文档库 最新最全的文档下载
当前位置:文档库 › Si diffusion behavior during laser welding-brazing of Al alloy and Ti alloy with Al-12Si filler wire

Si diffusion behavior during laser welding-brazing of Al alloy and Ti alloy with Al-12Si filler wire

Si diffusion behavior during laser welding-brazing of Al alloy and

Ti alloy with Al-12Si filler wire

CHEN Shu-hai(? ?), LI Li-qun( ?), CHEN Yan-bin(? ), LIU De-jian( )

State Key Laboratory of Advanced Welding Production Technology,

Harbin Institute of Technology, Harbin 150001, China

Received 11 June 2008; accepted 9 July 2009

Abstract: In laser welding-brazing of Al alloy (5A06) and Ti alloy (Ti-6Al-4V) with rectangular CO2 laser spot and with Al-12Si filler wire, element Si enriches at the interface between Ti substrate and the filler metal. It is found that the Si diffusion behavior has a significant effect on the formation of interfacial intermetallic compounds. To analyze the Si diffusion behavior, a model for the prediction of the chemical potential for ternary alloy was established. According to the calculated results of the influence of the element content and temperature in Ti-Al-Si system on Si chemical potential, the diffusion behavior of Si element was analyzed for Ti dissolution and melting mode, which presents a good agreement with the experimental data. Further, formation mechanism of the interfacial intermetllic compound was clarified.

Key words: laser welding-brazing; diffusion behavior; chemical potential; interfacial reaction

1 Introduction

In aircraft industry, hybrid structures of titanium and aluminum alloys could offer advantages in comparison with conventional materials[1í2]. The performances of Ti and Al have great differences in crystal microstructure, melting point, heat conductivity, coefficient of linear expansion, etc., so the joining of Al alloy to Ti alloy is difficult when applying the traditional fusion method. The dissimilar combination of titanium and aluminum has been realized by diffusion welding[3í4], vacuum brazing[5í6], friction welding[7] and explosion welding[8]. However, above welding methods are restricted by joint configuration or vacuum condition. In additional, low mechanical strength for the joints is another problem for these methods.

A key issue encountered in joining aluminum to titanium is the formation of interfacial intermetallic phases, which depends on the process related temperatureítime cycles. Due to its high energy density and cooling velocity, laser is suitable as the heat source of the controlling interfacial reaction in joining Al to Ti. To achieve laser joining of Al alloy to Ti alloy, while fusion joint is formed by melting aluminum and filler wire Al-12Si, brazing joint is formed by molten filler and solid titanium. Therefore, a reliable joining could be achieved with this method called “laser welding-brazing” by controlling effectively the interfacial reaction. Previous works indicated that good results of the welding are obtained and tensile strength of the joints can exceed that of most Al alloys[9í10].

Compared with brazing and diffusion-bonding, complex metallurgical reaction and diffusion process of elements appear due to fast heating and cooling velocities of the laser welding at the interface. It is found that both modes of Ti melting and dissolution, which depend on the heat input, exhibited in welding-brazing. In addition, the diffusion behavior of Si element has significant influence on interfacial reaction mechanism. Therefore, according to established prediction model of the chemical potential for the Ti-Al-Si system, the effect of the element content and temperature on Si chemical potential was analyzed. Further, Si diffusion behavior and interfacial reaction mechanism in both modes of Ti melting and dissolution were clarified.

2 Experimental

Non-uniform heating and small heating area are

Foundation item: Project(50275036) supported by the National Natural Science Foundation of China Corresponding author: CHEN Shu-hai; Tel: +86-451-86415506; E-mail: shchenhit@https://www.wendangku.net/doc/da12253542.html, DOI: 10.1016/S1003-6326(09)60098-4

CHEN Shu-hai, et al/Trans. Nonferrous Met. Soc. China 20(2010) 64í70 65

disadvantageous to melt stably filler wire and wet base metal. Therefore, laser beam was modulated to rectangular spot (focal spot size of 2 mm h4 mm) by the integral mirror to get more uniform energy distribution. To improve further the spreadablity, V-shape groove with 45? angle was fabricated on base metal. Double shielding gas argon was used at both sides of workpiece to avoid the oxidation of liquid metal. The laser beam irradiated the workpiece vertically, and there was focal spot position at the top surface of the workpiece during laser joining. The angle of 30? between the filler wire and the workpiece was selected. Filler wire was fed in front of the laser beam, as shown in Fig.1. To decrease the difference of heat conductivity and the reflectance of Ti and Al, the offset of laser beam toward Al metal base was set as 0.4 mm.

Fig.1 Schematic of laser joining Ti alloy to Al alloy

Ti-6Al-4V and 5A06 Al alloy plates with thickness of 1.5mm were selected as the laser joining materials. The Ti alloy is composed of Al(5.5%í6.8%), V(3.5%í4.5%) (mass fraction) and balance Ti; the 5A06 Al alloy is composed of Mg(5.8%í6.8%), Si(0.4%), Mn(0.5%í0.8%), Fe(0.4%), Zn(0.2%) (mass fraction) and balance Al. And the filler wire with the diameter of 2 mm is composed of Si(12%), Fe(0.8%), Cu(0.3%), Zn(0.2%) (mass fraction) and balance Al.

In this study, standard grinding and polishing sample preparation procedures were used and solutions of 1%HF, 1.5%HCl, 2.5%HNO3 and 95%H2O were used to etch samples. The microstructures of the joint were observed by metallographic microscope and scanning electron microscope (SEM) equipped with an energy-dispersive X-ray spectrometer (EDS) for chemical constitution analysis. The crystal phases of the reaction layer were identified by microbeam X-ray diffractometer, which has advantage of analyzing phase composition in minimum diameter of 50 ?m.

3 Results and discussion

3.1 Interfacial microstructure in Ti/Al joints

Fig.2 shows typical cross-section morphology of dissimilar Ti/Al laser welding-brazing joint. It is clear that welding joint has been formed by Al alloy and filler metal, and brazing joint has been formed by Ti alloys and filler metal. According to the observation of interfacial microstructure, there are two joining modes at the interface of Ti/filler metal, i.e., Ti dissolution mode formed by the dissolution of Ti substrate with low heat input and Ti melting mode formed by slight melting of Ti substrate with high heat input.

Under the condition of low heat input, SEM photograph of interfacial microstructure is shown in Fig.3. According to the results of the microbeam XRD,

Fig.2 Typical cross-section morphology of dissimilar Ti/Al laser welding-brazing joint

Fig.3 Interfacial microstructure (a) and distribution of elements Ti, Al, Si, Mg and V (b) with dissolution mode

CHEN Shu-hai, et al/Trans. Nonferrous Met. Soc. China 20(2010) 64í70 66

SEM and EDS, there are two reaction layers with discontinuous Ti(Al, Si)3 and continuous Ti5Si3 at the interface. Intermetallic Ti(Al, Si)3 reaction layer exhibits discontinuous serrate shape. Very thin Ti5Si3 reaction layer lies between Ti(Al, Si)3 layer and Ti alloy substrate. Fig.3(b) shows the distribution of elements Ti, Al, Si, Mg and V by EDS line scanning at the interface. It is obvious that element Si enriches at the interface between Ti substrate and the filler metal.

With increasing heat input, Ti alloy substrate is melted slightly at the interface. Accordingly, the joining of Al-12Si filler and Ti base metal becomes melting mode. Interfacial microstructure of the joining with melting mode is complex, as shown in Fig.4(a). The thickness of continuous reaction layer increases obviously. According to the results of microbeam XRD and EDS, interfacial microstructure is divided into five layers, i. e. solid-state phase changed reaction layer with Ti3Al and precipitation Ti5Si3 (?), eutectic reaction layer with TiAl and Ti5Si3(?), hypoeutectic reaction layer with Ti5Si3 and primary TiAl (?), hypereutectic reaction layer with primary Ti5Si3 and TiAl (?) and discontinuous reaction layer with Ti(Al, Si)3(?). Granular Ti5Si3 compounds are surrounded by intermetallic phase TiAl in hypereutectic reaction layer. In addition, little Ti5Si3 particles are precipitated in solid-state phase changed reaction layer close to fusion

Fig.4 Interfacial microstructure (a) and distribution of elements Ti, Al, Si, Mg and V (b) with melting mode line, as shown in Fig.5. Fig.4(b) shows the distribution of elements Ti, Al, Si, Mg and V by EDS line scanning at the interface. Similarly, element Si enriches at the interface between Ti substrate and the filler metal.

Fig.5 Morphology of Ti5Si3 precipitation particles of solid-state phase changed reaction layer in melting mode

The analysis of interfacial microstructure of Ti/Al dissimilar joints shows that Si element participates in formation of the compound Ti7Al5Si12 and becomes solutes replacing Al atoms in TiAl3 for dissolution mode. For Ti melting mode, Si participates in eutectic, hypoeutectic and hypereutectic reaction and the precipitation of Ti5Si3 in solid reaction layer. In nature, interfacial reaction mechanism and product formation are affected by the Si diffusion behavior. The Si diffusion behavior will be analyzed from the view of Si chemical potential to explain interfacial mechanism.

3.2 Chemical potential prediction model of ternary

alloys

During diffusing of the elements, gradient of the chemical potential is a driving force. Element will diffuse to the place where chemical potential is low. Generally, it is difficult to directly calculate or measure the chemical potential. So far, no accurate calculation or measurement of the chemical potential has been reported. Therefore, a model for the prediction of the chemical potential for ternary alloy system is established to analyze the influence of the element content and temperature on Si chemical potential.

As it is known, partial molar free energy, i.e., chemical potential is expressed by

i

i

G

x

P

w

w

(1)

In fact, free energy G of real solution is equal to the summation of ideal solution free molar energy G I and excess molar free energy G E, namely,

G= G I+ G E(2) The mixed free energy of ideal solution is expressed by I0I***

(ln ln ln)

i i j j k k

i i j j k k

G G G x G x G x G

RT x x x x x x

'

(3) where *i G,*j G and *k G are molar free energies of pure

CHEN Shu-hai, et al/Trans. Nonferrous Met. Soc. China 20(2010) 64í70 67

component i , j , k , respectively; and x is the molar fraction of the component.

The calculation of the excess molar free energy G E is a key issue in the established model. It is impossible that G E of ternary system is calculated accurately by traditional thermodynamic theory. Thus, Toop equation is used to evaluate the excess free energy of ternary alloys by using that of binary alloys. In ternary system i -j -k , where j and k are symmetry components and i is asymmetry component, according to excess molar free

energies of binary alloys E ij G , E jk G and E ik G , the

excess molar free energy G E of ternary system alloys is obtained from Toop equation[11í12]: E E E

2E 1(,1)(,1)111 (1)(,)11j

i j ij i i ik i i i

i

j i j

i jk

i i

x x x G G x x G x x x x x x x x G x x

(4)

In this way, questions are used to calculate the

excess molar free energy G E of ternary system to

translate the excess molar free energy E

ij G , E jk G and E

ik G of binary system. Under the condition of changeless temperature, free energy of binary system is

E E m ij ij G H T S ' ' (5) where ij H ' and E m S ' are solution enthalpy and excess entropy of binary system, respectively.

Based on the relationship of excess entropy with solution enthalpy established by TANAKA et al[13], there is

E m m,m,(1/1/)/14ij i j S H T T ' (6)

where T m, i and T m, j are melting points of components i and j , respectively.

Therefore, excess molar free energy of binary alloys becomes

E m,m,[1(1/1/)/14]ij ij i j G H T T T ' (7)

According to Eq.(7), the excess free energy E ij G of binary system is calculated by solution enthalpy ?H ij . Further, the excess free energy G E of ternary system is obtained by Eq.(4). Besides elements O, S, Se and Te, for any two elements i and j , the solution enthalpy expression is shown by MIEDEMA model of solution enthalpy[14]:

,2/32/3[1()][1()]

[1()][1()]

i j ij i i j i j j j i j i i i i j i j j j j i j i H f x x x x x V x x V x P I I P I I P I I P I I ' (8a)

2/32/31/322

WS 1/31

1/31WS WS 2[/()()(/)]

()()

i j ij i pV V q p n a r p f n n I ' '

(8b)

where x is the molar fraction of element; ? is the

electronegativity; V is the molar volume; n WS is the electron density; and q , r , ?, a , p are experimential constants, whose physical significances and values are described in detail elsewhere[14].

Therefore, according to Eqs.(1)í(8), chemical potential prediction model of ternary alloys is established. The mixed free energy of Ti-Al-Si ideal solution is obtained by Eq.(3) and the excess free energy G E of this system is obtained according to Eqs.(4)í(8). Finally, Si chemical potential of this system is calculated by Eqs.(1) and (2).

3.3 Analysis of Si diffusion behavior at interface

during laser joining

3.3.1 Calculation of Si chemical potential in Ti-Al-Si

system

In this study, the melting points of Ti and Al are around 1 900 and 900 K, respectively. According to prediction model of ternary alloy, Si chemical potential dependent on molar fraction of Ti and Si is calculated for dissolution mode (1 000 K) and melting mode (2 000 K), as shown in Fig.6. Therefore, Si diffusion behavior is analyzed according to relationship of Si chemical potential with some factors, for example, element content and temperature.

3.3.2 Si diffusion behavior for Ti dissolution mode

In this study, there is 12% Si (mass fraction) in filler

Fig.6 Si chemical potential dependent on molar fraction of Ti

and Si in dissolation mode (1 000 K) (a) and melting mode (2 000 K) (b)

CHEN Shu-hai, et al/Trans. Nonferrous Met. Soc. China 20(2010) 64í70 68

Ai-12Si (molar fraction of 0.116). This means that ratio of Al to Si in liquid filler is always remained during Ti dissolution. Thus, the influence of Ti molar fraction on Si chemical potential was analyzed during laser joining under this ratio.

The relationship curves of Si chemical potential ?(Si) with Ti molar fraction x(Ti) was calculated, as shown in Fig.7. It is clear that critical point of Ti molar fraction is 0.5 at almost all temperatures. With increasing Ti molar fraction, Si chemical potential decreases when this fraction is lower than 0.5 and increases when it is higher than 0.5. As shown in Fig.7, Si chemical potential tends to decrease with increasing temperature. However, the influence of Ti molar fraction is far higher than that of the temperature on Si chemical potential. Therefore, the attention is focused on the influence of the Ti content distribution on Si chemical potential.

Fig.7 Relationship curves of Si chemical potential with Ti molar fraction

In Ti dissolution mode, element distribution between A and B points in Fig.3(a) is shown in Table 1. It is obvious that Ti molar fraction is lower than 0.5 in Table 1. This means that Si chemical potential decreases with increasing Ti molar fraction during joining for Ti dissolution mode. In liquid filler near the interface, Ti content is the highest, which leads to the reduction of Si chemical potential. Therefore, Si atom in liquid filler diffuses to the interface during laser joining, and then Si gathering phenomena appear at the interface.

During interfacial reaction, Si gathering phenomena and Ti dissolution induce the formation of Si-rich compound Ti7Al5Si12 at the interface. The formation of this compound wastes a number of Si atoms, which induces the reduction of Si content at the interface. Therefore, intermetallic TiAl3 is formed in the form of crystallization. Considering the gathering phenomena of Si atoms, up to 15% Al can be replaced by silicon in TiAl3 lattice structures due to the adjacent atomic radii, and it can be commonly written as Ti(Al, Si)3[15]. Table 1 Element content distribution in reaction layer for Ti dissolution mode

Distance/?m x(Mg)/%x(Al)/% x(Si)/% x(Ti)/%x(V)/%

8.02 1.12 59.07 9.38 28.7 1.73

8.2 1.28

58.6

8.81

30.980.33

8.39 0.45

61.35

8.83

28.960.41

8.58 0.78

60.28

11.66

25.17 2.11

8.76 1.36

60.22

11.15

26.5 0.78

8.95 0.54

60.08

10.99

28.390

9.13 0.89

62.14

11.79

25.180

9.32 1.44

66.23

9.79

21.670.87

9.51 1.11

67.03

8.65

23.210

9.69 0.91

67.75

6.67

23.860.8

3.3.3 Si diffusion behavior for Ti dissolution mode

In the case of melting mode, Ti substrate is melted slightly at the interface due to high heat input, which means contact of liquid Ti with liquid filler. Thus, smart diffusion process appears also in liquid Ti besides liquid filler. Two zones with liquid filler and liquid Ti at the interface are divided to analyze Si diffusion behavior,

as shown in Fig.8.

Fig.8 Schematic diagram of diffusion process for melting mode In liquid filler zone, the Si diffusion behavior is similar with dissolution mode. Si chemical potential decreases in liquid filler due to the diffusion of the liquid

Ti to the filler. Thus, Si atom will enrich at the interface from liquid filler.

In the liquid Ti zone, the Si chemical potential,

?[Si(Al-12Si)], in liquid filler (x(Ti)=0) is far higher than

?[Si(Ti)] in liquid Ti (x(Ti)=1), as shown in Fig.8. This indicates that the Si and Al atoms diffuse strongly to liquid Ti from filler due to the drive of the chemical potential gradient. Clearly, the ratio of Al or Si in liquid

Ti is different with liquid filler at early stage of the diffusion. Thus, Si chemical potential is influenced by Si and Ti contents. Fig.9 shows the relationship of Si chemical potential with Si content under the condition of

the same Ti molar fraction. As shown in Fig.9, Si chemical potential decreases with the reduction of Si

CHEN Shu-hai, et al/Trans. Nonferrous Met. Soc. China 20(2010) 64í70 69

molar fraction in the case of the same Ti content for Ti-Al-Si ternary system. Under the condition of the same Si content, Si chemical potential decreases with increasing Ti molar fraction. It is shown that Si atom tends to diffuse to the zone with low Si and high Ti molar fraction for Ti-Al-Si ternary system. During welding, Si content decreases and Ti content increases with increasing distance from the interface in liquid Ti. Therefore, Si atom diffuses to inner zone of liquid Ti during laser joining for melting mode.

Fig.9 Influence of Si molar fraction on Si chemical potential for same Ti content

In addition, Si and Ti contents in liquid Ti increase continuously with progress of the diffusion. Finally, the ratio of Al or Si in liquid Ti is the same with that in liquid filler because the bulk of liquid filler is far larger than that of liquid Ti. Therefore, Si chemical potential can reach the minimum value, as shown in Fig.7, when Ti molar fraction is around 0.5. Element distribution between C and D points in Fig.4(a) is shown in Table 2. It is obvious that Ti molar fraction is around 0.5 and ratio of Al or Si is close to that in liquid filler, which indicates that prediction model of chemical potential is proper.

There is complex metallurgical reaction at the interface during the diffusion. According to above five

Table 2 Element distribution in reaction layer for Ti melting mode

Distance/?m x(Mg)/% x(Al)/%x(Si)/% x(Ti)/%x(V)/%

15.15 1.3 41.79 3.35 51.03 2.52

15.35 1.75 38.19 3.94 52.21 3.91

15.55 1.01 41.68 3.02 50.14 4.15

15.75 0.93 42.84 3.44 51.17 1.61

15.95 1.69 39.32 6.41 50.73 1.86

16.15 0.76 40.24 4.21 49.51 5.27

16.35 1.44 39.46 4.37 50.38 4.35

16.55 2.11 40.49 3.21 51.66 2.52

16.75 2.11 39.51 4.42 49.25 4.71

16.95 1.54 39.92 4.24 49.7 4.61 layers in melting mode, corresponding interfacial reaction is analyzed as follows.

In zone ?, the solid-state phase changes occur in solid Ti alloy substrate near fusion line due to Si and Al diffusion. The solid-state phase changed reaction layer with Ti3Al and precipitation Ti5Si3 is formed.

In zone ?, eutectic reaction appears in melting Ti alloy near fusion line: L?TiAl+Ti5Si3. The filamentous eutectic reaction layer with Ti5Si3 and TiAl is formed.

In zone ?, Ti5Si3 as primary phase is formed due to high melting point of Ti5Si3 and strong combining capability of Si with Ti[16]. Hypereutectic reaction layer with TiAl and primary Ti5Si3 appears in this zone.

In zone ?, because a mass of Si atoms are expended by formation of Ti5Si3 in hypereutectic reaction layer (zone ?), surrounding Si should diffuse to around reaction zone of Ti5Si3 formation, which induces appearance of poor Si zone between zone ? and ?. Therefore, hypoeutectic structure of Ti5Si3 and primary TiAl is formed in this zone.

In the zone ?, with the decrease of temperature, serration-shape reaction layer consisting of Ti(Al, Si)3 forms in crystallization. The formation mechanism of Ti(Al, Si)3 layer is the same as dissolution mode.

4 Conclusions

1) In laser joining of Al alloy to Ti alloy, Si element diffuses to the interface and enriches there with the mode of Ti dissolution or melting. It is found that Si diffusion behavior plays an important role in forming those interfacial compounds.

2) Chemical potential prediction model of the ternary alloys is established based on MIEDEMA model of solution enthalpy. The influence of Ti molar fraction and temperature on Si chemical potential is analyzed according to calculated results. It is found that the influence of Ti molar fraction is far higher than that of the temperature on Si chemical potential. The minimum value of Si chemical potential is approximate 0.5 of Ti molar fraction, which presents a good agreement with experimental data.

3) In the case of Ti dissolution mode, the dissolution of Ti alloy in liquid filler induces the reduction of the Si chemical potential. This causes the phenomenon of Si element gathering at the interface. In the case of Ti melting mode, element Si not only gets together at the interface, but also further diffuses to liquid Ti due to slight melting of Ti substrate.

References

[1] RENDIGS K H. The use of titanium in family automobiles: Current

trends [J]. Mater Sci Forum, 1997, 242: 11í24.

[2] MILLER W S, ZHUANG L, BOTTEMA J, WITTEBROOD A J, de

CHEN Shu-hai, et al/Trans. Nonferrous Met. Soc. China 20(2010) 64í70 70

SMET P, HASZLER A, VIEREGGE A. Recent development in

aluminium alloys for the automotive industry [J]. Mater Sci Eng A,

2000, 280(1): 37í49.

[3] WEI R J, JIANG L Y, TAO F. Microstructure characteristics in the

interface zone of Ti/Al diffusion bonding [J]. Mater Lett, 2002, 56(5):

647í652.

[4] SOHN W H, BONG H H, SOON H. Microstructure and bonding

mechanism of Al/Ti bonded joint using Al-10Si-1Mg filler metal [J].

Mater Sci Eng A, 2003, 355(1/2): 231í240.

[5] TAKEMOTO T, OKAMOTO I. Intermetallic compounds formed

during brazing of titanium with aluminium filler metals [J]. J Mater

Sci, 1988, 23(4): 1301í1308.

[6] ZHU Y , ZHAO P F , KANG H, HU G, QU P. A preliminary study on

filler metals for vacuum brazing of Al/Ti [J]. China Welding, 2002,

11(2): 130í132.

[7] KIM Y C, FUJI A. Joint characteristics in Ti-Al friction welds [J].

Science and Technology of Welding and Joining, 2002, 7: 149í154. [8] KAHRAMAN N, GULENC B, FINDIK F. Corrosion and

mechanical microstructural aspects of dissimilar joints of Ti-6Al-4V

and Al plates [J]. International Journal of Impact Engineering, 2007,

34: 1423í1432.

[9] CHEN Shu-hai, LI Li-qun, CHEN Yan-bin. Welding characteristics

of Al/Ti dissimilar alloys using laser welding-brazing with different

spot [J]. Transactions of the China Welding Institution, 2008, 29(6):

49í52. (in Chinese)

[10] CHEN Shu-hai, LI Li-qun, CHEN Yan-bin. Interface characteristic

and property of Ti/Al dissimilar alloys joint with laser welding-brazing [J]. The Chinese Journal of Nonferrous Metal, 2008,

18(6): 991í996. (in Chinese)

[11] TOOP G W. Predicting ternary activities using binary data [J]. Trans

Metall Soc AIME,1965, 233(5): 850í854.

[12] PELTON A D, THOMPSON W T. Phase diagrams [J]. Prog Solid

State Chem,1975, 10(3): 119í123.

[13] TANAKA T, GOKCEN N A, MORITA Z. Relationship between

enthalpy of mixing and excess entropy in liquid binary alloys [J]. Z

Metallkde, 1990, 81(1): 49í58.

[14] MIEDEMA A R, de CHATEL P F, de BOER F R. Cohesion in

alloys-fundamentals of a semi-empirical model [J]. Physica,1980,

100B: 1í28.

[15] GUPTA S P. Intermetallic compounds in diffusion couples of Ti with

an Al-Si eutectic alloy [J]. Mater Charact, 2003, 49: 321í330. [16] XIONG H P, XIE Y H, MAO W, MA W L, CHEN Y F, LI X H,

CHENG Y Y. Improvement in the oxidation resistance of the

TiAl-based alloy by liquid-phase siliconizing [J]. Scripta Materialia,

2003, 49: 1117í1122.

(Edited by YANG Bing)

激光选区烧结

激光选区烧结 1 .工艺过程原理 激光选区烧结(Selected Laser Sintering , SLS )采用CO :激光器对粉末材料(塑料粉、陶瓷与粘结剂的混合粉、金属与粘结剂的混合粉等)进行选择性烧结,是一种由离散点一层层堆积成三维实体的工艺方法,其工艺过程原理如图8 一7 所示,典型设备如美国DTM 公司的Sinterstation 一2500 型粉末材料激光烧结站。 激光选区烧结在开始加工之前,先将充有氮气的工作室升温,并保持在粉末的熔点以下。成形时,送料筒上升,铺粉滚筒移动,先在工作平台上铺一层粉末材料,然后激光束在计算机控制下按照截面轮廓对实心部分所在的粉末进行烧结,使粉末熔化继而形成一层固体轮廓。第一层烧结完成后,工作台下降一截面层的高度,再铺上一层粉末,进行下一层的烧结,如此循环,形成三维的原型零件。最后经过5 ? 10h 冷却,即可从粉末缸中取出零件。未经烧结的粉末能承托正在烧结的工件,当烧结工序完成后,取出零件,未经烧结的粉末基本可自动脱掉,并重复利用。因此,SLS 工艺不需要建造支撑,事后也不要为清除支撑而烦恼。 2 . SLS 优缺点和应用范围 SLS 快速原型技术的优点是: l )与其他工艺相比,能生产最硬的模具。 2 )可以采用多种原料,例如绝大多数工程用塑料、蜡、金属、陶瓷等。

3 )零件构建时间短,每小时高度可达到lin 。 4 )无需对零件进行后矫正。 5 )无需设计和构造支撑。 SLS 快速原型技术的缺点是: l )在加工前,这种工艺仍须对整个截面进行扫描和烧结,加上要花近2h 的时间将粉末加热到熔点以下,当零件构建之后,还要用5 ? 10h 冷却,然后才能将零件从粉末缸中取出,成形时间较长。 2 )表面粗糙度受粉末颗粒大小及激光点的限制。 3 )零件的表面一般是多孔性的,在烧结陶瓷、金属与枯结剂的混合粉并得到原型零件后,为了使表面光滑,必须将它置于加热炉中,烧掉其中的枯结剂,并在孔隙中渗人填充物,其后处理较为复杂。 4 )需要对加工室不断充氮气以确保烧保结过程的安全性,加工的成本高。 5 )该工艺产生有毒气体,污染环境。 激光选区烧结工艺适合成形中小件,能直接得到塑料、陶瓷或金属零件,零件的翘曲变形比液态光固化成形工艺要小。激光选区烧结快速原型工艺适合于产品设计的可视化表现和制作功能测试零件。由于它可采用各种不同成分的金属粉末进行烧结,进行渗铜后置处理,因而其制成的产品可具有与金属零件相近的力学性能,故可用于制作EDM 电极、直接制造金属模以及进行小批量零件生产,激光选区烧结的最大优点是可选用多种材料.适合不同的用途。所制作的原型产品具有较高的硬度,可进行功能试验。 作者:环保空调https://www.wendangku.net/doc/da12253542.html, https://www.wendangku.net/doc/da12253542.html,

从专利角度简析金属材料选择性激光烧结技术(SLS)的发展

从专利角度简析金属材料选择性激光烧结技术(SLS)的发展选择性激光烧结(Selective Laser Sintering, SLS)技术是快速成型与制造(RapidPrototyping & Manufacturing, RP&M)领域中极具发展潜力的技术之一。SLS 技术借助于计算机辅助设计与 制造,采用分层制造叠加原理,将固体粉末材料直接成型为三维实体零件。它能够制造任意 复杂结构零件,具有其它常规制造技术不可替代的优势。由于金属零件应用领域广且价值高,因而利用 SLS 技术制造金属零件一直是 RP&M 领域的研究热点。 关键词:快速成型,增材制造,3D打印,选择性激光烧结,SLS,金属 1. 引言 1.1 快速成形技术的概述与发展 快速成形技术(Rapid Prototyping & Manufacturing,简称RPM)诞生于70年代末、80年代初。该技术是采用逐点或逐层成形方法,一次成形复杂的零部件或模具,不需要任何工装, 节约了制造费用,缩短了制造周期,实现了三维制造及其可视化,有利于设计人员、制造人 员和用户间的信息交流。可在设计阶段完成实验研究工作,减少实验周期和材料损耗,堪称 制造领域人类思维的一次飞跃。 快速成形技术采用离散/堆积的原理,自动完成从数学模型(CAD模型)到物理模型(原型 和零件)的转换。在成形的过程中,根据成形方法的不同,可以采用多种不同的材料(如塑料、数值、蜡、陶瓷、金属的等)制造原型。 根据材料种类可以将快速成型技术分为以下几类:立体光造型(SLA)、叠层制造(LOM)、选择性激光烧结(SLS)、熔融沉积制造(FDM)、三维印刷(3DP)。 1.2金属材料选择性激光烧结技术 目前,国内外已开发出多种 SLS成形材料,按材料性质主要可分为金属粉末材料、陶瓷粉末 材料和高分子粉末材料。 金属材料的选择性激光烧结分为直接烧结法和间接烧结法。直接烧结法是利用大功率激光直 接烧结金属粉末得到成形零件,间接烧结法是在金属粉末中添加有机粘结剂使其熔化后粘结 金属粉末,再经过后续处理得到成形零件。 直接烧结法中使用的金属粉末材料主要有单组分金属粉末、多组分金属粉末和预合金粉末3类。 间接烧结法中有机粘结剂的加入有两种方式,一种是与金属粉末混合,一种是包覆在金属粉 末表面。间接法通过用小功率小50W)激光烧结粉末得到形坯,形坯再经适当的后续处,一 般为脱脂、高温烧、熔渗金属或浸渍树脂,最终获得具有一定强度的金属零件。 2. 选择性激光烧结技术全球专利申请总体分析 2.1专利发展趋势 选择性激光烧结(Selective Laser Sintering, SLS)技术是快速原型与制造(RapidPrototyping & Manufacturing, RP&M)技术中的一种,通常被称为分层制造(LayeredManufacturing )或增 材(Additive)制造技术,尤其区别于普通机加工类的减材(Subtractive)制造技术。如图1 所示,对历年来选择性激光烧结技术领域的全球及国内相关专利申请随年份的变化趋势进行 了梳理。SLS 技术出现在 1986 年的美国,由研究生 Carl Decard[1,2]和 Beaman 发明,并于1992 年由美国 DTM 公司把 SLS[3,4] 系统商业化。随后,日本,德国,俄罗斯,中国和以色列 都各自开发研制了 SLS 系统,但美国依其原创专利而处于较为领先的地位。SLS 技术最大的优

选择性激光烧结技术的研究现状与展望

选择性激光烧结技术的研究现状与展望 【摘要】选择『生激光加工是20世纪80年代末出现的一种新的快速成型工艺,它利用激光束烧结粉末材料制造原型,具有原料广泛、制作工艺简单、周期短等特点,在诸多领域得到了广泛的应用。介绍了选择性激光烧结技术的原理、特点及实际应用,综述了选择}生激光烧结技术发展状况、存在的问题及研究热点。 键词:快速成形;选择性激光烧结;综述 1引言 20世纪90年代开始,随着世界经济竞争的日益激烈化和全球化,产品制造商们越来越需要以最短的时间制造出符合人们消费需求的新产品来抢占市场。20世纪80年代末出现的快速成型(Rapid Prototyping,简称RP)就是在这样的背景下提出并逐步得以发展的。RP技术是一种逐层零件制造工艺,它突破传统的材料变形成型和去除材料成型的工艺方法,使用近乎全自动化的工艺从CAD文件直接生产所需要的模型或模具,可以显著减少产品原型的开发时间和成本,极大的提高产品的质量,另外,RP制造过程中不需要任何传统意义上的工装夹具、刀具或模具即可制造出任何复杂形状的零部件。因此。RP技术在现代制造业巾越来越具有竞争力,有望成为21世纪的的主流制造技术。目前典型的快速成型的方法有:光固化立体造型SLA(StereoLithography Apparatus)、分层物件制作LOM(Laminated ObjectManufacturing)、选择性激光烧结SIS(Selective LArSintering)和熔融沉积造型FDM(Fused Deposition Modeling)等。各种RP方法具有其自身的特点和适用范围。由于SIS工艺具有粉末选材广泛、适用性广、制造工艺比较简单、成形精度高、无需支撑结构、可直接烧结零件等诸多优点,在现代制造业得到越来越广泛的重视。主要综述SIS技术的工艺原理、实际应用、发展历程和现状。 2 SLS技术的原理 选择性激光加工(SLS)又称选区激光烧结是以C02激光器为能源,利用计算机控制红外激光束对非金属粉末、金属粉末或复合物的粉末薄层,以一定的速度和能龟密度按分层面的二维数据进行扣描烧结,层层堆积,最后形成成形件。SIS技术集CAD技术、数控技术、激光加工技术和材料科学技术于一体,整个工艺装置由粉末缸(PowderCylinder)、成型缸(ModelCylinder)、激光器、计算机控制系统四部分组成。工作时,粉末缸活寒(送粉活塞)上升,先在皋体上用滚筒均匀铺上一薄层金属粉末,并将其加热至略低于材料熔点,以减少热变形,并利于与前一层面的结合。然后,激光束在计算机控制光路系统的精确引导F,按照零件的分层轮廓有选择地进行烧结,使材料粉末烧结或熔化后凝固形成零件的一个层面,没有烧过的地方仍保持粉末状态,并可作为有悬臂的微结构下一层烧结的支撑。烧结完一层后,基体下移一个截面层厚,铺粉系统铺设新粉,计算机控制激光束再次扫描进行下一层的烧结。如此循环,层层叠加,就得到三维零件。最后,将未烧结的粉末同收剑粉未缸中,取出成型件,再进行打磨、烘干等后处理工艺,最终形成满足要求的原形或制件。 3 SLS技术实际应用 SIS工艺已经成功应用于汽车、造船、航天、航空、通汛、微机电系统、建筑、医疗、考古等诸多行业,为许多传统制造业注入了新的创造力,也带来了信息化的气息。概括来说,SIS 工艺可以应用于一下场合:(1)快速原型制造。SI.S工艺可快速制造所没计零件的原形,并对产品及时进行评价、修正以提高设计质量;可使客户获得直观的零件模型;能制造教学、试验用复杂模型。(2)新型材料的制备及研发。利用SIS工艺可以开发一些新型的颗粒以增强复合材料和硬质合金。(3)小批量、特殊零件的制造加工。在制造业领域,经常遇到小批最及特殊零件的生产。这类零件加工周期长,成本高,对于某些形状复杂零件,甚至无法制造。采用SIS技术可经济地实现小批量和形状复杂零件的制造。(4)快速模具和工具制造。SIS制造的零件可直接作为模具使用,如熔模铸造、砂型铸造、注甥模型、高精度形状复杂的金属

3D打印SLS(选择性激光烧结)技术【解析】

3D打印SLS(选择性激光烧结)技术 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、数控系统、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 发展历史 SLS(选择性激光烧结工艺),该工艺是1989由美国德克萨斯大学C.R.Dechard 提出的,随后C.R.Dechard创立了DTM公司并于1992年发布了基于SLS技术的工业级商用3D打印机Sinterstation。 工艺原理 SLS利用粉末材料在激光照射下烧结的原理,由计算机控制层层堆结成型。SLS技术同样是使用层叠堆积成型,所不同的是,它首先铺一层粉末材料,将材料预热到接近熔化点,再使用激光在该层截面上扫描,使粉末温度升至熔化点,然后烧结形成粘接,接着不断重复铺粉、烧结的过程,直至完成整个模型成型。

工艺优点 ?可选材料种类多,价格较低。只要材料加热后粘度较低,基本就可以作为SLS 的材料。包括高分子、金属、陶瓷、石膏、尼龙等多种粉末材料。 ?工艺比较简单。该工艺按材料的不同可以直接生产复杂形状的原型、型腔模三维构建或部件及工具。 ?不需要支撑结构。未烧结的粉末即可作为支撑结构。 ?材料利用率高,因为不存在支撑结构和底座,所有材料均可利用。 ?精度高。一般受才种类和粉末颗粒的大小等因素影响,精度一般在 0.05mm-2.5mm之间。 ?变形率小 工艺缺点 ?表面粗糙。由于原材料是粉状的,原型建造是由材料粉层经过加热熔化实现逐层粘结的。 ?无法直接成型高性能的金属盒陶瓷零件,成型大尺寸零件时容易发生翘曲变形。?加工时间长。加工前,要有2小时的预热时间。零件构建后,要花5~10小时时间冷却,才能从粉末缸中取出。 ?由于使用了大功率激光器,除了本身的设备成本,还需要很多辅助保护工艺,整体技术难度大,制造和维护成本非常高。 产品应用 ?汽车领域的产品及结构验证:汽车挡板、后视镜、仪表盘、方向盘、车灯、座椅及把手等。

金属粉末选区激光烧结技术

金属粉末选区激光烧结技术 摘要:激光快速成型技术是集计算机辅助设计、激光熔覆、快速成型于一体的先进制造技术,是传统加工成形方法的重要补充。介绍了金属粉末激光快速成型技术的研究现状和发展前景。 关键词:金属粉末, 选择性激光烧结, 快速成型技术 金属粉末选区激光烧结技术(Selective laser sintering以下简称SLS)是一种快速成型技术(Rapid Prototyping Technology-RPT)属于先进制造技术范畴,机械工程学科非传统加工工艺(或称为特种加工)。是近年来迅速发展起来的一门高新技术,是光学、电子、材料、计算机等多学科的集成。SLS 技术最初是由美国德克萨斯大学奥斯汀分校的Carl Deckard于1989 年研制成功。可以自动迅速地从三维CAD模型直接制得形状复杂的金属零件或模型,其制造方法主要包括选择性激光烧结(SLS) 和激光熔覆制造两种技术。 1、选择性激光烧结(SLS) 技术 (1)SLS原理 选择性激光烧结是采用激光有选择地分层烧结固体粉末,并使烧结成形的固化层层层叠加,生成所需形状的零件。首先由CAD产生零件模型,并用分层切片软件对其进行处理,获得各截面形状的信息参数,作为激光束进行二维扫描的轨迹;由激光发出的光束在计算机的控制下,根据几何形体各层截面的坐标数据有选择地对材料粉末层进行扫描,在激光辐照的位置上粉末烧结在一起,一层烧结完成后,再铺粉进行下一层扫描烧结,新的一层和前一层自然地烧结在一起,最终生成三维形状的零件。 (2)SLS的特点 ①SLS 过程与零件复杂程度无关,具有高度的柔性,在计算机的控制下可方便迅速地制作出传统加工方法难以实现的复杂形状的零件,是真正的自由制造。 ②产品的单价几乎与批量无关,特别适合于单件、小批量零件的生产。 ③生产周期短,从CAD 设计到零件的加工完成只需几小时到几十小时,整个生产过程数字化,可随时修正、随时制造。这一特点使其特别适合于新产品的开发。 ④与传统工艺方法相结合,可实现快速铸造、快速模具制造等功能,为传统制造方法注入了新的活力。 ⑤材料范围宽,任何受热粘结的粉末材料都有用作SLS原材料的可能性。 2、激光涂覆(熔覆)制造技术 (1)激光涂覆制造技术的原理 激光涂覆制造技术也称近形技术(LENS),是在激光熔覆技术和快速原型技术的基础上发展起来的一种新技术。首先由CAD 产生零件模型,用分层切片软件进行处理,获得各截面形状的信息参数,作为工作台进行移动的轨迹参数。工作台在计算机的控制下根据几何形体各层截面的坐标数据进行移动的同时,用激光涂覆的方法将材料进行逐层堆积,最终形成具有一定外形的三维实体零件。 (2)激光涂覆制造技术的特点

3 第4章_选择性激光烧结成型工艺

机械工业出版社(第三版) 第四章 选择性激光烧结成型工艺 ◆ 选择性激光烧结工艺(S elective L aser S intering ,SLS )又称为选区激光烧结技术,SLS 工艺是利用粉末材料(金属粉末或非金属粉末)在激光照射下烧结的原理,在计算机控制下层层堆积成型。 ◆ SLS 的原理与SLA (光固化成型)十分相似,主要区别在于所使用的材料及其性状不同。SLA 所用的材料是液态的紫外光敏可凝固树脂,而SLS 则使用粉状的材料。 ◆该方法最初是由美国德克萨斯大学奥斯汀分校的C. R. Dechard 于1989年提出的,稍后组建了DTM 公司,于1992年开发了基于SLS 的商业成型机(Sinterstation)。20年来,奥斯汀分校和DTM 公司在SLS 领域做了大量的研究工作,并取得了丰硕成果。德国的EOS 公司在这一领域也做了很多研究工作,并开发了相应的系列成型设备。 ◆ 国内华中科技大学(武汉滨湖机电产业有限责任公司)、南京航空航天大学、中北大学和北京隆源自动成型有限公司等,也取得了许多重大成果和系列的商品化设备。 1 选择性激光烧结工艺的基本原理和特点 2 3 选择性激光烧结工艺过程 4 高分子粉末烧结件的后处理 6 选择性激光烧结快速成型材料及设备 第四章 选择性激光烧结成型工艺 5 选择性激光烧结工艺参数 ◆ SLS 采用铺粉辊将一层粉末材 料平铺在已成形零件的上表面,并加热至恰好低于该粉末烧结点的某一温度,控制系统控制激光束按照该层的截面轮廓在粉层上扫描,使粉末的温度升至熔化点,进行烧结并与下面已成形的部分实现粘接。 ◆ 当一层截面烧结完后,工作台下降一个层的厚度,铺料辊又在上面铺上一层均匀密实的粉末,进行新一层截面的烧结,如此反复,直至完成整个模型。 第一节 选择性激光烧结工艺的基本原理和特点 图4-1 选择性激光烧结工艺原理图 1.选择性激光烧结( SLS )工艺的基本原理 ◆ 在成型过程中,未经烧结的粉末对模型的空腔和悬臂部分起着支撑作用,不必象SLA 和FDM 工艺那样另行生成支撑工艺结构。 ◆ 当实体构建完成并在原型部分充分冷却后,粉末块会上升到初始的位置, 将其拿出并放置到后处理工作台上,用刷子小心刷去表面粉末露出加工件部分,其余残留的粉末可用压缩空气除去。 图4-2 选择性激光烧结系统的基本组成 ◎ 可直接制作金属制品 ◎ 可采用多种材料 ◎ 无需支撑结构 ◎ 制造工艺比较简单 ◎ 材料利用率高 优点: 2.选择性激光烧结工艺的特点 缺点: ◎原型表面粗糙 ◎烧结过程挥发异味 ◎有时需要比较复杂的辅助工艺 第一节 选择性激光烧结工艺的基本原理和特点 1 选择性激光烧结工艺的基本原理和特点 2 3 选择性激光烧结工艺过程 4 高分子粉末烧结件的后处理 6 选择性激光烧结快速成型材料及设备 第四章 选择性激光烧结成型工艺 5 选择性激光烧结工艺参数 第二节 选择性激光烧结的材料及设备 SLS 工艺材料适应面广,不仅能制造塑料零件,还能制造陶 瓷、石蜡等材料的零件,特别是可以直接制造金属零件,这使SLS 工艺颇具吸引力。 ◆ 用于SLS 工艺的材料是各类粉末,包括金属、陶瓷、石蜡以及聚合物的粉末。 ◆工程上一般采用粒度的大小来划分颗粒等级,如右表所示。 ◆SLS 工艺采用的粉末粒度一般在50~125μm 之间。 表4-1 工程上粉体的等级及相应的粒度范围 1.选择性激光烧结快速成型材料

选择性激光烧结技术最新研究进展

快速成型技术论文作业 题目:选择性激光烧结技术最新研究进展 姓名:山海明 学号:1000404042 专业:材料成型与控制工程 院系:机械工程学院 2013年10月25日

摘要选择性激光加工是一种新的快速成型工艺, 使用的造型材料多为粉末材料。加工时,首先将粉末预热到稍低于其熔点的温度,然后在刮平棍子的作用下将粉末铺平;激光束在计算机控制下根据分层截面信息进行有选择地烧结,一层完成后再进行下一层烧结,全部烧结完后去掉多余的粉末,则就可以得到一烧结好的零件。目前成熟的工艺材料为蜡粉及塑料粉,用金属粉或陶瓷粉进行烧结的工艺还在研究之中。它利用激光束烧结粉末材料制造原型,具有原料广泛、制作工艺简单、周期短等特点,在诸多领域得到了广泛的应用。介绍了选择性激光烧结技术的原理、特点及实际应用,综述了选择性激光烧结技术发展状况、存在的问题及研究热点。 关键词快速成型粉末激光束烧结 SLS法采用红外激光器作能源,使用的造型材料多为粉末材料。加工时,首先将粉末预热到稍低于其熔点的温度,然后在刮平棍子的作用下将粉末铺平;激光束在计算机控制下根据分层截面信息进行有选择地烧结,一层完成后再进行下一层烧结,全部烧结完后去掉多余的粉末,则就可以得到一烧结好的零件。目前成熟的工艺材料为蜡塑料粉,用金属粉或陶瓷粉进行烧结的工艺还在研究之中。 在成型的过程中因为是把粉末烧结,所以工作中会有很多的粉状物体污染办公空间,一般设备要有单独的办公室放置。另外成型后的产品是一个实体,一般不能直接装配进行性能验证。另外产品存储时

间过长后会因为内应力释放而变形。对容易发生变形的地方设计支撑,表面质量一般。生产效率较高,运营成本较高,设备费用较贵。 能耗通常在8000瓦以上。材料利用率约100%。 SLS工艺又称为选择性激光烧结,由美国德克萨斯大学奥斯汀分校的C.R. Dechard于1989年研制成功。SLS工艺是利用粉末状材料成形的。将材料粉末铺洒在已成形零件的上表面,并刮平;用高强度的CO2激光器在刚铺的新层上扫描出零件截面;材料粉末在高强度的激光照射下被烧结在一起,得到零件的截面,并与下面已成形的部分粘接;当一层截面烧结完后,铺上新的一层材料粉末,选择地烧结下层截面。 SLS工艺最大的优点在于选材较为广泛,如尼龙、蜡、ABS、树脂裹覆砂(覆膜砂)、聚碳酸脂(poly carbonates)、金属和陶瓷粉末等都可以作为烧结对象。粉床上未被烧结部分成为烧结部分的支撑结构,因而无需考虑支撑系统(硬件和软件)。SLS工艺与铸造工艺的关系极为密切,如烧结的陶瓷型可作为铸造之型壳、型芯,蜡型可做蜡模,热塑性材料烧结的模型可做消失模。3.3 选择性激光烧结法(SLS) 选择性激光烧结法又称为选区激光烧结。它的原理是预先在工作台上铺一层粉末材料(金属粉末或非金属粉末),激光在计算机控制下,按照界面轮廓信息,对实心部分粉末进行烧结层层堆积成型。 一、选择性激光烧结工艺的最新研究进展与成果 SLS 工艺最初是由美国德克萨斯大学奥斯汀分校的Carl Deckard 于1989 年在其硕士论文中提出的。后美国DTM公司于1992 年推出了该工艺的商业化生产设备SinterSation。几十年来,奥斯汀

选择性激光烧结法的应用现状

选择性激光烧结法的技术发展状况 姓名:高侠班级:材料B102 学号:201002034232 1.引言 快速原型技术(Rapid Prototyping,PR)是一种涉及多学科的新型综合制造技术。它是借助计算机、激光、精密传动和数控技术等现代手段,根据在计算机上构造的三位模型,能在很短时间内直接制造产品模型或样品。快速原型技术改善了设计过程中的人机交流,缩短了产品开发的周期,加快了产品的更新换代速度,降低了企业投资新产品的成本和风险。 选择性激光烧结(以下简称SLS)技术最初是由美国德克萨斯大学奥斯汀分校的Carl Deckard于1989年在其硕士论文中提出的。后美国DTM公司于1992年推出了该工艺的商业化生产设备Sinter Sation。几十年来,奥斯汀分校和DTM 公司在SLS领域做了大量的研究工作,在设备研制和工艺、材料开发上取得了丰硕成果。德国的EOS公司在这一领域也做了很多研究工作,并开发了相应的系列成型设备。国内也有多家单位进行SLS的相关研究工作,如华中科技大学、南京航空航天大学、西北工业大学、中北大学和北京隆源自动成型有限公司等,也取得了许多重大成果,如南京航空航天大学研制的RAP-I型激光烧结快速成型系统、北京隆源自动成型有限公司开发的AFS一300激光快速成型的商品化设备。 德国汉诺威激光中心采用Nd∶YAG脉冲激光器和光学扫描系统,试验了不同粒度的镍、铜、铝、青铜等合金材料。国内,中北大学铸造中心和南京航空航天大学特种加工研究室开展了选择性激光烧结技术的基础研究,目前南京航空航天大学特种加工研究室已完成了单层烧结试验,在粉末配比及激光烧结参数的选择方面均获得了比较好的结果。他们在此基础上进行了多层烧结的初步尝试,已烧结出形状简单的二维实体零件。中北大学则在选择性激光烧结的基础上研制了变长线扫描SLS RPT,是世界上首次采用的新颖快速成型方法。 一般SLS RPT是将CO2激光器的输出光束通过聚焦透镜在工作面上形成具有很高能量密度且尺寸很小的光斑,此光斑对铺平在工作台的粉末材料进行烧

选择性激光烧结成型技术的工艺与应用

选择性激光烧结成型技术的研究与应用 摘要:介绍了选择性激光烧结成型技术的基本原理、工艺过程和特点,阐述了激光烧结技术的材料和设备的选择,列举了激光烧结技术在各个领域特别是模具制造领域的应用,并且分析了现有技术中存在的问题以及前景的展望。 关键词:快速成型;选择型激光烧结(SLS);模具制造 1.引言 快速原型技术(Rapid Prototyping,PR)是一种涉及多学科的新型综合制造技术。它是借助计算机、激光、精密传动和数控技术等现代手段,根据在计算机上构造的三位模型,能在很短时间内直接制造产品模型或样品。快速原型技术改善了设计过程中的人机交流,缩短了产品开发的周期,加快了产品的更新换代速度,降低了企业投资新产品的成本和风险。 选择性激光烧结机技术(Selective Laser Sintering,SLS)作为快速原型技术的常用工艺,是利用粉末材料在激光照射下烧结的原理,在计算机控制下层层堆积成型。与其他快速成型工艺相比,其最大的独特性是能够直接制作金属制品,而且其工艺比较简单、精度高、无需支撑结构、材料利用率高。本文主要介绍选择型激光烧结成型技术的基本原理、工艺特点、材料设备选择以及应用等内容。 2.选择性激光烧结技术(SLS) 2.1选择性激光烧机技术(SLS)的基本原理和工艺过程 选择性激光烧机技术(SLS)工艺是一种基于离散-堆积思想的加工过程,其成形过程可分为在计算机上的离散过程和在成形机上的堆积过程,简单描述如下:(1)离散过程。首先用CAD软件,根据产品的要求设计出零件的三维模型,然后对三维模型进行表面网格处理,常用一系列相连三角形平面来逼近自由曲面,形成经过近似处理的三维CAD模型文件。然后根据工艺要求,按一定的规则和精度要求,将CAD模型离散为一系列的单元,通常是由Z向离散为一系列层面,称之为切片。然后将切片的轮廓线转化成激光的扫描轨迹。 (2)堆积过程。首先,铺粉滚筒移至最左边,在加工区域内用滚筒均匀地铺上一层热塑性粉状材料,然后根据扫描轨迹,用激光在粉末材料表面绘出所加工的截面形状,热量使粉末材料熔化并在接合处与旧层粘接。当一层扫描完成后,重新铺粉、烧结,这样逐层进行,直到模型形成。因而SLS工艺是一种基于离

激光选区烧结成形材料的研究和应用现状讲解

激光选区烧结成形材料的研究和应用现状 曾锡琴1朱小蓉2 1.江苏电大武进学院,江苏常州,213161; 2.江苏工业学院机械系,江苏常州,213016 [摘要] 介绍了激光快速成形的原理及SLS对材料性能的要求,概括了激光选区烧结成形技术中各种材料的研究和应用现状,分析了SLS技术产业化存在的问题及可能解决的途径。 [关键词] 选择性激光烧结,材料,研究与应用 Research and Application Present Condition on the Materials of Selective Laser Sintering ZENG Xi-qin1ZHU Xiao-rong 1.Wujin TV University, Jiangsu Province, China; 2.Department of Mechanical Engineering, Jiangsu polytechnique university, Changzhou 213016 ,China) Abstract:In this article the principle of the selective laser sintering, the situation of the research and application on material by SLS are summarized. The existent problems and solving methods are discussed. Keywords: selective laser sintering, material,research and application 0.引言 SLS(selective laser sintering)作为快速原形制造技术的重要分支之一,是目前发展最快和应用最广的技术之一[1]。它和SLA、LOM构成激光快速成形技术的核心。与其它快速成形技术相比,SLS以选材广泛、无需设计和制造复杂支撑并且可直接生产注塑模、电火花加工电极以及可快速获得金属零件等功能性零件而受到了越来越广泛的重视。 1.激光选区烧结成形技术 SLS所用的激光有两种:CO2激光器和Nd:YAG激光器。大部分金属对CO2激光器的反射率比对Nd:YAG激光器的反射率大,不利于金属粉末对激光能量的吸收。在SLS系统中,激光束对任何粉末颗粒的作用时间都非常短,大约为几毫秒到几十毫秒,所以目前SLS技术大多采用液相烧结[2],其材料一般由两种熔点相差明显的成分组成,高熔点成分称为结构材料,低熔点成分称为粘结剂。因此,从原则上讲所有受热能相互粘结的粉末材料或表面覆有热固(塑)性粘结剂的粉末都能用作SLS 材料。 2.国内外主要SLS成形材料及其应用现状 目前,SLS材料主要有塑料粉、蜡粉、尼龙、金属或陶瓷的包衣粉(或与聚合物的混合物)等。 2.1 有机材料 从理论上说,任何热塑性粉末均可采用SLS技术成形为任何复杂形状的制件。目前常见的有:(1)蜡粉,传统的熔模精铸用蜡(烷烃蜡、脂肪酸蜡等),蜡模强度较低,难以满足精细、复杂结构的铸件的要求,且成形精度差,所以DTM研制了低熔点高分子蜡的复合材料;华北工学院采用化学合成法,开发了以氧化聚乙烯为主要成分的复合精铸蜡粉(PCP1),其成形件经过简单的后处理(清粉、涂液)即可达到精铸蜡模的要求[1]。 (2)聚苯乙烯(PS) 聚苯乙烯受热后可熔化、粘结,冷却后可以固化成形,而且该材料吸湿率小,收缩率也较小,其成形件浸树脂后可进一步提高强度,主要性能指标可达拉伸强度≥15Mpa、弯曲强度≥33 Mpa、冲击强度≥3Mpa,可作为原形件或功能件使用;也可用做消失模铸造用母模,生产金属铸件,但其缺点是必须采用高温燃烧法(>300℃)进行脱模处理,造成环境污染。因此,对于PS粉原料,针对铸造消失 1

相关文档
相关文档 最新文档