文档库 最新最全的文档下载
当前位置:文档库 › 基因组学课件-microRNA-2011-11-9[1]

基因组学课件-microRNA-2011-11-9[1]

microRNA的基因组学研究技术与应用

北京基因组研究所

米双利研究员

2011-11-9

microRNA

?microRNA(miRNA)是一类广泛存在于生物体中的非编码、小分子、单链RNA,大约含有18-25nt,能够结合在靶基因3’UTR 区,通过降解mRNA、影响mRNA的稳定性或抑制蛋白合成,在转录后水平上调控靶基因的表达。

小分子非编码RNA

?Small noncoding RNA,包括:

–miRNA(microRNA);

–siRNA(small interfering RNA);

–piRNA(piwi-interacting RNA);

–esiRNA(Endoribonuclease-prepared siRNAs)–等等

miRNA的发现

RNAi

?1998年2月,华盛顿卡耐基研究院的Andrew Fire 和马萨诸塞大学癌症中心的Craig Mello发现RNAi 现象。2006年获得诺贝尔医学/生理学奖。

miRNA的发现

线虫

秀丽隐杆线虫Caenorhabditis elegans,3d L1-L4, 2-3w, 2n=12, genome 8x107bp, 13500 genes. 1965, 1998 sequencing,2002

Sydney Brenner, John Sulston, H. Robert Horvitz

miRNA的发现

?1993年,哈佛大学Rosalind C. Lee 、Rhonda L. Feinbaum和Victor Ambros等人发现在线虫体内存在一种RNA(lin-4),不编码蛋白,但可以生成一对小的RNA转录本,每一个转录本能在翻译水平通过抑制核蛋白lin-14的表达而调节了线虫的幼虫发育进程,在第一幼虫阶段的末期降低lin-14的表达将启动发育进程进入第二幼虫阶段。

?lin-14的mRNA的3’UTR区独特的重复序列和lin-4之间有部分的序列互补。

?Lee, RC; Feinbaum, RL; Ambros, V (1993). "The C. Elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14". Cell 75 (5): 843–54.

?7年后(2000年),Gary Ruvkun实验室又在线虫中发现了第二个miRNA—let-7,let-7相似于lin-4,同样可以调节线虫的发育进程,控制线虫由晚期幼虫向成虫的转化。

?在众多生物体如病毒、家蚕和灵长类动物中发现了上千种miRNAs。

?被鉴定的miRNAs均被miRBase网站整理并加以注释(https://www.wendangku.net/doc/d912097253.html,)。(2011-11-3,miRBase18)

microRNA的广泛性?18226 precursor miRNA, 21643 mature miRNA, 168 species, 1527 in human.?1.RNAi

?2.在线虫,果蝇等生物中

?3.植物miRNA的研究

?4.在人的生理功能、重大疾病特别是癌症中miRNA作用的研究

?5.病毒miRNA

microRNA的广泛性

?序列在物种之间相对保守,预示功能的保守性。

?miRNA占动物基因总数的1%~5%,并且动物体内20%~30%的基因受到miRNA的调控。因此, miRNA是生物体内最丰富最重要的一类基因调控因子。

?一个miRNA参与了数百个靶mRNA 的调控同时一个mRNA的表达受到多个miRNA的调节, 它们之间的组合大大地增加了基因调控网路的复杂性。

microRNA secondary structure

Lau N.C. 2001 Science 294:858

miRNA的生物起源

He L and Hannon GJ. 2004

miRNA的生物起源

An Example from TargetScan 5’---AUUGGGUCUAUGUAC UUCUUU AG---3’3’UUCGGGUUUUCCCUCUU AAGAAA C

TOMM22 3’UTR Hsa-miR-186

miRNA的命名

?(1) 不同物种中同源的miRNA尽量用同一个名字;

?(2) miRNA简写成miR-No.,它的前体基因简写成mir-No.;

–miR-123, mir-123

?(3) 高度同源的miRNA在其No. 后加英文字母(小写,一般从a开始);

–miR-18a, miR-18b

?(4) 多基因拷贝的再在后面加-No.;

–has-mir-194-1, has-mir-194-2, ?miR-194

?(5) 如果一个前体的2个臂分别产生1个miRNA,则根据克隆实验,分为主要产物和次要产物,在次要产物后面加“*”号;

–miR-56 和miR-56* (*表示量少的);

?(6) 如果不能区分表达量,则根据microRNA来自前体5’端的臂或3’端的臂命名;

–miR-142-5p和miR-142-3p。

?(7) 2008年以来,倾向于取消(5),仅采用(6)来区分两条链上的miRNA。

miRNA的作用机制

?1. miRNA翻译起始抑制机制

?目前主要有3 种观点:

–miRNA可能通过抑制全能性核糖体的组装而阻

断翻译起始。

–miRNA抑制要求靶mRNA m7G 帽子的存在, 认

为miRISC可能抑制翻译起始复合物的形成。

–miRNA还可能通过阻止polyA结合蛋白poly A

binding protein (PABP), 与mRNA 结合影响翻译起始。

miRNA的作用机制

?2. miRNA翻译起始后抑制

?miRNA可能引起新生多肽链的翻译同步降解。

?在翻译延伸过程中, miRNA引发大量的核糖体脱落及高频次的翻译提前终止。

miRNA的作用机制

?3. miRNA介导mRNA降解

–Ago蛋白定位于细胞中降解mRNA的RNA颗粒

(RNA granules), 如P 小体(processing bodies)

中, 这些RNA颗粒中包含常规的mRNA 降解酶, 如脱腺嘌呤酶、脱帽酶、核酸外切酶等, 提示

这些mRNA 降解酶可能参与miRNA介导的

mRNA 降解。

–Ago家族蛋白有多种异构体,其中一些成员的

内切酶活性可能协助miRNA对mRNA降解。

miRNA的作用机制

?4. RNA 颗粒扣押、降解或储存靶mRNA?

–胞浆的RNA 颗粒, 如P 小体和SG(Stress

Granules)颗粒, 在转录后水平的基因表达调控中具有重要的作用, 它们是细胞储存处于翻译

抑制状态mRNA的场所。

miRNA的作用机制

?5. miRNA正调控和去抑制

?个别研究表明,在静态细胞中(G0 期), miRNA活化翻译和上调基因表达, 而在其他细胞循环/增殖期则继续发挥抑制作用。?在一些条件下,miR-10a 也正调控基因表达。

–结合在5’UTR

?miRNA的抑制作用是可逆的。

?mRNA逃避抑制。

–3’UTR保守性缩短。

第八章分子生物学常用技术的原理及其应用及人类基因组学

第八章分子生物学常用技术的原理及其应用及人类基因组学 测试题 一、名词解释 1.分子杂交 2.Southernblotting 3.Northernblotting 4.Westernblotting 5.dotblotting 6.DNA芯片技术 7.PCR 8.功能性克隆 9.转基因技术 二、填空题 1.Southernblotting用于研究、Northernblotting用于研究,Westernblotting用于研究。 2.PCR的基本反应步骤包括、和三步。 3.在PCR反应体系中,除了DNA模板外,还需加入、、和。 4.Sange法测序的基本步骤包括、、和。 5.目前克隆致病相关基因的主要策略有、、。 6.血友病第Ⅷ因子基因的首次克隆成功所采用的克隆策略是,而DMD致病基因的克隆所采用的克隆策略是。 三、选择题 A型题 1.经电泳分离后将RNA转移到硝酸纤维素(NC)膜上的技术是: A.SouthernblottingB.Northernblotting

C.WesternblottingD.dotblotting E.insituhybridization 2.不经电泳分离直接将样品点在NC膜上的技术是 A.SouthernblottingB.Northernblotting C.WesternblottingD.Dotblotting E.insituhybridization 3.经电泳分离后将蛋白质转移到NC膜上的技术是 A.SouthernblottingB.Northernblotting C.WesternblottingD.dotblotting E.insituhybridization 4.经电泳后将DNA转移至NC膜上的技术是A.SouthernblottingB.Northernblotting C.WesternblottingD.Easternblotting E.insituhybridization 5.PCR的特点不包括 A.时间短,只需数小时B.扩增产物量大 C.只需微量模板D.用途非常广泛 E.底物必须标记 6.用于PCR的DNA聚合酶必须 A.耐热B.耐高压C.耐酸D.耐碱E.耐低温7.PCR反应过程中,模板DNA变性所需温度一般是A.95?CB.85?CC.75?CD.65?CE.55?C 8.PCR反应过程中,退火温度一般是 A.72?CB.85?CC.75?CD.65?CE.55?C 9.PCR反应过程中,引物延伸所需温度一般是A.95?CB.82?CC.72?CD.62?CE.55?C

生物信息学试题整理

UTR的含义是(B ) A.编码区 B. 非编码区 C. motif的含义是(D )。 A.基序 B. 跨叠克隆群 C. algorithm 的含义是(B )。 A.登录号 B. 算法 C. RGR^ (D )。 A.在线人类孟德尔遗传数据 D.水稻基因组计划 下列Fasta格式正确的是(B) 低复杂度区域 D. 幵放阅读框 碱基对 D. 结构域 比对 D. 类推 B. 国家核酸数据库 C. 人类基因组计划 A. seql: agcggatccagacgctgcgtttgctggctttgatgaaaactctaactaaacactccctta B. >seq1 agcggatccagacgctgcgtttgctggctttgatgaaaactctaactaaacactccctta C. seq1:agcggatccagacgctgcgtttgctggctttgatgaaaactctaactaaacactccctta D. >seq1agcggatccagacgctgcgtttgctggctttgatgaaaactctaactaaacactccctta 如果我们试图做蛋白质亚细胞定位分析,应使用(D) A. NDB 数据库 B. PDB 数据库 C. GenBank 数据库 D. SWISS-PROT 数

据库 Bioinformatics 的含义是(A )。 A. 生物信息学 B. 基因组学 C. 蛋白质组学 D. 表观遗传学 Gen Bank中分类码PLN表示是(D )。 A.哺乳类序列 B. 细菌序列 C.噬菌体序列 D. 植物、真菌和藻类序列 ortholog 的含义是(A)0 A.直系同源 B.旁系同源 C.直接进化 D.间接进化 从cDNA文库中获得的短序列是(D )o A. STS B. UTR C. CDS D. EST con tig的含义是(B )o A.基序 B. 跨叠克隆群 C. 碱基对 D. 结构域 TAIR (AtDB)数据库是(C)o A.线虫基因组 B. 果蝇基因组 C. 拟南芥数据库 D. 大肠杆菌基因组ORF的含义是(D )o A.调控区 B. 非编码区 C.低复杂度区域 D. 幵放阅读框

基因组学重点整理

生物五界:动物、植物、真菌、原生生物和原核生物;生物三界:真细菌、古细菌、真核生物 具有催化活性的RNA分子称为核酶(ribozyme)核酶催化的生化反应有:自我剪接、催化切断其它RNA、合成多肽键、催化核苷酸的合成 新基因的产生:基因与基因组加倍1)整个基因组加倍;2)单条或部分染色体加倍;3)单个或成群基因加倍。DNA水平转移:原核生物中的DNA水平转移可通过接合转移,噬菌体转染,外源DNA的摄取等不同途径发生,水平转移的基因大多为非必须基因。动物中由于种间隔离不易进行种间杂交,但其主要来源于真核细胞与原核细胞的内共生。动物种间基因转移主要集中在逆转录病毒及其转座成分。 外显子洗牌与蛋白质创新:产生全新功能蛋白质的方式有二种:功能域加倍,功能域或外显子洗牌 基因冗余:一条染色体上出现一个基因的很多复份(复本)当人们分离到某一新基因时,为了鉴定其生物学功能,常常使其失活,然后观察它们对表型的影响。许多场合,由于第二个重复的功能基因可取代失活的基因而使突变型表型保持正常。这意味着,基因组中有冗余基因存在。看家基因很少重复,它们之间必需保持剂量平衡,因此重复的拷贝很快被淘汰。与个体发育调控相关的基因表达为转录因子,具有多功能域的结构。这类基因重复拷贝变异可使其获得不同的表达控制模式,促使细胞的分化与多样性的产生,并导致复杂形态的建成,具有许多冗余基因。 非编码序列扩张方式:滑序复制、转座因子 模式生物海胆、果蝇、斑马鱼、线虫、蟾蜍、小鼠、酵母、水稻、拟南芥等。模式生物基因组中G+C%含量高, 同时CpG 岛的比例也高。进化程度越高, G+C 含量和CpG 岛的比例就比较低 如果基因之间不存在重叠顺序,也无基因内基因(gene-within-gene),那么ORF阅读出现差错的可能只会发生在非编码区。细菌基因组中缺少内含子,非编码序列仅占11%, 对阅读框的排查干扰较少。细菌基因组的ORF阅读相对比较简单,错误的机率较少。高等真核生物DNA的ORF阅读比较复杂:基因间存在大量非编码序列(人类占70%);绝大多数基因内含有非编码的内含子。高等真核生物多数外显子的长度少于100个密码子 内含子和外显子序列上的差异:内含子的碱基代换很少受自然选择的压力,保留了较多突变。由于碱基突变趋势大多为C-T,故A/T的含量内含子高于外显子。由于终止密码子为TAA\TAG\TGA,如果以内含子作为编码序列,3种读码框有很高比例的终止密码子。 基因注释程序编写的依据:1)信号指令,包括起始密码子,终止密码子,终止信号,剪接受体位和供体位,多聚嘧啶序列,分支点保守序列2)内容指令,密码子偏好,内含子和外显子长短 基因功能的检测:基因失活、基因过表达、RNAi干涉 双链DNA的测序可从一端开始,亦可从两端进行,前者称单向测序,后者称双向测序。 要获得大于50 kb的DNA限制性片段必需采用稀有切点限制酶。 酵母人工染色体(YAC)1)着丝粒在细胞分裂时负责染色体均等分配。2)端粒位于染色体端部的特异DNA序列,保持人工染色体的稳定性3)自主复制起始点(ARS)在细胞中启动染色体的复制 合格的STS要满足2个条件:它应是一段序列已知的片段,可据此设计PCR反应来检测不同的DNA片段中是否存在这一顺序;STS必需在染色体上有独一无二的位置。如果某一STS在基因组中多个位点出现,那么由此得出的作图数据将是含混不清的。 遗传图绘制主要依据由孟德尔描述的遗传学原理,第一条定律为等位基因随机分离,第二条定律为非等位基因自由组合,显隐性规律/不完全显性、共显性、连锁 衡量遗传图谱的水平覆盖程度饱和程度 基因类型:transcribed, translatable gene (蛋白基因) ;transcribed but non-translatable gene ( RNA基因)Non- transcribed, non-translatablegene ( promoter, operator ) rRNA基因,tRNA基因, scRNA基因, snRNA基因, snoRNA基因, microRNA基因 基因组(genome):生物所具有的携带遗传信息的遗传物质总和。 基因组学(genomic):用于概括涉及基因作图、测序和整个基因功能分析的遗传学分支。 染色体组(chromosome set):不同真核生物核基因组均由一定数目的染色体组成,单倍体细胞所含有的全套染色体。 比较基因组学(comparative genomics):比较基因组学是基因组学与生物信息学的一个重要分支。通过模式生物基因组与人类基因组之间的比较与鉴别,为分离重要的候选基因,预测新的基因功能,研究生物进化提供依据。(目标)

基因组学的研究内容

基因组学的研究内容 结构基因组学: 基因定位;基因组作图;测定核苷酸序列 功能基因组学:又称后基因组学(postgenomics基因的识别、鉴定、克隆;基因结构、功能及其相互关系;基因表达调控的研究 蛋白质组学: 鉴定蛋白质的产生过程、结构、功能和相互作用方式 遗传图谱 (genetic map)采用遗传分析的方法将基因或其它dNA序列标定在染色体上构建连锁图。 遗传标记: 有可以识别的标记,才能确定目标的方位及彼此之间的相对位置。 构建遗传图谱 就是寻找基因组不同位置上的特征标记。包括: 形态标记; 细胞学标记; 生化标记;DNA 分子标记 所有的标记都必须具有多态性!所有多态性都是基因突变的结果! 形态标记: 形态性状:株高、颜色、白化症等,又称表型标记。 数量少,很多突变是致死的,受环境、生育期等因素的影响 控制性状的其实是基因,所以形态标记实质上就是基因标记。

细胞学标记 明确显示遗传多态性的染色体结构特征和数量特征 :染色体的核型、染色体的带型、染色 体的结构变异、染色体的数目变异。优点:不受环境影响。缺点:数量少、费力、费时、对生物体的生长发育不利 生化标记 又称蛋白质标记 就是利用蛋白质的多态性作为遗传标记。 如:同工酶、贮藏蛋白 优点: 数量较多,受环境影响小 ?

缺点: 受发育时间的影响、有组织特异性、只反映基因编码区的信息 DNA 分子标记: 简称分子标记以 DNA 序列的多态性作为遗传标记 优点: ? 不受时间和环境的限制 ? 遍布整个基因组,数量无限 ?

不影响性状表达 ? 自然存在的变异丰富,多态性好 ? 共显性,能鉴别纯合体和杂合体 限制性片段长度多态性(restriction fragment length polymorphism , RFLP ) DNA 序列能或不能被某一酶酶切,

基因组考研试题及答案解析(华东师范大学)

第一章基因组学 1、学习基因组学所面临的挑战和意义? 全面鉴定人类基因组所编码的结构和功能成分;发展对人类基因组的可遗传变异的详细理解;发展基于基因组学的方法来预测疾病的敏感性和药物反应,疾病的早期检验,以及疾病的分子分类;应用新的基因和代谢通路的知识开发有效的、新的疾病治疗方法发展;理解物种间的进化变异及其机制;关键农作物基因的克隆和功能验证;基于基因组的工具来提高农作物产量,解决世界粮食危机及全球温饱问题。 2、DNA作为遗传物质的优点? 信息量大,集成度高;碱基互补配对,保证精确复制;核糖2’碳位脱氧,在水溶液中稳定 性好;以T取代U,没有C脱氨变U的危险。 3、证明DNA双螺旋的证据? 各种生物物理证据;X射线衍射图谱;碱基比例;模型构建。 4、DNA、RNA的两个重要化学差异有哪些? 碱基组成;链数。 5、原核、真核生物基因组的不同点? 原核生物:基因组为环状双链DNA分子;只有一个复制起始点;具有操纵子结构:指数个功能上相关的基因串联在一起,连同上游的调控区和下游的转录终止信号构成基因的表达单位:一般无重叠基因;基因是连续的,无内含子;编码区在基因组中的比例;基因组中重复 序列很少;具有编码同工酶的基因(isogene):同工酶是指具有相同催化功能而化学结构不 同的酶,它受一个或几个基因座等位基因;分子中有多功能识别区域复制、转录起始区复制、转录终止区 真核生物:体细胞: 两套基因组(二倍体细胞)性细胞: 一套基因组(单倍体细胞);基因组结构复杂,数目庞大, 多个复制起始点;mRNA为单顺反子:真核基因转录产物为单顺反子,即一种基因编码一种多肽链或RNA链,每个基因转录有各自的调节元件;含大量重复 序列;非编码序列占90%以上;基因间有间隔区(spacer DNA),基因为断裂基因(split gene) 即内含子,外显子;功能相关的基因串联在一起形成基因家族 7、真核生物染色体三大要素及功能? 着丝粒:控制细胞分裂时染色体的取向和移动;端粒:防止染色体末端粘连,保证DNA长度稳定;复制原点:起始DNA复制。 8、染色体末端的端粒为什么很重要? 维持染色体结构的完整性,防止染色体被核酸酶降解及染色体间相互融和;防止染色体结构基因在复制时丢失,解决了末端复制的难题。 9、人类基因组中存在哪些类型的重复DNA? 串联重复基因: 6、简述DNA组成基因的两个重要实验? 第二章基因组的复制 1、在Meselson-Stahl的实验前,我们不知道DNA复制是“弥散型”“半保留型”或“全保留型”,描述经几种不同方式复制,子代分子DNA中DNA的区别? 2、什么是半不连续复制模型? 前导链(leading strand):以5’-3’方向连续合成的DNA 链 滞后链(lagging strand):总体上沿着3’到5’方向延伸,但以小片段形式(5¢-3¢)不连续合成,最后共价连接起来 3、为什么需要RNA引物来引发DNA复制呢? (1)RNA引物可以提供3’-OH末端作合成新DNA链起点。

高通量测序生物信息学分析(内部极品资料,初学者必看)

基因组测序基础知识 ㈠De Novo测序也叫从头测序,是首次对一个物种的基因组进行测序,用生物信息学的分析方法对测序所得序列进行组装,从而获得该物种的基因组序列图谱。 目前国际上通用的基因组De Novo测序方法有三种: 1. 用Illumina Solexa GA IIx 测序仪直接测序; 2. 用Roche GS FLX Titanium直接完成全基因组测序; 3. 用ABI 3730 或Roche GS FLX Titanium测序,搭建骨架,再用Illumina Solexa GA IIx 进行深度测序,完成基因组拼接。 采用De Novo测序有助于研究者了解未知物种的个体全基因组序列、鉴定新基因组中全部的结构和功能元件,并且将这些信息在基因组水平上进行集成和展示、可以预测新的功能基因及进行比较基因组学研究,为后续的相关研究奠定基础。 实验流程: 公司服务内容 1.基本服务:DNA样品检测;测序文库构建;高通量测序;数据基本分析(Base calling,去接头, 去污染);序列组装达到精细图标准 2.定制服务:基因组注释及功能注释;比较基因组及分子进化分析,数据库搭建;基因组信息展 示平台搭建 1.基因组De Novo测序对DNA样品有什么要求?

(1) 对于细菌真菌,样品来源一定要单一菌落无污染,否则会严重影响测序结果的质量。基因组完整无降解(23 kb以上), OD值在1.8~2.0 之间;样品浓度大于30 ng/μl;每次样品制备需要10 μg样品,如果需要多次制备样品,则需要样品总量=制备样品次数*10 μg。 (2) 对于植物,样品来源要求是黑暗无菌条件下培养的黄化苗或组培样品,最好为纯合或单倍体。基因组完整无降解(23 kb以上),OD值在1.8~2.0 之间;样品浓度大于30 ng/μl;样品总量不小于500 μg,详细要求参见项目合同附件。 (3) 对于动物,样品来源应选用肌肉,血等脂肪含量少的部位,同一个体取样,最好为纯合。基因组完整无降解(23 kb以上),OD值在1.8~2.0 之间;样品浓度大于30 ng/μl;样品总量不小于500 μg,详细要求参见项目合同附件。 (4) 基因组De Novo组装完毕后需要构建BAC或Fosmid文库进行测序验证,用于BAC 或Fosmid文库构建的样品需要保证跟De Novo测序样本同一来源。 2. De Novo有几种测序方式 目前3种测序技术 Roche 454,Solexa和ABI SOLID均有单端测序和双端测序两种方式。在基因组De Novo测序过程中,Roche 454的单端测序读长可以达到400 bp,经常用于基因组骨架的组装,而Solexa和ABI SOLID双端测序可以用于组装scaffolds和填补gap。下面以solexa 为例,对单端测序(Single-read)和双端测序(Paired-end和Mate-pair)进行介绍。Single-read、Paired-end和Mate-pair主要区别在测序文库的构建方法上。 单端测序(Single-read)首先将DNA样本进行片段化处理形成200-500bp的片段,引物序列连接到DNA片段的一端,然后末端加上接头,将片段固定在flow cell上生成DNA簇,上机测序单端读取序列(图1)。 Paired-end方法是指在构建待测DNA文库时在两端的接头上都加上测序引物结合位点,在第一轮测序完成后,去除第一轮测序的模板链,用对读测序模块(Paired-End Module)引导互补链在原位置再生和扩增,以达到第二轮测序所用的模板量,进行第二轮互补链的合成测序(图2)。 图1 Single-read文库构建方法图2 Paired-end文库构建方法

基因组学复习资料整理

基因组学 1. 简述基因组的概念和其对生命科学的影响。 基因组:指一个物种的全套染色体和基因。广义的基因组:核基因组,线粒体基因组,叶绿体基因组等。 基因组计划对生命科学的影响: ①研究策略的高通量,彻底认识生命规律:基因组研究高通量,研究手段和 研究策略的更新,加强了生命科学研究的分工与协作,从不同层次深入研究生命现象。 ②促进了相关学科的发展:分子生物学遗传学生物信息学生物化学细胞生 物学生理学表观遗传学等 ③物种的起源与进化: Ⅰ.重要基因的发掘、分离和利用:遗传疾病相关基因,控制衰老的基因,工业价值的细菌基因,重要农艺性状基因等。 Ⅱ.充分认识生命现象:基因的表达、调控,基因间的相互作用,不同物种基因组的比较研究,揭示基因组序列的共性,探讨物种的起源和进化。 ④伦理学法律问题:伦理问题,知识产权问题,法律问题,社会保险问题。 2. Ac/Ds转座因子 Ac因子有4563bp,它的大部分序列编码了一个由5个外显子组成的转座酶基因,成熟的mRNA有3500bp。该因子本身的两边为11bp的反向重复末端(IR),发生错位酶切的靶序列长度8bp。Ds因子较Ac因子短,它是由Ac因子转座酶基因发生缺失而形成的。不同的Ds因子的长度差异由Ac因子发生不同缺失所致。 Ac/Ds因子转座引起的插入突变方式:玉米Bz基因是使糊粉层表现古铜色的基因,当Ac/Ds转座插入到Bz基因座后,糊粉层无色。当Ac/Ds因子在籽粒发育过程,部分细胞发生转座,使Bz靶基因发生回复突变,从而形成斑点。 Ac/Ds两因子系统遗传特点: 1)Ac具有活化周期效应,有活性的Ac+因子被甲基化修饰后会形成无活性的ac-因子,反之无活性的ac-因子去甲基化成有活性的Ac+因子。 2)Ac与Ds因子有时表现连锁遗传但更多表现独立遗传。 3)Ac对Ds的控制具有负剂量效应。 4)Ac/Ds可引发靶基因表现为插入钝化、活性改变、表达水平改变和缺失突变等。 5)Ds的结构不同,插入同一靶基因的位点可能不同,形成的易变基因的表型也不同。(分子生物学79-81) 3. 正向遗传与反向遗传 正向遗传学研究指从突变体开始的遗传学研究,关心的问题是突变体表型的变化是由哪一个基因功能丧失后引起。 反向遗传学研究指从基因序列开始的遗传学研究,关心的问题是基因功能丧失后会使植物的表型产生什么样的变化。

基因组学考试资料-整理版

第一章 一、基因组 1、基因组(genome):生物所具有的携带遗传信息的遗传物质的总和,是指生物细胞中所有的DNA,包括所有的基因和基因间区域。 2、基因组学:指以分子生物学技术、计算机技术和信息网络技术为研究手段,以生物体全部基因为研究对象,在全基因背景下和整体水平上探索生命活动的在规律及其外环境影响机制的科学。 基因组学包括3个不同的亚领域 结构基因组学(structural genomics) :以全基因组测序为目标 功能基因组学(functional genomics):以基因功能鉴定为目标 比较基因组学(comparative genomics) 二、基因组序列复杂性 1、C值是指一个单倍体基因组中DNA的总量,以基因组的碱基对来表示。每个细胞中以皮克(pg,10-12g)水平表示。 C 值悖理(矛盾)(C-value paradox):在结构、功能很相似的同一类生物中,甚至在亲缘关系十分接 近的物种之间,它们的C值可以相差数10倍乃至上百倍。 C值反映了总体趋势上,随着生物结构和功能的复杂性的增加,各分类单元中最小基因组的大小随分类地位的提高而递增。 2、序列复杂性 单一顺序:基因组中单拷贝的DNA序列 重复顺序:基因组中多拷贝的基因序列 真核生物基因组DNA组分为非均一性,可分为3种类型:快速复性组分、居间复性组分、缓慢复兴组分 三、基因与基因家族 1、基因家族:是真核基因组的共同特征,他们来自一个共同的祖先,因基因加倍和趋异,产生了许多在DNA序列上基本一致而略有不同的成员。 包括编码RNA的基因和编码蛋白质的基因 2、隔裂基因(split gene):指基因部被一个或更多不翻译的编码顺序即含子所隔裂。 3、异常结构基因分类 重叠基因:编码序列彼此重叠的基因,含有不同蛋白质的编码序列。 基因基因:一个基因的含子中包含其他基因。 反义基因: 与已知基因编码序列互补的的负链编码基因,参与基因的表达调控,可以干扰靶基因mRNA转录与翻译。 4、假基因:来源于功能基因但已失去活性或者改变原来活性功能的DNA序列. 四、基因组特征比较 真核生物基因组的特征:复杂性较高的生物基因组结构松弛,在整个基因组围分布大量重复顺序(小基因组重复序列较少,大基因组重复序列急剧扩增);含有大量数目不等的线性DNA分子,并且,每个长 链DNA都与蛋白质组成染色体结构;含有细胞器基因组(所有真核生物都具有环状的线粒体DNA,植物细胞还含有环状的叶绿体DNA。) 原核生物基因组的特征 :原核生物基因数目比真核生物少,大小在5 Mb以下; 原核生物基因组结构更紧凑;(极少重复序列;重复基因的数量远远低于真核生物;不存在含子,基本都是编码序列,无断裂基因。)

(整理)621植物学真题.

一、名词解释 无限维管束 同源器官 颈卵器 心皮 聚合果 无融合生殖 核型胚乳 花程式 孢蒴 内始式 二、蕨类植物比苔藓植物在那些方面更能适应陆生环境。 三、试比较裸子植物与被子植物的主要异同点。 四、何谓木材的三切面?它们的概念怎样?以双子叶禾本植物为例,写出三切面的特征。 五、以水稻为例,叙述禾本科植物花序及花的详细组成。 六、试述被子植物由小孢子母细胞发育为花粉粒的全过程。 七、写出图中数字所指花序类型和胎座类型的名称。……(图略)

一、名词解释 有丝分裂 次生结构 形成层 侵填体 花程式和花图解 真核生物 颈卵器 世代交替 孢子和种子 C3和C4植物 二、试举例说明高等植物根的变态及其主要功能。 三、何谓光合作用,简述提高光合作用的几种途径。 四、试比较单子叶植物与双子叶植物茎的特点。 五、试比较裸子植物与被子植物的生活史

一、名词解释 管胞 凯氏带 居间生长 合轴分枝 孢子、合子与种子 平行进化 景天酸代谢 双名法 石松类植物 单性结实 二、简述植物细胞中各类细胞器的形态特征与主要特征与主要功能。 三、何谓次生生长?分别以根和茎为例简要说明之。 四、试说明苔藓植物的主要进化特征。 五、白果(银杏)和苹果两种“果”的用法各指什么,试分辨之。 六、请写出下列植物拉丁文的中文属名及所在的科 betula eucalyptus ficus ginkgo mangnolia populus quercus rhododendron salix ulmus

一、名词解释 细胞器 减数分裂 心皮 管胞 有限花序 子实体 世代交替 地衣 楔叶植物 通道细胞 二、植物有哪些主要的组织,简要说明它们的功能。 三、简述茎尖的结构及其进一把发育形成的结构或组织。 四、简述花在自然演化过程中的主要进化方向。 五、试以海带为例,说明褐藻类植物的生活史。 六、请写出下列拉丁文的中文属名及其所在的科名。Vitex stipa eucalypms syringe carex poa quercus ligustcum camellia pinu

基因组学试题

基因组学试题 1、什么是基因组(5分)?什么是转录组(5份)?说明基因组 合的关系和异同(10分)基因组是生物体(细胞或病毒)中所有的DNA的总和, 包括所有的基因和基因间区域,包 括染色体之外的遗传物质,如线粒体、叶绿体、质粒等。 基因组:物种内恒定(♀/♂),生物体或细胞内恒定,没有时空变化(?)。事实上有特例,1、盲鳗(Hugfish) ,性细胞和体细胞DNA 量差异; 2、部分昆虫,性细胞和体细胞染色体数目差异; 3、动物雌雄个体差异 转录组: ?生物体、组织、细胞不同生长发育阶段的转录产物不同。 ?生物体不同组织、同一组织不同细胞的转录产物不同。 ?生物体、组织、细胞不同环境、不同生理状态下的转录产物 不同。 ?转录产物中包含大量不翻译蛋白的RNA,如rRNA; sRNA 2、简述原核生物基因组和真核生物基因组的特点和差异(10分)原核生物基因组 ?一条环状DNA; ?只有一个复制起始点; ?有操纵子(Operon)结构

1.结构基因为多顺反子,若干个功能相关的功能基因串联在一起, 手统一调控区调控。 2.数个操纵子还可以受同一个调节基因(regulaterygene),即调节 子(regulon)调控。 ?结构基因无重叠现象,基因组中任何一段DNA不会用于编码2种蛋白质 ?基因是连续的,无内含子,转录后不剪接; ?重复序列少,蛋白质基因一般为单拷贝基因,但编码rRNA的基因一般为多拷贝,有利于核糖体快速组装。 真核生物基因组 ?复杂的染色体结构,一般有多条染色体 ?每条染色体上有多个复制起始点; ?基因组中有大量的重复序列(轻度、中度、高度重复); ?基因是不连续的,有内含子,转录后经过剪接加工成成熟RNA;?有许多来源相同、结构相似、功能相关的基因组成的单一基因簇,或基因家族 ?有细胞器基因,真核生物除具有核基因外,还有存在于线粒体和叶绿体中基因,编码同功酶等。 3、什么是遗传图谱(5分)?遗传图谱在基因组研究中的意义 何在(15分)?采用遗传学分析方法将基因或其它DNA标记

全基因组关联分析的原理和方法题库

全基因组关联分析(Genome-wide association study;GWAS)是应用基因组中数以百万计的单核苷酸多态性(single nucleotide ploymorphism,SNP)为分子遗传标记,进行全基因组水平上的对照分析或相关性分析,通过比较发现影响复杂性状的基因变异的一种新策略。 随着基因组学研究以及基因芯片技术的发展,人们已通过GWAS方法发现并鉴定了大量与复杂性状相关联的遗传变异。近年来,这种方法在农业动物重要经济性状主效基因的筛查和鉴定中得到了应用。 全基因组关联方法首先在人类医学领域的研究中得到了极大的重视和应用,尤其是其在复杂疾病研究领域中的应用,使许多重要的复杂疾病的研究取得了突破性进展,因而,全基因组关联分析研究方法的设计原理得到重视。 人类的疾病分为单基因疾病和复杂性疾病。单基因疾病是指由于单个基因的突变导致的疾病,通过家系连锁分析的定位克隆方法,人们已发现了囊性纤维化、亨廷顿病等大量单基因疾病的致病基因,这些单基因的突变改变了相应的编码蛋白氨基酸序列或者产量,从而产生了符合孟德尔遗传方式的疾病表型。复杂性疾病是指由于遗传和环境因素的共同作用引起的疾病。目前已经鉴定出的与人类复杂性疾病相关联的SNP位点有439个。全基因组关联分析技术的重大革新及其应用,极大地推动了基因组医学的发展。(2005年, Science杂志首次报道了年龄相关性视网膜黄斑变性 GWAS结果,在医学界和遗传学界引起了极大的轰动,此后一系列GWAS陆续展开。2006年, 波士顿大学医学院联合哈佛大学等多个研究机构报道了基于佛明翰心脏研究样本关于肥胖的 GWAS结果 (Herbert等. 2006);2007年, Saxena等多个研究组联合报道了与 2型糖尿病( T2D )关联的多个位点, Samani等则发表了冠心病 GWAS结果( Samani 等. 2007); 2008年, Barrett等通过 GWAS发现了 30个与克罗恩病( Crohns ' disrease)相关的易感位点; 2009年, W e is s等通过 GWAS发现了与具有高度遗传性的神经发育疾病——自闭症关联的染色体区域。我国学者则通过对 12 000多名汉族系统性红斑狼疮患者以及健康对照者的GWAS发现了 5个红斑狼疮易感基因, 并确定了 4个新的易感位点( Han 等. 2009)。截至 2009年 10月,已经陆续报道了关于人类身高、体重、血压等主要性状, 以及视网膜黄斑、乳腺癌、前列腺癌、白血病、冠心病、肥胖症、糖尿病、精神分裂症、风湿性关节炎等几十种威胁人类健康的常见疾病的 GWAS结果, 累计发表了近万篇论文, 确定了一系列疾病发病的致病基因、相关基因、易感区域和 SNP变异。)标记基因的选择:

基因组学分析

第八章基因组学分析 基因组(Genome)指一个生物体中所有的遗传信息的载体DNA。原核生物基因组与真核生物基因组有着很大的区别,原核生物的基因组比较简单,一般由一条染色体(有些细菌有多条染色体)和若干个质粒组成。除少数细菌外,细菌的染色体一般由一条环状双链DNA组成。染色体高度折叠、盘绕聚集在一起,形成致密的类核(nucleoid),类核无核膜与胞浆分开,类核的中央部分由RNA和支架蛋白组成,外围是双链闭环的DNA超螺旋(图8-1)。染色体DNA链上与DNA复制、转录有关的信号区域优先与细胞膜结合,连接点的数量随细菌生长状况和不同生活周期而异。这种连接有助于细胞膜对染色体的固定,并在细胞分裂时将染色体均匀的分配到子代细胞中。 图8-1:大肠杆菌染色体DNA的类核结构,中间实心圆为中央类核,四周的为DNA环。 从1995年美国基因组研究所(The Institute for Genomic Research, TIGR)发表第一株细菌——流感嗜血杆菌(Haemophilus influenzae RD)的全基因组序列以来,现已发表了150多株细菌的基因组全序列(表8-1),其中包括古细菌和真细菌,既有病源微生物也有非病源微生物。这些已完成全基因组测序的细菌很具代表性,有在极端条件下生长的嗜热菌,耐盐菌,耐酸菌;有厌氧菌,兼性厌氧菌和需氧菌;有营养要求不高的大肠杆菌,较难培养的枝原体,只在活细胞内生存的衣原体和立克次体。在未来的几年时间里,还将有更多株原核生物的基因组全序列被测序,预示着原核生物基因组研究将对21世纪的生命科学研究中起着推波助澜的作用。 第一节微生物基因组概述 1、基因组大小 曾经有很多方法用于细菌基因组大小的研究,包括比色法、DNA复性动力学、酶切片段的二维胶电泳,这些方法现在都已经被脉冲场电泳(Pulsed Field Gel Electrophoresis, PFGE)技术所取代。虽然原核生物的基因组大小相对比真核生物要小,但是最大的原核生物基因组碱基数与最小的真核生物基因组碱基数大小有部分重叠(图8-2)。细菌的基因组大小相差也很大,目前已知完成全基因组序列测定的细菌中,基因组最小的生殖道支原体(Mycopalsma genitalium)只有0.58 Mb,最大的日本慢生根瘤菌(Bradyrhizobium japonicum USDA 110)有9.11 Mb(表8-1)。 2、编码密度高 与真核生物不同,原核生物基因组的编码序列占基因组总序列的比率很高,达90%左右。如果基因的

基因组学考试题目

从请下面十七道中,任选七道作答。 一、在一牛群中,外观正常的双亲产生一头矮生的雄犊。请你提出可能导致这种矮生的各种原因,并根据每种原因提出相应的调查研究的提纲(注意整个调查研究工作必须在两个月内完成)。 二、对于突变体的诱导有许多种方法,请分别列举一种化学的、物理的以及生物的突变体诱变方法。对于表型相同的一组突变体,请设计一遗传试验,验证这些突变属于相同位点(alleles)突变还是不同位点(non-alleles)的突变。 三、简述你所从事过的一项最主要研究工作。如果给你以足够的研究条件,以及3-4年的时间,你将如何进一步深化你的研究工作? 四、试述有丝分裂和减数分裂对于保持物种稳定以及遗传多样性的意义。 五、基因组学研究是近年来生命科学领域的热点之一。简述结构基因组学与功能基因组学的概念,以及利用模式物种进行基因组学研究的意义。 六:请从遗传与变异的角度,论述世界上先有鸡,还是先有鸡蛋? 七:请生理生化和DNA复制的机制角度论述“核酸营养”的合理性或荒谬性。 八、下述是一个虚拟的分子遗传学问题。 表皮毛具有重要的生物学意义。典型的表皮毛结构包括一根主干(main stem) 以及 主干顶端的三个分枝(branches) 组成。形态学研究表明如果主干生

长过长,通常导致顶 端分枝减少至两个或更少。相反,如果主干生长过短导致分枝增加。因此主干的长度与 顶端的分枝数目成负相关。 为了研究表皮毛发育的机制,某研究生筛选到一个表皮毛发育异常的突变体。该突 变体的表皮毛主干较野生型长,且只有两个分枝。该突变体被命名为abnormal branching (abc)。遗传分析表明abc 是一个核基因隐性突变。之后,该研究生克隆了ABC 基因,发现ABC基因编码一个转录因子。DNA测序分析发现在abc突变体中,一个单碱基的突变导致了在一个富含碱性氨基酸的区段(5 个连续的赖氨酸或精氨酸)中的一个赖氨酸突变为甘氨酸。 该研究生制备了抗ABC 蛋白的多克隆抗体。通过原位免疫荧光技术,该研究生发现在野生型中ABC 蛋白完全定位在细胞核中,而在abc 突变体中ABC 蛋白同时定位在细胞质和细胞核中。 为了更深入的研究表皮毛发育的机制,该研究生又筛选了abc 突变的抑制子突变(suppressors of abc; sab)。sab 突变能够抑制abc 突变体的表型(即abc/sab 双突变体的表型为正常)。但在野生型背景下(即sab 单突变),表皮毛变短,分枝增多(4-6 个分枝)。分子遗传学实验证明SAB 基因编码一个F-box 蛋白(F-box protein)。该研究生证明在体外和体内(both in vitro and in vivo) ABC 均与SAB 互作(interaction)。Westernblot 表明ABC 蛋白在sab 突变体细胞中高水平富集。 根据上述结果,简要回答下述问题(第1-4 小题,答案请勿超过50 个字;第5 小题请勿超过200 字): (1)该研究生可能通过什么方法制备了抗原(即用于制作抗体用的ABC 蛋白)?

基因组学整理试题

基因组学整理试题 填空题: 1.位置效应的两种类型:稳定型,花斑型 2.细胞器基因组:线粒体基因组,叶绿体基因组 3.基因组进化的分子基础:突变,重组,转座 聚合酶的三种类型:pol1(RNA聚合酶1),pol2(RNA聚合酶2),pol3(RNA聚合酶3) 5.转座子分类:DNA转座子,逆转录转座子 6.克隆载体的几种类型:YAC,BAC,HAC,MAC 7.重叠群组建的方法:步移法,指纹法 名词解释: 值:是指一个单倍体基因组中DNA的总量,一个特定的种属具有特征的C值。 值悖理:生物种属所具有的基因数目与其生物结构的复杂性不成比例的现象. 值悖理:基因数目与进化程度或生物复杂性的不对应性,称之为N值悖理(N所表示的是基因数目)。 4.基因家族:来自一个共同的祖先, 因基因加倍和趋异产生许多在DNA序列上基本一致而略有不同的成员。 1)大部分担负类似的生物学功能. 2)比较各个成员间的序列差异,可追踪基因的演变轨迹。 5.假基因:来源于功能基因但已失去原来功能的DNA序列.包括重复假基因、加工假基因、残缺假基因。 6. DNA标记 ->限制性片段长度多态性( RFLP) 同一物种的亚种、品系或个体间基因组DNA 受到同一种限制性内切酶作用而形成不同的酶切图谱的现象 ->简单序列长度多态性(SSLP) 可变排列的简单重复序列, 即重复次数不一,在染色体的同一座位重复序列拷贝数不同; 包括俩种类型:小卫星序列(VNTR)、微卫星序列(SSR) ->单核苷酸多态性(SNP) SNP是指同一物种不同个体基因组DNA的等位序列上单个核苷酸存在差异的现象。其中最少一种在群体中的频率不小于1%;如果出现频率低于1%,则视作点突变。 7.序列间隙:因覆盖率的原因而留下的未能测序的序列,仍存在于克隆文库中, 这类间隙称为序列间隙。 物理间隙:因克隆载体自身的限制或DNA顺序特殊的组成等原因造成某些序列丢失或未能克隆, 这类间隙称为物理间隙。 8.表达序列标签(EST):基因转录产物的一段cDNA序列。 9.转座因子:原核生物与真核生物基因组中广泛存在的一类可以移动位置的遗传因子。 10.CpG岛:基因组中富含GC碱基的DNA区段。 满足CpG岛的条件为:

宏基因组测序技术检测方法

宏基因组测序技术检测标准 简介: 宏基因组测序介绍 宏基因组学是以环境样品中的微生物群体基因组为研究对象,通过现代基因组技术手段包括功能基因的筛选和测序分析,对环境中微生物多样性、种群结构、进化关系、功能活性、相互协作关系以及环境之间的关系进行研究的新的微生物研究方法。随着高通量测序技术的发展,为宏基因组学研究提供了新的理想研究方法。高通量测序的方法无需分离环境中各种微生物,也无需构建克隆文库就可以直接对环境中所有微生物进行测序。可以真实客观的反映环境中微生物的多样性、种群结构、进化关系等。目前又可以分为针对16s DNA/18sDNA/ITS 测序和针对宏基因组全序列的测序研究。下面就是对这两者的具体介绍。 一、16s DNA/18s DNA/ITS测序 16sDNA是最常用的微生物物种分子鉴定的标签,,通过对样品中16sDNA 测序可以鉴定其中微生物物种的丰度和分布情况。目前,普遍使用Roche 454平台来对环境样品进行16s DNA测序。因为16s DNA序列比较相似,读长短的话,难以进行有效的比对,而454平台的平均读长在400bp左右,可以很好的避免此类问题。 二、宏基因组全测序 在这种测序方式中,我们可以假定一个环境中的所有微生物就是一个整体,然后对其中所有的微生物进行测序。这样我们就可以研究样品中的功能基因以及其在环境中所起的作用而不用关心其来自哪个微生物。可以发现新的基因,可以进行基因的预测,甚至有可能得到某个细菌基因组的全序列。此外,该项测序不单可以针对DNA水平,也可以针对全RNA进行基因表达水平的研究。 样品处理: 宏基因组样品收集主要有口腔,下呼吸道痰液,下呼吸道灌洗液,皮肤和粪便。样品采集遵照样品采集规范(人)所规定的操作来进行。尽量留足备份样品。核酸提取: 宏基因组核酸提取主要有两种方法:膜过滤法和直接裂解提取。对于液体样品如

基因组学复习参考

基因组学复习参考(个人见解) 1、原核与真核生物基因组在结构与进化上的异同(古细菌也要留意) 2、遗传图、物理图的绘制方法 3、什么是重复序列?重复序列的种类有哪些(包括原核与真核生物)? 4、DNA测序的基本方法有酶法(桑格法)、化学法两种,描述其原理,解释两种方法的化学反应原理。(可绘图) 5、全基因组序列的测定方法有两种:散弹法和逐个克隆测定法。以细菌基因组(水稻基因组等)为例,解释测定全基因组DNA序列的基本过程和基本原理。 6、近年来蛋白质组学有哪些主要研究方法?它们的基本原理是什么? 7、表观遗传学的定义、包括哪些内容、研究方法 8、转录组的定义、研究的基本方法和实验原理 9、列举第二代测序仪的种类及基本测序原理? 10、全基因组关联性研究和研究的基本方法?(GW AS) 这些是基因组学中比较重要的十大问题。 其余还有 1、列举几种已经测定序列的生物基因组(如人类、小鼠、鸡、水稻、家蚕和果蝇等) 2、SNP、EST、LGT、VGT、RNA-Seq、酵母双杂交、SAGE、RT-PCR\GC含量、宏基因组、泛基因组等概念 3、分子生物学相关问题:RNA的剪切的几种形式,生物获得新基因的基本途径,非编码RNA的种类与功能,DNA的修复,组蛋白修饰等 4、细胞生物学相关问题:肿瘤细胞特征及肿瘤发生关键因素,线粒体、叶绿体特点及起源 5、生物信息学相关问题:常用的生物信息学数据库及序列比对常用的软件和其特点,基因识别的常用软件和原理 6、基因工程相关问题:基因组文库构建与常见载体等 下面是咱们所基因组学的考试大纲还有历年基因组学试题,大家可以参考一下,希望对大家复习有所帮助。 中国科学院北京基因组研究所研究生入学考试 《基因组学》考试大纲 一、考试内容 1.基因组导论 考试内容 ●基因组学的研究对象和发展历程 ●基因在DNA水平、RNA和蛋白质水平的定义 ●基因组的定义和基因组的分类 ●基因学研究的基本内容 ●基因组学研究的基本技术与方法 考试要求 ●了解基因组研究的基本对象、内涵和最新进展

基因组学试题

基因组学与生物信息学闭卷考试I:笔试题 1、请介绍用于遗传图谱构建的至少三种DNA分子标记,包括其名称(中英文)、基本原理及优缺点。(15分) 4 SSR(SSLP) 简单序列重复标记(Simple sequence repeat, 简称SSR标记)或简单序列长度多态性(Simple sequence length polymorphism, 简称SSLP标记) 由Moore等于1991年创立。SSR即微卫星DNA,是一类由几个(多为1-5个)碱基组成的基序(motif)串联重复而成的DNA序列,其长度一般较短,广泛分布于基因组的不同位置,如(CA)n、(AT)n、(GGC)n等重复。不同遗传材料重复次数的可变性,导致了SSR长度的高度变异性,这一变异性正是SSR标记产生的基础。尽管微卫星DNA分布于整个基因组的不同位置,但其两端序列多是保守的单拷贝序列,因此可以根据这两端的序列设计一对特异引物,通过PCR技术将其间的核心微卫星DNA序列扩增出来,利用电泳分析技术就可获得其长度多态性,即SSR标记。 SSR标记的主要特点有:(1)数量丰富,广泛分布于整个基因组;(2)具有较多的等位性变异;(3)共显性标记,可鉴别出杂合子和纯合子;(4)实验重复性好,结果可靠;(5)由于创建新的标记时需知道重复序列两端的序列信息,因此其开发有一定困难,费用也较高。 5STS 序标位(Sequence tagged sites, 简称STS标记) 由Olson于1989年开发成功。STS是指基因组中长度为200-500bp,且核苷酸顺序已知的单拷贝序列,通过PCR可将其专一扩增出来。其基本原理是,依据单拷贝的RFLP探针、微卫星序列、Alu因子等两端序列,设计合适的引物,进行PCR扩增,电泳显示扩增产物多态性。有时扩增产物还需要特定的限制性内切酶酶解后才能表现出多态性。目前用于STS引物设计的主要是RFLP探针。 STS标记的主要特点有:(1)标记来源广,数量多;(2)共显性遗传,可区分纯合子和杂合子;(3)技术简便,检测方便;(4)与SSR标记一样,开发依赖于序列分析及引物合成,成本较高;(5)多态性常常低于相应的RFLP标记,这是因为STS仅仅检测该引物所分布区域的片段差异或酶切位置差异,而RFLP标记的多态性往往可能是探针以外区域的差异,这一部分差异无法转化成STS标记的多态性。

相关文档