文档库 最新最全的文档下载
当前位置:文档库 › 生物传感器研究进展

生物传感器研究进展

生物传感器研究进展
生物传感器研究进展

[文章编号]1002-0179(2008)06-1517-02

生物传感器研究进展

高志勇

(渭南师范学院环境与生命科学系,陕西渭南 714000)

[中图分类号]Q4-33;R31816 [文献标志码]D

 基金项目:渭南师范学院研究生专项科研项目(08YK Z 005)

生物传感器(biosens or )是一类特殊形式

的传感器[1],是一种对生物物质敏感并将其待测物质转换为声、光、电等信号进行检测的仪器。它是由固定化的生物敏感材料作识别元件(包括酶、抗体、抗原、微生物、细胞、组织、核酸等生物活性物质),与适当的理化换能器(如氧电极、光敏管、场效应管、压电晶体等)及信号放大装置构成的分析工具或系统。生物传感器具有接受器与转换器的功能。

1 生物传感器的历史发展

1962年Clark 等提出了把酶与电极结合来测定酶底物的设想,1967年Updike 和Hicks

将葡萄糖氧化酶包含在聚丙烯酰胺胶体中加以固化,再将此胶体膜固定在隔膜氧电极的尖端上,研制出世界上第一支葡萄糖氧化酶电极,用于定量检测血清中葡萄糖含量,标志着生物传感器的诞生。随后改用其它的酶或微生物等固化膜,便可制得检测其对应物的其它传感器。固定感受膜的方法有直接化学结合法;高分子载体法;高分子膜结合法。现已发展了第二代生物传感器(微生物、免疫、酶免疫和细胞器传感器),研制和开发第三代生物传感器,将生物技术和电子技术结合起来的场效应生物传感器。

生物传感器是用生物活性材料(酶、蛋白质、DNA 、抗体、抗原、生物膜等)与物理化学换能器有机结合的一门交叉学科,是发展生物技术必不可少的一种先进的检测方法与监控方法,也是物质分子水平的快速、微量分析方法。在21世纪知识经济发展中,生物传感器技术必将是介于信息和生物技术之间的新增长点,在医学临床诊断[2,3]、工业控制、食品和药物分析(包括生物药物研究开发)[4,5]、环境保护以及生物技术[6~8]、生物芯片等研究中有着广泛的应用前景。

2 生物传感器的原理

在利用生物传感器进行物质检测时,待测物质经扩散作用进入生物活性材料,经分子识别,发生生物学反应,产生的信息继而被相应的物理或化学换能器转变成可定量和可处理的声、光、电等信号,再经二次仪表放大并输出,便可知道待测物浓度。

3 生物传感器的特点

(1)速度快,成本低。固定化酶生物传感

分析仪是最早出现且精度最高的生物传感器,它们已经发展成一类可靠的精密分析仪器,由于采用了固定化酶膜作为分析工具,酶法分析试剂可以反复使用数千次,其分析成本只有手掌型血糖分析仪的十分之一;分析速度快,不到20s 可以获得准确的分析结果,这在临床急症室、某些重症患者的监护等许多场合都很重要。

(2)专一性强。生物传感器只对特定的底物起反应,而且不受颜色、浊度的影响,因此一般不需要进行样品的预处理,干扰少。

(3)稳定性好,分析精度高。像目前市场上应用的高精度血糖分析仪是采用固定化酶的生物传感分析仪,其分析精度可以达到015%~2%。

(4)操作系统简单,容易实现自动分析。

如药物分析中常用的表面等离子体共振(surface plasm on res onance ,SPR )生物传感器,就具有体积小、测定范围宽、精度高、灵敏度高、功能完整、操作方便、可靠、耗材廉价等优点,是一种创新性、实用化的现代科学仪器。

(5)作用广,应用价值大。有的生物传感器能够可靠地指示微生物培养系统内的供氧状况和副产物的产生,在生产控制中能得到许多复杂的物理化学传感器综合作用才能获得的信息,同时它们还指明了增加产物获得率的方向;现在的生物传感器的应用涉及到医疗保健、疾病诊断、食品检测、环境监测、发酵工业的各个领域。

4 生物传感器的分类

生物传感器可从不同的角度进行分类,主要有以下三种方法:

(1)按照其感受器中所采用的生命物质分类,可分为:微生物传感器、免疫传感器、组织传感器、细胞器传感器、酶传感器、DNA 传感器等[9]。

(2)按照传感器器件检测的原理分类,可分为:热敏生物传感器、场效应管生物传感器、压电生物传感器、光学生物传感器、声波道生物传感器、酶电极生物传感器、介体生物传感器等。

(3)按照生物敏感物质相互作用的类型分类,可分为亲和型和代谢型两种。

下面以第一种分类方法对生物传感器的各种类进行介绍。411 微生物传感器

微生物传感器是由载体结合的微生物细胞和电化学器件组成,已发展了两种传感器:一种是以微生物呼吸活性为指标的呼吸型传感器,一种是以微生物的代谢产物为指标的电活性物质测定型传感器。用微生物代替酶作为识别元件是因为微生物具有较高稳定性、选择性好、廉价实用等优点,并可广泛用于许多酶反应系统、辅酶和能量再生系统[10]。412 免疫传感器

免疫传感器是依赖抗原和抗体之间特异性和亲和性,利用抗体检测抗原或利用抗原检出抗体的传感器。并非所有的化合物都有免疫原性,一般分子量大、组成复杂、异物性强的分子,如生物战剂和部分毒素具有很强的免疫原性,而小分子物质,如化学战剂和某些毒素则没有免疫原性。但免疫传感器更适合于研制能连续、重复使用的毒剂监测器材。免疫分析法选择性好,如一种抗体只能识别一种毒剂,可以区分性质相似的同系物、同分异构体,甚至立体异构体,且抗体比酶具有更好的特异性,抗体与抗原的复合体相对稳定,不易分解[11]。413 组织传感器

直接采用动植物组织薄片作为敏感元件的电化学传感器称组织电极传感器,其原理是利用动植物组织中的酶,优点是酶活性及其稳定性均比离析酶高,材料易于获取,制备简单,使用寿命长等。但在选择性、灵敏

度、响应时间等方面还存在不足[12]。414 细胞传感器

细胞器传感器是20世纪80年代末出现的一种以真核生物细胞、细胞器作为识别元件的生物传感器。1987年,Blondin 等提出了固定线粒体评价水质。Carpentier 及其合作者用类囊体膜构建的生物传感器,可在mg/L 浓度下测定铅与镉的毒性,也可对银或铜进行快速测定。R ouillon 等用特殊的固定化技术将叶绿体与类囊体膜包埋在光交联的苯乙烯基吡啶聚乙烯醇(PVA -sbQ )中,可以在μg/L 浓度水平下检测到汞(Hg )、铅(Pb )、镉(Cd )、镍(Ni )、锌(Zn )和铜(Cu )等离子的存在[13]。415 酶传感器

酶传感器是最早问世的生物传感器,早在1962年Clark 等就提出了酶传感器原理,1967年Updike 等发展制成为酶电极,它是把无机离子或低分子气体作为测量对象而发展起来的电化学器件,并与同时期发展起来的酶固定技术相结合而产生的传感器[14]。酶生物传感器是将酶作为生物敏感基元,通过各种物理、化学信号转换器捕捉目标物与敏感基元之间的反应所产生的与目标物浓度成比例关系的可测信号,实现对目标物定量测定的分析仪器。与传统分析方法相比,酶生物传感器是由固定化的生物敏感膜和与之密切结合的换能系统组成[15]。416 DNA 传感器

DNA 是一类重要的生命物质,是大多数生物体遗传信息的载体,对DNA 的研究是生命科学研究领域中极为重要的内容。随着人类基因组计划的顺利实施,基于DNA 探针的基因传感器、基因芯片的研究正成为基因组研究的一个热点[16]。DNA 生物传感器是一种能将目标DNA 的存在转化为可检测的电、光、声信号的装置[17]。所检测的是核酸的杂交反应,因此也可以称它为核酸杂交生物传感器(nucleic acid hybridization biosens or )。每种生物体内都含有其独特的核酸序列,因此检测特定核酸序列的关键是要设计一段寡核苷酸序列作为探针。这段探针能够专一性与其进行杂交,而与其它非特异性序列不杂交,对靶序列杂交的特异性和敏感性,一直是核酸检测工作者的研究主题。DNA 生物传感器的结构包括一个靶序列识别层和一个信号换能器。识别层通常由固定在换能器上的探针DNA 以及一些其它的辅助物质组成,它可以特异性地识别靶序列并与其杂交。换能器可将此杂交过程所产生的变化转变为可识别的信号,根据杂交前后信号量的变化,可以对靶DNA 进行准确定量。根据换能器种类不同,可大致分为电化学DNA 传感器、光学DNA 传感器和质量DNA 传感器等[18]。DNA 生物传感器对基因序列的明确分析近年来得到了快速发展,随着DNA 合成技术以及与微电子技术的发展,DNA 生物传感器的发展更趋于完善[19]。

5 展望

生物传感器由于集高效、灵敏、特异、结构小巧、经济实用等优点于一身,目前已成为生命科学领域的研究热点[20],正在成为

7

151华西医学2008,23(6) C N 51-1356/R

一种强有力的通用分析工具[21]。未来生物传感器的发展趋势和重点走向是微型化、多功能化、智能化和集成化,开发新一代低成本、高灵敏度、高稳定性和高寿命的生物传感器是目前研究的热点[22]。生物活性材料的固定化是生物传感器制备的关键步骤。由于生物活性材料生存条件有限,长期以来生物传感器寿命、稳定性及制备的复杂性制约着研究成果商品化与批量生产。随着生物学、化学、物理学、电子学、材料等技术的不断进步,生物传感器将在医学临床诊断、工业控制、食品和药物分析、环境保护以及生物技术、生物芯片等研究中有着广泛的应用前景,愿它为人类生活提供更大的帮助。

6 参考文献:

[1]陈雄,吕慧丹,王建秀,等.纳米生物

传感器的研究[J ].世界科技研究与发展,2007,5:39-43.

[2]李鹏,现代分子生物学技术在医学检验

中的应用[J ].临床和实验医学杂志,2007,3:161.

[3]何宝山,周爱玉,李华清,等.现场检

测用谷丙转氨酶光学生物传感器研究[J ].微纳电子技术,2007,7:345-347.

[4]代晶,吕太平,邓力等.一氧化氮光学

生物传感器用于药物活性的考察[J ].四川大学学报(医学版),2007,1:150-153.

[5]张耀东,杨伯伦.胆碱酯酶生物传感器

检测农药残留物研究进展[J ].卫生研究,2006,2:250-253.

[6]闫慧慧,府伟灵,张波.蛋白质-DNA

相互作用压电阵列传感器的构建及应用[J ].山东医学,2007,27:60-62.[7]陈俭霖.生物传感器在环境监测中的应

用及发展前景[J ].污染防治技术,

2006,3:59-62.

[8]郑琦,卢卫红,辛平,等.生物传感器

在环境监测和发酵工业中的应用[J ].仪器仪表学报,2006,12:1746-1748.[9]李文友,鲍素敏,韦朝领.淡水湖泊富

营养化的微生物全细胞传感器的构建和应用[J ].安徽大学学报(自然科学版),2006,5:83-86.

[10]张贵贤,刘道杰.溶胶-凝胶技术在电

化学和生物传感器制备中的应用近况[J ].理化检验-化学分册,2007,4:

338-344.

[11]林泉,彭承琳,宋文强.生物传感器的

发展及其在生物医学中的应用[J ].中国医学装备,2007,4:19-22.

[12]刘向阳.生物传感器:未来举足轻重的

应用技术[J ].中国医疗器械信息,2007,4:48-54.

[13]李宗义,邵强,郭伟云,等.用于环境

监测的生物传感器[J ].生物技术,2005,4:95-98.

[14]吴伟,贺全国,陈洪.铁基磁性纳米粒

子相关生物传感器研究进展[J ].磁性材料及器件,2007,2:11-18.

[15]刘真真,张敏,姚海军,等.酶生物传

感器的研究进展[J ].东莞理工学院学报,2007,3:97-101.

[16]王桂香,李衍飞,王文鑫,等.DNA 电

化学传感器的研究进展[J ].聊城大学学报(自然科学版),2007,2:48-53.[17]常竹,李贯良.纳米材料在电化学

DNA 生物传感器中的应用[J ].商丘师范学院学报,2005,5:114-116.

[18]张炯,万莹,王丽华,等.电化学

DNA 生物传感器[J ].化学进展,2007,10:1576-1584.

[19]刘俊芳,李彦青,郭满栋.电化学

DNA 生物传感器的研究现状[J ].理化检验-化学分册,2007,8:701-703.[20]王云霞,府伟灵,陈鸣.漏声表面波生

物传感器的研究现状及应用[J ].中华医院感染学杂志,2006,11:1319-1320.

[21]张克坚.生物传感器及其应用研究进展

[J ].齐鲁医学检验,2004,2:3-4.[22]蒋雪松,王剑平,应义斌,等.用于食

品安全检测的生物传感器的研究进展[J ].农业工程学报,2007,5:272-277.

(收稿日期:2008-06-20)

[文章编号]1002-0179(2008)06-1518-02

自我监测型血糖仪的临床应用及质量控制

施绍瑞,安振梅3

(四川大学华西医院实验医学科激素检测室,四川成都 610041)

[中图分类号]R31816 [文献标志码]D

 3通讯作者:安振梅,E -mail :

anzm1997@https://www.wendangku.net/doc/da3001062.html,

血糖仪(blood -glucose meter )一个血糖

监测系统的仪器组件,它可以将化学反应的结果转化为样品中的葡萄糖浓度[19]。近年来随着对糖尿病控制认识水平的逐渐提高,血糖仪作为一种监测血糖的工具也越来越被人们所重视。下面就目前应用较广泛的针刺式血糖仪的检测原理、临床价值、以及影响因素和质量控制进行论述。

1 基本检测原理

自1968年由汤姆?克莱曼斯发明至今,血糖仪经历了不同的技术发展阶段。第一代是微创血糖检测仪,包括针刺式血糖仪和激光采血式血糖仪等;第二代是无创血糖检测仪,包括皮下组织间液葡萄糖检测仪和光谱分析血糖仪等,第三代是连续式血糖监测仪[1],但目前应用最广泛的还是针刺式血糖仪,多监测指末全血血糖。血糖仪的检测原理主要有光化学法和电化学法。光化学法应用较多的是葡萄糖氧化酶比色法。111 光化学法

葡萄糖氧化酶比色法的反应原理是葡萄糖氧化酶(glucose oxidase ,G OD )氧化葡萄糖产生葡萄糖酸及过氧化氢,在过氧化物酶存在时,过氧化氢把还原型生色原氧化成氧化型生色原而发生颜色改变,颜色的深浅与血糖浓度成正比,并可用反射光度计或吸收光度计测量。来自霉菌的G OD 对葡萄糖有高度物异性,不能氧化其它糖类,故可测定真实值。也有的仪器采用己糖激酶或葡萄糖脱氢酶进行类似的反应[1]。112 电化学法

其检测原理是在电极表面固化上G OD ,当血液滴到电极上时,G OD 可氧化血液中葡萄糖产生葡萄糖内酯和过氧化氢,同时释放出电子,在一定电压的作用下可以运用电流记数设施检测到电子的产生数量,后者与血液中葡萄糖浓度成正比[2]。

2 临床应用

WHO 诊断糖尿病的标准采用的是静脉血浆的血糖值,而血糖仪检测的是全血血糖值,在测定值上有一定的差别。另外,血糖仪的稳定性,质量控制,以及检测结果的可靠性等一系列问题还未解决,因此血糖仪的检测结果不用于糖尿病的诊断。现在,血糖

仪主要用于糖尿病患者在家中的自我血糖监测(self m onitoring of blood glucose ,S M BG )。“糖尿病控制与并发症试验”(Diabetes C ontrol and C om plications T rial ,DCCT )[3]及英国的前瞻性糖尿病研究(UK Prospective Diabetes S tudy ,UK PDS )[4]发现,“不论是1型或是2型糖尿病,良好的血糖控制均可以减少糖尿病并发症的发生”。在UK PDS 的强化治疗组中,强烈推荐胰岛素用量大于14U/d ,或使用速效胰岛素的患者进行规则的S M BG 。美国糖尿病学会(ADA )在2007年的指南中建议,餐前毛细血管血浆葡萄糖值应尽可能控制在5100~7120mm ol/L ,餐后毛细血管血浆葡萄糖峰值应控制在10100mm ol/L 以下,并且指出S M BG 是糖尿病多因素干预的一部分[5]。S M BG 可以提高患者治疗疾病的积极性和主动性,并且增强治疗效果和改善临床

预后[6]。对于1型糖尿病,妊娠糖尿病,以及用胰岛素治疗的2型糖尿病,血糖仪的价值是有据可循的。S M BG 能够提供即刻血糖值,患者可以及时发现餐后高血糖和餐前低血糖并且做出迅速的反应,增加或减少胰岛素的剂量[7]。在Davids on 的研究中发现对于用胰岛素泵治疗的糖尿病患者血糖监测的频率与糖化血红蛋白(HbA1c )的水平之间存在较好的非线性负相关关系[8]。对于用胰岛素治疗且HbA1c >8100%的2型糖尿病患者,S M BG 能够对血糖控制带来很大的益处[9]。

研究发现对于没有使用胰岛素治疗,只是口服降糖药或通过饮食控制和运动来控制血糖的患者,S M BG 频率较高的患者其HbA1c 水平显著低于S M BG 频率较低的患者[10]。有meta 分析指出:在固定效应模型中,采用S M BG 作为糖尿病管理策略的患者,其平均HbA1c 水平要较未采用S M BG 的患者下降0139%,而在随机效应模型中下降0142%[11]。因为S M BG 可以使患者根据血糖值的高低对饮食、运动以及治疗的药物做出适当的调整[12]。对于用胰岛素治疗的1型糖尿病青少年,随着S M BG 频率的增加,血糖控制也逐渐提高,每天检测血糖≥5次,能够得到最佳的效果。

2007年ADA 在指南中建议运用胰岛素治疗的孕妇每天应进行≥3次S M BG [5]。S M BG 提供的信息能够指导妊娠合并糖尿病患者的饮食和胰岛素治疗。S M BG 指导下的强化饮食疗法和选择性的应用胰岛素,其巨大儿的发生率和普通人群一样。研究发现,一开始就建立标准化的胰岛素治疗加上每日7次的

8

151WEST CHI NA ME DIC A L JOURNA L 2008,V ol 123,N o 16 C N 51-1356/R

生物传感器的研究现状及应用

生物传感器的研究现状及应用 生物传感器?这个熟悉但又概念模糊的名词最近不断出现在媒体报道上,生物传感器相关的研究项目陆续获得巨额的研究资助,显示出越来越受重视的前景。要掌握生命科学研究的前研信息,争取好的研究课题和资金,你怎能不了解生物传感器? 让我们来看看生物通最近的一些报道: 英国纽卡斯尔大学科学家研发了可用于检测肿瘤蛋白以及耐药性MASA细菌的微型生物传感器。该系统利用一个回旋装置来检测,类似导航系统和气袋的原理。振荡晶片的大小类似于一颗尘埃尺寸,有望可使医生诊断和监测常见类型的肿瘤,获得最佳治疗方案。该装置可以鉴定肿瘤标志物-蛋白以及其它肿瘤细胞产生的丰度不同的生物分子。该小组下一步目标是把检测系统做成一个手持式系统,更加快速方便地检测组织样品。欧共体已经拨款1200万欧元资金给该小组,以使该技术进一步完善。 苏格兰IntermediaryTechnologyInstitutes计划投资1亿2千万英镑发展“生物传感器平台(BiosensorPlatform)”——一种治疗诊断技术。作为将诊断和治疗疾病结合在一起的新兴疗法,能够在诊断的同时,提出适合不同病人的治疗方案,可以降低疾病诊断和医学临床的费用与复杂性,同时具备提供疾病发展和药品疗效成果的能力。目前该技术已被使用在某些乳癌的治疗上,只需在事前做些特殊的测试,即可根据结果决定适合的疗程。这个技术更被医学界视为未来疾病疗程的主流。 来自加州大学洛杉矶分校的研究者使用GeneFluidics开发的新型生物传感器来鉴定引起感染的特定革兰氏阴性菌,该结果表明利用微型电化学传感器芯片已经可以用于人临床样本的细菌检查。GeneFluidics'16-sensor上的芯片包被了UCLA设计的特异的遗传探针。临床样本直接加到芯片上,然后其电化学信号被多通道阅读器获取。根据传感器上信号的变化来判断尿路感染的细菌种类。从样品收集到结果仅需45分钟。比传统方法(需要2天时间)

生物传感器基本原理与应用

生物传感器基本原理与应用 生物传感器,是一种对生物物质敏感并将其浓度转换为电信号进行检测的仪器。是由固定化的生物敏感材料作识别元件(包括酶、抗体、抗原、微生物、细胞、组织、核酸等生物活性物质)、适当的理化换能器(如氧电极、光敏管、场效应管、压电晶体等等)及信号放大装置构成的分析工具或系统。 生物传感器由分子识别部分(敏感元件)和转换部分(换能器)构成。以分子识别部分去识别被测目标,是可以引起某种物理变化或化学变化的主要功能元件。分子识别部分是生物传感器选择性测定的基础;而换能部分是把生物活性表达的信号转换为电信号的物理或化学换能器(传感器)。 各种生物传感器有以下共同的结构:包括一种或数种相关生物活性材料(生物膜)及能把生物活性表达的信号转换为电信号的物理或化学换能器(传感器),二者组合在一起,用现代微电子和自动化仪表技术进行生物信号的再加工,构成各种可以使用的生物传感器分析装置、仪器和系统。 生物传感器能够选择性地分辩特定物质的物质有酶、结构抗体、组织、细胞等。这些分子识别功能物质通过识别过程可与被测目标结合成复合物,如抗体和抗原的结合,酶与基质的结合。 主要应用: 1.食品工业。生物传感器在食品分析中的应用包括食品成分、食品添加剂、有害毒物及食品鲜度等的测定分析。 2.环境监测。环境污染问题日益严重,人们迫切希望拥有一种能对污染物进行连续、快速、在线监测的仪器,生物传感器满足了人们的要求。目前,在包括水环境监测、大气环境监测等方面,生物传感器已经有了较为广泛的应用和良好的前景。 3.发酵工业。在各种生物传感器中,微生物传感器具有成本低、设备简单、不受发酵液混浊程度的限制、可能消除发酵过程中干扰物质的干扰等特点。因此,在发酵工业中广泛地采用微生物传感器作为一种有效的测量工具。 目前主要的应用方向为:原材料及代谢产物的测定、微生物细胞数目的测定等。 4.医学。医学领域的生物传感器发挥着越来越大的作用。生物传感技术不仅为基础医学研究及临床诊断提供了一种快速简便的新型方法,而且因为其专一、灵敏、响应快等特点,在军事医学方面,也具有广的应用前景。目前主要的应用方向有:临床医学(主要是酶电极)、军事医学等。此外,在法医学中,生物传感器还可用作DNA鉴定和亲子认证等。

生物传感器分析解析

阅读报告 生物传感器 教学单位:机电工程学院 专业名称:机械设计制造及其自动化 学号: 学生姓名: 指导教师: 指导单位:机电工程学院 完成时间: 电子科技大学中山学院教务处制发

生物传感器 摘要 传感器(英文名称:transducer/sensor)是一种检测装置,能感受到被测量的信息,并能将感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。 传感器的特点包括:微型化、数字化、智能化、多功能化、系统化、网络化。它是实现自动检测和自动控制的首要环节。传感器的存在和发展,让物体有了触觉、味觉和嗅觉等感官,让物体慢慢变得活了起来。通常根据其基本感知功能分为热敏元件、光敏元件、气敏元件、力敏元件、磁敏元件、湿敏元件、声敏元件、放射线敏感元件、色敏元件和味敏元件等十大类。 生物传感器(biosensor),是一种对生物物质敏感并将其浓度转换为电信号进行检测的仪器。是由固定化的生物敏感材料作识别元件(包括酶、抗体、抗原、微生物、细胞、组织、核酸等生物活性物质)、适当的理化换能器(如氧电极、光敏管、场效应管、压电晶体等等)及信号放大装置构成的分析工具或系统。生物传感器具有接受器与转换器的功能。 关键词:传感器生物传感器

目录 1 生物传感器 (1) 1.1生物传感器简介 (1) 2 生物传感器的介绍 (2) 2.1组成结构及工作原理 (2) 2.2技术特点 (2) 2.3国内外应用发展情况及应用案例 (3) 2.3.1国内应用发展 (3) 2.3.2国外应用发展 (3) 2.3.3应用案例 (4) 参考文献 (6)

生物传感器 检测限

生物传感器检测限 我做了一个生物传感器没有良好的线性范围怎么确定最低检测限呢?大侠们指导下吧 找出一段线性最好的范围,求出他的斜率,此为敏感度!用三倍的背景电流除以敏感度,即为检测极限~~~关键是你所说的没有良好的线性范围我没怎么明白~~ 就是浓度和信号没有线性关系啊以3倍的空白的标准偏差作为检测限可以吗?我是这么理解的,如果没有线性关系的话,很难保证信号是你的目标物引起的~~~ 这样子啊但是随浓度增高信号是变强的就是没有线性关系郁闷死我了 如果你多次重复实验都是这样的一个结果,而且你也确定你的实验没有问题的话,考虑一下能斯特关系,即信号与浓度的-logC之间可有线性关系,一般情况下,电流与浓度之间应该是线性关系,能斯特关系比较多的出现在开路电位与浓度的关系上。 背景电流应该怎样来求?不是太理解,谢谢! 我认为这是个好问题,当初自己在看文献的时候也产生过这样的疑问。希望论坛上能讨论更多这些研究细节的问题。线性范围和检测极限都是生物传感器重要的性能参数,对它们进行考察和分析在研究中是不可避免。其实也比较容易理解,如果有例子分析说明就好了。下面的图希望对你有帮助。 线性范围:

检测极限:

回归方程形式:y=a+b*x 请教一下:对于生物传感器,线性范围是否最好能有?是不是有的没有良好的线性范围?这样的话,检测下限就不能算出来了? 我看到有的用3σ计算检测限,用的是空白值的标准偏差。 谢谢! 不是所有的生物传感器都能得到线性的回归方程。但酶传感器一般是这样的,是由酶催化反应和电化学测试方法决定的。对于DNA传感器,待测物浓度和电流值通常不成线性关系,也就不能简单地线性拟合。但检测局限都是能确定的。也是根据公式Y-Yb=Sb。 3σ中的σ也即上贴公式中的Sb,就是空白值的标准偏差,通过测n次空白值后得到。只是在具体求值的时候,可以用标准偏差S代替,也有书上讲用回归标准偏差代替。

什么是生物传感器

1.什么是生物传感器?主要由哪几部分组成,分别有什么功能. 生物传感器的定义:生物传感器是一种精致的分析器件,它结合一种生物或者生物衍生的敏感器件与一只理化换能器,能给产生间断或连续的数字电信号,信号强度与被分析物成比例。组成:生物敏感膜(分子识别元件),换能器 作用过程是,待分析物与生物敏感膜发生反应,产生物理、化学量的变化,物理化学量的变化传递给换能器,转换为可被计算机识别的电信号。 生物敏感膜的种类:酶,全细胞,组织,细胞器,免疫物质,具有生物亲和能力的物质,核算,模拟酶。以上生物敏感膜均是人工膜,而非天然生物膜 换能器:其作用是将各种生物的、化学的和物理的信息转化成电信号。可以用作转化的信息有,离子变化,电阻、电导变化,光学变化,质量变化,力学变化,气体分压变化。 2.什么是酶联免疫测定法?描述其两种检测方法,可画图说明.并举一两个例子。 夹心法:先将抗体固定在膜的表面,加入待检测的抗原,与固定抗体结合,因为抗原至少含有两个结合点,可以再结合一个被酶标记的抗体,加入底物,根据标记到抗体上的酶与底物的颜色,荧光,氧化还原电位等信号检测待测抗原的量。 竞争法:将与待测抗原全部覆盖到固定膜上,然后加入待测样品和酶标记的抗体,待反应完全后冲洗固定膜,再检测固定膜上的抗体的量,因为样品中的抗原已被冲走,剩下的抗体是与样品中抗原竞争时结合到被固定抗原上的抗体量。 3.DNA的三级结构? 一级结构:脱氧核糖核苷酸的排列顺序 二级结构:根据碱基互补配对形成的双螺旋连。现在已发现的螺旋分为B型,A型,C型,Z型,它们在螺距,直径,每个螺旋的碱基数和旋转的方向上不同。 三级结构:DNA双螺旋继续扭曲变形,并与蛋白质分子结合形成核小体,压缩进染色体内。 4.生物敏感元件的固定化方法有哪几种?分别有什么特点.酶和DNA分别常用哪几种固定方法. 5.NH3电极属于第一代生物传感器的哪种基础电极,说明其作用原理. 6.分析裸电极上Fe(CN)63-/4-的循环伏安曲线,并指出由其能得到什么信息。

基于石墨烯的光学生物传感器的研究进展_高原

DOI :10.3724/SP.J.1096.2013.20747基于石墨烯的光学生物传感器的研究进展 高原 1李艳2苏星光*2(电子科学与工程学院集成光电子国家重点实验室1,吉林大学化学学院2,长春130012)摘要近年来,随着石墨烯研究热潮的兴起,将石墨烯用于生物及化学检测的工作也日益增多。本文着重介绍了基于石墨烯及氧化石墨烯(GO )的光学生物传感器,特别是基于石墨烯的荧光共振能量转移(FRET ) 传感器以及比色法传感器的设计思想和传感特性。 关键词石墨烯;氧化石墨烯;生物传感器;荧光共振能量转移;评述 2012-07-17收稿;2012-09-30接受 本文系国家自然科学基金(Nos.2127506, 21075050)资助项目*E-mail :suxg@jlu.edu.cn 1引言 石墨烯是一种由纯碳原子的六元环平面结构构成的二维材料 [1],是零维的富勒烯、一维的碳纳米管(CNTs )以及三维石墨结构的构筑基元[2]。它具有非常大的理论比表面积、很高的杨氏模量[3]、超高的光学透过率、优良的导热性[4]和导电性,并能够通过电子转移实现荧光猝灭。目前,人们已将基于石 墨烯的材料广泛应用于诸多领域,如吸附剂 [5]、催化剂[6]、药物载体[7]等。石墨烯具有的奇特性质,使 得其能够满足高灵敏性传感器设计的需求,并已用于构建光学[8]、电化学[9]及场效应传感器[10,11]、细胞标记[12]及实时监测[13]等。本文介绍了基于石墨烯材料的光学生物传感器的研究进展,重点评述了基于石墨烯基的荧光共振能量转移(FRET )以及比色法传感器。 2基于石墨烯的荧光共振能量转移传感器 荧光共振能量转移(FRET )是能量由供体荧光团经无辐射途径转移给受体荧光团,并引起供体荧 光猝灭和受体荧光增强的光学现象, 是测量活体及体外纳米尺度距离及变化的有效手段。近年来,人们致力于开发基于石墨烯材料的FRET 传感器, 将其用于生物及化学检测。FRET 传感器主要由3部分构成:供体、受体(猝灭剂)及供受体之间的桥联媒介。在基于石墨烯的FRET 传感器中,石墨烯及其衍生物既可以作为供体,又可作为受体。一方面,石墨烯由于其结构特点,能够同时猝灭发射波长或结构不同的多种荧光团的荧光,是一种通用的猝灭剂;另一方面,石墨烯及其衍生物经过一定的化学处理,可以产生荧光信号,可作为荧光供体。基于石墨烯的FRET 生物传感器依托于一些生物分子构建的桥联基, 用于调节供体荧光团和受体之间的距离,从而引起荧光的变化。其中,DNA 、蛋白质、多肽等生物分子均 可以作为桥联基。 2.1以石墨烯作为猝灭剂 在报道的基于石墨烯材料的FRET 传感器中,以石墨烯材料作为猝灭剂的居多。氧化石墨烯(GO )是石墨烯的一种重要衍生物,是化学还原法制备石墨烯的前驱体,在石墨烯片层结构的边缘和表面带有 多种含氧基团, 如羧基、羟基、环氧基等。正是由于这些含氧基团的存在,使其较石墨烯具有更好的水溶性,可以应用于生物体系中。石墨烯及GO 由于其大面积的共轭结构,可以作为能量受体猝灭多种有机染料及量子点的荧光,是一种广适性的荧光猝灭剂。与传统的猝灭剂相比,石墨烯材料具有更高的猝灭 效率,使FRET 传感器具有背景低、信噪比高、可多重检测的显著特点 [14 16]。2.1.1基于DNA 联接研究表明,石墨烯能区分多种DNA 分子结构,包括ssDNA ,dsDNA 以及茎环 结构等[17,18]。石墨烯及GO 由于其结构特点,对带有裸露的环状结构的化合物具有强烈的吸附能力。第41卷 2013年2月分析化学(FENXI HUAXUE )特约来稿Chinese Journal of Analytical Chemistry 第2期174 180

生物传感器原理及应用

Chapter 1生物传感器 (Biosensors) ? 1.1 Generalization(概述)? 1.2 Principle (基本原理)? 1.3 Classification(分类)? 1.4 Application(应用)

1.2 生物传感器工作原理 被测对象生物敏 感膜 (分子 识别感 受器) 电 信 号 换 能 器 物理、化学反应 化学物质 力 热 光 声 . . . 图16-1 生物传感器原理图

BIOSENSORS 1.2 生物传感器原理 无论是基于电化学、光学、热学或压电 晶体等不同类型的生物传感器,其探头均由 两个主要部分组成,一是感应器,它是由对 被测定的物质(底物)具有高选择性分子识 别功能的膜构成。二是转换器,它能把膜上 进行的生化反应中消耗或生成的化学物质, 或产生的光、热等转变成电信号,最后把所 得的电信号经过电子技术的处理后,在仪器 上显示或记录下来。

换能器(T r a n s d u c e r )感受器(R e c e p t o r )= 分析物(Analyte ) 溶液(Solution )选择性膜(Thin selective membrane ) 识别元件(Recognition )生物传感器工作机理 测量信号(Measurable Signal ) BIOSENSORS

(1)将化学变化转变成电信号 酶传感器为例,酶催化特定底物发生化学反应,从而使特定生成物的量有所增减。用能把这类物质的量的改变转换为电信号的装置和固定化酶耦合,即组成酶传感器.常用转换装置有氧电极、过氧化氢。

生物传感器产业现状和发展前景

生物传感器产业现状和发展前景 冯德荣 1.1 生物传感器概述 生物传感器是一个非常活跃的研究和工程技术领域,它与生物信息学、生物芯片、生物控制论、仿生学、生物计算机等学科一起,处在生命科学和信息科学的交叉区域。它们的共同特征是:探索和揭示出生命系统中信息的产生、存储、传输、加工、转换和控制等基本规律,探讨应用于人类经济活动的基本方法。生物传感器技术的研究重点是:广泛地应用各种生物活性材料与传感器结合,研究和开发具有识别功能的换能器,并成为制造新型的分析仪器和分析方法的原创技术,研究和开发它们的应用。生物传感器中应用的生物活性材料对象范围包括生物大分子、细胞、细胞器、组织、器官等,以及人工合成的分子印迹聚合物(molecularly imprinied polymer,MIP)。由于研究DNA分子或蛋白质分子的识别技术已形成生物芯片(DNA芯片、蛋白质芯片)独立学科领域,本文对这些领域将不进行讨论。 生物传感器研究起源于20世纪的60年代,1967年Updike和Hicks把葡萄糖氧化酶(GOD)固定化膜和氧电极组装在一起,首先制成了第一种生物传感器,即葡萄糖酶电极。到80年代生物传感器研究领域已基本形成。其标志性事件是:1985年“生物传感器”国际刊物在英国创刊;1987年生物传感器经典著作在牛津出版社出版;1990年首届世界生物传感器学术大会在新加坡召开,并且确定以后每隔二年召开一次。 此后包括酶传感器的生物传感器研究逐渐兴旺起来,从用一种或多种酶作为分子识别元件的传感器,逐渐发展设计出用其他的生物分子作识别元件的传感器,例如酶—底物、酶—辅酶、抗原—抗体、激素—受体、DNA双螺旋拆分的分子等,把它们的一方固定化后都可能作为分子识别元件来选择地测量另一方。除了生物大分子以外,还可以用细胞器、细胞、组织、微生物等具有对环境中某些成分识别功能的元件来作识别元件。甚至可以用人工合成的受体分子与传感器结合来测定微生物、细胞和相关的生物分子。 与生物活性材料组合的传感器可以是多种类型的物理或化学传感器,如电化学(电位测定、电导测定、阻抗测定)、光学(光致发光、共振表面等离子体)、机械(杠杆、压电反应)、热(热敏电阻)或者电(离子或者酶场效应晶体管)等等。所有这些具有生物识别功能的组合体通称为生物传感器。 按期召开的世界生物传感器学术大会记录了生物传感器技术发展的历程,总汇了这一领域的发展新动向。例如1992年在德国慕尼黑“国际生物传感器流动注射分析与生物工艺控制”学术会议上对生物工艺控制和在线系统进行研讨,至今仍作为研究者攻关的课题。2004年在西班牙格拉纳达会展中心召开的第八届世界生物传感器大会可以说是世界生物分析系统领域的一次大的盛会[1],参会代表人数和发表论文数量都创造了历史新高。共有700余名来自世界各地的学者参加了本届大会,第八届世界生物传感器大会涉及领域内容空前广泛,对9个专题进行了分组讨论。包括核酸传感器和DNA芯片、免疫传感器、酶传感器、组织和全细胞传感器、用于生物传感器的天然与合成受体、新的信号转导技术、系统整合/蛋白质组学/单细胞分析、生物电化学/生物燃料/微分析系统、商业发展和市场。其中,单分子/细胞分析和生物印迹生物传感器由于它们良好的发展态势及在生命科学研究中的重要位置成为与会学者讨论的热点问题。

生物传感器的应用现状及发展前景

生物传感器的应用现状及发展前景 摘要:到来后,获取准确可靠的信息对现代化生产有着重大作用,而传感器是获取自然和生产领域中信息的主要途径与手段。其中生物传感器早已渗透到国民经济的各个部门如食品、制药、、、环境监测等方面。生物传感器专一性好、易操作、设备简单、测量快速准确、适用范围广。随着固定化技术的发展,生物传感器在市场上具有极强的竞争力。生物传感器的研究开发,已成为世界科技发展的新热点。相信不久的将来,生物传感器技术将会出现一个飞跃,达到与其重要地位相称的新水平。 关键词:生物传感器、应用、前景 一、传感器概述 传感器是一种检测装置,能感受到被测量的信息,并能将感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。它是实现自动检测和自动控制的首要环节。GB7665-87对传感器下的定义是:“能感受规定的被测量件并按照一定的规律(法则)转换成可用信号的器件或装置,通常由和转换元件组成”。 随着的到来,世界开始进入。在利用信息的过程中,首先要解决的就是要获取准确可靠的信息,而传感器是获取自然和生产领域中信息的主要途径与手段。 在现代工业生产尤其是自动化生产过程中,要用各种传感器来监视和控制生产过程中的各个参数,使设备工作在正常状态或最佳状态,并使产品达到最好的质量。因此可以说,没有众多的优良的传感器,现代化生产也就失去了基础。 传感器早已渗透到工业生产、宇宙开发、海洋探测、环境保护、资源调查、医学诊断、生物工程、甚至文物保护等各个领域。可以毫不夸张地说,从茫茫的太空,到浩瀚的海洋,以至各种复杂的工程系统,几乎每一个现代化项目,都离不开各种各样的传感器。 由此可见,在发展经济、推动社会进步方面的重要作用,是十分明显的。世界各国都十分重视这一领域的发展。相信不久的将来,传感器技术将会出现一个飞跃,达到与其重要地位相称的新水平。 传感器的特点主要有微型化、数字化、智能化、多功能化、系统化、网络化,它不仅促进了传统产业的改造和更新换代,而且还可能建立新型工业,从而成为21世纪新的经济增长点。 常见传感器有、、、、、、、以及等。 二、生物传感器概述 生物传感器是用生物活性材料(酶、、、抗体、抗原等)与换能器有机结合的一门交叉学科,是发展生物技术必不可少的一种先进的检测方法与监控方法,也是物质分子水平的快速、微量分析方法。 1967年.乌普迪克等制出了第一个生物传感器--葡萄糖传感器。将包含在聚丙烯酰胺胶体中加以固化,再将此胶体膜固定在隔膜氧电极的尖端上,便制成了这种葡萄糖传感器。 生物传感器的分类: ⑴按照感受器生命物质分类,可分为:微生物传感器、免疫传感器、组织传感器、细胞传感器、、DNA传感器等等。

生物传感器的应用现状及发展前景

生物传感器的应用现状 及发展前景 https://www.wendangku.net/doc/da3001062.html,work Information Technology Company.2020YEAR

生物传感器的应用现状及发展前景 摘要:信息时代到来后,获取准确可靠的信息对现代化生产有着重大作用,而传感器是获取自然和生产领域中信息的主要途径与手段。其中生物传感器早已渗透到国民经济的各个部门如食品、制药、化工、医学、环境监测等方面。生物传感器专一性好、易操作、设备简单、测量快速准确、适用范围广。随着固定化技术的发展,生物传感器在市场上具有极强的竞争力。生物传感器的研究开发,已成为世界科技发展的新热点。相信不久的将来,生物传感器技术将会出现一个飞跃,达到与其重要地位相称的新水平。 关键词:生物传感器、应用、前景 一、传感器概述 传感器是一种检测装置,能感受到被测量的信息,并能将感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。它是实现自动检测和自动控制的首要环节。国家标准 GB7665-87对传感器下的定义是:“能感受规定的被测量件并按照一定的规律(数学函数法则)转换成可用信号的器件或装置,通常由敏感元件和转换元件组成”。 随着新技术革命的到来,世界开始进入信息时代。在利用信息的过程中,首先要解决的就是要获取准确可靠的信息,而传感器是获取自然和生产领域中信息的主要途径与手段。 在现代工业生产尤其是自动化生产过程中,要用各种传感器来监视和控制生产过程中的各个参数,使设备工作在正常状态或最佳状态,并使产品达到最好的质量。因此可以说,没有众多的优良的传感器,现代化生产也就失去了基础。 传感器早已渗透到工业生产、宇宙开发、海洋探测、环境保护、资源调查、医学诊断、生物工程、甚至文物保护等各个领域。可以毫不夸张地说,从茫茫的太空,到

纳米生物传感器研究进展及其应用

纳米生物传感器研究进展及其应用

纳米生物传感器的研究进展及其应用 张雯歆 【摘要】:随着纳米技术在生物传感器领域的不断引入,纳米生物传感器在灵敏度的提高,检测限的降低,线性检测范围的拓宽以及响应时间的缩短等方面的性能得到了很好的改善。本文主要对纳米颗粒、纳米纤维、纳米管以及纳米量子生物传感器在酶、免疫以及DNA等生化领域检测方面应用的研究进展进行简单的概述。 【关键词】:纳米材料生物传感器应用 Advances of Research on application of Nano-materials in biosensors 【Abstract】:With the development of nanotechnology , the unique properties of nano-materials realize an objective to improve sensitive sensor with a wide linear range, a highly reproducible response, long-term stability and so on. The application of nano-materials (such as nanoparticle, nanofiber, nanotube) in biosensor fields introduced. The development of this field prospected in the future. 【Keywords】:nano-materials; biosensors; application 纳米技术和生物技术是21世纪的两大领先技术,在这两者之间存在着许多技术交叉,其中,纳米生物传感技术已然引起了研究领域的广泛关注。 生物传感器是一类特殊形式的传感器,由固定化的生物敏感材料作为识别元件(包括酶、抗体、抗原、微生物、细胞、组织、核酸等生物活性物质)与适当的理化换能器及信号放大装置构成,具有接受器与转换器的功能,从而能够检测多种生命和化学物质。纳米技术主要是针对尺度为1 nm~100 nm之间的分子世界的一门技术。该尺寸处在原子、分子为代表的微观世界和宏观物体交界的过渡区域,因此有着独特的化学性质和物理性质,如表面效应、微尺寸效应、量子效应和宏观量子隧道效应等,呈现出常规材料不具备的优越性能。纳米技

生物传感器的发展现状与趋势

生物传感器的应用与发展趋势 摘要:生物传感器是一门由生物、化学、物理、医学、电子技术等多种学科互相渗透成长起来的高新技术, 是一种将生物感应元件的专一性与一个能够产生和待测物浓度成比例的信号传导器结合起来的分析装置,具有选择性好、灵敏度高、分析速度快、成本低、能在复杂的体系中进行在线连续检测的特点。生物传感器的高度自动化、微型化与集成化,减少了对使用者环境和技术的要求,适合野外现场分析的需求,在生物、医学、环境监测,视频,医药及军事医学等领域有着重要的应用价值。 关键词:生物传感器;应用;发展趋势 1生物传感器 从几百年以前,人类就已经在使用生物传感器,而生物传感器的研究始于1962年,Clark和Lyons首先提出使用含酶的修饰膜来催化葡萄糖,用pH计和氧电极来检测相应的信号转变。1967年,Updike和Hick 正式提出了生物传感器这一概念,并成功制备了第一支葡萄糖生物传感器,这一工作对生物学来说具有里程碑意义。生物传感器研究的全面展开是从20世纪80年代开始的,1977年,Kambe等用微生物作识别元素制备了生物传感器,为拓宽检测物的范围,所用到的识别元素不断得到扩展,如细胞、DNA、RNA、抗体等识别元素先后被应用于生物传感器的构筑中。换能器的种类和质量也不断得到提高和发展,随后细胞、DNA、RNA、抗体等识别元素也被应用于生物传感器中。逐渐从电化学向光谱学、热力学、磁力、质量及声波等方向拓展,这也使得生物传感器在种类和应用领域上得到发展。 1.1 生物传感器简介 生物传感器指对生物物质敏感并将其浓度转换为电信号进行检测的仪器。是由固定化的生物敏感材料作识别元件包括酶、抗体、抗原、微生物、细胞、组织、核酸等生物活性物质与适当的理化换能器如氧电极、光敏管、场效应管、压电晶体等等及信号放大装置构成的分析工具或系统。生物传感器具有接受器与转换器的功能。对生物物质敏感并将其浓度转换为电信号进行检测的仪器。 将葡萄糖氧化酶包含在聚丙烯酰胺胶体中加以固化,再将此胶体膜固定在隔膜氧电极的尖端上,便制成了葡萄糖传感器。当改用其他的酶或微生物等固化膜,便可制得检测其对应物的其他传感器。固定感受膜的方法有直接化学结合法;高分子载体法;高分子膜结合法。现已发展了第二代生物传感器:微生物、免疫、酶免疫和细胞器传感器,研制和开发第三代生物传感器,将系统生物技术和电子技术结合起来的场效应生物传感器,90年代开启了微流控技术,生物传感器的微流控芯片集成为药物筛选与基因诊断等提供了新的技术前景。由于酶膜、线粒体电子传递系统粒子膜、微生物膜、抗原膜、抗体膜对生物物质的分子结构具有选择性识别功能,只对特定反应起催化活化作用,因此生物传感器具有非常高的选择性。缺点是生物固化膜不稳定。 在21世纪知识经济发展中,生物传感器技术必将是介于信息和生物技术之间的新增长点,在国民经济中的临床诊断、工业控制、食品和药物分析(包括生物药物研究开发)、环境保护以及生物技术、生物芯片等研究中有着广泛的应用前景。 1.2 生物传感器的分类 生物传感器主要有下面三种分类命名方式: 1.根据生物传感器中分子识别元件即敏感元件可分为五类:酶传感器,微生物传感器,细胞传感器,组织传感器和免疫传感器。相应的敏感材料依次为酶、微生物个体、细胞器、动植物组织、抗原和抗体。 2.根据生物传感器的换能器即信号转换器分类有:生物电极传感器,半导体生物传感器,光生物传感器,热生物传感器,压电晶体生物传感器等,换能器依次为电化学电极、半导体、光电转换器、热敏电阻、压电晶体等。 3.以被测目标与分子识别元件的相互作用方式进行分类有生物亲和型生物传感器、代谢型或催化型生

生物传感器研究进展

[文章编号]1002-0179(2008)06-1517-02 生物传感器研究进展 高志勇 (渭南师范学院环境与生命科学系,陕西渭南 714000) [中图分类号]Q4-33;R31816 [文献标志码]D  基金项目:渭南师范学院研究生专项科研项目(08YK Z 005) 生物传感器(biosens or )是一类特殊形式 的传感器[1],是一种对生物物质敏感并将其待测物质转换为声、光、电等信号进行检测的仪器。它是由固定化的生物敏感材料作识别元件(包括酶、抗体、抗原、微生物、细胞、组织、核酸等生物活性物质),与适当的理化换能器(如氧电极、光敏管、场效应管、压电晶体等)及信号放大装置构成的分析工具或系统。生物传感器具有接受器与转换器的功能。 1 生物传感器的历史发展 1962年Clark 等提出了把酶与电极结合来测定酶底物的设想,1967年Updike 和Hicks 将葡萄糖氧化酶包含在聚丙烯酰胺胶体中加以固化,再将此胶体膜固定在隔膜氧电极的尖端上,研制出世界上第一支葡萄糖氧化酶电极,用于定量检测血清中葡萄糖含量,标志着生物传感器的诞生。随后改用其它的酶或微生物等固化膜,便可制得检测其对应物的其它传感器。固定感受膜的方法有直接化学结合法;高分子载体法;高分子膜结合法。现已发展了第二代生物传感器(微生物、免疫、酶免疫和细胞器传感器),研制和开发第三代生物传感器,将生物技术和电子技术结合起来的场效应生物传感器。 生物传感器是用生物活性材料(酶、蛋白质、DNA 、抗体、抗原、生物膜等)与物理化学换能器有机结合的一门交叉学科,是发展生物技术必不可少的一种先进的检测方法与监控方法,也是物质分子水平的快速、微量分析方法。在21世纪知识经济发展中,生物传感器技术必将是介于信息和生物技术之间的新增长点,在医学临床诊断[2,3]、工业控制、食品和药物分析(包括生物药物研究开发)[4,5]、环境保护以及生物技术[6~8]、生物芯片等研究中有着广泛的应用前景。 2 生物传感器的原理 在利用生物传感器进行物质检测时,待测物质经扩散作用进入生物活性材料,经分子识别,发生生物学反应,产生的信息继而被相应的物理或化学换能器转变成可定量和可处理的声、光、电等信号,再经二次仪表放大并输出,便可知道待测物浓度。 3 生物传感器的特点 (1)速度快,成本低。固定化酶生物传感 分析仪是最早出现且精度最高的生物传感器,它们已经发展成一类可靠的精密分析仪器,由于采用了固定化酶膜作为分析工具,酶法分析试剂可以反复使用数千次,其分析成本只有手掌型血糖分析仪的十分之一;分析速度快,不到20s 可以获得准确的分析结果,这在临床急症室、某些重症患者的监护等许多场合都很重要。 (2)专一性强。生物传感器只对特定的底物起反应,而且不受颜色、浊度的影响,因此一般不需要进行样品的预处理,干扰少。 (3)稳定性好,分析精度高。像目前市场上应用的高精度血糖分析仪是采用固定化酶的生物传感分析仪,其分析精度可以达到015%~2%。 (4)操作系统简单,容易实现自动分析。 如药物分析中常用的表面等离子体共振(surface plasm on res onance ,SPR )生物传感器,就具有体积小、测定范围宽、精度高、灵敏度高、功能完整、操作方便、可靠、耗材廉价等优点,是一种创新性、实用化的现代科学仪器。 (5)作用广,应用价值大。有的生物传感器能够可靠地指示微生物培养系统内的供氧状况和副产物的产生,在生产控制中能得到许多复杂的物理化学传感器综合作用才能获得的信息,同时它们还指明了增加产物获得率的方向;现在的生物传感器的应用涉及到医疗保健、疾病诊断、食品检测、环境监测、发酵工业的各个领域。 4 生物传感器的分类 生物传感器可从不同的角度进行分类,主要有以下三种方法: (1)按照其感受器中所采用的生命物质分类,可分为:微生物传感器、免疫传感器、组织传感器、细胞器传感器、酶传感器、DNA 传感器等[9]。 (2)按照传感器器件检测的原理分类,可分为:热敏生物传感器、场效应管生物传感器、压电生物传感器、光学生物传感器、声波道生物传感器、酶电极生物传感器、介体生物传感器等。 (3)按照生物敏感物质相互作用的类型分类,可分为亲和型和代谢型两种。 下面以第一种分类方法对生物传感器的各种类进行介绍。411 微生物传感器 微生物传感器是由载体结合的微生物细胞和电化学器件组成,已发展了两种传感器:一种是以微生物呼吸活性为指标的呼吸型传感器,一种是以微生物的代谢产物为指标的电活性物质测定型传感器。用微生物代替酶作为识别元件是因为微生物具有较高稳定性、选择性好、廉价实用等优点,并可广泛用于许多酶反应系统、辅酶和能量再生系统[10]。412 免疫传感器 免疫传感器是依赖抗原和抗体之间特异性和亲和性,利用抗体检测抗原或利用抗原检出抗体的传感器。并非所有的化合物都有免疫原性,一般分子量大、组成复杂、异物性强的分子,如生物战剂和部分毒素具有很强的免疫原性,而小分子物质,如化学战剂和某些毒素则没有免疫原性。但免疫传感器更适合于研制能连续、重复使用的毒剂监测器材。免疫分析法选择性好,如一种抗体只能识别一种毒剂,可以区分性质相似的同系物、同分异构体,甚至立体异构体,且抗体比酶具有更好的特异性,抗体与抗原的复合体相对稳定,不易分解[11]。413 组织传感器 直接采用动植物组织薄片作为敏感元件的电化学传感器称组织电极传感器,其原理是利用动植物组织中的酶,优点是酶活性及其稳定性均比离析酶高,材料易于获取,制备简单,使用寿命长等。但在选择性、灵敏 度、响应时间等方面还存在不足[12]。414 细胞传感器 细胞器传感器是20世纪80年代末出现的一种以真核生物细胞、细胞器作为识别元件的生物传感器。1987年,Blondin 等提出了固定线粒体评价水质。Carpentier 及其合作者用类囊体膜构建的生物传感器,可在mg/L 浓度下测定铅与镉的毒性,也可对银或铜进行快速测定。R ouillon 等用特殊的固定化技术将叶绿体与类囊体膜包埋在光交联的苯乙烯基吡啶聚乙烯醇(PVA -sbQ )中,可以在μg/L 浓度水平下检测到汞(Hg )、铅(Pb )、镉(Cd )、镍(Ni )、锌(Zn )和铜(Cu )等离子的存在[13]。415 酶传感器 酶传感器是最早问世的生物传感器,早在1962年Clark 等就提出了酶传感器原理,1967年Updike 等发展制成为酶电极,它是把无机离子或低分子气体作为测量对象而发展起来的电化学器件,并与同时期发展起来的酶固定技术相结合而产生的传感器[14]。酶生物传感器是将酶作为生物敏感基元,通过各种物理、化学信号转换器捕捉目标物与敏感基元之间的反应所产生的与目标物浓度成比例关系的可测信号,实现对目标物定量测定的分析仪器。与传统分析方法相比,酶生物传感器是由固定化的生物敏感膜和与之密切结合的换能系统组成[15]。416 DNA 传感器 DNA 是一类重要的生命物质,是大多数生物体遗传信息的载体,对DNA 的研究是生命科学研究领域中极为重要的内容。随着人类基因组计划的顺利实施,基于DNA 探针的基因传感器、基因芯片的研究正成为基因组研究的一个热点[16]。DNA 生物传感器是一种能将目标DNA 的存在转化为可检测的电、光、声信号的装置[17]。所检测的是核酸的杂交反应,因此也可以称它为核酸杂交生物传感器(nucleic acid hybridization biosens or )。每种生物体内都含有其独特的核酸序列,因此检测特定核酸序列的关键是要设计一段寡核苷酸序列作为探针。这段探针能够专一性与其进行杂交,而与其它非特异性序列不杂交,对靶序列杂交的特异性和敏感性,一直是核酸检测工作者的研究主题。DNA 生物传感器的结构包括一个靶序列识别层和一个信号换能器。识别层通常由固定在换能器上的探针DNA 以及一些其它的辅助物质组成,它可以特异性地识别靶序列并与其杂交。换能器可将此杂交过程所产生的变化转变为可识别的信号,根据杂交前后信号量的变化,可以对靶DNA 进行准确定量。根据换能器种类不同,可大致分为电化学DNA 传感器、光学DNA 传感器和质量DNA 传感器等[18]。DNA 生物传感器对基因序列的明确分析近年来得到了快速发展,随着DNA 合成技术以及与微电子技术的发展,DNA 生物传感器的发展更趋于完善[19]。 5 展望 生物传感器由于集高效、灵敏、特异、结构小巧、经济实用等优点于一身,目前已成为生命科学领域的研究热点[20],正在成为 7 151华西医学2008,23(6) C N 51-1356/R

纳米生物传感器研究进展及其应用重点

纳米生物传感器的研究进展及其应用张雯歆 【摘要】 :随着纳米技术在生物传感器领域的不断引入, 纳米生物传感器在灵敏度的提高, 检测限的降低, 线性检测范围的拓宽以及响应时间的缩短等方面的性能得到了很好的改善。本文主要对纳米颗粒、纳米纤维、纳米管以及纳米量子生物传感器在酶、免疫以及 DNA 等生化领域检测方面应用的研究进展进行简单的概述。 【关键词】:纳米材料生物传感器应用 Advances of Research on application of Nano-materials in biosensors 【 Abstract 】 :With the development of nanotechnology , the unique properties of nano-materials realize an objective to improve sensitive sensor with a wide linear range, a highly reproducible response, long-term stability and so on. The application of nano-materials (such as nanoparticle, nanofiber, nanotube in biosensor fields introduced. The development of this field prospected in the future. 【 Keywords 】 :nano-materials; biosensors; application 纳米技术和生物技术是 21世纪的两大领先技术, 在这两者之间存在着许多技术交叉,其中,纳米生物传感技术已然引起了研究领域的广泛关注。 生物传感器是一类特殊形式的传感器,由固定化的生物敏感材料作为识别元件(包括酶、抗体、抗原、微生物、细胞、组织、核酸等生物活性物质与适当的理化换能器及信号放大装置构成 , 具有接受器与转换器的功能 , 从而能够检测多种生命和化学物质。纳米技术主要是针对尺度为 1 nm~100 nm之间的分子世界的一门技术。该尺寸处在原子、分子为代表的微观世界和宏观物体交界的过渡区域,因此有着独特的化学性质和物理性质,如表面效应、微尺寸效应、量子效应和宏观量子隧道效应等, 呈现出常规材料不具备的优越性能。纳米技术引入生物传感器领域后, 提高了生物传感器的灵敏度和其它性能, 并促发了新型的生物传感器的发展。但纳米生物传感器还正处于起步阶段, 目前仍有具有很大的研究

SPR生物传感器

SPR生物传感器 1 SPR生物传感器的工作原理 SPR是一种物理光学现象,是由入射光的电磁波和金属导体表面的自由电子形成的电荷密度波相互作用产生的。这种沿着金属导体(金、银)表面传播的电荷密度波是一种电磁波,被称为表面等离子体波(Surface Plasmon Wave,SPW)。它是一种消逝波,在金属内部的分布是随着与表面垂直距离的增大而呈指数衰减的。当平行表面的偏振光以一定角度照在界面上发生衰减全反射时,入射光被耦合人表面等离子体内,光能大量被吸收,在这个角度由于表面等离子体谐振将引起界面反射率显著减少。SPR对附着在金属表面的电介质的折射率非常敏感,而折射率是所有材料的固有特征。因此,任何附着在金属表面上的电介质均可被检测,不同电介质其表面等离子角不同。而同一种电解质,其附着在金属表面的量不同,则SPR响应强度不同。基于这种原理,将一种具有特异识别属性的分子(配体)固定在传感芯片表面金属膜上含分析物的样品(受体)以恒定的速度通过传感芯片,与该配体之间发生相互作用,引起金属膜表面溶液的光学参数(如折射率)发生变化,SPR光学信号也随之改变。记录和处理这些信号可将整个反应显示出来。基于这种原理的检测仪器被称为SPR生物传感器(SPR Biosensor)。 根据耦合方式的不同,SPR传感器在结构上可分为棱镜耦合

式SPR传感器,集成光波导耦合式SPR传感器,光纤式SPR传感器和光栅耦合式SPR传感器。根据测量方式,则可分为:(1)角度指示型,固定入射光波长,观测反射光归一化强度达到最小时的入射角;(2)波长指示型,固定入射光的入射角,测量反射光归一化强度达到最小时的波长(3)光强指示型,固定入射光的入射角和波长,测量反射光的归一化光强;(4)相位指示型,固定入射光的角度和波长,测量入射光和反射光的相位差。此外,根据支撑表面等离子体的金属膜不同,则有金膜型和银膜型。对光纤SPR传感器,还有单模光纤和多模光纤之分。图1给出了一种棱镜耦合式、波长指示型的SPR生物传感器系统的工作原理。 图1 SPR生物传感器系统原理图 2 SPR生物传感器的特点 与传统的相互作用检测技术,如超速离心、荧光法、热量测定法等相比,SPR生物传感器具有如下显著特点:(1)实时检测,能动态地监测生物分子相互作用的全过程。这是SPR生物传感器

生物传感器

生物传感器 生物传感器(biosensor)对生物物质敏感并将其浓度转换为电信号进行检测的仪器。是由固定化的生物敏感材料作识别元件(包括酶、抗体、抗原、微生物、细胞、组织、核酸等生物活性物质)与适当的理化换能器(如氧电极、光敏管、场效应管、压电晶体等等)及信号放大装置构成的分析工具或系统。生物传感器具有接受器与转换器的功能。 目录 简介 解释 定义分类 生物研究 结构原理 应用领域 应用实例 简介 生物传感器(biosensor)对生物物质敏感并将其浓度转换为电信号进行检测的仪器。是由固定化的生物敏感材料作识别元件(包括酶、抗体、抗原、微生物、细胞、组织、核酸等生物活性物质)与适当的理化换能

结构 器(如氧电极、光敏管、场效应管、压电晶体等等)及信号放大装置构成的分析工具或系统。生物传感器具有接受器与转换器的功能。对生物物质敏感并将其浓度转换为电信号进行检测的仪器。各种生物传感器有以下共同的结构:包括一种或数种相关生物活性材料(生物膜)及能把生物活性表达的信号转换为电信号的物理或化学换能器(传感器),二者组合在一起,用现代微电子和自动化仪表技术进行生物信号的再加工,构成各种可以使用的生物传感器分析装置、仪器和系统[1]。 1967年S.J.乌普迪克等制出了第一个生物传感器葡萄糖传感器。将葡萄糖氧化酶包含在聚丙烯酰胺胶体中加以固化,再将此胶体膜固定在隔膜氧电极的尖端上,便制成了葡萄糖传感器。当改用其他的酶或微生物等固化膜,便可制得检测其对应物的其他传感器。固定感受膜的方法有直接化学结合法;高分子载体法;高分子膜结合法。现已发展了第二代生物传感器(微生物、免疫、酶免疫和细胞器传感器),研制和开发第三代生物传感器,将系统生物技术和电子技术结合起来的场效应生物传感器,90年代开启了微流控技术,生物传感器的微流控芯片集成为药物筛选与基因诊断等提供了新的技术前景。由于酶膜、线粒体电子传递系统粒子膜、微生物膜、抗原膜、抗体膜对生物物质的分子结构具有选择性识别功能,只对特定反应起催化活化作用,因此生物传感器具有非常高的选择性。缺点是生物固化膜不稳定。生物传感器涉及的是生物物质,主要用于临床诊断检查、治疗时实施监控、发酵工业、食品工业、环境和机器人等方面。 生物传感器是用生物活性材料(酶、蛋白质、DNA、抗体、抗原、生物膜等)与物理化学换能器有机结合的一门交叉学科,是发展生物技术必不可少的一种先进的检测方法与监控方法,也是物质分子水平的快速、微量分析方法。在未来21世纪知识经济发展中,生物传感器技术必将是介于信息和生物技术之间的新增长点,在国民经济中的临床诊断、工业控制、食品和药物分析(包括生物药物研究开发)、环境保护以及生物技术、生物芯片等研究中有着广泛的应用前景。[2] 解释 传感器是一种可以获取并处理信息的特殊装置,如人体的感觉器官就是一套完美的传

相关文档