化压力传感器有压阻式、电容式、等类型,其中压阻式集成化传感器开展快、使用广。 传感器的多功用化也是其开展方向之一。所谓多功用化的典型实例,美国某大学传感器研究开展基地研发的单片硅多维力传感器能够一起丈量3个线速度、3个离心加速度(角速度)和3个角加速度。主要元件是由4个准确规划安装在一个基板上的悬臂梁构成的单片硅构造,9个准确布置在各个悬臂梁上的压阻灵敏元件。多功用化不只能够降低出产成本,减小体积,并且能够有效的前进传感器的稳定性、可靠性等功用指标。 把多个功用不一样的传感元件集成在一起,除可一起进行多种参数的丈量外,还可对这些参数的丈量成果进行归纳处理和评估,可反映出被测体系的全体状况。由上还能够看出,

光纤传感技术

光纤传感器的应用与发展趋势 学生:王超 学号:1049721103105 专业:物理电子学 光在传输过程中,光纤易受到外界环境的影响,如温度、压力等,从而导致传输光的强度、相位、频率、偏振态等光波量发生变化,通过监测这些量的变化可以获得相应的物理量,这就是光纤传感技术。该技术是随着光纤及通信技术的发展而逐步发展起来的一门崭新技术。密集波分复用D W D M 技术、掺铒光纤放大器EDFA 技术和光时分复用OTDR 技术的不断发展成熟,使得光纤传感技术以其在抗电磁干扰、轻巧、灵敏度等方面独一无二的优势,获得了飞速的发展,各种光纤传感器系统层出不穷。 光纤传感器系统的原理 由于光纤不仅作为光波的传播介质,而且光波在光纤中传播时,光波的特征参量( 振幅、相位、偏振、波长等) 会因外界因素(温度、压力、应变、电场、位移等)间接或直接的发生变化,从而可将光纤用作传感元件探测物理量。根据光纤在传感器中的作用,光纤传感器可分为功能型、非功能型、拾光型三大类。 1、功能型光纤传感器中光纤不仅作为导光介质也是敏感元件,光在光纤内受到被测量物理量的调制。它的特点是结构紧凑、灵敏度高,但它须用特殊光纤和先进的检测技术,因此成本高。光纤陀螺即是典型的功能型光纤传感器。 2、非功能型光纤传感器中光纤仅起导光作用,光照到非光纤型敏感元件上受被测量物理量调制。因其无需特殊光纤及特殊技术,易实现、成本低,但灵敏度也相应较低,常用于灵敏度要求不太高的场合。目前的光纤传感器大多是该类型的。 3、拾光型光纤传感器中光纤作为探头,接收由被测对象辐射的光或被其反射、 散射的光。如光纤激光多普勒速度计、辐射式光纤温度传感器等。 光纤传感器的特点 由光纤传感器的原理我们可以很容易理解它有如下几个特点: (1 )光纤具有宽波长范围、低衰减的特性,光源、检测器和光学元件的选择余地大,可以适用于不同的应用场合。

压力传感器研究现状及发展趋势

压力传感器研究现状及发展趋势 传感器技术是现代测量和自动化系统的重要技术之一,从宇宙开发到海底探秘,从生产的过程控制到现代文明生活,几乎每一项技术都离不开传感器,因此,许多国家对传感器技术的发展十分重视,如日本把传感器技术列为六大核心技术(计算机、通信、激光、半导体、超导体和传感器) 之一。在各类传感器中压力传感器具有体积小、重量轻、灵敏度高、稳定可靠、成本低、便于集成化的优点,可广泛用于压力、高度、加速度、液体的流量、流速、液位、压强的测量与控制。除此以外,还广泛应用于水利、地质、气象、化工、医疗卫生等方面。由于该技术是平面工艺与立体加工相结合,又便于集成化,所以可用来制成血压计、风速计、水速计、压力表、电子称以及自动报警装置等。压力传感器已成为各类传感器中技术最成熟、性能最稳定、性价比最高的一类传感器。因此对于从事现代测量与自动控制专业的技术人员必须了解和熟识国内外压力传感器的研究现状和发展趋势。 1 压力传感器的发展历程 现代压力传感器以半导体传感器的发明为标志,而半导体传感器的发展可以分为四个阶段[1 ] : (1) 发明阶段(1945 - 1960 年) :这个阶段主要是以1947 年双极性晶体管的发明为标志。此后,半导体材料的这一特性得到较广泛应用。史密斯(C.S. Smith) 与1945 发现了硅与锗的压阻效应[2 ] ,即当有外力作用于半导体材料时,其电阻将明显发生变化。依据此原理制成的压力传感器是把应变电阻片粘在金属薄膜上,即将力信号转化为

电信号进行测量。此阶段最小尺寸大约为1cm。 (2) 技术发展阶段(1960 - 1970 年) :随着硅扩散技术的发展,技术人员在硅的(001) 或(110) 晶面选择合适的晶向直接把应变电阻扩散在晶面上,然后在背面加工成凹形,形成较薄的硅弹性膜片,称为硅杯[3 ] 。这种形式的硅杯传感器具有体积小、重量轻、灵敏度高、稳定性好、成本低、便于集成化的优点,实现了金属- 硅共晶体,为商业化发展提供了可能。 (3) 商业化集成加工阶段(1970 - 1980 年) :在硅杯扩散理论的基础上应用了硅的各向异性的腐蚀技术,扩散硅传感器其加工工艺以硅的各项异性腐蚀技术为主,发展成为可以自动控制硅膜厚度的硅各向异性加工技术[4 ] ,主要有V 形槽法、浓硼自动中止法、阳极氧化法自动中止法和微机控制自动中止法。由于可以在多个表面同时进行腐蚀,数千个硅压力膜可以同时生产,实现了集成化的工厂加工模式,成本进一步降低。 (4) 微机械加工阶段(1980 年- 今) :上世纪末出现的纳米技术,使得微机械加工工艺成为可能。 通过微机械加工工艺可以由计算机控制加工出结构型的压力传感器,其线度可以控制在微米级范围内。利用这一技术可以加工、蚀刻微米级的沟、条、膜,使得压力传感器进入了微米阶段。 2 压力传感器国内外研究现状 从世界范围看压力传感器的发展动向主要有以下几个方向。 2. 1 光纤压力传感器[5 ]

传感器发展趋势

传感器应用的发展现状与研究趋势 1 引言 随着工业数字化、智能化发展,传感器在机械加工,温度监测,可穿戴设备、智能家居、智慧交通中得到了广泛的应用。传感器技术水平在一定程度上反映了一个国家科技现代化的水平,传感器在实现自动化控制及测试控制中发挥着重要的作用。传感器技术在近些年来发展迅速,与计算机技术和通信技术一起被称为信息技术的三大支柱,近年来,我国传感器市场发展比较迅猛,但是我国传感器技术并不成熟,在国际竞争中并不占优势,传感器市场被德国、美国、日本等工业国家所主导。根据传感器技术的发展趋势,它将由简单的传感器系统向智能化、集成化、微型化、网络化、多样化的复杂传感器系统方向发展。近年来我国传感器产业快速增长,应用模式也日渐成熟。传感器的重要性可说是不言而喻的,它在机械加工,可穿戴设备、智能家居、智能交通等各个领域都有着极为重要的应用。传感器在智能可穿戴设备、智能家居和智能交通的最新应用,以及目前传感器的市场前景、现代科技中,自动化与智能化己经成为新的发展方向,传感器作为自动测量与控制中的关键环节,在社会的生产生活中应用十分广泛,且具有巨大的发展空间[1-3]。 1 传感器的研究现状 1.1 光电传感器技术 光电式传感器是以光为测量媒介、以光电器件为转换元件的传感器,它具有非接触、响应快、性能可靠等卓越特性。随着光电科技的飞速发展,光电传感器己成为光电传感器己成为各种光电检测系统中实现光电转换的关键元件,并在传感器应用中占据着重要的地位,其中在非接触式测量领域更是扮演者无法替代的角色。光电传感器工作时,光电器件负责将光能(红外辐射、可见光及紫外辐射)信号转换为电学信号。光电器件不仅结构简单,且具有响应快、可靠性强等优势,在自动控制、智能化控制等方面应用前景十分广阔。此外,光电传感器除了对光学信号进行测量,还能够对引起光源变化的构件或其它被测量进行信息捕捉,再通过电路对转换的电学信号进行放大和输出[4]。 1.2生物传感器技术 生物传感器的原理主要由两大部分组成:生物功能物质的分子识别部分和转换部分前者的作用是识别被测物质,当生物传感器的敏感膜与被测物接触时,敏感膜上的某种生化活性物质就会从众多化合物中挑选适合于自己的分子并与之产生作用,使其具有选择识别的能九转换部分,是由于细胞膜受体与外界发生了共价结合,通过细胞膜的通透性改变,诱发了一系列的电化学过程,而这种变换得以把生物功能物质的分子识别转换为电信号,形成了生物传感器[5]。 1.3气敏传感器技术 气体传感器是指将被测气体浓度转换为与其成一定关系的电量输出的装置或器件。被测气体的种类

国内外传感器技术现状与未来发展趋势

《传感器原理与应用》结课论文国外传感器现状及发展趋势 学院:计算机与信息工程学院 专业:通信工程 班级:13级通信工程 学号: : 指导教师:袁博 学年学期:2016-2017学年第一学期

摘要:传感器技术是现代技术的应用具有巨大的发展潜力,通过传感器技术的应用现状,在未来发展中存在的问题和面临的挑战,传感器技术现状与发展趋势。 关键字:传感器,现状,发展趋势。 正文: 一、传感器的定义和组成 根据国家标准(GB7665—87),传感器(transduer/sensor)的定义是:能感受规定的被测量并按照一定的规律转换成可用输出信号的器件或装置。 这一定义包含了以下几方面的含意:①传感器是测量装置,能完成检测任务:②它的输出旦是某一被测量,可能是物理量.也可能是化学量、生物量等;②它的输出量是某种物理量,这种量要便于传输、转换、处理、显示等,这种量可以是气、光、电物理量,但主要是电物理量;④输出输入有对应关系,且应有一定的精确程度。 关于传感器,我国曾出现过多种名称,如发送器、传送器、变送器等,它们的涵相同或相似。所以近来己逐渐趋向统一,大都使用传感器这一名称了。 但是,在我国还经常有把‘传感器”和“敏感元件”等同使用的情况。当从仪器仪表学科的角度强调是一种感受信号的装置时,称其为。传感器”:而从电子学的角度强调它是一种能感受信号的电子元件时,称其为“敏感元件”。两种

不同的提法在大多数情况下并不矛盾。例如热敏电阻,既可以称其为“温度传感器”,也可以称之为“热敏元件”。但在有些情况下则只能概括地用“传感器”一词来称谓。例如,利用压敏元件作为敏感元件,并具有质量块、弹按和阻尼等结构的加速度传感器,很难用“敏感元件%类的词称谓,而只“传感器”则更为贴切。 传感器一般由敏感元件、转换元件和转换电路三部分组成。 (1)敏感元件:它是直接感受被测量,并输出与被测量成确定关系的某一种量的元件。 是一种气体压力传感器的示意图。膜盒2的下半部与壳体l固接,上半部通过连扦与磁芯 4相连,磁芯4置于两个电感线圈3中,后者接人转换电路5。这里的膜盒就是敏感元件,其外部与大气压力尸。相通,部与被测量压力尸相通。当尸变化时.引起膜盒上半部移动,即输出相应的位移量。 (2)转换元件:敏感元件的输出就是它的输入,它把输入转换成电路参量。在图2—2中,转换元件是可变电感线圈3,它把输入的位移量转换成电感的变化。 (3)转换电路:上述电路参数接入转换电路.便可转换成电量输出。 实际上,有些传感器很简单.有些则较复杂,大多数是开环系统,也有些是带反馈的闭环系统。 最简单的传感器由一个敏感元件(兼转换元件)组成,它感受被测量时直接输出电量,如热电偶;有些传感器由敏感元件组成,没有转换电路,如压电式加

相关文档
相关文档 最新文档