文档库 最新最全的文档下载
当前位置:文档库 › 分立元件功放制作

分立元件功放制作

分立元件功放制作
分立元件功放制作

电力电子技术课程设计

题目:分立元件功放制作

学生姓名:

指导教师:

院系: 工程技术学院

专业:电子信息

班级:

学号:

二○一六年六月十五日

摘要

很多场合(如商场、学校、车站、体育场等)都安装有广播系统,它的主要功能是拨那个放音乐、广播通知和要闻,这些广播都含有扩音设备,用以从话筒、等送出微弱信号放大或能推动扬声器发声的大动率信号,本课题提出的扩声电路性能指标比较低,主要采用理论课题里介绍的运算放大继承电路和音频功率放大继承电路来构成扩声电路,这种指标的的扩音器主要在于价格便宜,制作简单,不需要太多昂贵的集成块。

Many occasions (such as stores, schools, railway stations, stadiums, etc.) are installed in the broadcasting system, its main function is to put aside the music, radio announcements and news, these broadcasts contain amplification equipment for the microphone, and so sends weak or signal amplification can push speaker sound big move rate signal, this paper proposes PA circuit performance is relatively low, the main problem in the use of computing theory describes the amplification circuit inheritance and succession circuit audio power amplifier circuit constituted PA, this loudspeaker indicators lies mainly cheap, making simple, does not require much expensive manifold

关键词:扩音、音频功放、放大电路

Keywords: PA, audio amplifier, amplifying circuit

目录

一、前言 (1)

二、方案设计 (2)

2.1方案比较与论证 (2)

2.2方案选择 (3)

三、单元电路设计 (3)

3.1前置放大器的设计 (3)

3.2音调控制器的设计 (4)

3.3功率输出级的设计 (5)

3.3.1 确定电源电压 (6)

3.3.2 功率输出级设计 (6)

3.3.3 电阻R17~R12的估算 (7)

3.3.4 确定静态偏置电路 (7)

3.3.5 反馈电阻R13与R14的确定 (7)

四、电路调试 (8)

4.1前置级调试 (8)

4.2音量控制器调试 (8)

4.3功率放大器的调试 (8)

4.4整机调试 (9)

总结 (10)

参考文献 (11)

附录1 总电路原理图及PCB板底图 (12)

附录2 元件清明细表 (14)

一、前言

随着电子技术的飞速发展,话筒扩声电路应用越来越广泛,它的种类也越来越繁多。功放集成电路是一种大规模的集成电路。使用功放集成电路,通过简单的外接电路即可获得语音或是各种模拟的声响。经过功力晶体再把放大的信号.透过扬声器放出声音。其工作原理是把电气讯号转换为声音讯号的转换器。扬声器为电子产品之声音输出端的重要零组件,其应用范围广泛,可装置於各型耳机或头机内,如随身听、音响、无线电通讯、多媒体电脑、录音工程或电子字典,用来收听声音与音乐,也可装置於电话自动拨话器,用来打电话。功放集成电路价格便宜,电路结构简单,工作稳定可靠,耗电省,所以在简单的电子产品中广泛应用。

功放俗称“扩音机”,它的作用就是把来自音源或前级放大器的弱信号放大,推动音响放声。一套良好的音响系统功放的作用功不可没。

功放是音响系统中最基本的设备,它的任务是把来自信号源(专业音响系统中则是来自调音台)的微弱电信号进行放大以驱动扬声器发出声音。

功率放大器简称功放,可以说是各类音响器材中最大的一个家族了,其作用主要是将音源器材输入的较微弱信号进行放大后,产生足够大的电流去推动扬声器进行声音的重放。由于考虑功率、阻抗、失真、动态以及不同的使用范围和控制调节功能,不同的功放在内部的信号处理、线路设计和生产工艺上也各不相同。

二、 方案设计

2.1 方案比较与论证

1.方案一:电子管功放电路

采用SRPP 电路和阴极输出器的级联,两者之间直接耦合成的电子管前级电路。

其功放集成电路内部结构方框图大致如图2-1所示:

图2-1 电子管功放电路原理框图

电子管的工作电压比晶体管高得多,前者为数百伏,后者仅需几伏。显然两者

不能直接替换。第二,电子管依靠阴极受热后发射电子,屏极(阳极)加有高正电

压,可以收集这些电子。如果屏极相对阴极加负电压则屏极排斥电子,没有电流产

生,这就是电子管二极管的整流原理。所以,电子管要工作需要加热,这一般通过

给靠近阴极的灯丝通电来实现,否则电子管不能工作。这也是电子管发热大的原因。

第三,三极管工作原理是在阴极和屏极间用细金属丝网加了一个栅极,屏极加正高

压时,栅极上加一个很小的负电压就能够减小屏极电流,达到控制屏极电流的目的。

所以于NPN 型晶体管放大电路需要在基极加正向偏置不同,电子管正常工作时栅

极和阴极之间的电压是负电压(负栅压)。在这个电子管前置电路中阴极电流会产

生几伏的压降。由于栅极通过电阻接地,栅极就自然产生了相对于阴极的负栅压。

电子管前

级电路

信号u i

声音信号u o

SRPP 电路

阴极输出

这种偏置方法还有自动稳定的作用。例如某外界原因导致阴极电流(就是屏极电流,栅极电流为零)变大,则栅压自动变负,阴极电流又自动变小。但是高档的电子管放大器不是这样偏置的,因为这样偏置不精确。它的特点是特高频相应好,当晶体管确定时,分布电容就定了,那么要提高上限频率,只能增大负载电阻。选用普通电阻自然不能增大太多,否则电路工作点就不对了。

2.方案二:扩声电路

采用运算集成电路和音频功率放大集成电路设计一个对话筒输出信号具有放大能力的扩声电路。

其电路方框图如图2-2所示:

图2-2扩声电路原理框图

前置放大主要完成对小信号的放大,一般要求输入阻抗高,输出阻抗低,频带要宽,噪声要小;音量控制主要实现对输入信号高、低音的提升和衰减。

2.2 方案选择

扩声电路和方案一比起来,它不需要加热,不需要加那么高的电压,它具有安全的特性。方案二制作简单音乐集成电路价格便宜,电路结构简单,满足工作稳定可靠,耗电省的要求。由此,确定该产品采用方案二实现。

三、单元模块设计

3.1 前置放大器的设计

由于话筒提供发信号非常弱,故一般在音调控制器前面要加一个前置放大器。

该前置放大器的下限频率要小于音频控制器的低音转折频率,上限频率要大于

音频控制器的高音转折频率。考虑到所设计电路对频率响应及零输入(及输入短路)时的噪声、电流、电压的要求,前置放大器选用集成运算放大器LF353。它是一种双路运算放大器,属于高输入阻抗低噪声集成器件。其输入阻抗高为104MΩ,输入偏置电流仅有50х10-12A,单位增益频率为4MHZ,转换速率为13V/us,用做音频前置放大器十分理想,其外引线图如图3-1所示

图3-1LF353外引线图

前置放大电路由LF353组成的两极放大电路完成,如图3-2所示。第一级放大电路的A u1=10,即1+R3/R2=10,取R2=10KΩ,R3=100KΩ。取A u2=10(考虑增益余量),同样R5=10KΩ,R6=100Ω。电阻R1、R2为放大电路偏置电阻,取R1=R4=100KΩ。耦合电容C1与C2取10uF,C4与C11取100uF,以保证扩声电路的低频响应。

3.2 音调控制器的设计

音调控制器的功能是,根据需要按一定的规律控制、调节音响放大器的频率响应,更好地满足人耳的听觉特性。一般音调控制器只对低音和高音信号的增益进行提升或衰减,而中音信号的增益不变,音调控制器的电路结构有多种形式,常用的典型电路结构如图3-3所示。

该电路的音调控制曲线(即频率响应)如图3-4所示。音调控制曲线中给出了相应的转折频率:F l1表示低音转折频率,F l2表示中音下限频率,F0表示中音频率(即中心频率),要求电路对此频率信号没有衰减和提升作用,F h1表示中音上限

频率,F h2表示高音转折频率。

图3-3音调控制器电路

音调控制器的设计主要是根据转折频率的不同来选择电位器、电阻及电容参数。

3.3 功率输出级的设计

功率输出级电路结构有许多种,选择由分立元器件组成的功率放大器或单片

集成功率放大器均可。为了巩固在电子线路课程中所学的理论知识,这里选用集成运算放大器组成的典型OCT功率放大器,其电路如图3-11所示,其中由运算放大器组成输入电压放大驱动级,由晶体管VT1,VT2,VT3,VT4组成的复合管为功率输出级。三级管VT1与VT2都为NPN管,仍组成NPN型的复合管。VT3与VT4为不同类型的晶体管,所组成的复合管导电极性由第1只脚决定,为PNP型复合管。

图3-11 功率放大电路

3.3.1 确定电源电压

功率放大器的设计要求是最大输出功率W PO 8max =。由公式L O m R U PO /2/12max ?=可得:RL

Uom Uom P Om ??=21可得L R Po uom max 2=。考虑到输出功率管VT 2与VT 4的饱和压降和发射极R 11与R 22的压降,电源电压常取V CC =(1.2~1.5)U Om 。将已知参数带入上式,电源电压选取±12V 。

3.3.2 功率输出级设计

1、输出晶体管的选择。输出功率管VT 2与VT 4选择同类型的NPN 型大功率管。其承受的最大反向电压为U CEmax =2V CC 。每只晶体管的最大集电极电流为I Cmax V CC /RL=1.5A ,每只晶体管的最大集电极功耗为:P Cmax =0.2P Omax =1.6W 。所以 ,在选择功率三极管时,除应使两管β的值尽量对称外,其极限参数还应满足系列关系:V BRCEO >2V CC ,ICM >I Cmax ,P CM >P Cmax ,P CM >P Cmax 。根据上式关系,选择功率三极管为3DD01。

2、复合管的选择。VT 1与VT 3分别与VT 2与VT 4组成复合管,它们承受的最大

电压均为2V CC ,考虑到R 18与R 20的分流作用和晶体管的损失,晶体管VT 1与VT 3的集电极功耗:P Cmax =(1.1-1.5)P C2max /β2而实际选择VT 1,VT 3参数要大于最大值。另外为了复合出互补类型的三极管,一定要使VT 1,VT 3互补,其要求尽VT 3称性好。可选用VT 1为9013,VT 3选用9015。

3.3.3 电阻R 17~R 12的估算

R 18与R 20用来减小复合管的穿透电流,其值过小会影响复合管的稳定性,太大又会影响输出功率,一般取R 18=R 20=(5-10)R i2。R i2为VT 2管的输入端等效电阻,其大小可用公式R i2=rbe+(1+β2)R 21来计算,大功率管的rbe 约为10Ω,β为20倍。

输出功率管的发射极电阻R 21与R 22起到电流的负反馈作用,使电路的工作更加稳定,从而减少非线性失真。一般取R 21=R 22=(0.05~0.1)R L 。

由于VT 1与VT 3管的类型不同,接法也不一样,因此两只管子的输入阻抗不一样,这样加到VT 1与VT 3管基极输入端的信号将不对称。为此,增加R 17与R 19作为平衡电阻,使两只管子的输入阻抗相等。一般选择R 17=R 19=R 18∥R i2。

根据以上条件,选择电路元器件值为:

R 21=R 22=1Ω,R 18=R 20=270Ω,R 17=R 19=30Ω。

3.3.4 确定静态偏置电路

为了克服交越失真,由R 15,R 16,R P3和二节管VD 1,VD 2共同组成两对复合管的偏置电路,使输出级工作于甲乙类状态。R 15与R 16的阻值要根据输出级输出信号的幅度和前级运算放大器的最大允许输出电流来考虑。静态时功率放大器的输出端对地的电位为0(VT 1与VT 3应处于微导通状态),即U 0=0V 。运算放大器的输出电位U O3≈0V 。若取电流I O =1mA ,RR P3=0(R P3用于调整复合管的微导通状态,其调节范围不能太大,可采用1k Ω左右的精密电位器,其初始值应调在零阻值,当调整输出级静态工作电流或者输出波形的交越失真时再逐渐增大阻值)。则

15

153157.012R R V Vcc R R U Vcc Io D RP D -=-=+-≈ 所以R 15=11.3KΩ,取R 15=11KΩ。为了保证对称,电阻R 16=11KΩ。取RR P 3=1KΩ。电路中的VD 1与VD 2选为1N4148。

3.3.5 反馈电阻R 13与R 14的确定

在这里放大器选用LF353,功率放大器的电压增益可表示为:

20114

43=++=R R R Au RP 取R 14=1K Ω,则R 13+R RP4=19K Ω。为了使功率放大器增益可调,取R 13=15K Ω,R RP4=4.7K Ω。电阻R 12是运算放大器的偏置电阻,电容C 8是输入耦合电容,其大小决定了扩声电路的下限频率。取R 12=100K Ω,C 8=100uF 。并联在扬声器的R 23与C 10消振网络,可以改善扬声器的高频响应。这里取R 23=27Ω,C 10=0.1uF 。一般取C 9=4.7uF 。

四、 电路调试

在调试安装前,首先将所选用的电子元器件测一遍,以确保完好。在进行元器件安装时,布局要合理,连线应尽可能短而直,所用的测量仪器要准备好。

4.1 前置级调试

当无输入交流信号时,用万用表分别测试LF353的输出电位,正常时应在0V 附近。若输出短直流电位为电源电压值,则可能运算放大器已坏或工作在开环状态。

输出端加入ui=5mV ,f =1000Hz 的交流信号,用示波器观察有无输出波形。如有自激振荡,应首先消除(例如通过在电源对地端并接滤波电容等措施)。当工作正常后,用交流毫伏表测量放大器的输出,并求其电压放大倍数。

输入信号幅值保持不变,改变其频率,测量幅频特性,并画出幅频特性曲线。

4.2 音量控制器调试

静态测试同上。

动态调试:用低频信号发生器在音调控制器输入400mV 的正弦信号,保持幅值不变。将低音控制电位器调到最大提升,同时将高音调到最大衰减,分别测量幅频特性曲线;然后将两个电位器调到相反的状态,重新测试其幅频特性曲线。若不符合要求,应检查电路的连接、元器件的值、输入输出耦合电容是否真确、完好。

4.3 功率放大器的调试

静态调试:首先将输入电容C8输入端对地短路,然后接通电源,用万用表测试U0,调节电位器RP3,使输出电位近似为零。

动态调试:在输入端接入400mV,1000Hz的正弦信号,用示波器观察输出波形的失真情况,调整电位器RP3使输出波形交越失真最小。调节电位器RP4使输出电压的峰值不小于11V,以满足输出功率的要求。

4.4 整机调试

将三级电路连接起来,在输入端连接一个话筒时,调节音量控制电位器RP4,能改变音量的大小。调节高、低音控制电位器,应能明显听出高、低音调的变化。敲击电路板应无声音间断和自激现象。

设计总结

随着我国教育体制结构的调整,高等职业教育的发展受到用人单位和社会的广泛关注。高等职业教育肩负着培养生产、服务、管理第一线的德、智、体、美、劳全面发展的高等技术应用型专门人才的重任。我们专科毕业生应该具备较强的理论水平,又要有足够的实践能力,而电子信息很强的学科体系,其毕业设计不仅包括电路设计、电路的组装和调试等实践内容,还要清晰的反映学生理论知识的实际应用能力,使理论和实践得到统一。在对我们的大学生涯做一个全面总结的同时,也为我们以后培养职业能力、创新精神、实践能力和创业能力打下坚实的基础。

随着电子技术的飞速发展,扩声电路应用越来越广泛,它的种类也越来越繁多。功放集成电路是一种大规模的集成电路。使用功放集成电路,通过简单的外接电路即可获得语音或是各种模拟的声响。功放集成电路价格便宜,电路结构简单,工作稳定可靠,耗电省,所以在简单的电子产品中广泛应用。

此次毕业设计是我们走向未来的重要一步。从最初的选题,开题到计算直到完成设计。其间,查找资料,老师指导,与同学交流,反复修改电路,每一个过程都是对自己能力的一次检验和充实。通过这次实践,我了解了话筒扩声放大电路的用途及工作原理,熟悉了的扩声电路的设计步骤,锻炼了设计实践能力,培养了自己独立设计能力。此次设计是对我专业知识和基础知识的一次实际检验和巩固,同时也是走向工作岗位前的一次热身。

当然,在这次毕业设计中我真心的感谢曹老师给予我们的帮助与支持,还有同学给我的建议与帮助使我顺利的完成了本次毕业设计。这使我的专业知识得到了强化,能够将所学到的知识很好的运用到实际之中来,设计收获很多,比如学会了查找相关资料,分析数据,但是这设计也暴露出自己专业基础的很多不足之处。比如缺乏综合应用专业知识的能力,对材料的不了解。这次实践是对自己大学所学的一次大检阅,使我明白自己知识还很浅薄,虽然还有不久就毕业了,但是自己的求学之路还很长,以后更应该在工作中学习,努力使自己成为一个对社会有所贡献的人,为中国电子工业添上自己的微薄之力。

参考文献

[1] 王川.实用电源技术.重庆:重庆大学出版社,2000

[2] 胡宴如.模拟电子技术.北京:高等教育出版社(第二版),2006

[3] 陈晓文.电子线路课程设计.北京:电子工业出版社,2007

[4] 钱金法.电子设计自动化技术.北京:机械工业出版社,2005

[5] 朱余钊.电子材料与元件.成都:电子科技大学出版社,2006

[6] 王文辉.电路与电子学(第3版).北京:电子工业出版社,2005

[7] 杨志忠.数字电子技术(第2版).北京:高等教育出版社,2003

[8] 朱余钊.电子材料与元件..成都:电子科技大学出版社,2006

附录1 总电路原理图

实验成品图

附录2 元件清明细表

元器件及位号对照表

位号名称型号及规格数量R1,R3 电阻1/6=—5% 220L 2 R2,R8,R9 220Ω 3 R4,R7 1K 2 R5 22Ω 1 R6 10K 1 R10 150Ω 1 R11 电阻1/4W+—5% 2.2Ω 1 D1 二极管1N 4148 1 C1,C7,C9 瓷片电容104P 3 C5 101P 1 C2,C3,C4 电解电容100UF/10V 3 C6,C8 220UF/10V 2 Q1,Q5 三极管9012 2 Q2,Q3 9015 2 Q6 9013 1 Q4 9014 1 W1 电位器20K 带开关 1 W2 可调电阻500K 1 LED1 二极管3红发红 1

插针1针 4

电路板 1

分立元件OTL功放资料剖析

典型OTL音频功率放大器组装与维修 场景描述 OTL电路的主要特点有是采用单电源供电方式, 输出端直流电位为电源电压的一半;输出端与负载之间采用大容量电容耦合,扬声器一端接地,具有恒压输出特性。 本任务流程如图3-1-1所示。 图3-1-1任务流程图 一、实训工具及器材准备 完成本次实训任务所需工具及器材见表3-1-1。 表3-1-1拆装与检修动圈式扬声器实训工具及器材准备

二、简易OTL音频功率放大器组装 (一)电路原理的熟悉 图3-1-2简易OTL功放电路原理图 1、电路特点 本功放电路结构简单,元件易购,成本低廉,原理典型,非常适合初学者组装学习。电路包括: A.电压放大器:将输入的微小音乐信号加以放大,通常采用共射级放大,图中以VT1、VT2为核心组成的放大电路完成电压放大功能。 B.功率放大:功率放大级电路是用来提高电路的工作效率,通常共射级放大的输出电流很小,所以通过功放部分来推动喇叭。图中以VT3、VT4为核心组成的电路完成功率放大功能。 C.偏压装置:偏压装置为功率三极管提供正向偏压,使功率放大级电路工作于AB类放大状态,防止产生交越失真。图中VD5和R8为功放提供偏压,其中VD5具有负温特性,用以补偿功放管因温度升高引起电流增大。改变R8的阻值可以改变功放管的静态电流。 D.负反馈电路:利用负反馈的特性,控制整个放大电路的增益,提高电路稳定性。其中R4为放大器提供交直流负反馈,R5、C4对反馈的交流信号起分流作用,改变R4与R5的比值可以改变放大器的增益。 2、电路原理和各元件的作用

音量控制:由RP电位器调节,根据串联电路的分压原理知,当旋转电位器时获取的输入电压将发生改变,从而改变了音量的大小。 第一级共射极放大器:由R1、R2、R3、R4、R5、C3、C4、VT1组成。R1、R2为VT1提供偏置电压,改变二者的比值可以改变功放输出点的电压(正常要求为电源电压的一半)。C3为输入隔直耦合电容。R3是VT1的负载电阻,VT1和VT2是直流耦合,通过C3输入的信号经VT1放大后,直接送到VT2进行放大。直流耦合就等于直接耦合,所以,信号传输没有损耗,电路工作效率很高。 C4、R4、R5组成负反馈电路,对于直流而言,C4表现出无穷大的阻抗,这可以使直流工作点非常稳定。对交流来说,C4相当于短路,R4和R5的比值决定了放大倍数。R5为零欧姆时,增益最大,灵敏度极高。我们一般可以根据实际情况在10-100欧姆中取值。 第二级共射极放大:以VT2为核心构成的放大电路。VT2是推动级放大管。输入信号经过VT1、VT2两级放大后,具备了驱动VT3、VT4(输出级)的能力。本功放电路只有三级,主要由第一二级(VT1、VT2)决定最大放大倍数,第三级(VT3、VT4)决定最大电流的驱动能力,想要电路放大倍数大,VT1、VT2要选放大倍数大的三极管,想要带负载能力强,VT3、VT4应该用大功率大电流的三极管,当然,放大倍数也不能太小。 C6是中和电容,起高频负反馈作用,该电容主要是为了减小高频的增益,当高频过强时,听起来会感觉声音尖、剌耳,当高频增益太强时,甚至出现高频寄生振荡,严重影响功放电路效率和音质。该电容一般取值在47-4700PF之间,要求不严时也可以取消。 VT3、VT4这对末级互补输出对管在工作时会发出较大的热量。改变R8可以改变VT3、VT4的工作电流,随着温度的升高,VT3、VT4的电流还会自动变大,电流变大就会更加发热,更加发热就会电流更加变大,这是一个恶性循环,所以,要求严格时,R8应该使用负温度系数的热敏电阻,并且紧挨着VT3、VT4感受温度来补偿VT3、VT4的电流变化。 R8和VD5、R6和R7、VT3的CE极三部分共同组成VT3、VT4的偏置电路,保证VT3、VT4在无信号时输出中点电压。R8和VD5千万不能开路,否则VT3、VT4会有很大的基极电流,导致VT3、VT4的集电极电流剧增,立即发热烧坏。但是,R8和VD5的分压也不能太低,否则,在小信号时会听出明显的截止失真(和交越失真相同)。这种失真只在小信号时才有明显的反应。在高档功放电路中,VD5和R8会用其它元件代替,同时还会引入温度补偿。 R6、R7主要是给VT3、VT4提供基极偏置电流。当信号正半周时,VT3基极电压会上升,R6、R7两端的电压会变小,将不能给VT3提供足够大的基极电流。由于C5自举电容的出现,信号正半周时会将C5的正极电压也“举”高,这就可以通过

用分立元件设计制作互补对称式功率放大器

用分立元件设计制作互补对称式功率放大器 2008-08-18 13:49:31 作者:未知来源:中国电子网 关键字:功率放大器运放达林顿管恒流源工作电流稳压管差动放大器电压放大集电极元件 一、功率放大器基本电路特点 互补对称式OTL功率放大器基本电路如图①所示。其中:C1为信号输入偶合元件,须注意极性应于实际电路中的电位状况保持一致。R1和R2组成BG1的偏置电路,给BG1提供静态工作点,同时也在整个电路中起到直流负反馈作用。要求通过R1的电流大于BG1的基极电流至少5倍,按照β为100、Ic1为2mA计算,R1应不大于6k,故给定为5.1k;C1因此也相应给定为22μ,它对20Hz信号的阻抗为362Ω;R2需根据电源采用的具体电压确定,约为R1(E/2-0.6)/0.6,按照32V电压值应取为约120K,确切值通过实际调试使BG1集电极电压为15.4V来得到。 C2与R3构成自举电路,要求R3C2>1/10、(R3+R4)Ic1=E/2-1.2,因R4 是BG1的交流负载电阻,应尽可能取大一点,R3一般取在1k之内。按照32V电源电压值和Ic1为2mA进行计算,R3与R4之和为7.2k,实际将R3给为820Ω、R4给为6.8k,Ic1则为1.94mA;C2因此可取给为220μ。 R5和D是BG2、BG3互补管的偏置电路元件,给BG2、BG3共同提供一个适当静态工作点,在能够消除交越失真情况下尽量取小值,根据实验结果一般取在3mA~4mA;改变R5阻值可使BG2与BG3的基极间电压降改变而实现对其静态工作的调整,与R5串联的D是为了补偿BG2、BG3发射结门坎电压随温度发生的变化,最好采用两只二极管串联起来补偿互补管发射结门坎电压随温度发生的变化,使互补管静态工作点稳定。简化电路中省略使用一只二极管。并联在BG2、BG3基极间的C4,可使动态工作时的ΔUAB减小,一般取为47μ;C3是防止BG1产生高频自激的交流负反馈电容,一般取为47P~200P。 BG1起电压放大作用,在该电路中被称为激励级,要求Buceo>E、Iceo≤Ic1/400=5μA、β=100~200,所以应选用小功率低噪声三极管。BG2和BG3是互补电流放大极,分别与BG4、BG5构成复合管对输出电流进行放大,要求Buceo>E、Iceo≤Ic2/100=30μA、β=100~200。在BG4、BG5使用普通大功率三级管而不是内部已经做成复合式大功率三级管的情况下,BG2与BG3需要提供给后级大功率三级管超过100mA的峰值驱动电流,因此应使用中功率三级管。BG4和BG5是负责放大输出电流的大功率管,静态工作电流可取在10mA~30mA,要求Buceo>E、Iceo≤Ic4/100=0.1mA、β=50~100。BG4和BG5的最大极限电流Imax应该比输出电流最大幅值大1倍,方能保证输出电流最大幅值时β>10。 R6和R7分别是BG4和BG5静态工作点调整分流电阻,动态工作时的分流作用可以忽略不计。在Ube4和Ube5都等于0.6V标准参数时,由互补电流放大级的静态工作电流

数字功放原理

数字功放原理 数字功放也称D类功放,与模拟功放的主要差别在于功放管的工作状态。传统模拟放大器有甲类、乙类和甲乙类、丙类等。一般的小信号放大都是甲类功放,即A类,放大器件需要偏置,放大输出的幅度不能超出偏置范围,所以,能量转换效率很低,理论效率最高才25% 。乙类放大,也称B类放大不需要偏置,靠信号本身来导通放大管,理想效率高达78.5%。但因为这样的放大,小信号时失真严重,实际电路都要略加一点偏置,形成甲乙类功放,这么一来效率也就随之下降,虽然高频发射电路中还有一种丙类,即C类放大,效率可以更高,但电路复杂、音质差,音频放大中一般都不用,这几种模拟放大电路的共同的特点是晶体管都有工作在线性放大区域中,它按照输入音频信号大小控制输出的大小,就像串在电源与输出间的一只可变电阻,控制输出,但同时自身也在消耗电能。 数字功放的功放管工作在开关状态,理论状态晶体管导通时内阻为零,两端没有电压,当然没有功率消耗;而截止时,内阻无穷大,电流又为零,也不消耗。所以作为控制元件的晶体管本身不消耗功率,电源的利用率就特别高。 图1是数字D类功放的工作原理框图。D类功放处理的是经脉宽调制(PWM)的音频数字信号,声音信息埋藏在脉冲的占空比或脉冲密度中。 图示是音频信号的一种PWM调制方法,最为直观;较多采用的是以脉冲密度来表示信号大小的,脉冲密度大的地方,表示电压高;稀的地方,电压就低。双向信号可用其它方式调制,如占空比50%,即脉冲

宽度与间隔宽度1:1,表示信号幅值为零;占空比大于50% ,幅度为正,这时数值越大,正幅度越高;占空比小于50%,幅度为负,越小越负。因为这种信号并不需要与外接设备直接相连,也就不需要格式完全统一,各厂可按自行研发的最佳方案调制。 音频PWM编码可以从两种途径获得,一是对模拟音频信号进行模数变换直接生成PWM数字音频。二是对其它编码的数字音频,如CD的PCM编码,通过数字信号处理技术变换成PWM码。获得后用此信号去控制大电流的开关型功率MOSFET由功率管输出一个大能量的PWM码。输出电压的大小由电源电压高低决定,输出的电流由负载扬声器的阻抗和电路形式决定。功率管工作在开关状态,只要开关特性好,线性要求几乎没有,制造成本比音响对管低,工业控制上这类MOSFET已用得很普遍,取材方便。由于开关管导通时的饱和压降和截止时的漏电流也会损失一些电能,但总效率仍有百分之九十几,为各类放大电路效率之冠。 开关晶体输出的是脉宽调制波形,要成为可听的模拟音频信号,还需经过一路带宽为20KHz的低通滤波器,滤去脉冲波形中的高频成分,见图3,一般说来功放的输出电压对选取电容的耐压不成问题,只是电感最大允许电流要设计正确。

!用分立元件设计放大器电路教程

用分立元件设计放大器教程 一、功率放大器基本电路特点 互补对称式OTL功率放大器基本电路如图①所示。 其中: C1为信号输入偶合元件,须注意极性应于实际电路中的电位状况保持一致。R1和R2组成BG1的偏置电路,给BG1提供静态工作点,同时也在整个电路中起到直流负反馈作用。要求通过R1的电流大于BG1的基极电流至少5倍,按照β为100、Ic1为2mA计算,R1应不大于6k,故给定为5.1k;C1因此也相应给定为22μ,它对20Hz信号的阻抗为362Ω;R2需根据电源采用的具体电压确定,约为R1(E/2-0.6)/0.6,按照32V电压值应取为约120K,确切值通过实际调试使BG1集电极电压为15.4V来得到。 C2与R3构成自举电路,要求R3×C2>1/10、(R3+R4)×Ic1=E/2-1.2,因R4是BG1的交流负载电阻,应尽可能取大一点,R3一般取在1k之内。按照32V电源电压值和Ic1为2mA 进行计算,R3与R4之和为7.2k,实际将R3给为820Ω、R4给为6.8k,Ic1则为1.94mA;C2因此可取给为220μ。 R5和D是BG2、BG3互补管的偏置电路元件,给BG2、BG3共同提供一个适当静态工作点,在能够消除交越失真情况下尽量取小值,根据实验结果一般取在3mA~4mA;改变R5阻值可使BG2与BG3的基极间电压降改变而实现对其静态工作的调整,与R5串联的D是为了补偿BG2、BG3发射结门坎电压随温度发生的变化,最好采用两只二极管串联起来补偿互补管发射结门坎电压随温度发生的变化,使互补管静态工作点稳定。简化电路中省略使用一只二极管。并联在BG2、BG3基极间的C4,可使动态工作时的ΔUAB减小,一般取为47μ;C3是防止BG1产生高频自激的交流负反馈电容,一般取为47P~200P。

分立元件功放电路OTL

OTL功放电路,耦合元件 一、功率放大器电路基本特点: 互补对称式OTL功率放大器基β本电路如图所示: C1为信号输入耦合元件,需注意极性应和实际电路中的电位状态保持一致。 R1和R2组成BG1的偏置电路,为BG1提供静态工作点,同时也在整个电路中起到直流负反馈作用。要求通过R1的电流大于BG1的基极电流至少5倍,按照β为100,Ic1为2mA计算,R1就不大于6k,故给定为5.1k,C1也相应给定为22uf,它对20Hz信号的阻抗为362Ω;R2根据电源采用的具体电压确定,约为R1(E/1-0.6)/0.6,按照32V电压值,即5.1×(32÷0.6-0.6) ÷0.6≈130,就取120K,确切的值通过实际调试使BG1集电结电压为15.4V来得到。 C2与R3构成自举电路,要: R3×C2>1/10,(R3+R4)×IC1=E/2-1.2 因R4是B G1的交流负载电阻,应尽可能取大一点,R3一般取在1k之内。 按照32V的电压值和IC1为2mA计算,R3和R4之和为7.2k,实际将R3给为820Ω,R4给为6.8k,IC1则为1.94mA;C2因此可取为220u。 R5和D是BG2和BG3互补管的偏置电路元件,给BG2、BG3共同提供一个适当静态工作点,在能够消除交越失真情况下尽量取小值,根据实验结果一般取3mA-4mA;改变R5的阻值可使BG2、BG3的基极间的电压降改变,而实现其对静态工作的调整。与R5串联的D是为了补偿BG2、BG3发射结门坎电压随温度发生的变化,最好采用两只二极管串联起来补偿互补管门坎电压随温度发生的变化,使互补管静态工作点稳定。 并联在BG2和BG3基极间的C4,可使动态工作时的△UAB减小,一般取47u。 C3是防止BG1产生高频自激的交流负反馈电容,一般取为47P —200P。 BG1起放大作用,在该电路中被称为激励级,要求:Buceo>E, Iceo≤IC1/400=5uA、β=100~200,所以应选用小功率低噪声管。

BTL功放电路

BTL功放电路的原理与应用实例 2012年11月3日星期六 集成功率放大器由于不仅具有体积小、重量轻、成本低、外围元件少、安装调试简单、使用方便的优点;而且在性能上也优于分立元件,例如温度稳定性好,功耗小、失真小,特别是集成功率放大器内部还设置有过热、过电流、过电压等自动保护功能的电路对电路自行进行保护。由于集成功率放大器具有分立元件不具有的很多优点,近年来集成功率放大器件发展很快,使用相当广泛。产品有单通道和双通道、单功放、双功放及多功放等器件。集成功放在实际应用中通常接成OCL电路,或OTL电路,接成BTL(Balanced Transformer Less,一说是Bridge Transformerless)电路却很少,而BTL电路的优点是电源利用率比前面两种电路高4倍。本文从BTL电路的结构、原理出发,分析BTL电路输入、输出信号特点,最后介绍如何用集成功率放大器件构成BTL电路。 1.1BTL电路的组成及工作原理 大家知道OCL和OTL两种功放电路的效率很高,但是他们的缺点就是电源的利用率都不高,其主要原因是在输入正弦信号时,在每半个信号周期中,电路只有一个晶体管和一个电源在工作。为了提高电源的利用率,也就是在较低电源电压的作用下,使负载获得较大的输出功率,一般采用平衡式无输出变压器电路,又称为BTL电路。电路如图1所示。 在输入信号 U i正半周时,V1,V4导通,V2,V3截止,负载电流由V CC经V1,R L,V4流到虚地端。如图1中的实线所示。 在输入信号Ui负半周时,V1,V4载止,V2,V3导通,负载电流由V CC经V2,R L,V3流到虚地端。如图1中虚线所示。可见: (1)该电路仍然为乙类推挽放大电路,利用对称互补的2个电路完成对输入信号的放大;其输出电压的幅值为:U OM≈V CC 最大输出功率为: (2)同OTL电路相比,同样是单电源供电,在V CC,R L相同条件下,BTL电路输出功率为OTL电路输出功率的4倍,即BTL电路电源利用率高;

分立功放

实用低频功率放大器 一、任务 设计并制作具有弱信号放大能力的低频功率放大器。其原理示意图如下: 二、要求 1、基本要求 (1)在放大通道的正弦信号输入电压幅度为(5~700)mV ,等效负载电阻R L 为8Ω 下,放大通道应满足: ①额定输出功率P OR ≥10W ; ②带宽BW ≥(50~10000)Hz ; ③在P OR 下颌BW 内的非线性失真系数≤3%; ④在P OR 下的效率≥55%; ⑤在前置放大级输入端交流短接到地时,R L =8Ω上的交流声功率≤10mW ; (2)实际测量时输入为音频信号,要求设置有音量、高音、低音大小调节电路; (3)功放部分不能使用集成功率放大器。 2、发挥部分 放大通道性能指标的提高和实用功能的扩展,如设置有保护电路、提高效率、减小非线性失真等。 一、方案设计及验证 1、设计要求前置放大器输入交流短接到地时,R L =8Ω的电阻负载上的交流噪声功率低于10mW ,因此要选用低噪声运放。本系统选用优质低噪声运放NE5532N 。设计要求输入电压幅度为5—700mV 时,输出都能以P 0≥10W 满功率不失真输出,信号需放大几千倍;又考虑到运放的放大倍数与通频带的关系,固应采用两级放大。赠以调节可用电位器手动调节,也可以自动增益控制,但考虑到题目中的“实用”两字(例如输入信号不是正弦信号,而是大动态音乐信号),故采用手动增益调节。前置放大器采用低噪声双运放,分别以同相放大的方式,作为左右通道的信号放大。 2、功率放大器常用电路有两种,一种用输入输出变压器的推挽电路,另一种是无输入输出变压器的推挽电路。如OCL 、OTL 、BTL 等。相比之下,前者的频响和失真方面都表现较

奇声AV-757DB功放电路原理与分析

奇声AV-757DB功放电路原理与分析 奇声A V-757DB功放电路原理与分析整机电路由系统控制、信号源选择、杜比定向逻辑解码、卡拉OK、前置、功放与保护等电路组成,如图2-63所示。 (1).系统控制电路 系统控制电路由IC501(767DB)和有关外围元件组成,如图2-64所示。 767DB是微处理器集成电路,内部结构及引脚功能(见表2-6)均与89C55基本相同。 767DB根据键矩阵电路送入的键控指令脉冲,去控制杜比环绕声解码等电路的工作,同时驱动LED显示电路显示整机的工作状态。 767DB⑦脚为复位端,外接复位电容C501。在每次开机时,+5V电压均会经C501在⑨脚产生一个高电平脉冲电压,使微处理器内部电路清零复位,进入初始化状态。 767DB⑦脚为工作模式控制端,外接控制开关K702-2,可分别选择DSP声场处理、PRO杜比定向逻辑解码、3CH三声道和2CH二声道共四种工作模式。 IC502(4094)在微处理器767DB的作用下,通过C1~C3、D1和D2的输出信号去控制杜比定向逻辑解码电路。

(2).信号源选择电路 信号源选择电路由电子开关集成电路IC001(4052)、转换开关K001和有关外围元件组成,如图2-65所示。 K001为四挡转换开关,可控制IC001⑨脚和⑩脚的电平,从而控制其内部的电子开关,分别选择ID,VCD、TAPE和TUNER四路音频信号。

(3).杜比定向逻辑解码电路 杜比定向逻辑电路由IC704(M69032P)和IC2701(YSS228)、IC702(4053)等组成,见图2-66和图2-67。 信号源选择电路选出的左、右声道音频信号分别从IC2704的(15)脚和(22)脚输人,经环绕声解码处理后的左、右声道信号分别从(32)脚和(33)脚输出,经信号直通/解码处理转换继电器J801送往前置放大电路的E端和F端。中置声道信号从(38)脚输出,经C761送往前置放大电路的C端。 解码后的环绕声道信号从IC704(39)脚输出,经IC702转换后送入IC701进行延时处理。延时处理后的环绕声信号经IC704(47)脚内部的7kHz低通滤波器滤波后从其(42)脚馈入,再经杜比B降噪电路降噪后,从(29)脚输出,经C762送往前置放大电路的D端。 IC704的(36)脚外接中置声道模式控制电路,(23)脚~(25)脚接受来自微处理器IC501的测试控制信号和IC502的调配组合转换控制信号。IC501还通过DA TA、CLK和REQ信号对IC701进行控制。 IC704(34)脚输出L+R信号,经C765、11743加至前置放大器的B端。

功放设计方案

音频功率放大器设计方案 31102140 宇洋通信1103 31102391 宇超自动化1102 一、设计任务和设计要求: (1)功能:音频功率放大器用于驱动扬声器发声,将话筒接收到的电信号放 大后从扬声器传出。音频放大器有两种,一种是专用于音频放大的运算放大器,它在音频围有比较好的性能(主要是频响特性和失真特性,好的音频放大器这两个特性都非常好),一般用于音响的前置放大级;另一种是音频功放,也就是功率放大电路,用于音响的驱动级,可以驱动功率比较大的喇叭或者音响,使之发出声音;运算放大器是集成放大电路的统称,其概念围比音频放大器(特指用于前置放大的音频放大器)大,且有更大的应用围,其频率适用围远远大于音频放大器,往低到直流,高的可以达到几百M甚至G赫兹级。简单的说,音频放大器就是一种特殊的运放。 (2)主要设计指标: 1、负载阻抗:R L=8Ω 2、额定功率:P0=20W 3、带宽:BW≥20Hz~20KHz。 4、音调控制: 低音:100Hz±12dB 高音:10kHz±12dB 1KHz处增益为0dB 5、失真度:γ≤3% 6、输入灵敏度:Vi<775mV, Vi’<5mV 二、详细设计方案: 根据设计课题的要求,该音频功率放大器可由图1所示框图实现。下面主要介绍各部 分电路的特点及要求。 图1 音频功率放大器组成框图 1、前置放大器 音频功率放大器的作用是将声音源输入的信号进行放大,然后输出驱动扬声器。声音源 的种类有多种,如传声器(话筒)、电唱机、录音机(放音磁头)、CD唱机及线

路传输等,这些声音源的输出信号的电压差别很大,从零点几毫伏到几百毫伏。一般功率放大器的输入灵敏度是一定的,这些不同的声音源信号如果直接输入到功率放大器中的话,对于输入过低的信号,功率放大器输出功率不足,不能充分发挥功放的作用;假如输入信号的幅值过大,功率放大器的输出信号将严重过载失真,这样将失去了音频放大的意义。所以一个实用的音频功率放大系统必须设置前置放大器,以便使放大器适应不同的的输入信号,或放大,或衰减,或进行阻抗变换,使其与功率放大器的输入灵敏度相匹配。另外在各种声音源中,除了信号的幅度差别外,它们的频率特性有的也不同,如电唱机输出信号和磁带放音的输出信号频率特性曲线呈上翘形,即低音被衰减,高音被提升。对于这样的输入信号,在进行功率放大器之前,需要进行频率补偿,使其频率特性曲线恢复到接近平坦的状态,即加入频率均衡网络放大器。 对于话筒和线路输入信号,一般只需将输入信号进行放大和衰减,不需要进行频率均衡。前置放大器的主要功能一是使话筒的输出阻抗与前置放大器的输入阻抗相匹配;二是使前置放大器的输出电压幅度与功率放大器的输入灵敏度相匹配。由于话筒输出信号非常微弱,一般只有100μV~几毫伏,所以前置放大器输入级的噪声对整个放大器的信噪比影响很大。前置放大器的输入级首先采用低噪声电路,对于由晶体管组成的分立元件组成的前置放大器,首先要选择低噪声的晶体管,另外还要设置合适的静态工作点。由于场效应管的噪声系数一般比晶体管小,而且它几乎与静态工作点无关,在要求高输入阻抗的前置放大器的情况下,采用低噪声场效应管组成放大器是合理的选择。如果采用集成运算放大器构成前置放大器,一定要选择低噪声、低漂移的集成运算放大器。对于前置放大器的另外一要要有足够宽的频带,以保证音频信号进行不失真的放大。 图2 前置级放大器电路图 由于信号远输入的信号幅度较小。不足以推动以后的功放电路。因此要用电压放大电路对信号输入的音频信号电压进行放大,对于信号源,其负载约为47K Ω,所以选用电压串联负反馈方式的同相比例放大器,它可以使输入电阻增大,输出电阻减小,且输入输出电压同相。又因为前置放大级的增益为44dB,即158倍,取160倍,前置放大级电路采用二级,第一级与第二级采用电容耦合方式,总的电压放大倍数为Auf=160,设计中选用Auf1=1,Auf2=160。 其中第一级实际上是一个电压跟随器,它提高了带负载的能力。 电路中二极管D1作用是:当线路输入是0.775V时,D1导通,此时LF353(2)也为一个电压跟随器,信号不经过放大直接到音调控制级的输入端。当输入为

数字功放

数字功放 数字功放概述 ?·数字功放简介 ?·数字功放原理 ?·数字功放制作方法 ?·数字功放中音质和载波频率... 数字功放的应用 ?·DDX的数字功放解决方案 ?·基于德仪音频的高保真数字功放 数字功放简介 数字功放采用早已存在的D类放大器电路,D类放大器的电路采用场效应管H-桥式链接。电路场效应输出的脉冲波经过恢复得到原来的正弦波,驱动扬声器产生声音。 数字功放原理 数字功放的功放管工作在开关状态,理论状态晶体管导通时内阻为零,两端没有电压,当然没有功率消耗; 而截止时,内阻无穷大,电流又为零,也不消耗.所以作为控制元件的晶体管本身不消耗功率,电源的利用率就特别高. 图1是数字D类功放的工作原理框图.D类功放处理的是经脉宽调制(PWM)的音频数字信号,声音信息埋藏在脉冲的占空比或脉冲密度中. 图示是音频信号的一种PWM调制方法,最为直观;较多采用的是以脉冲密度来表示信号大小的,脉冲密度大的地方,表示电压高;稀的地方,电压就低.双向信号可用其它方式调制,如占空比50%,即脉冲宽度与间隔宽度1:1,表示信号幅值为零;占空比大于50% ,幅度为正,这时数值越大,正幅度越高;占空比小于50%,幅度为负,越小越负.因为这种信号并不需要与外接设备直接相连,也就不需要格式完全统一,各厂可按自行研发的最佳方案调制.

音频PWM编码可以从两种途径获得,一是对模拟音频信号进行模数变换直接生成PWM数字音频.二是对其它编码的数字音频,如CD的PCM编码,通过数字信号处理技术变换成PWM码.获得后用此信号去控制大电流的开关型功率MOSFET由功率管输出一个大能量的PWM码.输出电压的大小由电源电压高低决定,输出的电流由负载扬声器的阻抗和电路形式决定.功率管工作在开关状态,只要开关特性好,线性要求几乎没有,制造成本比音响对管低,工业控制上这类MOSFET已用得很普遍,取材方便.由于开关管导通时的饱和压降和截止时的漏电流也会损失一些电能,但总效率仍有百分之九十几,为各类放大电路效率之冠. 开关晶体输出的是脉宽调制波形,要成为可听的模拟音频信号,还需经过一路带宽为20KHz的低通滤波器,滤去脉冲波形中的高频成分,见图3,一般说来功放的输出电压对选取电容的耐压不成问题,只是电感最大允许电流要设计正确. 数字功放由于效率高,管子的耗损小,功放的散热结构可以做得非常小巧简单,整个电路可以做得很小.所以,首先在笔记本电脑、有源音箱和声卡上采用.带有数字功放的声卡可直接接通普通音箱,这样使用就方便得多.随着技术的发展,数字功放也进入音响领域,TACT公司2000年推出的一款数字功放TACT Audio"黄金时代",令发烧音响界改变发结数字功放的成见,国内成都天奥公司更早就推出了用于家庭影院的数字多声道功放,深圳的三诺公司也在研发数字功放的有源音箱.国外多家芯片公司已推出带各种功能的数字功放IC器件,为整机生产厂更新产品提供了便利条件.一场功放革命正在悄然兴起. 从图1可以看出数字功放的另一优点是可以直接放大数字音频信号.CD和DVD碟片上输出的音频信号是数字化的,现在播放机解码后要经过数模变换,变成模拟音频后再送出.而采用数字功放后,就可把解码后的PCM数字音频信号直接进入数字信号处理电路处理成PWM码进行放大.省去了播放机中的数模变换和数字功放中的模数变换二个较贵重部分,不但音质受损少,成本也可降低. 利用数字功放技术生产整机时,音量调节方案会成为机种档次的分界线.简单方案就像传统模拟功放那样由电位器衰减模拟信号的输入幅度,实现音量衰减.这种方式数字信号的量化比特率得不到充分利用,小音量时信噪比下降,动态范围变小.而且也不能用于数字音频直接输入系统.

如何设计出理想的D类数字功放

数字功放仍需模拟功夫 —如何设计出理想的D类放大器? 在多通道和数字音源时代,采用D类放大器以简化前级线路、提高功放效率从而降低对电源及散热的要求,这已是大势所趋。但D类功放虽然也被称作数字化功放,但在电路设计上绝不像纯粹的数字电路那么简单,也不是直接采用一两块芯片就可以大功告成的。以数字手段实现模拟功能,仍然需要考虑许多模拟方面的因素,但考虑的因素和角度与传统的线性功放又有很大差异。本文除了介绍D类放大器的基本原理和好处之外,还着重讲解了输出级设计、功放管选择、电源、电磁兼容,以及电路板布局方面需要注意的一些问题,这些实用知识有助于设计师减少走弯路的麻烦。 D类放大的好处 凭借诸如极佳的功率效率、较小的热量以及较轻的供电电源等优点,D类放大器正在音频世界掀起风暴,这一点儿也不令人惊奇。的确,随着技术的成熟以及其所达到越来越好的声音重现效果,看起来继续使用D类放大器向市场渗透是一个颇有把握的赌注,以往在这个市场上只有传统的线性(A类、B类或AB类)功率放大器能够提供令人满意的性能。 环绕声格式的不断进步加速了这种趋势。由于越来越多的家庭和车内娱乐系统、DVD播放器以及AV接收机需要驱动六个或更多的扬声器,线性放大器及其电源的尺寸增大了,并且产生了更多的热量。例如,Dolby Digital(杜比数字)格式要求六个独立的输出级,而更新推出的Dolby Digital EX要求更多的8声道。鉴于此,D类放大技术的优势显得比以往更加突出。 输出级数模转换机制 所有D类系统的共同特点及其超群的功率效率的奥秘就在于输出级(通常是MOSFET)的电源器件总是要么全通要么全关。这与线性放大器形成对比,线性放大器输出晶体管的导通状态随时间变化。晶体管消耗的功率是其压降与流过电流之积(P=IV),通常占到线性放大器消耗的总功率的50%或更多。在D类系统中不是这样。由于所有输出晶体管要么压降为零(处于“通”状态)要么流过的电流为零(处于“关”状态),理论上根本不会损失能量。回到现实世界中,安装在数以百万计的微处理器之上的冷却风扇表明即使是纯数字系统也会以发热的形式浪费能量,D类放大器达到的功率效率在85至90%之间。 不过,如何使一个天生只能产生方波的开关器件再现音乐中多种多样的波形呢?某些类型的高频“数字”信号可以通过低通滤波产生平滑的“模拟”输出。最广泛使用的就是脉宽调制(PWM:pulse width modulation)技术,其中矩形波的占空比与音频信号的振幅成正比。通过与一个高频锯齿波比较,可以很容易地将模拟输入转换为PWM(参见图1)。

制作功放必备知识

初级音响爱好者制作功放必备知识 一、常见Hi-Fi集成功放 而今市面上常见的Hi-Fi集成功放,主要是以下三家公司的产品: 1.美国国家半导体公司(NSC),代表产品有LM1875、LM1876、LM3876、LM3886、LM4766等。 2.荷兰飞利浦公司(PHILIPS),代表产品是TDA15××系列,比较著名的是TDA1514及TDA1521。 3.意法微电子公司(SGS),比较著名的是TDA20××系列及DMOS管的TDA7294、TDA7295、TDA7296。 NSC公司与SGS公司的产品音色中性偏暖,飞利浦公司的产品则较为明亮。 二、功放输出功率的选取 爱好者可按通常使用功率的两倍来确定,不要盲目追求大功率。功率过大,不仅成本上升(变压器、散热器、滤波电容,甚至机壳都得加大),而且散热设计、抗干扰、布局等也变得困难。费的功夫多,却造成不必要的浪费。 集成功放的自带散热片有绝缘与非绝缘两类。绝缘类,比如LM系列后缀为TF的品种,采用整体塑封工艺,只需将集成块与散热器直接固定即可。金属散热片外露的大部分集成功放属非绝缘类,其散热片一般与负电源相通,使用中切勿将其与功放其他部分接触(尤其是机壳与地线),否则集成块会马上损坏。非绝缘类功放块由于热阻较低,输出功率要稍大。 三、功放电路形式的选择 厂家推荐的电路以电压反馈型居多,且给出的指标也是在此基础上测试出来的,既然推荐,该电路应该能比较好地发挥集成块的性能,实际上也是如此。电流反馈与直流伺服是对集成功放应用的有益尝试,但结果不应作过分夸大。用LM1875分别制作两种反馈形式的功放,主观听感并无多少差别。直流化是必要的,对于低失调电压的品种(如LM1875),可以直接取消反向输入端对地电容实现直流化。直流伺服电路使线路复杂化,没有必要采用。 直流电压不宜取得过高,否则不仅集成块发热严重,而且音质劣化,还可能引发过压保护电路的误动作。应优先使用厂家推荐电压,若没有,可用极限电压×85%得到直流电压,再以直流电压除以1.25得交流电压。 功放无需使用稳压电源,但电源的功率容量一定要足够。变压器的功率可取总输出功率的两倍,并作好屏蔽。整流管要选低内阻的,且在每个管子两端

各类功放原理图及原理介绍

D类功放的原理 在音响领域里人们一直坚守着A类功放的阵地。认为A类功放声音最为清新透明,具有很高的保真度。但是,A类功放的低效率和高损耗却是它无法克服的先天顽疾。B类功放虽然效率提高很多,但实际效率仅为50%左右,在小型便携式音响设备如汽车功放、笔记本电脑音频系统和专业超大功率功放场合,仍感效率偏低不能令人满意。所以,效率极高的D类功放,因其符合绿色革命 的潮流正受着各方面的重视。 由于集成电路技术的发展,原来用分立元件制作的很复杂的调制电路,现在无论在技术上还是在价格上均已不成问题。而且近年来数字音响技术的发展,人们发现D类功放与数字音响有很多相 通之处,进一步显示出D类功放的发展优势。 D类功放是放大元件处于开关工作状态的一种放大模式。无信号输入时放大器处于截止状态,不耗电。工作时,靠输入信号让晶体管进入饱和状态,晶体管相当于一个接通的开关,把电源与负载直接接通。理想晶体管因为没有饱和压降而不耗电,实际上晶体管总会有很小的饱和压降而消耗部分电能。这种耗电只与管子的特性有关,而与信号输出的大小无关,所以特别有利于超大功率的场合。在理想情况下,D类功放的效率为100% ,B类功放的效率为78.5% ,A类功放的效率才50%或25% (按负载方式而定)。 D类功放实际上只具有开关功能,早期仅用于继电器和电机等执行元件的开关控制电路中。然而,开关功能(也就是产生数字信号的功能)随着数字音频技术研究的不断深入,用与Hi-Fi音频放大的道路却日益畅通。20世纪60年代,设计人员开始研究D类功放用于音频的放大技术,70年代Bose公司就开始生产D类汽车功放。一方面汽车用蓄电池供电需要更高的效率,另一方面空间小无法放入有大散热板结构的功放,两者都希望有D类这样高效的放大器来放大音频信号。其中关 键的一步就是对音频信号的调制。 图1是D类功放的基本结构,可分为三个部分: 图1 D类功放基本结构

基于tpa3123的D类功放的设计

毕业设计(论文) 题目:基于TPA3123的D类功率放大器设计(英文):An amplifier design based on TPA3123class D amplifier 院别: 专业:电气工程及其自动化 姓名: 学号: 指导教师: 日期:2012年5月

基于TPA3123的D类功率放大器设计 摘要 随着功率放大器科技的飞速发展,人们对它的要求越来越高。传统的功率放大器由于效率低,很难满足人们的需要,而D类音频功率放大器较传统的功率放大器而言具有效率高,功率大的特点,因此被人们所采用。 本论文从理论上对D类音频功率放大器做了具体的分析并从设计方面仔细地阐述了它。论文首先由各类放大器的特点看出传统的功率放大器效率低,失真严重,功率也不太理想,从而引出了高效率、大功率、低失真的D类音频功率放大器;接着由D类音频功率放大器的用途、原理、结构讲到它的缺点以及发展的前景;D类音频功率放大器的功率器件受一高频脉宽调制信号(PEM)的控制,使其工作在开关状态,理论上其效率可以达到100%,但其不足之出在于会产生高频干扰及噪声,但是若精心设计低通滤波器及合理的选择元器件参数,其音质噪声完全能够满足人们的需求。最后以一个D 类音频功率放大器的设计,让我们明白了D类音频功率放大器的具体应用。 关键字:D类功率放大器;脉宽调制;驱动;功率输出级;功率放大

An amplifier design based on TPA3123class D amplifier Abstract During the swiftly developing of power amplifier science and technology, the requirement of it for people become higher and higher, Because the efficiency of the traditional power amplifier is low, it is not fit for people's requirement, but the D-type audio amplifier has the high efficiency and the high-power, so, it is content with the requirement of people. In this paper, I described the D-type audio power amplifier carefully from the design aspect theoretically, at first,it is observed that the efficiency of the traditional of each kind of amplifier's characteristic is lower , the distortion of the traditional power amplifier is serious and the power also is not ideal, so we draw out that the efficiency power and lower distortion of D-type power amplifier all work well. Then from the D-type of audio power amplifier's use, the principle and the structure talk about its shortcoming as well as the development prospect; In D in the article audio frequency power device , power of amplifier modulate the control of the signal (PEM ) by one high-frequency pulse width originally, make it work in switch state, efficiency its in theory can up to 100%, but a insufficient one its is it is it can produce high frequency interfere and noise to lie in to appear, but if design the low open wave filter and rational choice components and parts parameter meticulously, its tone quality noise can meet people's demands. Finally by a D kind of audio power amplifier's design, let me understand D kind of audio power amplifier's concrete application. Key Words: D-type power; amplifier ; Pulse width modulation ; Impetus; Power output level ; Power amplifie

分立元件OCL功率放大电路原理分析

分立元件OCL功率放大电路原理分析 OCL是英文Output Capacitor Less的缩写,意思是没有输出电容器。OCL功率放大电路一般采用正、负对称的两组电源供电,电路内部直到负载扬声器全部采用直接耦合,中间无输入、输出变压器(人们将不用输入和输出变压器的功率放大电路称为单端推挽电路),也不需要输出电容器,其好处是通频带宽,信号失真最低。 (1)OCL功率放大器的结构组成 功率放大器的结构如图1所示。OCL功率放大电路分为输入级、激励级、功率输出级三级,此外还有为稳定电路工作而设置的负反馈网络和各种补偿电路,有些还设置有过载保护电路。 图2是一种实际的功放电路,早期一些低档功放机器采用了这一电路。下面结合该电路来认识一下功率放大器的各组成部分。 1)输入级:输入级主要起缓冲作用。输入级多采用差分对管放大电路(也有采用运算放大电路的),通常引入一定量的负反馈,增加整个功放电路的稳定性和降低噪声。差分放大器由两个特性相同的放大电路组成,其左、右两管的参数几乎完全相同。这种电路具有很高的稳定性,能抑制“零点漂移”,保证输出级中点电压的稳定。有些功放机器的差动管发射极采用恒流源电路,常见的有二极管和三极管组成的恒流源和两个三极管组成的镜像恒流源。输入级采用小功率管,工作在甲类状态,静态电流较小。 2)激励级:激励级的作用是给功率输出级提供足够的激励电流及稳定的静态偏压,整个功率放大器的增益主要由这一级提供。多数功放机的激励级采用单管放大电路,也有少数机器采用差分对管放大电路。这一级常采用恒流源负载,不仅能得到较高的电源抑制特性,而且具有工作状态稳定、线性好、失真度低等优点。激励级也是用小功率管,工作在甲类状态。 另外,激励级还要为后一级(功率输出级)提供稳定的偏置电压。功率输出级的偏置电压电路有多种类型。最简单的偏置电路是由激励管的集电极负载电阻构成的,其热稳定性和稳压性都比较差;有些功放采用恒压偏置电路,即由多个二极管串联而成的稳压钳位电路,使功率输出级的偏置电压保持稳定;而更多的则是采用带温度补偿的恒压偏置电路,这种偏置电路由一个三极管和几个电阻组成。

分立元件数字功放设计

UM10155 Discrete Class D High Power Audio Amplifier UM10155:分立元件D类大功率音频功放 Keywords :Class D Audio Amplifier, Universal Class D, UcD, PWM Audio Amplifier, High Power Audio. 关键词:D类音频放大器,全D类(UcD), PWM功放,大功率功放 Abstract :This user manual describes the operating instructions and the most important background information of the Philips Semiconductor Discrete Class D High Power Audio Amplifier Demonstrator Board. With proper heatsinking of the Power MOSFETs and a well dimensioned power supply, the PWM amplifier is capable of supplying 200 W of high quality audio power into a 4 ? loudspeaker. 内容摘要:本用户手册描述了飞利浦半导体分立D类高功率音频放大器演示板的操作方法和最 重要的背景资料。在适当的功率管散热器的和很好的供电情况下,这台PWM放大器能提供200 W 高质量音频输出给一个4 ?的扬声器。 1. Introduction简介 The Universal Class D (UcD) version 1.00 demonstrator board implements a 200 W true RMS (into a 4 ? load) high quality audio power amplifier on a very compact printed-circuit board. The amplifier is built-up of discrete components only, and makes use of Philips patent WO 03/090343. 这个1.0版本的全D类功放(UcD)示范板是一个在非常紧凑的PCB板上输出200 W真有效功率(4 ?负载)的高质量音频功放。 Fig 1. General view001aaf148 2. Circuit diagram电路原理图The demonstrator board is intended to illustrate the capability of Philips Power MOSFETs in discrete high-end PWM audio amplifier applications. The board is self-contained and only requires a simple (non-stabilized) dual power supply, an audio source (e.g. function generator, CD player) and a loudspeaker to demonstrate its capabilities. For evaluation at high output power a provision is made to attach an appropriate heatsink to the MOSFETs on the board. 本演示板意欲图解说明飞利浦功率MOSFET在分立高档PWM音频放大器上的应用能力。 本板自我包含了齐全的功能,只需要简单的正负电源(非稳压),加上音源和扬声器即可示范其性能。为评价在大功率下的性能,需要附上一个适当的散热片到MOSFET上。

相关文档
相关文档 最新文档