文档库 最新最全的文档下载
当前位置:文档库 › 发动机第三章-配气机构

发动机第三章-配气机构

发动机第三章-配气机构
发动机第三章-配气机构

第一节 配气机构的功用及组成

第二节 配气定时及气门间隙

第三节 气门组

第四节 气门传动组

思考题

1、试比较凸轮轴下置式、中置式和上置式配气机构的优缺点及其各自的应用范围。

2、进、排气门为什么要早开晚关?

3、为什么在采用机械挺柱的配气机构中要预留气门间隙?怎样调整气门间隙?为什么采用液力挺柱或气门间隙补偿器的配气机构可以实现零气门间隙?

4、如何根据凸轮轴判定发动机工作顺序?

5、如何确定异名凸轮的相对角位置?

6、试述两种可变配气定时机构的工作原理及其各自的优缺点。

目前,四冲程汽车发动机都采用气门式配气机构。其功用是按

照发动机的工作顺序和工作循环的要求,定时开启和关闭各缸的

进、排气门,使新气进入气缸,废气从气缸排出。

进入气缸内的新气数量或称进气量对发动机性能的影响很大。

进气量越多,发动机的有效功率和转矩越大。因此,配气机构首先

要保证进气充分,进气量尽可能的多;同时,废气要排除干净,因

为气缸内残留的废气越多,进气量将会越少。

第一节 配气机构的功用及组成

气门式配气机构由气门组和气门传动组两部分组成,每组的零件组成则与气门的位置、凸轮轴的位置和气门驱动形式等有关。现代汽车发动机均采用顶置气门,即进、排气门置于气缸盖内,倒挂在气缸顶上。

凸轮轴的位置有下置式、中置式和上置式3种。 

一、凸轮轴下置式配气机构

凸轮轴置于曲轴箱内的配气机构为凸轮轴下置式配气机构。

其中气门组零件包括气门、气门座圈、气门导管、气门弹簧、气门弹簧座和气门锁夹等;气门传动组零件则包括凸轮轴、挺柱、推杆、摇臂、摇臂轴、摇臂轴座和气门间隙调整螺钉等。

下置凸轮轴由曲轴定时齿轮驱动。发动机工作时,曲轴通过定时齿轮驱动凸轮轴旋转。当凸轮的上升段顶起挺柱时,经推杆和气门间隙调整螺钉推动摇臂绕摇臂轴摆动,压缩气门弹簧使气门开启。当凸轮的下降段与挺柱接触时,气门在气门弹簧力的作用下逐渐关闭。

四冲程发动机每完成一个工作循环,每个气缸进、排气一次。这时曲轴转两周,而凸轮轴只旋转一周,所以曲轴与凸轮轴的转速比或传动比为2∶1。

二、凸轮轴中置式配气机构

凸轮轴置于机体上部的配气机构被称为凸轮轴中置式配气机构。

与凸轮轴下置式配气机构的组成相比,减少了推杆,从而减轻了配气机构的往复运动质量,增大了机构的刚度,更适用于较高转速的发动机。

有些凸轮轴中置式配气机构的组成与凸轮轴下置式配气机构没有什么区别,只是推杆较短而已,如

YC6105Q、6110A、依维柯8210.22S和福特2.5ID等发动机都是这种机构。

三、凸轮轴上置式配气机构

凸轮轴置于气缸盖上的配气机构为凸轮轴上置式配气机构(OHC)。

其主要优点是运动件少,传动链短,整个机构的刚度大,适合于高速发动机。由于气门排列和气门驱动形式的不同,凸轮轴上置式配气机构有多种多样的结构形式。

气门驱动形式有摇臂驱动、摆臂驱动和直接驱动三种类型。

1、摇臂驱动、单凸轮轴上置式配气机构

凸轮轴推动液力挺柱,液力挺柱推动摇臂,摇臂再驱动气门;或凸轮轴直接驱动摇臂,摇臂驱动气门。

2、摆臂驱动、凸轮轴上置式配气机构

由于摆臂驱动气门的配气机构比摇臂驱动式刚度更好,更有利于高速发动机,因此在轿车发动机上的应用比较广泛。如CA488 3、SH680Q、克莱斯勒A452、奔驰QM615、奔驰M115等发动机均为单上置凸轮轴(SOHC)摆臂驱动式配气机构;而本田B20A、尼桑VH45DE、三菱3G81、富士EJ20等发动机都是双上置凸轮轴(DOHC)摆臂驱动式配气机构。

3、直接驱动、凸轮轴上置式配气机构

在这种形式的配气机构中,凸轮通过吊杯形机械挺柱驱动气门;或通过吊杯形液力挺柱驱动气门。与上述各种形式的配气机构相比,直接驱动式配气机构的刚度最大,驱动气门的能量损失最小。因此,在高度强化的轿车发动机上得到广泛的应用。如奥迪、捷达、桑塔纳、马自达6、欧宝V6、奔弛320E,还有依维柯8140.01、8140.21等均为直接驱动式配气机构。

第二节 配气定时及气门间隙

一、配气定时(配气相位)

以曲轴转角表示的进、排气门开闭时刻及其开启的持续时间称作配气定时。

进气门在进气行程上止点之前开启谓之早开。从进气门开到上止点曲轴所转过的角度称作进气提前角,记作 α。进气门在进气行程下止点之后关闭谓之晚关。从进气行程下止点到进气门关闭曲轴转过的角度称作进气迟后角,记作 β。整个进气过程持续的时间或进气持续角为180°+ α+β曲轴转角。一般 α=0°~30°、β=30°~80°曲轴转角。

排气门在作功行程结束之前,即在作功行程下止点之前开启,谓之排气门早开。从排气门开启到下止点曲轴转过的角度称作排气提前角,记作 γ。排气门在排气行程结束之后,即在排气行程上止点之后关闭,谓之排气门晚关。从上止点到排气门关闭曲轴转过的角度称作排气迟后角,记作 δ。整个排气过程持续时间或排气持续角为180°+ γ+ δ曲轴转角。一般 γ=40°~80°、δ=0°~30°曲轴转角。

由于进气门早开和排气门晚关,致使活塞在上止点附近出现进、排气门同时开启的现象,称其为气门重叠。重叠期间的曲轴转角称为气门重叠角,它等于进气提前角与排气迟后角之和,即 α+δ。

二、可变配气定时机构

采用可变配气定时机构可以改善发动机的性能。发动机转速不同,要求不同的配气定时。这是因为:当发动机转速改变时,由于进气流速和强制排气时期的废气流速也随之改变,因此在气门晚关期间利用气流惯性增加进气和促进排气的效果将会不同。例如,当发动机在低速运转时,气流惯性小,若此时配气定时保持不变,则部分进气将被活塞推出气缸,使进气量减少,气缸内残余废气将会增多。当发动机在高速运转时,气流惯性大,若此时增大进气迟后角和气门重叠角,则会增加进气量和减少残余废气量,使发动机的换气过程臻于完善。总之,四冲程发动机的配气定时应该是进气迟后角和气门重叠角随发动机转速的升高而加大。如果气门升程也能随发动机转速的升高而加大,则将更有利于获得良好的发动机高速性能。

三、气门间隙

发动机在冷态下,当气门处于关闭状态时,气门与传动件之间的间隙称为气门间隙。发动机工作时,气门及其传动件,如挺柱、推杆等都将因为受热膨胀而伸长。如果气门与其传动件之间,在冷态时不预留间隙,则在热态下由于气门及其传动件膨胀伸长而顶开气门,破坏气门与气门座之间的密封,造成气缸漏气,从而使发动机功率下降,起动困难,甚至不能正常工作。为此,在装配发动机时,在气门与其传动件之间需预留适当的间隙,即气门间隙。气门间隙既不能过大,也不能过小。间隙过小,不能完全消除上述弊病;间隙过大,在气门与气门座以及各传动件之间将产生撞击和响声。最适当的气门间隙由发动机制造厂根据试验确定。

第三节气门组

一、气门

1、气门的工作条件

气门的工作条件非常恶劣。首先,气门直接与高温燃气接触,受热严重,而散热困难,因此气门温度很高。其次,气门承受气体力和气门弹簧力的作用,以及由于配气机构运动件的惯性力使气门落座时受到冲击。第三,气门在润滑条件很差的情况下以极高的速度启闭并在气门导管内作高速往复运动。此外,气门由于与高温燃气中有腐蚀性的气体接触而受到腐蚀。

2、气门材料

进气门一般用中碳合金钢制造,如铬钢、铬钼钢和镍铬钢等。排气门则采用耐热合金钢制造,如硅铬钢、硅铬钼钢、硅铬锰钢等。

3、气门构造

汽车发动机的进、排气门均为菌形气门,由气门头部和气门杆两部分构成。气门顶面有平顶、凹顶和凸顶等形状。目前应用最多的是平顶气门,其结构简单,制造方便,受热面积小,进、排气门都可采用。

气门与气门座或气门座圈之间靠锥面密封。气门锥面与气门顶面之间的夹角称为气门锥角。进、排气门的气门锥角一般均为45°,只有少数发动机的进气门锥角为30°。

气门头部接受的热量一部分经气门座圈传给气缸盖;另一部分则通过气门杆和气门导管也传给气缸盖,最终都被气缸盖水套中的冷却液带走。为了增强传热,气门与气门座圈的密封锥面必须严密贴合。为此,二者要配对研磨,研磨之后不能互换。

气门杆有较高的加工精度和较低的粗糙度,与气门导管保持较小的配合间隙,以减小磨损,并起到良好的导向和散热作用。气门尾端的形状决定于上气门弹簧座的固定方式。采用剖分成两半且外表面为锥面的气门锁夹来固定上气门弹簧座,结构简单,工作可靠,拆装方便,因此得到了广泛的应用。气门锁夹内表面有多种形状,相应地气门尾端也有各种不同形状的气门锁夹槽。

在某些高度强化的发动机上采用中空气门杆的气门,旨在减轻气门质量和减小气门运动的惯性力。为了降低排气门的温度,增强排气门的散热能力,在许多汽车发动机上采用钠冷却气门。这种气门是在中空的气门杆中填入一半金属钠。因为钠的熔点的是97.8℃,沸点为880℃,所以在气门工作时,钠变成液体,在气门杆内上下激烈地晃动,不断地从气门头部吸收热量并传给气门杆,再经气门导管传给气缸盖,使气门头部得到冷却。

4、每缸气门数

一般发动机每个气缸有两个气门,即一个进气门和一个排气门。进气门头部直径比排气门大15%~30%,目的是增大进气门通过断面面积,减小进气阻力,增加进气量。凡是进气门和排气门数量相同时,进气门头部直径总比排气门大。每缸两气门的发动机又称两气门发动机。现代高性能汽车发动机普遍采用每缸三、四、五个气门,其中尤以四气门发动机为数最多。

四气门发动机每缸两个进气门,两个排气门。其突出的优点是气门通过断面积大,进、排气充分,进气

量增加,发动机的转矩和功率提高。其次是每缸四个气门,每个气门的头部直径较小,每个气门的质量减

轻,运动惯性力减小,有利于提高发动机转速。最后,四气门发动机多采用篷形燃烧室,火花塞布置在燃烧室中央,有利于燃烧。

二、气门座与气门座圈

气缸盖上与气门锥面相贴合的部位称气门座。气门座的温度很高,又承受频率极高的冲击载荷,容易磨损。因此,铝气缸盖和大多数铸铁气缸盖均镶嵌由合金铸铁或粉末冶金或奥氏体钢制成的气门座圈。在气缸盖上镶嵌气门座圈可以延长气缸盖的使用寿命。也有一些铸铁气缸盖不镶气门座圈,直接在气缸盖上加工出气门座。

三、气门导管

气门导管的功用是对气门的运动导向,保证气门作直线往复运动,使气门与气门座或气门座圈能正确贴合。此外,还将气门杆接受的热量部分地传给气缸盖。气门导管的工作温度较高,而且润滑条件较差,靠配气机构工作时飞溅起来的机油来润滑气门杆和气门导管孔。气门导管由灰铸铁、球墨铸铁或铁基粉末冶金制造。在以一定的过盈将气门导管压入气缸盖上的气门导管座孔之后,再精铰气门导管孔,以保证气门导管与气门杆的正确配合间隙。

四、气门弹簧

气门弹簧的功用是保证气门关闭时能紧密地与气门座或气门座圈贴合,并克服在气门开启时配气机构产生的惯性力,使传动件始终受凸轮控制而不相互脱离。

气门弹簧一般为等螺距圆柱形螺旋弹簧。当气门弹簧的工作频率与其固有的振动频率相等或为整数倍时,气门弹簧就会发生共振。共振时将使配气定时遭到破坏,使气门发生反跳和冲击,甚至使弹簧折断。为防止共振的发生,可采取下列结构措施:

1)采用双气门弹簧 在柴油机和高性能汽油机上广泛采用每个气门安装两个直径不同,旋向相反的内、外弹簧。由于两个弹簧的固有频率不同,当一个弹簧发生共振时,另一个弹簧能起到阻尼减振作用。采用双气门弹簧可以减小气门弹簧的高度,而且当一个弹簧折断时,另一个弹簧仍可维持气门工作。弹簧旋向相反,可以防止折断的弹簧圈卡入另一个弹簧圈内使其不能工作或损坏。

2)采用变螺距气门弹簧 某些高性能汽油机采用变螺距单气门弹簧。变螺距弹簧的固有频率不是定值,从而可以避开共振。

3)采用锥形气门弹簧 锥形气门弹簧的刚度和固有振动频率沿弹簧轴线方向是变化的,因此可以消除发生共振的可能性。

五、气门旋转机构

当气门工作时,如能产生缓慢的旋转运动,可使气门头部周向温度分布比较均匀,从而减小气门头部的热

变形。同时,气门旋转时,在密封锥面上产生轻微的摩擦力,能够清除锥面上的沉积物。

第四节 气门传动组

由于气门驱动形式和凸轮轴位置的不同,气门传动组的零件组成差别很大。

一、凸轮轴

1、凸轮轴工作条件及材料

凸轮轴承受周期性的冲击载荷。凸轮与挺柱之间的接触应力很大,相对滑动速度也很高,因此,凸轮工作表面的磨损比较严重。

2、凸轮轴构造

凸轮轴是通过凸轮轴轴颈支承在凸轮轴轴承孔内的,因此凸轮轴轴颈数目的多少是影响凸轮轴支承刚度的重要因素。如果凸轮轴刚度不足,工作时将发生弯曲变形,这会影响配气定时。下置式凸轮轴每隔1~2个气缸设置一个凸轮轴轴颈。

进、排气门开启和关闭的时刻、持续时间以及开闭的速度等分别由凸轮轴上的进、排气凸轮控制。转速较低的发动机,其凸轮轮廓由几段圆弧组成,这种凸轮称为圆弧凸轮。高转速发动机则采用函数凸轮,其轮廓由某种函数曲线构成。O 点为凸轮轴回转中心,凸轮轮廓上的 AB 段和 DE 段为缓冲段,BCD 段为工作段。挺柱在 A 点开始升起,在 E 点停止运动,凸轮转到 AB 段内某一点处,气门间隙消除,气门开始开启。此后随着凸轮继续转动,气门逐渐开大,至 C 点气门开度达到最大。再后气门逐渐关闭,在 DE 段内某一点处气门完全关闭,接着气门间隙恢复。气门最迟在 B 点开始开启,最早在 D 点完全关闭。由于气门开始开启和关闭落座时均在凸轮升程变化缓慢的缓冲段内,其运动速度较小,从而可以防止强烈的冲击。

凸轮轴上各同名凸轮(各进气凸轮或各排气凸轮)的相对角位置与凸轮轴旋转方向、发动机工作顺序及气缸数或作功间隔角有关。如果从发动机风扇端看凸轮轴逆时针方向旋转,则工作顺序为1-3-4-2的四缸发动机其作功间隔角为720°/4=180°曲轴转角,相当于90°凸轮轴转角,即各同名凸轮间的夹角为90°。对于工作顺序为1-5-3-6-2-4的六缸发动机,其同名凸轮间的夹角为60°。同一气缸的进、排气凸轮的相对角位置即异名凸轮相对角位置,决定于配气定时及凸轮轴旋转方向。

3、凸轮轴轴承

中置式和下置式凸轮轴的轴承一般制成衬套压入整体式轴承座孔内,再加工轴承内孔,使其与凸轮轴轴颈相配合。上置式凸轮轴的轴承多由上、下两片轴瓦对合而成,装入剖分式轴承座孔内。

轴承材料多与主轴承相同,在低碳钢钢背上浇敷减摩合金层。也有的凸轮轴轴承采用粉末冶金衬套或青铜衬套。

4、凸轮轴传动机构

凸轮轴由曲轴驱动,其传动机构有齿轮式、链条式及齿形带式。 齿轮传动机构用于下置式和中置式凸轮轴的传动。汽油机一般只用一对定时齿轮,即曲轴定时齿轮和凸轮轴定时齿轮。柴油机需要同时驱动喷油泵,所以增加一个中间齿轮。为了保证齿轮啮合平顺,噪声低,磨损小,定时齿轮都是圆柱螺旋齿轮并用不同的材料制造。曲轴定时齿轮用中碳钢制造,凸轮轴定时齿轮则采用铸铁或夹布胶木。为了保证正确的配气定时和喷油定时,在传动齿轮上刻有定时记号,装配时必须对正记号。

链传动机构用于中置式和上置式凸轮轴的传动,尤其是上置式凸轮轴的高速汽油机采用链传动机构的很多。链条一般为滚子链,工作时应保持一定的张紧度,不使其产生振动和噪声。为此在链传动机构中装有导链

板并在链条的松边装置张紧器。

齿形带传动机构用于上置式凸轮轴的传动。与齿轮和链传动机构相比具有噪声小、质量轻、成本低、工作可靠和不需要润滑等优点。另外,齿形带伸长量小,适合有精确定时要求的传动。因此,被越来越多的汽车发动机特别是轿车发动机所采用。齿形带由氯丁橡胶制成,中间夹有玻璃纤维,齿面粘覆尼龙编织物(右图)。在使用中不能使齿形带与水或机油接触,否则容易引起跳齿。齿形带轮由钢或铁基粉末冶金制造。为了确保传动可靠,齿形带需保持一定的张紧力,为此在齿形带传动机构中也设置由张紧轮与张紧弹簧组成的张紧器。

5、凸轮轴的轴向定位

为了限制凸轮轴在工作中产生的轴向移动或承受螺旋齿轮在传动时产生的轴向力,凸轮轴需要轴向定位。凸轮轴轴向移动量过大,对于由螺旋齿轮传动的凸轮轴,会影响配气定时。上置式凸轮轴通常利用凸轮轴承盖的两个端面和凸轮轴轴颈两侧的凸肩进行轴向定位。中、下置式凸轮轴的轴向定位通常采用止推板。止推板用螺栓固定在机体前端面上。第三种轴向定位的方法是止推螺钉定位。

二、挺柱

1、挺柱的功用、材料及分类

挺柱是凸轮的从动件,其功用是将来自凸轮的运动和作用力传给推杆或气门,同时还承受凸轮所施加的侧向力,并将其传给机体或气缸盖。制造挺柱的材料有碳钢、合金钢、镍铬合金铸铁和冷激合金铸铁等。挺柱可分为机械挺柱和液力挺柱两大类,每一类中又有平面挺柱和滚子挺柱等多种结构形式。

2、机械挺柱

机械挺柱的结构结构简单,质量轻,在中、小型发动机中应用比较广泛。挺柱上的推杆球面支座的半径比推杆球头半径略大,以便在两者中间形成楔形油膜来润滑推杆球头和挺柱上的球面支座。

3、液力挺柱

在配气机构中预留气门间隙将使发动机工作时配气机构产生撞击和噪声。为了消除这一弊端,有些发动机尤其是轿车发动机采用液力挺柱,借以实现零气门间隙。气门及其传动件因温度升高而膨胀,或因磨损而缩短,都会由液力作用来自行调整或补偿。

三、推杆

推杆处于挺柱和摇臂之间,其功用是将挺柱传来的运动和作用力传给摇臂。在凸轮轴下置式的配气机构中,推杆是一个细长杆件,加上传递的力很大,所以极易弯曲。因此,要求推杆有较好的纵向稳定性和较大的刚度。推杆一般用冷拔无缝钢管制造,两端焊上球头和球座。也可以用中碳钢制成实心推杆,这时两端的球头或球座与推杆锻成一个整体。

四、摇臂

摇臂的功用是将推杆和凸轮传来的运动和作用力,改变方向传给气门使其开启。摇臂在摆动过程中承受很大的弯矩,因此应有足够的强度和刚度以及较小的质量。摇臂由锻钢、可锻铸球、球墨铸铁或铝合金制造。摇臂是一个双臂杠杆,以摇臂轴为支点,两臂不等长。短臂端加工有螺纹孔,用来拧入气门间隙调整螺钉。长臂端加工成圆弧面,是推动气门的工作面。

五、摆臂与气门间隙自动补偿器

摆臂的功用与摇臂相同。两者的区别只在于摆臂是单臂杠杆,其支点在摆臂的一端。在许多轿车发动机上用气门间隙自动补偿器代替摆臂支座实现零气门间隙。气门间隙自动补偿器无论是结构或是工作原理都与液力挺柱相同,之所以不称其为液力挺柱,是因为它不是凸轮的从动件,仅仅是摆臂的一个支承而已。因此,它既是摆臂的支座又是补偿气门间隙变化的装置。

第三章 配气机构

第三章 配气机构 一、概述 1.功用: 配气机构是进、排气管道的控制机构,它按照气缸的工作顺序和工作过程的要求,准时地开闭进、排气门、向气缸供给可燃混合气(汽油机)或新鲜空气(柴油机)并及时排出废气。另外,当进、排气门关闭时,保证气缸密封。进饱排净,四行程发动机都采用气门式配气机构。 2.充气效率 新鲜空气或可燃混合气被吸入气缸愈多,则发动机可能发出的功率愈大。新鲜空气或可燃混合气充满气缸的程度,用充气效率v η表示。 o v m m =η 气质量充满气缸工作容积的新进气系统进口状态下量实际充入气缸的新气质进气过程中,,→→ v η越高,表明进入气缸的新气越多,可燃混合气燃烧时可能放出的热量也就越大,发动机的功率越大。 3.型式 ① ? ??气门侧置式配气机构气门顶置式配气机构分根据气门安装位置不同, (图3-1) 气门位于气缸盖上称为气门顶置式配气机构,由凸轮、挺柱、推杆、摇臂、气门和气门弹簧等组成。其特点,进气阻力小,燃烧室结构紧凑,气流搅动大,能达到较高的压缩比,目前国产的汽车发动机都采用气门顶置式配气机构。 气门位于气缸体侧面称为气门侧置式配气机构,由凸轮、挺柱、气门和气门弹簧等组成。省去了推杆、摇臂等另件,简化了结构。因为它的进、排气门在气缸的一侧,压缩比受到限制,进排气门阻力较大,发动机的动力性和高速性均较差。逐渐被淘汰。 ② ?? ???凸轮轴上置式凸轮轴中置式凸轮轴下置式按凸轮轴布置位置 (图3-2) 凸轮轴下置式,主要缺点是气门和凸轮轴相距较远,因而气门传动另件较多,结构较复杂,发动机高度也有所增加。 凸轮轴中置,凸轮轴位于气缸体的中部由凸轮轴经过挺柱直接驱动摇臂,省去推杆,这种结构称为凸轮轴中置配气机构。 凸轮轴上置,凸轮轴布置在气缸盖上。凸轮轴上置有两种结构,一是凸轮轴直接通过摇臂来驱动气门,这样既无挺柱,又无推杆,往复运动质量大大减小,此结构适于高速发动机。另一种是凸轮轴直接驱动气门或带液力挺柱的气门,此

第三章配气机构

1.功用: 配气机构是进、排气管道的控制机构,它按照气缸的工作顺序和工作过程的要求,准时地开闭进、排气门、向气缸供给可燃混合气(汽油机)或新鲜空气(柴油机)并及时排出废气。另外,当进、排气门关闭时,保证气缸密封。进饱排净,四行程发动机都采用气门式配气机构。 2.充气效率 新鲜空气或可燃混合气被吸入气缸愈多,则发动机可能发出的功率愈大。新鲜空气或可燃混合气充满气缸的程度,用充气效率ηv表示。ηv越高,表明进入气缸的新气越多,可燃混合气燃烧时可能放出的热量也就越大,发动机的功率越大。 3.型式 气门位于气缸盖上称为气门顶置式配气机构,由凸轮、挺柱、推杆、摇臂、气门和气门弹簧等组成。其特点,进气阻力小,燃烧室结构紧凑,气流搅动大,能达到较高的压缩比,目前国产的汽车发动机都采用气门顶置式配气机构。 气门位于气缸体侧面称为气门侧置式配气机构,由凸轮、挺柱、气门和气门弹簧等组成。省去了推杆、摇臂等另件,简化了结构。因为它的进、排气门在气缸的一侧,压缩比受到限制,进排气门阻力较大,发动机的动力性和高速性均较差,逐渐被淘汰。 凸轮轴下置式,主要缺点是气门和凸轮轴相距较远,因而气 门传动另件较多,结构较复杂,发动机高度也有所增加。

凸轮轴中置,凸轮轴位于气缸体的中部由凸轮轴经过挺柱直接驱动摇臂,省去推杆,这种结构称为凸轮轴中置配气机构。凸轮轴上置,凸轮轴布置在气缸盖上。 凸轮轴上置有两种结构,一是凸轮轴直接通过摇臂来驱动气门,这样既无挺柱,又无推杆,往复运动质量大大减小,此结构适于高速发动机。另一种是凸轮轴直接驱动气门或带液力挺柱的气门,此种配气机构的往复运动质量更小,特别适应于高速发动机. 凸轮轴下置,中置的配气机构大多采用圆柱形正时齿轮传动,一般 从曲轴到凸轮轴只需一对正时齿轮 传动,若齿轮直径过大,可增加一个中间齿轮。为了啮合平稳, 减小噪声,正时齿轮多用斜齿。 链条与链轮的传动适用于凸轮轴上置的配气机构,但其工作可 靠性和耐久性不如齿轮传动。近年来高速汽车发动机上广泛采 用齿形皮带来代替传动链,齿形带传动,噪声小、工作可靠、 成本低. 一般发动机都采用每缸两个气门,即一个进气门和一个排气门的结构。为了改善换气,在可能的条件下,应尽量加大气门的直径,特别是进气门的直径。但是由于燃烧 室尺寸的限制,气门直径最大一般不能超过气缸直径的一半。当气 缸直径较大,活塞平均速度较高时,每 缸一进一排的气门结构就不能保证良 好的换气质量。因此,在很多新型汽车 发动机上多采用每缸四个气门结构。即 两个进气门和两个排气门。 4.组成

配 气 机 构 习题三答案

第三章配气机构习题三 一、填空题 1.气门弹簧座一般是通过锁块或锁销固定在气门杆尾端的。 2.摇臂通过衬套空套在摇臂轴上,并用弹簧防止其轴向窜动。 3.采用双气门弹簧时,双个弹簧的旋向必须相反。 4.气门间隙过大,气门开启时刻变晚,关闭时刻变早;气门间隙过小,易使气门关闭不严,造成漏气。 5.充气效率越高,进入气缸内的新鲜气体的量就越多,发动机所发出的功率就越高。6.凸轮轴上同一气缸的进、排气凸轮的相对角位置与既定的配气相位相适应。 7.汽油机凸轮轴上的斜齿轮是用来驱动分电器和机油泵的。而柴油机凸轮轴上的斜齿轮只是用来驱动的机油泵。 二、解释术语 1.气门锥角: 气门密封锥面的锥角。 2.充气效率:实际进入气缸的新鲜充量与在进气状态下充满气缸容积的新鲜充量之比。 三、判断题(正确打√、错误打×) 1. 进气门头部直径通常比排气门的大,而气门锥角有时比排气门的小。(√) 2. 凸轮轴的转速比曲轴的转速快一倍。(×) 3. 采用液力挺柱的发动机其气门间隙等于零。(√) 4. 挺柱在工作时既有上下运动,又有旋转运动。(√) 5. 气门的最大升程和在升降过程中的运动规律是由凸轮转速决定的。(×) 6. 凸轮轴的轴向窜动可能会使配气相位发生变化。(√) 四、选择题 1.摇臂的两端臂长是(B)。 A、等臂的 B、靠气门端较长 C、靠推杆端较长 发动机的进、排气门锥角是(B)。 A、相同的 B、不同的 3.一般发动机的凸轮轴轴颈是(B)设置一个。 A、每隔一个气缸 B、每隔两个气缸 4.下述各零件中不属于气门传动组的是(A )。 A.气门弹簧 B.挺住 C.摇臂 D.凸轮轴 5.气门间隙过大,发动机工作时(B )。 A.气门早开B.气门迟开C.不影响气门开启时刻 6.气门的升程取决于(A )。 A.凸轮的轮廓B.凸轮轴的转速C.配气相位 7.发动机一般排气门的锥角较大,是因为(A )。 A.排气门热负荷大B.排气门头部直径小C.配气相位的原因 8.下面哪种凸轮轴布置型式最适合于高速发动机(B )。 A.凸轮轴下置式B.凸轮轴上置式C.凸轮轴中置式 五、问答题 1. 采用液力挺柱有哪些优点 就降低噪音,耐磨、免调节、使用寿命也更久。对气门调节更方便,准确,降低了能源消耗,也简化了维修。

第三章配气机构

第三章配气机构 配气机构(一) 教学目的 1、掌握配气机构的布置形式。 2、掌握配气相位与气门间隙的知识。 教学安排 组织教学 讲述新课 功用:按照气缸的工作顺序和工作过程的要求,准时地开闭进、排气门,向气缸供给可燃混合气(汽油机)或新鲜空气(柴油机)并及时排出废气。 充气效率:新鲜空气或可燃混合气充满气缸的程度,用充气效率表示。 §3.1 配气机构的布置形式 一、配气机构布置形式和工作情况 (一)布置形式 按气门的布置形式分:顶置气门式和侧置气门式。侧置气门式已趋于淘汰; 按凸轮轴安装位置分:上置凸轮轴式、中置凸轮轴式和下置凸轮轴式; 按曲轴和凸轮轴的传动方式分:齿轮传动式、链条传动式和齿形皮带传动式; 按每个气缸的气门数目分:2气门式、3气门式、4气门式和5气门式。 (二)工作过程 运动传递路线:曲轴→凸轮轴→挺柱→推杆→摇臂→气门 四冲程发动机曲轴与凸轮轴的传动比为2:1。 二、凸轮轴布置型式及特点 §3.2 配气相位与气门间隙 一、配气相位 配气相位是用曲轴转角表示的进、排气门的开启时刻和开启延续时间。 通常用环形图表示——配气相位图。 气门重叠: 两个气门同时开启时间相当的曲轴转角叫作气门重叠角。

二、气门间隙 作用:为气门热膨胀留有余地,以保证气门的密封。 间隙过小:发动机工作后,零件受热膨胀,将气门推开,使气门关闭不严,造成漏气,功率下降,并使气门的密封表面严重积碳或烧坏,甚至气门撞击活塞。 间隙过大:进、排气门开启迟后,缩短了进排气时间,降低了气门的开启高度,改变了正常的配气相位,使发动机因进气不足,排气不净而功率下降,此外,还使配气机构零件的撞击增加,磨损加快。 采用液压挺柱的配气机构不需要留气门间隙。 作业 1、配气机构有何功用?凸轮轴的布置形式有哪几种?各有什么特点? 2、什么是配气相位?画出配气相位图,并注明气门重叠角。 3、气门为何要早开晚关? 配气机构(二) 教学目的 掌握配气机构主要零件的功用及构造 教学安排 组织教学 复习旧课 1、配气机构的功用、凸轮轴的布置形式及特点; 2、配气相位、画出配气相位图、气门重叠角。 讲述新课 §3.3 配气机构的主要零件与组件 一、气门组 包括:气门、气门座、气门导管、气门弹簧、气门弹簧座及锁片等。 1、气门 功用:控制进、排气管的开闭 构造:气门由头部和杆部组成。气门密封锥面与气门座配对研磨。 杆身装在气门导管内起导向作用,杆身与头部采用圆滑过渡连接。 尾部制有凹槽(锥形槽或环形槽)用来安装锁紧件。

第三章 习题一 答案

第三章配气机构习题一答案 一、填空题 1.根据气门安装位置的不同,配气机构的布置形式分为侧置式和顶置式两种。 2.顶置式气门配气机构的凸轮轴有下置、中置、上置三种布置型式。 3.顶置式气门配气机构的挺杆一般是筒式或滚轮式的。 4.摇臂通过衬套空套在摇臂轴上,并用弹簧防止其轴向窜动。 5.奥迪100型轿车发动机挺杆为液压挺柱,与摇臂间无间隙。所以不需调整间隙。 6.曲轴与凸轮轴间的正时传动方式有齿轮传动、链传动、齿形带传动等三种形式。 二、解释术语 1.充气系数: 充气系数指在进气行程中,实际进入气缸内的新鲜气体质量与在标准大气压状态下充满气缸的新鲜气体质量之比。 2.气门间隙: 发动机在冷态下,气门杆尾端与摇臂(或挺杆)端之间的间隙。 三、判断题(正确打√、错误打×) 1.采用顶置式气门时,充气系数可能大于1。(×) 2.CA1092型汽车发动机采用侧置式气门配气机构。(×) 3.气门间隙是指气门与气门座之间的间隙。(×) 4.凸轮轴的转速比曲轴的转速快一倍。(×) 5.挺杆在工作时,既有上下往复运动,又有旋转运动。(√) 四、选择题 1.YC6105QC柴油机的配气机构的型式属于(A)。 A.顶置式 B、侧置式 C、下置式 2.四冲程发动机曲轴,当其转速为6000r/min时,则同一气缸的进气门,在1min时间内开闭次数应该是(A)。 A、3000次 B、1500次 C、750次 3.顶置式气门的气门间隙的调整部位是在(C)。 A、挺杆上 B、推杆上 C、摇臂上 4.曲轴正时齿轮与凸轮轴正时齿轮的传动比是(C)。 A、1∶1 B、1∶2 C、2∶1 5.四冲程六缸发动机,各同名凸轮之间的相对位置夹角应当是(C)。 A、120° B、90° C、60° 6.CA6102发动机由曲轴到凸轮轴的传动方式是(A)。 A、正时齿轮传动 B、链传动 C、齿形带传动 7. 曲柄连杆机构的作用之一是在发动机做功行程时把作用在活塞顶部的气体压力转变为曲柄的( )。 A、扭力 B、旋转力 C、驱动力 D、动力 8. 在发动机配气机构中,用于控制气门的适时开启和关闭,同时驱动油泵、机油泵和分电器工作的机件是( )。 A、凸轮轴 B、正时齿轮 C、摇臂轴 D、摇臂 9. 发动机热态时,气门杆会因温度升高而( ),若不预留间隙,则会使气门关闭不严。 A、弯曲 B、伸长 C、缩短 D、磨损 10. 若发动机气门间隙过大,会使气门( ),引起充气不足,排气不畅。 A、开启量过大 B、开启量过小 C、关闭不严 D、漏气

第三章 配气机构

第三章配气机构 3.1 概述 (2) 3.2 配气相位 (5) 3.3 配气机构的零件和组件 (8) 3.4 可变进气系统 (21) 学习目 标: 1.掌握配气机构的组成及各零部件的结构特点; 2.掌握配气相位、气门间隙; 3.掌握凸轮轴的结构特点; 4.掌握可变进气系统的结构类型特点。 学习方 法: 介绍发动机配气机构的结构及组成,通过实物教学和多媒体课件动态演示相结合,并和汽车拆装与调整实践教学相辅相承,使学生掌握各零部件的结构特点和安装要 求。 学习内 容: §3.1 概述 §3.2 配气相位 §3.3 配气机构的零件和组件 §3.4 用配气相位图分析可调间隙的气门 §3.5 可变进气系统 学习重 点: 1.配气相位; 2.气门间隙;

3.凸轮轴的结构特点; 4.可变进气系统的结构类型。 作业习 题: 1.影响充气效率的因素主要有哪些? 2.配气机构的功用是什么? 3.如何从一根凸轮轴上找出各缸的进排气凸轮和该发动机的发火顺序? 4.气门弹簧起什么作用,为什么在装配气门弹簧时要预先压缩? 5.挺柱的类型主要有哪些,液压挺柱有哪些优点? 6.可变进气系统主要有哪几种型式? 3.1 概述 配气机构的功用就是根据每一气缸内所进行的工作循环和点火顺序的要求,定时打开和关闭各缸的进排气门,使新气及时进入气缸和废气及时排出气缸,使换气过程最佳。好的配气机构应使发动机在各种工况下工作时获得最佳的进气量,以保证发动机在各种工况下工作时发出最好的性能。 发动机在全负荷下工作时,需获得最大功率和扭矩,这就要求在此工况下,配气机构应保证获得最大进气充量。吸入的进气越多,发动机发出的功率和扭矩越大。进气充满气缸的程度,常用充气效率 ( 也称充气系数 ) η v 表示。即:ηv =M/Mo 式中M -进气过程中,实际充入气缸的进气量; Mo -在进气状态下充满气缸工作容积的进气量。 一般情况下发动机充气效率η v 总是小于 l 的。η v 的大致范围是:

第三章 配 气 机 构 习题二答案

第三章配气机构习题二答案 一、填空题 1.发动机的配气机构由气门组和气门传动组两部分组成。 2.发动机凸轮轴的布置形式包括凸轮轴上置、中置式和下置式三种。 3.曲轴与凸轮轴之间的传动方式为齿轮传动、链条传动和齿形带传动。 4.配气机构按气门布置形式可分为顶置式式和侧置式式两种。 5.顶置式气门配气机构的气门传动组由正时齿轮、凸轮轴、挺杆、推杆、调整螺钉、摇臂、摇臂轴等组成。 6.CA6102发动机凸轮轴上的凸轮是顶动挺杆的,偏心轮是推动汽油泵的,螺旋齿轮是驱动机油泵和分电器的。 二、解释术语1.气门间隙:发动机在冷态下时,在气门关闭的状态下,气门杆尾部与摇杆之间留有一定的间隙。 三、判断题(正确打√、错误打×) 1.排气门的材料一般要比进气门的材料好些。(√) 2.进气门头部直径通常要比排气门的头部大,而气门锥角有时比排气门的小。(√) 3.CA1092型汽车发动机凸轮轴的轴向间隙,可通过改变隔圈的厚度进行调整,其间隙的大小等于隔圈厚度减去止推凸缘的厚度。(√) 4.顶置式气门可由凸轮轴上的凸轮压动摇臂顶开,其关闭是依靠气门弹簧实现的。(√) 5.在冷态下,气门脚及其传动机件之间无间隙或间隙过小,热态时,气门会因温度升高而膨胀,势必关闭不严,造成漏气。(√ ) 6.汽车运行中如发现气门响声过大,应及时调整气门间隙,并使间隙值符合原厂家规定。(√ ) 四、选择题 1.安装不等距气门弹簧时,向着气缸体或气缸盖的一端应该是(A)。 A.螺距小的 B、螺距大的 2.下述各零件中不属于气门组的是(C )。 A.气门弹簧 B.气门座 C.摇臂轴 D.气门导管 3. 气门、气门弹簧、气门弹簧座、气门导管等组成( A )。 A、气门组 B、配气机构 C、气门驱动组 D、顶置气门组 五、问答题 1.气门导管的作用是什么? 保证气门作直线往复运动,与气门座正确贴合(导向作用);在气缸体或气缸盖与气门杆之间起导热作用。 2.为什么有的配气机构中采用两个套装的气门弹簧? 气门弹簧长期在交变载荷下工作,容易疲劳折断,尤其当发生共振时,断裂的可能性更大。所以在一些大功率发动机上采用两根直径及螺距不同、螺旋方向相反的内、外套装的气门弹簧。由于两簧的结构、质量不一致,自然振动频率也因而不同,从而减少了共振的机会,既延长了簧的工作寿命,又保证了气门的正常工作(当一弹簧断折的情况下)。 ③气门重叠角为30°曲轴转角。④进、排气门的开、闭时刻相对于上下止点来说都是早开、迟闭。 3.气门弹簧起什么作用?为什么在装配气门弹簧时要预先压缩? 保证气门及时落座并紧密贴合,防止气门在发动机振动时发生跳动,破坏其密封性。气门弹簧安装时预先压缩产生的安装预紧力是用来克服气门关闭过程中气门及其传动件的惯性力,消除各传动件之间因惯性力作用而产生的间隙,实现其功用的。

第三、四章 配气机构

第三章配气机构 一、填空题 1?充气效率越高,进人气缸内的新鲜气体的量就___ 多____,发动机研发出的功率就__高____。 2?气门式配气机构由__气门组____ 和___气门传动组______组成。 3?四冲程发动机每完成一个工作循环,曲轴旋转____2___周,各缸的进、排气门各开启____1___ 次,此时凸轮轴旋转_____1___周。 4?气门弹簧座是通过安装在气门杆尾部的凹槽或圆孔中的___锁片____或___锁块____ 固定的。 5?由曲轴到凸轮轴的传动方式有下置式、上置式和中置式等三种。 6?气门由__头部____和__杆身_____两部分组成。 7?凸轮轴上同一气缸的进、排气凸轮的相对角位置与既定的__配气相位_____相适应。8?根据凸轮轴____旋向____和同名凸轮的___夹角______可判定发动机的发火次序。9?汽油机凸轮轴上的斜齿轮是用来驱动___机油泵____和__分电器____的。而柴油机凸轮轴上的斜齿轮只是用来驱动___机油泵____的。 10?在装配曲轴和凸轮轴时,必须将__正时标记_____对准以保证正确的_配气相位___ 二、判断改错题 1?充气效率总是小于1的。( √) 改正: 2?曲轴正时齿轮是由凸轮轴正时齿轮驱动的。( ×) 改正: 3?凸轮轴的转速比曲轴的转速快1倍。(×) 改正: 4?气门间隙过大,发动机在热态下可能发生漏气,导致发动机功率下降。( ×) 改正: 5?气门间隙过大时,会使得发动机进气不足,排气不彻底。( √) 改正: 6?对于多缸发动机来说,各缸同名气门的结构和尺寸是完全相同的,所以可以互换使用。( ×) 改正: 7?为了安装方便,凸轮轴各主轴径的直径都做成一致的。( ×) 改正: 8?摇臂实际上是一个两臂不等长的双臂杠杆,其中短臂的一端是推动气门的。( ×) 改正: 三、选择题(有一项或多项正确) 1?曲轴与凸轮轴之间的传动比为( A )。 A?2:1 B?l:2C?l:l D?4:1 2?设某发动机的进气提前角为,进气迟关角为,排气提前角为,排气迟关角为,则该发动机的进、排气门重叠角为( C )。 A? B? C? D? 3?曲轴正时齿轮一般是用( D )制造的。

第三章 配 气 机 构 习题四答案

第三章配气机构习题四 一、填空题 1.常用的气门间隙的调整方法有逐缸调整法和两次调整法。 2. 气门叠开角是进气提前角和排气延迟角之和。 3. 造成气门关闭不严的原因是凸轮轴与气门顶杆之间间隙过大、气门弹簧无力、气门导管间隙过大、和气门与气门坐圈之间变形或损坏。 4. 气门间隙两次调整法的实质是把发动机的曲轴摇转两次,就能把多缸发动机的所有气门全部检查调整好。 5.在装配曲轴和凸轮轴时,必须将正时标记对准以保证正确的配气正时和点火正时。 二、解释术语 1.配气相位: 进、排气门的实际开闭,用相对于上、下止点的曲轴转角来表示。 2.气门重叠: 在一段时间内进、排气门同时开启的现象。 3.进气迟关角:从排气门开启一直到活塞到达下止点所对应的曲轴转角。 三、判断题(正确打√、错误打×) 1.正时齿轮装配时,必须使正时标记对准。(√) 2.气门间隙的检查与调整是在气门完全打开,气门挺杆落至最低位置时进行的。( ) 3.在任何时候,发动机同一缸的进排气门都不可能同时开启。 ( × ) 4.曲轴正时齿轮是由凸轮轴正时齿轮驱动的。(×)凸轮轴正时齿轮是由曲轴正时齿轮驱动的 5.对于多缸发动机来说,各缸同名气门的结构和尺寸是完全相同的,所以可以互换使用。(×) 6.为了安装方便,凸轮轴各主轴径的直径都做成一致的。(×) 四、选择题 1. 常用的气门间隙调整方法有“逐缸调整法”和“两遍调整法”,其中,逐缸调整法就是依次将每个汽缸的活塞调整到( A ),并对该缸的进、排气门间隙进行调整的方法。 A、压缩行程上止点 B、排气行程上止点 C、压缩行程下止点 D、排气行程下止点 2. 调整顶置式气门间隙时,松开锁紧螺母,旋松调整螺钉,将厚薄规插入( C )之间,用平口起子调整间隙恰当后,固定并锁紧调整螺钉即可。 A、调整螺钉与推杆 B、推杆与挺柱 C、摇臂与气门杆 D、气门与气门杆 3.曲轴正时齿轮一般是用( D )制造的。 A.夹布胶木 B.铸铁 C.铝合金 D.钢 4.凸轮轴上凸轮的轮廓的形状决定于( B )。 A.气门的升程 B.气门的运动规律 C.气门的密封状况 D.气门的磨损规律 5.四冲程四缸发动机配气机构的凸轮轴上同名凸轮中线间的夹角是( C )。 A.180° B.60° C.90° D.120°

第三章配气机构解析

荆州职业技术学院汽车发动机构造与维修课程教案汽车检测与维修专业班级教师郑毅授课时间

荆州职业技术学院汽车发动机构造与维修课程教案汽车检测与维修专业班级教师郑毅授课时间

配气机构 3.1.1 配气机构的作用

其作用是根据发动机工作循环和点火次序,适时地开启和关闭各缸的进、排气门,使纯净空气或空气与燃油的混合气及时地进入气缸,废气及时地排出。 3.1.2 配气机构总体组成与工作原理 1.配气机构总体组成(以顶置双凸轮轴齿形皮带传动的配气机构(图3-11)为例) 气门组件(含进排气门、进排气门座、气门弹簧、气门锁夹、气门导管等) 气门驱动机构(液压挺柱) 凸轮轴 凸轮轴传动机构(含曲轴正时皮带轮、凸轮轴传动皮带轮、齿形皮带、张紧轮等) 2.配气机构工作原理 齿形皮带3带动进排气凸轮轴旋转,克服气门弹簧力作用压下进气门,进气门开启,开始进气。 各缸进、排气门开闭的时刻取决于各进、排气凸轮的相对位置及进排气凸轮轴与曲轴的相对位置。 3.1.3 配气机构的分类 1.按气门的布置位置分(侧置式、顶置式两种) 侧置式:气门布置在气缸的一侧。使燃烧室结构不紧凑,热量损失大,气道曲折,进气流通阻力大,从而使发动机的经济性和动力性变差,已被淘汰。 顶置式:气门布置在气缸盖上(图3-11)。 2. 按凸轮轴布置位置分(上置凸轮轴、中置凸轮轴、下置凸轮轴三种) (1)下置凸轮轴配气机构(图 图3-11 配气机构总体总成 1-曲轴正时皮带轮 2-中间轴正时皮带轮 3-齿形 皮带 4-张紧轮 5-凸轮轴传动皮带轮 6-进气凸轮轴 7-凸轮 8-液压挺柱 9-进气门组件 10-排气凸轮轴 11-排气门组件 图3-12 下置凸轮轴配气机构 1-凸轮轴 2-挺柱 3-推杆 4-摇臂轴 5-锁紧螺母 6-调整螺钉 7-摇臂 8-气门锁夹 9-气门弹簧座 10-气门弹簧 11-气门导管 12-气门 13-气门座 图3-13 中置凸轮轴配气机构 1-凸轮轴 2-挺柱 3-支架 4-调整螺钉 5-摇臂 6-摇臂轴 7-锁夹 8-气门弹簧座 9-气门弹簧 10-气门导 管 11-气门

第三章 配气机构

第三章配气机构 一. 选择题: 1. 四冲程内燃机,曲轴与凸轮轴的传动比为() a. 1:2 b. 1/1 c. 2/1 d. 1/4 2. 若气门间隙过大时,则气门开启量()。 a. 不变 b. 变小 c. 变大 3. 四冲程发动机在实际工作中,进排气门持续开启时间对应的凸轮轴转角()。 a. 大于90 ° b. 等于90 ° c. 小于90 ° 4. 关于可变气门正时错误的说法是:()。 a. 气门升程上可变的 b. 气门打开的周期是固定的 c. 在低转速可或得最大转矩 d. 每套进气门和排气门有三个凸轮 5. 四冲程发动机同一汽缸的进排凸轮之间的夹角一般为()。 a. 等于90 ° b. 大于 90 c. 小于90 °

d. 等于180 ° 6. 气门的升程取决于()。 a. 凸轮轴转速 b. 凸轮轮廓的形状 c. 气门锥角 d. 配气相位 7. 顶置式配气机构的气门间隙是指()之间的间隙。 a. 摇臂与推杆; b. 摇臂与气门; c. 挺杆与气门; d. 推杆与气门 8. 气门重叠角是()的和。 a. 进气门早开角与进气门晚关角 b. 进气门早开角与排气门早开角 c. 进气门晚开角与排气门晚关角 d. 排气门早开角与排气门晚关角 9. 气门的()部位与气门座接触。() a. 气门杆 b. 气门锥面 c. 气门侧面 d. 气门导管 10. 当机油泄漏到排气流中时,说明气门的以下哪个部分磨损了 ? () a. 气门导管 b. 气门头部

c. 气门座 d. 气门弹簧 11. 液力挺柱在发动机温度升高后,挺柱有效长度()。 a. 变长 b. 变短 c. 保持不变 d. 依机型而定,可能变长也可能变短。 12. 排气门在活塞位于()开启。 a. 作功行程之前 b. 作功行程将要结束时 c. 进气行程开始前 d. 进气行程开始后 13. 使用四气门发动机的原因是:() a. 可使更多的燃油和空气进入发动机 b. 可得到更好的润滑 c. 使发动机预热的更快 d. 使发动机冷却的更快 14. 采用双气门弹簧或变螺矩弹簧的主要作用是:() a. 提高弹簧的疲劳强度 b. 防止气门弹簧产生共振 c. 提高弹簧的使用寿命 d. 防止弹簧折断 15. 安装曲轴正时齿轮和凸轮轴正时齿轮时,应注意: ( ) a. 总是按照制造厂的规范对齐正时

发动机第三章-配气机构

第一节 配气机构的功用及组成 第二节 配气定时及气门间隙 第三节 气门组 第四节 气门传动组 思考题 1、试比较凸轮轴下置式、中置式和上置式配气机构的优缺点及其各自的应用范围。 2、进、排气门为什么要早开晚关? 3、为什么在采用机械挺柱的配气机构中要预留气门间隙?怎样调整气门间隙?为什么采用液力挺柱或气门间隙补偿器的配气机构可以实现零气门间隙? 4、如何根据凸轮轴判定发动机工作顺序? 5、如何确定异名凸轮的相对角位置? 6、试述两种可变配气定时机构的工作原理及其各自的优缺点。 目前,四冲程汽车发动机都采用气门式配气机构。其功用是按 照发动机的工作顺序和工作循环的要求,定时开启和关闭各缸的 进、排气门,使新气进入气缸,废气从气缸排出。 进入气缸内的新气数量或称进气量对发动机性能的影响很大。 进气量越多,发动机的有效功率和转矩越大。因此,配气机构首先 要保证进气充分,进气量尽可能的多;同时,废气要排除干净,因 为气缸内残留的废气越多,进气量将会越少。

第一节 配气机构的功用及组成 气门式配气机构由气门组和气门传动组两部分组成,每组的零件组成则与气门的位置、凸轮轴的位置和气门驱动形式等有关。现代汽车发动机均采用顶置气门,即进、排气门置于气缸盖内,倒挂在气缸顶上。 凸轮轴的位置有下置式、中置式和上置式3种。  一、凸轮轴下置式配气机构 凸轮轴置于曲轴箱内的配气机构为凸轮轴下置式配气机构。 其中气门组零件包括气门、气门座圈、气门导管、气门弹簧、气门弹簧座和气门锁夹等;气门传动组零件则包括凸轮轴、挺柱、推杆、摇臂、摇臂轴、摇臂轴座和气门间隙调整螺钉等。 下置凸轮轴由曲轴定时齿轮驱动。发动机工作时,曲轴通过定时齿轮驱动凸轮轴旋转。当凸轮的上升段顶起挺柱时,经推杆和气门间隙调整螺钉推动摇臂绕摇臂轴摆动,压缩气门弹簧使气门开启。当凸轮的下降段与挺柱接触时,气门在气门弹簧力的作用下逐渐关闭。

第三章 配气机构

第三章配气机构 第一节概述 一功用: 按照柴油机各缸工作循环的需要,定时地开启和关闭进、排气门,使新鲜空气及时进入汽缸、废气及时排出汽缸。 要求:进气充分、排气彻底、相位准确、密封可靠。 二、分类: 根据气门的安装位置,气门—凸轮式配气机构可分为顶置气门式和侧置气门式两种,而公路工程机械用柴油机多采用顶置气门式配气机构。 三、结构介绍 1、顶置气门式:气门布置在气缸盖上,凸轮轴一般布置在上曲轴箱上。 (1)组成:分为气门组、传动组;气门组包括气门、气门导管、气门弹簧、气门弹簧座、气门锁片等零件;传动组包括摇臂、摇臂轴及其支架、调整螺钉、推杆、挺杆、凸轮轴、凸轮轴正时齿轮等零件。(2)工作过程:当汽缸的工作循环需要将气门打开进行换气时,由曲轴通过正时齿轮驱动凸轮轴旋转,使凸轮轴上的凸轮凸起部分通过挺柱、推杆、调整螺钉推动摇臂摆转,摇臂的另一端便向下推开气门,同时使气门弹簧进一步压缩。凸轮的凸起部分的顶点转过挺柱后便逐渐减小了对挺柱的推力,气门在其弹簧张力的作用下开度逐渐减小,直至最后关闭,进气或排气过程即告结束。压缩和作功冲程中气门在

其弹簧张力作用下严密关闭,使汽缸密闭。 2、侧置气门式 气门顺装在气缸体的一侧,凸轮轴只能下置,由挺杆直接驱动气门,由于气门偏置于气缸的一侧,燃烧室结构不紧凑,散热损失大,热效率低,多不采用。四、气门间隙 1、定义:柴油机冷态装配时,在气门与其传动机构中留有适当的间隙,称气门间隙。 2、原因:补偿气门受热后的膨胀量。 3、影响: 气门间隙过小,柴油机在热态下可能因气门关闭不严而发生漏气,导致气门烧坏。 气门间隙过大,则使传动零件之间以及气门和气门座之间产生撞击响声并加速磨损。同时,也会使气门开启的持续时间减少,汽缸的充气以及排气效果变坏。 4、调整: (1)调整时刻:气门完全关闭时,即挺柱与凸轮基圆弧接触,传动组位于最低位置时。 (2)调整位置: (3)调整方法: 第二节:配气相位 一、概念:用曲轴转角表示的进、排气门开闭时刻和开启持续时间称为配气相位。

第三章 配 气 机 构 习题三答案汇编

第三章配气机构习题三答案

第三章配气机构习题三 一、填空题 1.气门弹簧座一般是通过锁块或锁销固定在气门杆尾端的。 2.摇臂通过衬套空套在摇臂轴上,并用弹簧防止其轴向窜动。 3.采用双气门弹簧时,双个弹簧的旋向必须相反。 4.气门间隙过大,气门开启时刻变晚,关闭时刻变早;气门间隙过小,易使气门关闭不严,造成漏气。 5.充气效率越高,进入气缸内的新鲜气体的量就越多,发动机所发出的功率就越高。 6.凸轮轴上同一气缸的进、排气凸轮的相对角位置与既定的配气相位相适应。 7.汽油机凸轮轴上的斜齿轮是用来驱动分电器和机油泵的。而柴油机凸轮轴上的斜齿轮只是用来驱动的机油泵。 二、解释术语 1.气门锥角: 气门密封锥面的锥角。 2.充气效率:实际进入气缸的新鲜充量与在进气状态下充满气缸容积的新鲜充量之比。 三、判断题(正确打√、错误打×) 1. 进气门头部直径通常比排气门的大,而气门锥角有时比排气门的小。( √ ) 2. 凸轮轴的转速比曲轴的转速快一倍。( × ) 3. 采用液力挺柱的发动机其气门间隙等于零。( √ ) 4. 挺柱在工作时既有上下运动,又有旋转运动。( √ )

5. 气门的最大升程和在升降过程中的运动规律是由凸轮转速决定的。( × ) 6. 凸轮轴的轴向窜动可能会使配气相位发生变化。( √ ) 四、选择题 1.摇臂的两端臂长是(B)。 A、等臂的 B、靠气门端较长 C、靠推杆端较长 2.CA6102发动机的进、排气门锥角是(B)。 A、相同的 B、不同的 3.一般发动机的凸轮轴轴颈是(B)设置一个。 A、每隔一个气缸 B、每隔两个气缸 4.下述各零件中不属于气门传动组的是(A )。 A.气门弹簧 B.挺住 C.摇臂 D.凸轮轴 5.气门间隙过大,发动机工作时(B)。 A.气门早开 B.气门迟开 C.不影响气门开启时刻 6.气门的升程取决于(A)。 A.凸轮的轮廓 B.凸轮轴的转 速 C.配气相位 7.发动机一般排气门的锥角较大,是因为(A)。 A.排气门热负荷大 B.排气门头部直径 小 C.配气相位的原因 8.下面哪种凸轮轴布置型式最适合于高速发动机( B )。

第三章 配气机构

第三章配气机构 第一节概述 1.功用: 配气机构是进、排气管道的控制机构,它按照气缸的工作顺序和工作过程的要求,准时地开闭进、排气门、向气缸供给可燃混合气(汽油机)或新鲜空气(柴油机)并及时排出废气。另外,当进、排气门关闭时,保证气缸密封。进气充分、排气彻底,四行程发动机都采用气门式配气机构。 2.充气效率 新鲜空气或可燃混合气被吸入气缸愈多,则发动机可能发出的功率愈大。新鲜空气或可燃混合气充满气缸的程度,用充气效率表示。越高,表明进入气缸的新气越多,可燃混合气燃烧时可能放出的热量也就越大,发动机的功率越大。 3. 型式 (1)(1)气门布置方式(如图3-1) 气门位于气缸盖上称为气门顶置式配气机构,由凸轮、挺柱、推杆、摇臂、气门和气门弹簧等组成。其特点,进气阻力小,燃烧室结构紧凑,气流搅动大,能达到较高的压缩比,目前国产的汽车发动机都采用气门顶置式配气机构。 气门位于气缸体侧面称为气门侧置式配气机构,由凸轮、挺柱、气门和气门弹簧等组成。省去了推杆、摇臂等零件,简化了结构。因为它的进、排气门在气缸的一侧,压缩比受到限制,进排气门阻力较大,发动机的动力性和高速性均较差,逐渐被淘汰。

图3-1 (2) 凸轮轴布置方式(如图3-2) 凸轮轴下置式,主要缺点是气门和凸轮轴相距较远,因而气门传动另件较多,结构较复杂,发动机高度也有所增加。 凸轮轴中置,凸轮轴位于气缸体的中部由凸轮轴经过挺柱直接驱动摇臂,省去推杆,这种结构称为凸轮轴中置配气机构。凸轮轴上置,凸轮轴布置在气缸盖上。 凸轮轴上置有两种结构,一是凸轮轴直接通过摇臂来驱动气门,这样既无挺柱,又无推杆,往复运动质量大大减小,此结构适于高速发动机。另一种是凸轮轴直接驱动气门或带液力挺柱的气门,此种配气机构的往复运动质量更小,特别适应于高速发动机。

第三章 配气机构

第三章配气机构 1、教学目的: 熟练掌握配气机构的组成与布置形式,配气相位的意义和作用;掌握气门弹簧的共振避免措施,了解各零部件的功用。 2、教学内容: (1)配气机构的功用及结构 (2)配气相位 (3)气门组 (4)气门传动组 3、教学方法: 课堂教学、作业练习、课后答疑 4、教学过程: 一、配气机构的功用和组成 1、功用 根据每一气缸内所进行的工作循环和点火顺序的要求,定时打开和关闭各缸的进排气门,使新气及时进入气缸和废气及时排出气缸,使换气过程最佳。 2、充气效率 配气机构应使发动机在各种工况下工作时获得最佳的进气量,以保证发动机在各种工况下工作时发出最好的性能。发动机在全负荷下工作时,需获得最大功率和转矩,这就要求在此工况下,配气机构应保证获得最大进气充量。吸入的进气越多,发动机发出的功率和转矩越大。 进气充满气缸的程度,常用充气效率(也称充气系数)ηv表示。即: ηv= M/Mo 式中 M ——进气过程中,实际充入气缸的进气量;Mo——在进气状态下充满气缸工作容积的进气量。 一般情况下发动机充气效率ηv总是小于1的。 ηv的大致范围是:四冲程汽油机 0.7~ 0.85; 四冲程非增压柴油机 0.75~ 0.90; 四冲程增压柴油机 0.90~ 1.05。 影响充气效率ηv的主要因素有:①进气终了时的气缸压力;②进气终了时的气

缸内温度;③上一循环残留在气缸内的高温废气。提高充气效率的措施是:①减少进气门处的流动损失;②减少整个进气管道的流通阻力;③减少对空气(或混合气的)热传导;④减少排气系统对气流的阻力;⑤合理选择配气相位。充气效率越高,表明充入气缸的新鲜气量越多,燃烧后放出的热量越多,发动机发出的功率就越大。 3、组成与工作原理 (1)配气机构的形式 配气机构常见的有两种形式: 一是气门式配气机构,它由凸轮驱动,通过传动机构来控制进排气门开闭,这是四冲程发动机最常用的一种机构。 另一种是气孔式配气机构,它是在气缸套中间开有进、排气孔,通过活塞位移来控制进、排气过程,常用于二冲程发动机。 (2)气门式配气机构的组成与形式 四冲程气门式配气机构由气门组和气门传动组组成。 气门式配气机构按照气门的布置形式分为三种:侧置气门、混合气门和顶置气门式配气机构。前两种布置形式在轿车发动机中已被淘汰,现代轿车发动机已全都采用顶置气门布置形式(图3-1)。货车和客车也大多采用这种形式。 图3-1 图3-2 图3-3 工作原理:发动机工作时,曲轴通过正时齿轮驱动凸轮轴旋转。当凸轮轴转到凸轮的凸起部分顶起挺柱时,通过推杆和调整螺钉使摇臂绕摇臂轴摆动,压缩气门弹簧,使气门离座,即气门开启。当凸轮凸起部分离开挺柱后,气门便在气门弹簧力作用下上升而落座,即气门关闭。四冲程发动机每完成一个工作循环,曲轴旋转两周,各缸的进、排气门各开启一次,此时凸轮轴只旋转一周。因此曲轴与凸轮轴之比(即传

相关文档