文档库 最新最全的文档下载
当前位置:文档库 › 480m3发酵罐循环水系统工艺计算

480m3发酵罐循环水系统工艺计算

480m3发酵罐循环水系统工艺计算

1、赖氨酸发酵液的发酵热核算

赖氨酸的发酵热:38900Kj/(m3﹒h)

发酵罐装液量:480×0.8=384m3,则发酵过程产生的热量:384×38900Kj/(m3﹒h)=14937600 Kj/h

高峰期:14937600 Kj/h×1.5=22406400 Kj/h

日运转发酵罐:6台×0.8=4.8台

总发酵热:4.8×22406400 Kj/h=107550720 Kj/h

2、单台发酵罐换热面积计算

设发酵液温度37℃,冷却水进口温度29℃,出口温度33℃,则平均温差(对数温差):△t=[(37-29)-(37-33)]/㏑[(37-29)/(37-33)]=5.772

换热面积:S=Q/K﹒△t=22406400×103/(1500×5.772×3600)=718.8 m3 (管束换热器的传热系数K取1500W/ m2﹒℃)

若管束换热器的传热系数K取1100W/ m2﹒℃,则换热面积980 m3

所以发酵罐的换热面积取决于管束换热器的传热系数K和对数温差,对数温差与循环水温度关系很大。

3、发酵罐冷却水用量核算

①6台发酵罐正常运行时需要水量:依据传热公式Q=m﹒c﹒△t

M=Q/( c﹒△t)= 107550720 /[(4.186﹒(33-29)]=6423239㎏/h=6423.2 m3/h

②单罐运行在高峰时需要水量:依据传热公式Q=m﹒c﹒△t

M=Q/( c﹒△T)= 22406400 /[(4.186﹒(33-29)]=1338174㎏/h=1338.2 m3/h

4、冷却塔选型核算

发酵总冷却水量6423.2 m3/h,进口温度29℃,出口温度33℃,温升△T=4℃

①冷却水塔热负荷计算:Q=L×C p×△T

上式中L—冷却水流量㎏/h

C p—水的比热,常数1kcal/㎏﹒℃

△T—冷却水温升,℃

Q=L×C p×△T=6423.2×103×1×4=25692800 kcal/h,通常冷却塔的服务系数取 1.2,所以Q=25692800 kcal/h×1.2=30831360 kcal/h

②冷却水塔选型

当冷却塔温差△T=5℃时,冷却塔处理量L=30831360/1000/5=6166.2 m3/h,所以冷却塔选多大与塔降温性能有关系

循环水处理技术

循环水术语: 1循环冷却水系统:以水作为冷却介质,并循环使用的供水系统,由换热设备、冷却塔、水泵、管道以及其它有关设备组成,分为敞开式循环水系统和密闭式循环水系统。 2敞开式循环水系统:是指循环冷却水与空气直接接触冷却的循环冷却水系统。 3循环水量:每小时用水泵输送的总水量,以Q表示,单位m3/h。 4保有水量:冷却水系统的总贮水量(包括凉水池、换器器、管网系统、旁滤等)。以V表示,单位m3。保有水量与循环量之间设计要求是:保有水量/循环量=1/3-1/5之间。 5 蒸发水量:循环水在冷却塔内通过蒸发而冷却,在此过程中损失的水量称为蒸发水量,以E表示,单位m3/h。E=a(R-B),a=e(t1-t2)(%)(e,夏季25~30℃时0.15~0.16,冬季-15~10时0.06~0.08,春秋季0~10℃时为0.10~0.12. 6补充水量:循环冷却水在运行过程中补充因蒸发、风吹、排污等损失的水量,以M表示,单位m3/h。M=N×B 7排污水量:为了维持一定的浓缩倍数,必须从循环冷却水系统中排放的水量,以B表示,单位m3/h。B=E/N-1 8飞溅损失:由于风力作用把水从系统中吹入大气,叫做飞溅损失。一般风吹损失可按1‰Q计算,以W表示,单位m3/h。 9浓缩倍数:循环水中的含盐量与补充水的含盐量之比值,

以N表示。常用来计算浓缩倍数的离子有钾离子、电导、氯离子、二氧化硅等。 10腐蚀速率:以金属失重而计算得的每年平均腐蚀深度,常用单位mm/a、mdd、密尔/年(可选用标准试片法、试管法进行监测) 11污垢沉积速率:模拟监测换热管内在一个月中所沉积的污垢总量。单位mg/cm2.月(mcm,可选用试管法进行监测))。12粘泥量:指微生物及其分泌的粘液与其它有机或无机的杂质混合在一起的粘浊物。单位mL/m3。 13异养菌:以细菌平皿计数法统计出第毫升水中异养菌落个数,单位个/mL。 水质参数:1、PH值;2、钙硬度;3、碱度;4、K+或SiO2; 5、总铁; 6、电导率; 7、浑浊度; 8、微生物; 9、生物粘泥量;10、污垢沉降速率;11、垢层与腐蚀产物的成分;12、腐蚀率;13、药剂浓度。 一、循环水术语

循环水浓缩倍数计算说明

计算说明 一、已知条件 1、总循环量:16000m3 /h 二、计算 xx水补水量P= P 1+ P 2+ P 3+ P4式中P 1蒸发损失P2风吹损失P3泄漏损失P4排污量 1、蒸发损失P1计算公式1P 1=K·Δ t·Q K: 系数(在环境温度为11.7℃时,K=0.0012,晋城市年平均气温为11.7℃)Δt: 进出水温差取Δt=6℃ Q: 系统循环量16000 m3 /hP1=16000×0.12×6=115.2 m3 /h

2、风吹损失量P2对于机械通风凉水塔,在有收水器的情况下,风吹损失率为取 0.1%.P2= 16000×0.1%=16 m3 /h 3、泄漏损失P3由于系统式密闭循环,机泵的泄漏可忽略不计。 P3=0 m3 /h 4、浓缩倍率N 循环水的浓缩倍率取N=3 5、补水量P, 系统蒸发量P 1=115.2 m3 /h,N=3 ∵N= P/(P- P 1) ∴P= N?P 1/(N-1)=115.2×3 /h 6、理论排污量P4P 4=172.8-115.2-16=41.6m3 /h

三、类推计算: 见表1 表1 系统 循环水总量浓缩倍蒸发损失蒸发损风吹损进出 (m/h) 3提高浓缩补水量 3排污量年排污量倍数年少33 数(m/h)失系数损失失率水温(m/h)(m/h)(m/h)排污量差(m/h)172.8041.6 153.6022.4 144.0012.8 138.247.033 16000 16000 16000 6115.2 115.2 115.2 115.20.12%160.10%6 0.12%160.10%6

电化学 循环水处理工艺介绍

项目概述 ***********厂内现有部分循环水排污水。 为了节约用水,减少排放,实现水资源再利用,公司拟对厂内的上述各系统循环水排污水进行处理后回用于厂内循环水系统作为补水,代替新鲜水的使用。设计处理水量为200m3/h。 一.设计基础 1.水质情况 1.1水质指标 注:混合污水水质即为经计算后原水水质指标。 1.2水质分析 由以上数据表可以看出,将几股循环水排污水及浓水混合后,其水质的主要问题是电导率、总硬度、总碱度较高,需要进行降低去除处理。

而对于水中含盐量的降低去除则必然涉及到膜法除盐技术,而膜脱盐设备对于进水水质有一定的要求标准,从上述水质表分析,其水质总硬度、总碱度等指标较高,均超过膜脱盐设备的进水要求,原水的结垢性较强,易在膜过滤过程中形成垢类物质沉积在膜表面,影响膜的正常运行。所以必需对原水进行预处理,降低水质的总硬度、总碱度等指标,使处理出水达到膜脱盐设备的进水要求,才能进入脱盐设备进行脱盐处理。 本方案设计工艺分为两部分,一部分是预处理,一部分是脱盐处理。预处理主要用于降低水中的总硬度、总碱度等,脱盐处理主要用于降低水中的含盐量。2.设计水量 设计处理水量为:200m3/h。 二.技术工艺说明 1.技术工艺确定 1.1 技术工艺确定 根据污水水质分析,处理工艺确定为“预处理+脱盐”。其中预处理工艺需要降低水中总硬度、总碱度等,使出水水质满足膜脱盐设备的进水要求。对于水中的上述指标,均可通过“三法净水”处理技术进行有效降低去除,同时还可以进一步去除污水中的浊度、悬浮物等颗粒杂质。 由于处理出水作为循环水系统的补水,对于水质的含盐量要求并不高(新鲜水补水电导450-500uS/cm),而且随着回用设备的投运,循环水系统的含盐量逐渐降低,水质将逐渐改善,所以选择适度脱盐设备进行脱盐处理,即JR-EDR 电渗析脱盐设备。同时,JR-EDR电渗析脱盐设备具有运行成本低、膜抗污染性较强的特点,更适宜应用于污水回用处理。 设计技术工艺为:“三法净水”一体化设备+JR-EDR电渗析脱盐设备。1.2工艺流程框图 加酸、杀菌剂

蒸发量计算的基础知识

冷却塔蒸发量计算的基础知识 总冷却循环水量的蒸发量=E + C ☆基础热力学☆基础空气调节学 E=72 × Q × ( X1 – X2)=L ×△t /600 E : 蒸发量kg/h Q : 风量CMM X1 : 入口空气的绝对湿度kg/kg (absolute humidity) X2 : 出口空气的绝对湿度kg/kg (absolute humidity) △t : 冷却水出入口的温度差℃ L : 循环水量kg/h §局部蒸发量C 这是由冷却水塔本身结构上所引起。当冷却循环水的压力<相同条件下水的蒸发压力,冷却循环水的系统会有闪烁(flash)发生,造成局部蒸发现象(cavitation),这种蒸发量通常仅为冷却循环水量的0.1%以下。在计算局部蒸发量C 时,我们均假设局部蒸发量 C 占全部冷却循环水量的0.1%。 凉水塔补水=蒸发量+排污量+飘散损失+泄漏一般凉水塔内水份的蒸发量不大,约为进水量的1~2.5%. 1、蒸发量计算的基础知识 总冷却循环水量的蒸发量=E + C ☆基础热力学☆基础空气调节学 E=72 × Q × ( X1 – X2)=L ×△t /600 E : 蒸发量kg/h Q : 风量CMM X1 : 入口空气的绝对湿度kg/kg (absolute humidity) X2 : 出口空气的绝对湿度kg/kg (absolute humidity) △t : 冷却水出入口的温度差℃ L : 循环水量kg/h §局部蒸发量C 这是由冷却水塔本身结构上所引起。当冷却循环水的压力<相同条件下水的蒸发压力,冷却循环水的系统会有闪烁(flash)发生,造成局部蒸发现象(cavitation),这种蒸发量通常仅为冷却循环水量的0.1%以下。在计算局部蒸发量C 时,我们均假设局部蒸发量 C 占全部冷却循环水量的0.1%。

冷却循环水处理方案

北京东方君悦大酒店循环冷却水处理方案 诚信绿洲 2016年12月

4.3 技术介绍 A)、不含重金属(Cr等),不以磷为基础的阻垢剂,排污水不造成公害,符合环境保护法规,可节省排污处理费用,并免除处理之麻烦。 B)、媲美铬酸盐法的防蚀效果。 C)、药品中所含之专用分散剂,克服了传统冷却水处理所常发生之结垢问题,碳酸钙阻垢能力达1200ppm。 D)、适合于循环水高倍浓缩操作,因此可节省水费及总操作费用。 我司处理方案分三部份,兹分别说明于后: a.结垢抑制 b.腐蚀抑制 c.微生物抑制 (A)结垢抑制 我司最新专用分散剂,可防止冷却水系统产生结垢物,甚至水中钙硬度高达1200ppm,亦有优异之分散作用,保持热传金属表面无结垢之虞,高浓缩情况排污水量减少,并产生下列优点: a. 降低成本:1、用水量减少。 2、用药量节省。 减废功能:水资源充分利用。 附带效益:因本处理方案可适应极差的水质,当补充水质较差时,本处理方案亦能有效因应,从而避免因水质变差导致停机或减量生产。 (B)腐蚀抑制 碳钢腐蚀抑制通常以无机磷酸盐作为阳极及阴极保护,形成坚韧之r-Fe2O3钝化保护膜,避免铁金属游离失去电子,有效抑制铁 材质腐蚀 Fe Fe2++2e- 另外,冷却水中磷酸钙及碳酸钙在阴极高pH位置形成覆盖性保护膜,避免水中O2来接受电子,阻止阴极半反应的发生,腐蚀问题将可彻底抑制 1/2O2+H2O+2e- 2OH- 如图所示 Fe + o-PO4(p-PO4) → r-Fe2O3 ANODIC ANODIC PASSVATION Ca + p-PO4→ Ca-p-PO4↓ CATHONIC

游泳池循环水处理系统的工艺流程

游泳池循环水处理系统的工艺流程 游泳池循环水处理系统的匸艺流程: 自来水做为补给水进入平衡水箱,在平衡水箱中加药剂去除水中的藻类、菌 类,出水经毛发过滤器循环水泵。 游泳池水通过池底最低点主排水器,进入自身带有毛发聚集器的循环水泵,III 水泵打入除砂器。在此之前,由加药装置将絮凝药剂投加到水泵的吸水口,使之通 过水泵叶轮搅拌与水混合均匀,利于过滤处理效果。待水经过过滤器、板式换热器 后,向管路中投加消毒剂,直接向泳池进行布水。 其流程图如下: 游泳池打 瞧砂甜 换器」 平衡 水 箱? * 自 来7K 二氧化氯、臭氧等。 毛发辻 环水隸

注:表中根据不同类型游泳池的循环流量是计算确定所成套设备。(如扬程大于 32 X,可按实际需要另行选泵); 2、水泵选择已考虑反冲洗强度8-10升/秒平方米,反洗时可短时间停止过滤,不需另设反冲洗泵(表内没有考虑用泵,由设计定); 3、I为公共游泳池;II为比赛池;III为跳水池; 游泳池水处理系统 一、引言 随着人们生活水平的不断提高,游泳池作为一种水上娱乐健身设施,越来越多 地走进人们的日常生 3活。标准游泳池的容积约为2250m,若泳池水不能循环使用,将造成巨大浪 费。泳池水的循环使

用是污水资源化的一种体现,是缓解用水紧缺的有效途径。因为泳池水直接关系到人体的健康和 安全。所以,泳池水质卫生越来越受到人们的重视。 二、游泳池的水质标准 世界各国对游泳池的水质都有明确的要求,并制订了相关的卫生标准。在我国,游泳池水质应符合 国家技术监督局和卫生部联合颁布的《游泳场所卫生标准》(GB9667-96)中关于人工游泳池水质 卫生标准的规定,详见表1。 表1人工游泳池水质卫生标准 序号项目标准 1池水温度?22,26 2 PH值6. 5, 8.5 3浑浊度/度?5 4 尿素/mg,/L ?3. 5 5余氧/mg /L游离性0. 4, 0. 6 6细菌总数/(个/L) ?1000 7大肠杆菌/(个/L) ?18 8耗氧量/mg ?6 9有毒物质达到地面水水质标准三、游泳池的循环水量 游泳池的循环水量按下式计算; Q = aV/T 式中,Q——池水的循环流量 a——管道和过滤设备水容积附加系数,一般为1.1, 1.2,取1.1 V:游泳池的水容积,T:游泳池水的循环周期,按表规定选取。 表2游泳池水循环周期

循环水处理方案

方宇润滑油循环水系统粘泥清除方案 1、方宇润滑油循环水系统现状 2014年8月30日系统出现泄漏情况,初步打压确认有三台换热器存在泄漏情况。31日查看打开的换热器情况,换热器中有大量粘泥沉积呈现灰白色,触感光滑,有油分,垢类以软垢形式存在,垢下换热器管程凹凸不平,有大量锈蚀。循环水呈现黄绿色,凉水塔池壁有大量藻类。系统情况见下图。 2、原因分析 粘泥沉积主要由于前期除油清洗后,排污不顺,进水管道(直径1米)和回水管道(直径1米)中残存的粘泥没有完全排除系统,再次运行期间逐渐沉积到管道中引起垢下腐蚀(主要是点蚀现象),腐蚀物沉积形成管道的凹凸不平的表面;前期工艺介质泄漏,油泥沉积对设备已经造成相当程度的腐蚀,后续粘泥沉积致使系统设备性能继续恶化,形成腐蚀穿孔;另外,可能换热器壳程内防腐不好,造成物料对管道的腐蚀引起泄漏。 3、处理办法 (1)确定泄漏设备的数量并更换或修复; (2)使用硫酸调节系统pH值在6左右; (3)加入氧化型杀菌剂200~250ppm运行6~8小时; (4)加入非氧化型杀菌剂200ppm,粘泥剥离剂200~250ppm运行12~24小时; (5)测定循环水浊度至不再上升或略有下降,大量排水置换至循环水浊度达到运行要求。 (6)打开换热器观察系统中粘泥附着情况,根据现状决定是否进行再一次的剥离。 (7)系统打压确定是否有其他设备泄漏,更换或修复。 (8)剥离完毕系统转入正常运行,补加阻垢剂和杀菌剂控制设备的腐蚀和结垢。 4、后续运行建议 (1)系统中换热器做好内防腐; (2)系统加设氧化型杀菌剂连续加药装置或二氧化氯发生器,实现系统中

氧化型杀菌剂的连续加药,保证系统水中余氯维持在0.5左右;(3)系统加设挂片器,检测系统水对设备的腐蚀速率; (4)系统补水线加设流量计,统计各补水的补充量,更好的控制系统的浓缩倍数; (5)系统做好排污。 山东化友化学有限公司 2014年9月1日

蒸发量计算

玻璃钢冷却塔技术手册之二(玻璃钢冷却塔性能参数) 发布者:admin 发布时间:2010-10-31 10:30:26 二、 玻璃钢冷却塔性能参数 2.1 冷却效能 部分人有一个错误的概念,就是以冷幅作为玻璃钢冷却塔效能的标准,并以着来选择合适的散热量,其实冷幅是冷却水塔运作的反映与效能是没有直接之关系。 热量是循环系统内所产生的负荷,它的单位为千卡/小时(Kcal/HR)计算公式如下: 热量=循环水流量×冷幅×比热系数 热量负荷和玻璃钢冷却塔的效能是没有直接关系,所以无论玻璃钢冷却塔的体积大小,当热量负荷和循环水流量不变而运作下,在理论上冷幅都是固定的。 若一座玻璃钢冷却塔能适合以下之条件而运作: i)出水温度为32℃及37℃ ii)循环水流量为 200L/S iii)环境湿球温度为 27℃ iv)逼近=32-27=5℃ v)冷幅=37-32=5℃ 计算其热量应为3600000Kcal/HR 此玻璃钢冷却塔也能适合以下之条件有效地运作: i)出水温度为33℃及43℃ ii)循环水流量为 200L/S iii)环境湿球温度为 23℃ iv)逼近=33-23=10℃ v)冷幅=43-33=10℃ 计算其热量应为7200000Kcal/HR

从上述举例可显示出相同玻璃钢冷却塔可在不同热量下运作,而热量的差别示极大,所以不能单靠冷幅来衡量玻璃钢冷却塔的效能。 前文提及玻璃钢冷却塔的散热量直接受环境湿球温度影响,而以上两列因环境湿球温度有差别,导致逼近不同,所以同一冷却水塔能在以上两条件下运作如常,证明玻璃钢冷却塔的效能是直接与逼近有密切关系而不能单以冷幅计算。 2.2 蒸发耗损量 当冷却回水和空气接触而产生作用,把其水温降时,部分水蒸发会引起冷却回水之损耗,而其损耗量和入塔空气的湿球温度及流量有关,以数学表达式作如下说明: 令:进水温度为 T1℃,出水温度为T2℃,湿球温度为Tw,则 *:R=T1-T2 (℃)------------(1) 式中:R:冷却水的温度差,对单位水量即是冷却的热负荷或制冷量Kcal/h 对式(1)可推论出水蒸发量的估算公式 *:E=(R/600)×100% ------------ (2) 式中:E----当温度下降R℃时的蒸发量,以总循环水量的百分比表示%,600-----考虑了各种散热因素之后确定之常数。 如:R=37-32=5℃ 则E={(5×100)/600}=0.83%总水量 或e=0.167%/1℃,即温差为1℃时的水蒸发量 *:A=T2-T1 ℃ ---------- (3) 式中:A-----逼近度,即出水温度(T2)逼近湿球温度的程度℃,按热交换器设计时冷端温度差取值的惯例,宜取A≥3℃(CTI推进A≥5 oF即2.78℃)A<不是做不到,而是不合理和不经济。 2.3 漂水耗损量 漂水耗损量的大小是和玻璃钢冷却塔(是否取用隔水设施),风扇性能(包括风量、风机及风扇叶角度的调整以及它们之间的配合等),水泵的匹配以及水塔的安装质量等因素有关,通常它的耗损量是很少的,大约在冷却器水总流量的0.2%以下。 2.4 放空耗损量 由于冷却回水不断的蒸发而令其变化(使水质凝结)这凝结了的冷却回水能使整个循环系统内产生腐蚀作用及导致藻类生长,所以部分的冷却回水要定期排出,以便补充更新,而这

材料物理性能试验1

材料物理性能实验报告 材料热性能测量实验 专业:材料成型及控制工程 班级: 0802班 姓名:范金龙 学号: 200865097

材料物理性能实验报告二 ——【材料热性能测量实验】 一、实验目的: 1.学习DTAS-1A型测试仪和PCY-Ⅲ型热膨胀系数测试仪的工作原理,掌握它们的使用方法; 2.熟悉材料热容和热膨胀系数测试的试样制备,测试步骤和数据处理方法; 3.深化对材料热容和热膨胀系数物理本质的认识,掌握如何通过热容和热膨胀系数的测试来分析和研究材料。 二、实验原理 1.差热分析(Differential Thermal Analysis,DTA):在程序控制温度下,测量处于同一条件下样品与标准样品(参比物)的温度差与温度或时间的关系,对组织结构进行分析的一种技术。以参比物与样品间温度差为纵坐标,以温度为横座标所得的曲线,称为DTA曲线。 Furnace Thermocouples Sample Reference 2.线膨胀系数:单位温度改变下长度的增加量与的原长度的比值。 平均线膨胀系数计算公式: L:试样室温时的长度(μm) ΔL t:试样加热至t℃时测得的线变量(μm) K t :测试系统t℃补偿值(μm) ) ( t t L K L t t - - ? = α

t:试样加热温度(℃) t :室温(℃) 三、实验内容 1.利用DTAS-1A型测试仪测试Sn-Pb合金的熔化曲线 2.利用PCY-Ⅲ型热膨胀系数测试仪分别测试45#钢(室温~850 ℃)和纯Ni(室温~370 ℃)的热膨胀曲线 四、实验操作步骤 1.开设备之前先打开循环水; 2.打开微机差热仪的电源开关; 3.在样品台上放入样品,并关上炉体; 4.启动差热仪程序; 5.输入设置参数:起始温度 100 ℃,终止温度 330 ℃,升温速率 5 ℃ /min; 6.双击“绘图”,并点击“实验开始” 注意事项: 1.加热炉体在任何时候均禁止手触摸,以防烫伤! 2.升降炉体时轻拿轻放,勿触碰载物台支撑杆; 3.载物台左侧放标准样品(Al 2O 3 ),右侧放待测样品; 4.待测样品放入量勿超出坩埚; 5.请勿动其他实验仪器。 五、 DTAS-1A型测试仪工作步骤及原理 1.将与参比物等量、等粒级的粉末状样品,分放在两个坩埚内,坩埚的底部各与温差热电偶的两个焊接点接触 2.与两坩埚的等距离等高处,装有测量加热炉温度的测温热电偶,它们的各自两端都分别接人记录仪的回路中。 3. 在等速升温过程中,温度和时间是线性关系,即升温的速度变化比较稳定,便于准确地确定样品反应变化时的温度。样品在某一升温区没有任何

冷却塔水量损失计算(技术部)

冷却塔水量损失计算 水的蒸发损失[()]* :水的定压比热,取.摄氏度,:水的蒸发潜热,:循环水流量,():温差。 例如你设计的温差是度,就是,每小时循环水量吨的话,每小时蒸发吨,这是冷却塔全效时的蒸发量,如果低于这个量就是冷却塔设计有问题。 蒸发耗损量 当冷却回水和空气接触而产生作用,把其水温降时,部分水蒸发会引起冷却回水之损耗,而其损耗量和入塔空气的湿球温度及流量有关,以数学表达式作如下说明: 令:进水温度为℃,出水温度为℃,湿球温度为,则*:(℃)() 式中::冷却水的温度差,对单位水量即是冷却的热负荷或制冷量 对式()可推论出水蒸发量的估算公式 *:()×() 式中:当温度下降℃时的蒸发量,以总循环水量的百分比表示,考虑了各种散热因素之后确定之常数。 如:℃ 则{(×)}总水量 或℃,即温差为℃时的水蒸发量

*:℃() 式中:逼近度,即出水温度()逼近湿球温度的程度℃,按热交换器设计时冷端温度差取值的惯例,宜取≥℃(推进≥即℃),不是做不到,而是不合理和不经济。 水塔蒸发量计算 第2.2.4条冷却塔的水量损失应按下列各项确定: 一、蒸发损失。二、风吹损失。三、排污损失: 四、冷却池的附加蒸发损失水量 第2.2.5条冷却塔的蒸发损失水量可按下式计算: Δ 式中——蒸发损失水量,; Δ——冷却塔进水与出水温度差,℃。 ——循环水量,。 ——系数,℃1,可按表2.2.5采用。 系数 气温- 第2.2.6条冷却塔的风吹损失水量占进入冷却塔循环水量的百分数可采用下数值 机械通风冷却塔(有除水器) ~’$ ( $ ( {. ]* " ) 风筒式自然通风冷却塔(以下简称自然通风冷却塔) 当有除水器时

过程控制实训--流量计和温度控制的PID整定

目录 目录 第一部分、系统介绍 (2) 一、AE2000B型系统介绍 (2) 二、AE2000B型实验对象组成结构 (2) 三、AE2000B型实验对象控制台 (3) 第二部分流量控制 (4) 2.1、实验一电磁流量计流量PID整定实验 (4) 2.2、实验二、涡轮流量计流量PID整定实验 (6) 2.3、实验三、涡轮与电磁流量比值控制系统实验 (9) 2.4、简单比值控制系统的仿真 (11) 第三部分温度控制 (12) 3.1、实验一、锅炉夹套水温PID整定实验(动态) (12) 3.2、实验二. 锅炉夹套和锅炉内胆温度串级控制系统 (14) 3.3、被控对象的仿真模型 (17) 3.4、单回路控制系统的仿真 (18) 3.5、串级控制系统的仿真 (18)

第四部分实训感想 (18) 第一部分、系统介绍 一、AE2000B型系统介绍 AE2000B型过程控制实验装置是根据工业自动化及相关专业教学特点,吸取了国外同类实验装置的特点和长处,并与目前大型工业自动化现场紧密联系,采用了工业上广泛使用并处于领先的AI智能仪表加组态软件控制系统、DCS(分布式集散控制系统),经过精心设计,多次实验和反复论证,推出的一套基于本科,着重于研究生教学、学科基地建设的实验设备。该设备涵盖了《信号和信息处理》、《传感技术》、《工程检测》、《模式识别》、《控制理论》、《自动化技术》、《智能控制》、《过程控制》、《自动化仪表》、《计算机应用和控制》、《计算机控制系统》等课程的教学实验与研究。整个系统美观实用,功能多样,使用方便,既能进行验证性、设计性实验,又能提供综合性实验,可以满足不同层次的教学和研究要求。AE2000型过程实验装置的检测信号、控制信号及被控信号均采用ICE标准,即电压1~5V,电流4~20mA。实验系统供电要求:单相220V交流电,外型尺寸:1850×1450×900mm,重量:100Kg 二、AE2000B型实验对象组成结构 过程控制实验对象系统包含有:不锈钢储水箱(长×宽×高:850×450×400mm)、串接圆筒有机玻璃上水箱、中水箱、下水箱、单相2.5KW电加热锅炉(由不锈钢锅炉内胆加温筒和封闭式外循环不锈钢冷却锅炉夹套组成)。系统动力支路分两路组成:一路由单相增压泵、电动调节阀、涡轮流量计、自锁紧不锈钢水

钢铁厂循环水处理的分类、发展概况、处理技术及管理共18页word资料

钢铁厂循环冷却水处理技术及管理本文系统介绍了钢铁厂循环水处理的技术以及管理。分为:钢铁厂循环水处理的分类、钢铁厂循环水处理发展概况、钢铁厂循环水处理技术及管理。 一、钢铁厂循环水处理概述 水是地球上分布最广的自然资源之一,也是人类环境的一个重要组成部分。地球上的水总量约 1.4×1019m3,海洋中聚集着绝在部分的水,占地球总水量的97.2%,而淡水只占总水量的2.53%。水资源是指全球水量中对人类生存、发展的可利用的水量,主要是指逐年可以得到更新的那部分淡水量,所以淡水总量并不等于水资源,实际上能供人类生活和工农业生产使用的淡水资源还不到淡水总量的万分之一,可见水资源并不是取之不尽用之不绝的资源。 随着工业生产的发展,对工业用水的质和量的要求越来越高,加之水资源并非取之不尽用之不绝,因此合理和节约用水已成为发展工业生产的一个重要问题。这样以来,水处理技术:水的预处理、钢铁厂循环水处理、废水处理等技术得到迅速发展。在这里,我们只讨论钢铁厂循环水处理技术及管理。 工业用水包括锅炉用水,工艺用水、清洗用水和冷却用水,其中用水量最大的是冷却用水,约占工业用水量的90%以上。常用的冷却用水系统分类如表一: 敞开循环冷却水 间接冷却水密闭循环冷却水 直流水 冷却水系统敞开循环冷却水 直接冷却水密闭循环冷却水 直流水 表一:冷却水系统的分类 间接冷却水,是冷却水通过换热设备间接进行交换,冷却工艺介质,而直接冷却水是冷却水直接与物料接触进行冷却作用。(以下主要介绍间接冷却水的情况)冷却水循环系统如附图一。 根据理论计算,随着钢铁厂循环水处理浓缩倍数的提高,补充水量将大幅度下

降,如附图二所示,为循环冷却水浓缩倍数与补充水量,排污水量关系图。 图中E为系统蒸发水量m3/h,因此从图二中可见对于一个冷却水系统来讲,如果从直流水改为循环冷却水并浓缩2~3倍,那么其用水量将降为原来用量的1.5~2.0%,排污量将降到原来量的0.5~1%。例如一个需用冷却水量为2000 m3/h 的小氮肥厂系统,如改为循环水冷却并浓缩2倍,则每小时只需补充水60~80 m3,排污20 m3,可节省1900 m3/h,这样一是节约了用水量,二是减少了直流水排放而引起的热污染问题。 钢铁厂循环水处理使用后,浓缩倍数越高,补充水量越小,污染也相应越小,但是水中的溶解盐类浓度就相应增加,离子的浓度也增加,冷却塔进气中带入大量的溶解氧、尘土、细菌等杂质,使水质变坏,给整个系统会带来了比采用直流水严重得多的腐蚀、结垢、菌藻粘泥的危害,为了避免这些危害发生,就要搞水质稳定处理,投加各种药剂,来防止冷却水对设备的腐蚀、结垢及菌藻粘泥产生,这就是我们通俗称之为钢铁厂循环水处理技术。 循环冷却水经处理和直流冷却系统相比,有以下几个方面的优点: (1)节约用水量:以电厂为例,每小时直流冷却水的用量是22000m3/h,如果用循环冷却水,其补充水量一般只需560 m3/h,因此,就节约了用水量。 (2)减少排污量:上述电厂,直流排放水量达22000 m3/h,而使用循环水后,排污量仅110~440 m3/h,因此,循环冷却水系统将减少99.5%~98%的排污水量,相应也减少了污水处理的困难和费用。 (3)防止热污染:直流水系统直接排放热水,若热水温度升高10℃,则以1 m3直流水计每小时带出1×104千卡的热量,如果该厂用湖泊水作水源,热量往往就直接排入水源。上述氨厂每小时将带出2.2×10千卡的热量,使水体温度升高。将会影响钢铁厂循环水处理: a.造成自然水体的温度改变,降低冷却水的价值和水的可用性。 b.引起水各项物理指标如密度,运动粘度系数,蒸汽分压力,表面压

ICP操作编程

ICP操作编程 操作步骤 一、开机 开氩气,打开氩气阀 1、打开稳压电源开关 2、打开外置循环水开关 3、打开电脑,将进样针放入纯水中,蠕动泵夹紧 4、打开排风系统 5、按绿色按钮,打开ICP主机 6、等待桌面右下角网络显示黄色“!”,表示连接正常 7、双击打开软件,弹出对话框,点击“OK”,等待显示窗口 8、在显示窗口中,点击左上角“方法”, 打开或新建的方法,弹出对话框,点击“确定” 9、在导航面板中,左侧为“+”的选框,点击,展开方法,点击“仪器控制” 1)在显示窗口中,点击“仪器诊断”,弹出窗口,查看输出压力值是否在78-95PSI之间,如在范围内,点击“关闭”,回到仪器控制页面,打开冷却气,再查看输出压 力值,如不是,调节压力阀(0.55-0.60),再查看输出压力值 2)以上如都在范围之内,同时点开辅助气和雾化气,查看压力值 3)正常点火之前,查看光室温度和警报信息提示,两者缺一不可 ●光室温度必须达到35±2℃ ●警报信息提示是否为红色,如是,点击打开,弹出窗口,查看连锁信息,点击“确 认”,点开冷却气,直至红色消失 10、点击“自动开始”,确认蠕动泵运转正常,稳定10-15分钟,观察检测状态温度为:-40℃ 二、汞灯基准点校准 1、打开或新建的方法,仪器正常启动 2、在导航面板中,点击“元素选择”,在元素周期表中点击“Hg”,在显示框右上方“分析 元素谱线”中选择“Hg253.652”,点击“添加谱线” 3、在导航面板中,点击“仪器控制”,选择观测方式:汞灯校准 4、在导航面板中,点击元素选择左侧为“+”,点击“Hg253.652” 5、在右侧窗口点击“波长校准” 6、点击“拍摄全谱图像”,弹出窗口“汞灯校准”,输入样品名称“Hg”,曝光时间:0.02s, 将“35sec”智能拍摄方框中的“√”取消,点击“确认”,等待 7、完成后,点击“接受”,如果出现“接受”: 1)点击“接受”,弹出对话框,显示X、Y值并记住,,点击“确定” 2)在导航面板中,点击“仪器控制”,点击“仪器诊断”,弹出窗口,在右上角“基准点偏差”,显示出的X、Y值与之前记下的X、Y值相加,输入得出的X、Y值,点击“确认”,等待 3)弹出对话框,点击“确认”,点击“关闭” 8、点击“元素选择”中的“Hg253.652”,在右侧显示框中,点击“删除谱线” 三、波长校准 1、打开或新建的方法,仪器正常启动 2、在导航面板中,点击“仪器控制”,选择观测方式:垂直观测 3、如果新建方法,点击“元素选择”,在元素周期表中选择所测元素,在显示框右上方“分

喷漆循环水处理方案

喷漆循环水处理方案 The manuscript was revised on the evening of 2021

喷漆循环水处理工程 设 计 方 案

目录

一、项目概况 涂装生产线循环水在使用过程中含有大量漆渣,循环水池过一段时间就需要清理,费时费力,还浪费水资源,同时也增加的废水处理的难度和成本。 所以公司决定筹建一套水处理系统,使循环水中的漆渣能得到有效分离,循环水能不必经常更换,达到真正循环使用的目的。 根据建设方提供的水质水量和处理要求,特制订废水处理初步设计方案如下,请建设方审阅。 二、水质分析 根据建设方提供的资料分析,循环水循环量为1000m3/h,主要用于喷漆室的水幕除尘用,因此水中含有大量的油漆成分,为了使水达到循环使用的目的,厂方在水中加了絮凝剂,导致大量的漆渣淤积于循环水池的底部,必须定期清池,影响生产。 通过对现场水质水量的试验,絮凝剂的效果是明显,离心分离对絮凝物分离效果良好,考虑在循环池污泥量较大时进行离心分离处理。 三、水处理工艺流程 根据以上分析,我们确定采用离心分离的方法,离心机可以对~3mm范围固相颗粒的悬浮液进行澄清、脱水,是较为先进的固

液分离装置,且可以连续进水,连续出水,连续出泥。开机和关机时对设备进行清洗,可避免堵塞的问题。 具体处理工艺见工艺流程框图: 漆渣外运 为了解决循环水池中加药后积泥的问题,我们在水池内设置了推流式潜水搅拌机,将底部污泥都推向离心机进料泵一端,从而解决低部积泥问题,减少清池工作。 四、设备说明 1、潜水搅拌 型号:QJB4/6 功率:4kw 数量:2台 供货商:南京新中德

润优益寻优系统经验挖掘功能研究与应用

润优益寻优系统经验挖掘功能研究与应用 摘要:本文介绍了华润电力火电厂润优益寻优系统经验数据挖掘的重要性和意义,总结了基于数据驱动的智能寻优挖掘思路,通过数据挖掘方法建立一套对大 数据进行挖掘、分析、提纯,进而自动反复生成发电系统的参数最优值和最优运 行方式——润优益寻优系统,实现各系统安全、经济运行,为火电厂带来经济与 社会效益,持续提升企业的竞争力。 关键词:操作寻优;动态标杆值;大数据分析;最优工况;经验挖掘 随着国家环保政策的持续推进,火电厂的节能减排压力愈发凸显,对企业的 管理优化及技术创新提出了更高的要求。火电厂在生产过程中产生了大量数据, 这些数据被简单的储存起来,相当于“埋藏在地下的金库”。随着电力改革的深化 和科学技术的进步,急需建立一套对大数据进行挖掘、分析、提纯,进而自动反 复生成发电设备最优值和标准运行方式,实现发电设备安全、经济运行的体系和 系统,持续提升企业的竞争力。 目前有很多关于火电厂的数据挖掘算法的相关技术,比如根据机组运行的外 部边界条件,对负荷、生产环境、煤质和设备健康状况等因素建立不同运行工况 边界,采用聚类等机器学习算法,以系统稳定、经济、环保等性能指标确立安全 边界并划分工况,筛选出机组在不同的工况条件下,机组各运行参数的最优值, 将其建立为标杆值,初步使得机组维持在运行最佳水平。 润优益寻优系统经验挖掘正是在这一背景下,基于大数据分析运用与人工智 能的快速寻找不同工况下历史最优标杆值的系统。系统充分应用数据驱动控制理 论和迭代收敛控制思想,替代传统的控制模式,实现自动控制向智慧控制转变; 基于稳定节能理念,引入系统判定依据,通过科学算法,实现系统寻优。 1、润优益寻优系统的建设意义: 1.1为生产运行提供操作指导; 1.2快速寻找不同工况下最优标杆值; 1.3通过边界条件的变化实现持续优化; 1.4操作标准化,生产实时管控; 1.5实现专家经验、科学试验成果与系统智能有机结合; 1.6建立区域性数据分享平台。 2、润优益寻优系统经验挖掘功能设计 系统通过实时运行的后台程序,定时自动获取SIS或其他系统的参数数据,SIS系统所获取的数据必须具备计算各项指标的能力,系统通过SIS系统获取负荷 数据(某个固定值或者具体的范围值)、循环水温度、煤种的相关数据信息(如:热值、挥发份、水份、飞灰含碳量等);获取到的数据按照指标参数和时序进行 自动过滤、筛选,并存入存储库,其中部分指标(环保指标、经济指标等)作为 系统的存入标杆库的否决条件;在否决条件内的数据自动丢弃;并将符合条件的 数据经方差、标准差计算后存入标杆库中。 经验挖掘系统根据设置的时间周期,以及压力波动的排序数据,按照二八定 律自动筛选出部分数据用于计算经济性,并根据经济性的指标参数,过滤数据。 系统根据时间段内的时间参数值,采用中位数,根据对应时刻,获取出某段时间 内的最优工况,并将该时间点或时间段内的操作量自动存入经验库。

冷却塔水量损失计算

冷却塔水量损失计算 水的蒸发损失WE=[(Tw1-TW2)Cp/R]*L CP:水的定压比热,取4.2KJ/KG.摄氏度,R:水的蒸发潜热2520KJ/KG ,L:循环水流量,(Tw1-TW2):温差。 例如你设计的温差是10度,就是10/600=1.67 %,每小时循环水量1000吨的话,每小时蒸发16.7吨,这是冷却塔全效时的蒸发量,如果低于这个量就是冷却塔设计有问题。 蒸发耗损量 当冷却回水和空气接触而产生作用,把其水温降时,部分水蒸发会引起冷却回水之损耗,而其损耗量和入塔空气的湿球温度及流量有关,以数学表达式作如下说明:令:进水温度为T1℃,出水温度为T2℃,湿球温度为Tw,则 *:R=T1-T2 (℃)------------(1) 式中:R:冷却水的温度差,对单位水量即是冷却的热负荷或制冷量Kcal/h 对式(1)可推论出水蒸发量的估算公式 *:E=(R/600)×100% ------------(2) 式中:E----当温度下降R℃时的蒸发量,以总循环水量的百分比表示%,600-----考虑了各种散热因素之后确定之常数。 如:R=37-32=5℃ 则E={(5×100)/600}=0.83%总水量 或e=0.167%/1℃,即温差为1℃时的水蒸发量 *:A=T2-T1 ℃----------(3) 式中:A-----逼近度,即出水温度(T2)逼近湿球温度的程度℃,按热交换器设计时冷端温度差取值的惯例,宜取A≥3℃(CTI推进A≥5 oF即2.78℃),不是做不到,而是不合理和不经济。 水塔蒸发量计算 第2.2.4条冷却塔的水量损失应按下列各项确定: 一、蒸发损失;二、风吹损失;三、排污损失: 四、冷却池的附加蒸发损失水量

冷却循环水处理方案

北京东方君悦大酒店 循环冷却水处理方案 诚信绿洲 2016年12月 页脚内容0

4.3 技术介绍 A)、不含重金属(Cr等),不以磷为基础的阻垢剂,排污水不造成公害,符合环境保护法规,可节省排污处理费用,并免除处理之麻烦。 B)、媲美铬酸盐法的防蚀效果。 C)、药品中所含之专用分散剂,克服了传统冷却水处理所常发生之结垢问题,碳酸钙阻垢能力达1200ppm。 D)、适合于循环水高倍浓缩操作,因此可节省水费及总操作费用。 我司处理方案分三部份,兹分别说明于后: a.结垢抑制 b.腐蚀抑制 c.微生物抑制 (A)结垢抑制 我司最新专用分散剂,可防止冷却水系统产生结垢物,甚至水中钙硬度高达1200ppm,亦有优异之分散作用,保持热传金属表面无结垢之虞,高浓缩情况排污水量减少,并产生下列优点: a. 降低成本:1、用水量减少。 2、用药量节省。 减废功能:水资源充分利用。 附带效益:因本处理方案可适应极差的水质,当补充水质较差时,本处理方 页脚内容0

页脚内容 1 案亦能有效因应,从而避免因水质变差导致停机或减量生产。 (B )腐蚀抑制 碳钢腐蚀抑制通常以无机磷酸盐作为阳极及阴极保护,形成坚韧之r-Fe 2O 3钝化保护膜,避免铁金属游离失去电子,有效抑制铁 材质腐蚀 Fe Fe 2++2e - 另外,冷却水中磷酸钙及碳酸钙在阴极高pH 位置形成覆盖性保护膜,避免水中O 2来接受电子,阻止阴极半反应的发生,腐蚀问题将可彻底抑制 1/2O 2+H 2O+2e - 2OH - 如图所示 Fe + o-PO 4(p-PO 4) r-Fe 2O 3 ANODIC PASSVATION Ca + p-PO 4 Ca-p-PO 4 Ca + o-PO 4 Ca-o-PO 4 Ca + CO 32- CaCO 3 Zn + OH - Zn(OH)2 CATHODIC PRECIPITATION (C). 微生物抑制 日常杀菌灭藻采用氧化性杀菌剂-漂白水和溴化物相结合,其杀菌机理主要靠氧化作用破坏细胞组织。建议采用自动控制设备连续添加,控制余氯量在0.2-0.5ppm 之间。 为提高漂白水的杀菌能力,配合添加生物表面活性剂XXX ,可根据漂白水杀菌的效果采取定时添加的方式,投加剂量以每次30-50PPM 。同时,每周定 CATHONIC ANODIC

循环水浓缩倍数的计算

1xx温度对冷水机组制冷量的影响 我们都知遭: 从运行费来讲,在蒸发温度和压缩机转数一定的情况下,冷凝温度越低,制冷系数越大,耗电量就越小。据测算,冷凝温度每增加1℃,单位制冷量的耗功率约增加3%-4%.所以,从这一角度来讲,保持冷凝温度稳定对提高冷水机组的制冷量是有益的。但为达到此目的,需采取以下措施: 增加冷凝器的换热面积和冷却水的水量;或提高冷凝器的传热系数,但是,对于一个空调冷却系统来说,增加冷凝器的面积几乎是不可能的。增加冷却水的水量势必增加水在冷凝器内的流速,这将影响制冷机的寿命,同时还增加了冷却水泵的耗电和管材浪费等一系列问题,而且效果也不尽理想。增大冷却塔的型号,考虑一定量的富余系数尚可,但如果盲目加大冷却塔的型号,以追求降低冷却水温也是得不偿失的,而且,冷却水温度还受当地气象参数的限制。提高冷凝器冷却水侧的放热系数,是实际和有效的,而提高放热系的有效途径是减小水侧的污垢热阻,对冷却水补水进行有效的处理. 2xx的补水问题 xx水量损失,包括三部分: 蒸发损失,风吹损失和排污损失,即: Qm=Qe+ Qw+Qb 式中: Qm为冷却塔水量损失;Qe为燕发水量损失;Qw为风吹量损失;Qb为排污水量损失。 (1)蒸发损失 Qe= (0.001+0.002θ)Δt Q (1) 式中:

Qe为蒸发损失量;Δt为冷却塔进出水温度差;Q为循环水量;θ为空气的干球温度。 (2)风吹损失水量 对于有除水器的机械通风冷却塔,风吹损失量为 Qw=(0.2%~0.3%)Q (2) (3)排污和渗漏损失 该损失是比较机动的一项,它与循环冷却水质要求、处理方法、补充水的水质及循环水的浓缩倍数有关.浓缩倍数的计算公式: N =Cr/Cm 式中: N为浓缩倍数;Cr为循环冷却水的含盐量;Cm为补充水的含盐量.根据循环冷却水系统的含盐量平衡,补充水带进系统的含盐最应等于排污,风吹和渗偏水中所带走的含盐量. QmCm= (Qw+Qb)Cr N =Cr/Cm=Qm/(Qw+Qb)=( Qe+ Qw+Qb)/( Qw+Qb) =Qm/Qb(Q w可忽略)( (3)Qm= QeN/(N 一1) N=1+Q e/Q w+Q b(Q

光伏组件生产常用设备仪器介绍教材

组件生产常用设备仪器介绍组件测试仪(博硕) 操作规范 组件测试仪操作规程 面板各部件功能

A、电压表——用于显示设置电压的大小 B、充电显示——黄(绿)色发光二极管。显示设备的充电状态,灯亮表示充电完成,可以使用。 C、充电进行——用于显示设备的充电状态。灯亮充电进行,灯灭表示充电结束 D、光强调节——调节光源电压 E、负载调节——调节此钮,使电子负载和光强曲线平顶保持同步,最大限度使用“闪光平顶”。 F、电源指示——显示供电电源的通断 G、放电——用于维修时对电容进行放电(注意:正常时禁止操作此按钮)。 H、电源开关——接通/断开供电电源 I、触发——插接触发线 J、电源(~220V)——电源插座 K、电池组件——插接连接电池组件的组件测试线 1调试 1.1接通设备电源和计算机电源,预热15分钟。 1.2进行电池组件测试前要校准电流、电压、光源通道零点。测试组件前要校准组件测试仪的电压与电流零点。电压、电流数值的准确与否会直接影响到组件的电压、电流和功率。如果不填入光强通道的零点不能正常测量。 2校准 2.1将组件测试线从“电池组件”插座取下。 2.2双击“CS”出现如下画面: 2.3双击“ ”图标,出现如下界面

CH0对应的数值-4630即为电流零点 CH1对应的数值-4604即为电压零点 CH2对应的数值-4628即为光强通道零点 (电流零点、电压零点、光强零点的实际数值以实测数据为准) 2.4双击“ ”图标,显示如下窗口 2.5单击“设置” ,显示如下窗口 2.6进行“硬件设置” 将上面步骤2.3读取的CH2对应的方格内的数字填入到光强零点对应的方格内、CH1对应的方格内的数字填入到电压零点对应的方格内、CH0对应的方格内的数字填入到电流零点对应的方格内。点击“应用”、“确定”,电压、电流零点校准完毕。

相关文档
相关文档 最新文档