文档库 最新最全的文档下载
当前位置:文档库 › Modelling the Spectral Energy Distribution and SED variability of

Modelling the Spectral Energy Distribution and SED variability of

Modelling the Spectral Energy Distribution and SED variability of
Modelling the Spectral Energy Distribution and SED variability of

A&A manuscript no.

(will be inserted by hand later)

ASTRONOMY

AND ASTROPHYSICS

1.Introduction

The presence of grain shells around C-and O-rich stars is stud-ied already for several decades,and early spectroscopic and photometric detections of excess emission from optically thin circumstellar dust near these evolved variables date back to the late1960s(Treffers&Cohen1974).These spectral‘fea-tures’,often observed for instance at11.3m,are attributed to silicon-carbide(SiC)grains around stars with carbon-rich

2Modelling the SED and variability of R Fornacis 2.R Fornacis(AFGL337)

From a study of mid-IR light curves Le Bertre(1992)ob-

served a decreasing amplitude of variations with wavelength

from about in the band to in the?lter,further levelling off to in.Barth`e s et al.(1996)studied light curves of this long period variable(=388d.)and found de-creasing amplitudes of the Fourier components from the visible to the near-IR and proposed a modulation of the light curves by the dust shell.Its average visual magnitudes at minimum and maximum brightness are and,with occasionally extreme values of and.

Earlier studies of R For by Feast et al.(1984)and by Le Bertre(1988)showed that an increased obscuration could re-sult from condensation of grains in the inner portion of a cir-cumstellar dust shell.In a study of23carbon-rich stars Le Bertre(1997)modelled the SED of R For from IRAS BB pho-tometry and coeval optical and near-IR BB photometry.He adopted a blackbody temperature for the central star of2600 K and obtained good?ts to the IRAS photometry,but which clearly overestimated the optical photometry.

R For displays a rather weak SiC emission feature at11.3 m as observed by IRAS(’83)and by Speck et al.(1997)at UKIRT in’93.Our UKIRT spectrum between16and24m was obtained on Aug.22’95and the optical BVRI photometry at SAAO on Sept.25’95.The near-IR JHK photometry was obtained at CST(Tenerife)in early Sept.’95(JD2449967).For our accurate modelling of the SED and the dust emission fea-ture we combine this data with another UKIRT spectrum taken between8and13m and obtained in July’95.The difference of absolute?ux at11m between these three spectra is outside the calibration errors and within the amplitude changes in the ?lter(see further Sect.3.2).These continuum humps show however no appreciable changes of shape with respect to the local background level.Changes in the shapes of silicate fea-tures of late-type stars have only recently been investigated and are proposed to result from varying optical dust properties with stellar pulsation.Likewise,several objects like V Hya and CIT 6,having rather weak dust emission features,display no appar-ent changes in shape with changing intensity(Monnier et al. 1998).

In Sect.3we describe the new modelling method of the SED of R For by means of the optical and near-IR BB photo-metric data of Sept.’95,together with the dust emission spec-tra observed in Jul.-Aug.’95.The SED variability during this phase is discussed in Sect.4using BB photometric data ob-served by Whitelock et al.(1997)between Aug.’95and Jan.’96.This period follows a particular deep minimum about1100 days earlier with clearly redder colours.Whitelock(1997)sug-gested RCB-type fadings,possibly linked with dust formation events.They however stress that there is no clear sign of pe-riodicity in the obscuration events of R For and that the pre-whitened(removing the dominant period from the data)light curves are not

periodic.Fig.1.The high-resolution spectrum of R For(C4)(thin line)strongly matches a medium-resolution spectrum of HD223392(C3)(bold line),indicating3000K

3.Modelling results

3.1.Selection of the atmospherical model

The input model to the D USTY code was selected from a grid of cool giant atmospherical models with

,,0.27C/O 1.02(by number) for=10000,which was released by Allard et al.(1995). The resolution up to2.5m is2?and5?up to5m.The res-olution then lowers to0.1m up to15m and is only0.5-1m up to90m.The models include opacities from important di-atomic absorbers like CO,,,CN,CH,NH,MgH,but also compounds like HCN,,TiO,SiO,SiH.For a description of the equation of state and the radiative transfer in spherical geometry and hydrostatic equilibrium with the P HOENIX code see Hauschildt et al.(1997)and Allard&Hauschildt(1995).

R For has been classi?ed as C4,3e,but this information is insuf?cient to determine its atmospherical parameters,since the problem of spectral classi?cation of C stars is to be con-sidered still open.For instance,Alksne&Ikaunieks(1981, and references therein)give values of4500K for subclass C0which fall to3000K for subclass C5.By contrast,Cohen (1979)gives2900K for a C4star.In order to estimate the stel-lar parameters of R For,we have used high-resolution spectra offered in Barnbaum(1994).These echelle spectra only pro-vide relative?uxes and can therefore not easily be compared with the absolute?uxes of the model spectra over a broad wavelength range.However,a comparison with a medium-resolution spectrum of another carbon star HD223392(C3,2), kindly provided by Dr.Andrews(1998,https://www.wendangku.net/doc/d313009345.html,m.),and a low-resolution spectrum of HD223392obtained by Barnbaum et al.(1996)reveals that the model parameters of both stars are similar.It can be seen in Fig.1that the relative?uxes of HD 223392,resulting from strong atomic line blending(overlaid with vibration-rotational transitions of and CN),strongly match the high-resolution spectrum of R For,in which the in-dividual atomic line cores are resolved.

3 Fig.2.The relative strength of the Swan bands in HD223392

(bold line shifted upwards)compare best with these strengths in the

synthetic input spectrum with=3200K and log(g)=0.0(thin drawn

line)

We have then compared the strength of the broad molecu-

lar Swan bands(band heads shown in Fig.2at4737?

and5165?)of HD223392with the grid of models having a

carbon-to-oxygen ratio of1.02(and C,N,O number fractions

of resp.,and,where the

C abundance relative to the Sun is increased by a factor of

2.13).These bands attain maximum strength in C5-6stars and

decline rather sharply thereafter.

By means of a least-square technique we found that the

best-?t to the observations is given by the model with=

3200K and log(g)=0.0.We emphasize that the determination

of these parameters results from?nding a best?t to the overall

observed SED and the?ux at m.We found that adopting

model atmospheres with lower as input to the D USTY code

could not reproduce the shape of the overall observed SED and

the?ux at the dust emission feature.

We have also checked that the Na lines in the high-

resolution spectrum of R For are observed not to be intensity

saturated.In the carbon input model with low=2500K the

doublet is strongly saturated and the model temperature has to

be increased to3200K in order to reduce the gas pressure and

the resulting damping widths.But caution is needed when com-

paring relative strengths of saturated spectral features in order

to check or estimate atmospheric parameters.This can be ob-

served in Fig.3where an absorption blend around0.521m in

the selected model appears too strong when compared with the

observed?uxes.

It should be noted that other authors have used lower val-

ues of in modelling the SED of R For(=2500K is

commonly adopted).This discrepancy is likely to be due to the

difference of applying an actual model spectrum or a blackbody

for the stellar input spectrum.It appears in Fig.4that the model

atmosphere with=3200K peaks at longer wavelengths

than its corresponding blackbody.Since we?nd that this input

model reproduces the observed SED of R For,it follows

that

Fig.3.The relative line intensities observed with medium resolution in

HD223392(bold line shifted upwards)compare best to the synthetic

model with=3200K,shown here in the bandhead at5165?

(thin line)

instead by assuming a blackbody curve as model atmosphere,

one is lead to adopt a lower value for the effective temperature.

For synthetic spectra with log(g)=0.5there are no dis-

cernible differences with the overall absorption spectrum for

log(g)=0.0,however there are minor differences in the optical

?ux levels.In the long-wave tail the shape of the model spectra

follows the shape of the Planck function,although small differ-

ences with the continuum?uxes are present.

3.2.Overall method

We have adapted the D USTY code by increasing the predeter-

mined wavelength grid of98to468wavelength points.As the

model input spectra are too detailed to perform the radiative

transfer within acceptable run times,the models are smoothed

with total?ux conservation between0.1and5m(Fig.4).

This smoothed spectrum is then sampled onto400wavelength

points in order to reassure that the broad molecular absorption

bands are preserved in the spectrum.The spectral tail beyond5

m is sampled onto68points,but somewhat more re?ned be-

tween9and12m in order to model the shape of the dust

emission feature(s).Next we compute a grid of reprocessed

smoothed spectra for various shell parameters for a limited

number of input models.A set of5spectra reprocessed from

the input model with=3200K is shown in Fig.5for an

optical thickness of the dust shell ranging from0.01to0.2.As

the optical depth increases the SiC feature at11.3m becomes

more pronounced and has higher intensity,whereas the optical

?ux levels decrease and the molecular bands weaken.Conver-

gence is achieved at95%total?ux conservation for all output

spectra,with run times ranging form20min.(on DEC Alpha)

up to several hours for 1.

Detailed output spectra are subsequently constructed as fol-

lows.The468reprocessed and corresponding input?uxes are

interpolated by cubic spline functions.Their ratio with respect

to the detailed model input spectrum then provides the detailed

4Modelling the SED and variability of R

Fornacis Fig.4.The detailed input model spectrum(black)is smoothed by

preserving the broad molecular bands(white curve).Note the con-

siderable?ux differences with its continuum blackbody(=3200K,

smooth white curve)which strongly affects the SED when reprocessed

by the dust

envelope

Fig.5.The model spectrum(bold curve)is reprocessed by D USTY

and shown for5increasing optical depths of the dust shell;

and0.2(thin curves upward).As increases

the energy at shorter wavelengths is more reprocessed to the IR,re-

sulting in stronger SiC emission at11.3m

output spectrum(Fig.6).This opacity sampling technique al-

lows one to preserve the overall energy redistribution and scat-

tering by the CDS and its effect on the broadband?lters.Note

that the reprocessed model spectrum shown here should not be

considered to represent detailed observed spectra as we expect

that the CDS also blurs the spectral lines.But in the current

approach we are mainly interested to account for the molecular

and atomic line blanketing after being reprocessed by the dusty

envelope.Doppler shifts of lines in the output spectrum due to

the envelope expansion are expected to assume as much as

a

Fig.6.The stellar model spectrum is smoothed(upper bold line)and

reprocessed(lower bold line)at468wavelength points(boxes).The

detailed output spectrum(lower thin line)is computed from the ra-

tio of the cubic spline functions through these points with respect to

the detailed input spectrum(upper thin line).This technique preserves

the strong molecular and atomic line blanketing which affects the BB

photometry of these cool giants

few angstroms and are hence negligible when compared to the

width of these broad pass-bands.

Thereafter the reprocessed spectra are convoluted with the

transmission functions in the UBV,JHK MN and IRAS

12,25,60and100m pass-bands(Fig.7).The,and

bands are strongly affected by and/or CN.This has pro-

found consequences when transforming magnitudes in abso-

lute?uxes,and also when comparing observations obtained

in similar–but not identical–photometric systems.For in-

stance,our near-IR observations taken at CST appear to be

not entirely consistent with those obtained by Whitelock et

al.(1997)at SAAO in the same period(see further Table2).

This is fully explained by the different transmission functions

of the two photometric systems.A convolution of our model

SED with the band of the CST system(Alonso et al.1994)

and with the band of the Johnson system(Landolt-B¨o rnstein

1982)shows that the expected values for in the CST system

are about lower than in the Johnson system.Le Bertre

(1997)noted that the band is not affected by CN and CO but

also is not affected by and HCN,and give therefore good

estimates of the stellar continuum of carbon stars.

A best model is then selected from the computed grid by a

least-squares method applied on the computed‘synthetic’BB

photometry and the observed BB photometry,in conjunction

with the best?t onto the observed dust emission feature.Note

that the optical and near-IR data were corrected for interstellar

extinction and the IRAS photometry for cirrus contamination

as discussed in Bagnulo et al.(1998).When assuming a lu-

minosity of,we compute from the observed bolo-

metric?ux of a distance to R For of

0.93kpc.The latter value is consistent with the observed H IP-

5 Fig.7.The detailed reprocessed spectra are convoluted with11trans-

mission functions of the UBV JHKL’MN pass-bands(thin drawn

?lter shapes are shown scaled)and the4IRAS?lters(bold shapes),

producing‘synthetic’BB photometry

PARCOS parallax,which provides a distance in the range of

0.200–1.3kpc.We then calculate an interstellar extinction in

the band of with the equation of Milne&Aller

(1980).Also Groenewegen et al.(1998)estimated only

for=215.8and a high galactic latitude=68.1.Note that

Whitelock et al.(1997)?nd values as low as from the

Galactic extinction law by Feast et al.(1990).Below we dis-

cuss in more detail more aspects of the SED modelling.

3.3.Optical depth

In the case of R For we?nd that the optical depth(consid-

ered here at a reference wavelength of11.3m)of the dust

shell cannot be constrained from a best?t onto the absolute

?ux of the dust emission feature alone.This results from the

rather small dust optical depth and therefore a‘best’?t for a

given and value can always be obtained when both

parameters are altered oppositely over a con?ned range.This

is because for limited changes of the slope of the output

spectrum hardly changes in the8to24m window.and

can therefore only be?xed by considering the entire SED

together with the intensity of the dust emission.In Fig.8it

is shown that the shell optical depth is strongly constrained by

the optical data.Slight variations in the dust opacity(or column

density)strongly affect the emerging optical?uxes.A compar-

ison between the reprocessed?ux distribution and the obser-

vations strongly?xes at0.105(or=1.91at1m)and

the of the input model around3200200K.The spectral

shape derived from a model with=2500K could not be rec-

onciled with the observed SED and?ux at11.3m.We point

out clearly here that excellent?ts to the SiC feature can be ob-

tained from input blackbody distributions for example as low

as=2200K and=0.057when omitting the

modelling

Fig.8.The parameters of the dust shell are determined by a least-

squares search on the synthetic and observed BB data of R For(open

circles),in conjunction with a best?t onto the dust emission feature.A

best?t is obtained for=0.105(bold solid curve),which is strongly

constrained by the?t to the optical BB data.The other curves are

computed for=0.01(long dashed),0.05(short-dash dotted),0.15

(short dashed)and0.2(long-dash dotted)

of the entire SED(see Fig.9).The?ux differences between

the blackbody and the actual atmospherical model,in particu-

lar at the shorter wavelengths,result in considerably different

?ux levels when reprocessed by the dust shell as the bolometric

?ux must remain conserved.

The determination of the shell composition for R For is in-

dependent of the multi-dimensional parameter search problem.

Since the dust shell is rather optically thin,the shape of the SiC

feature and its intensity against the background is practically

independent of the optical depth,as is shown in Fig.9.If the

shell were optically thicker and a change of would strongly

in?uence the shape of the feature,the parameter search would

become much more involved,and possibly under-de?ned.We

obtain a best?t to the dust emission feature for only105%

SiC grains and905%amorphous carbon(amC)(Fig.9lower

panel).The optical properties of-SiC and the amC back-

ground are respectively taken from P′e gouri′e(1988)and Han-

ner(1988)(see also Zubko et al.1996or Rouleau&Martin

1991),and were supplied to D USTY after interpolating them

for our extended grid of468wavelength points.

3.4.Dust density

The dust density distribution can only be constrained from the

SED beyond10m since the matter distribution mainly deter-

mines the slope of the redistributed energy by dust emission.

We obtain best?ts to the IRAS data for a simple distribu-

tion for a uniform dust?ow velocity,whereas a?at distribution

of is clearly not suitable(Fig.10).We show that a slightly

steeper law of neither matches the60m and100m

?uxes.This result is signi?cant because we compute for the

6Modelling the SED and variability of R

Fornacis

Fig.9.Upper panel:UKIRT spectro-photometry of the SiC feature of R For obtained in Jul.’95(lower dots)and in ’93(upper dots).The latter matches the intensity of the IRAS LRS spectrum of ’83(open circles).The reprocessed ?ux derived for =0.105(boxed bold line)matches the intensity of the dust emission in ’95,together with the coeval optical and near-IR BB photometry of Fig.8.The model input spectrum with =3200K is shown by the lower bold boxed line with the corresponding blackbody drawn by the solid bold line.The dotted line ?ts the spectrum of ’95as well,but was computed with a blackbody input model of only 2200K,without considering the ?t to the entire SED.The latter procedure would result in false values for

and .Lower panel:The shell composition is determined from the shape of the SiC emission,which is best ?tted for a mixture of 10%SiC and 90%amorphous carbon.The boxed curves are ?ts given for mixtures ranging from 0%to 20%SiC

law that the slope is insensitive to the geometrical shell thickness when increased from to times the radius of the inner shell boundary ().A distribution steeper than unity does not require a cut-off as discussed by Ivezi′c &Elitzur (1997).The tenuous cold dust tail contributes only slightly to the far-IR ?uxes,but when the shell thickness is reduced to a

1000times

,removing the cooler outer dust envelope,the synthetic 60m and 100m ?uxes drop to below the observed values.Le Bertre (1997)proposed an improved density law for R For as was approximated by Schutte &Tielens (1989)from dynamical models of Tielens (1983).We found it hard to as-sess considerable improvement by the latter distribution over the -law.These differences are most likely rooted in the higher required for our detailed modelling of the SED of Sept.’95.It should be noted that such smooth density power-laws are clearly unable to model the ?ux observed by us at 800m with in Dec.’94(Bagnulo 1996).Perhaps these sub-mm excess ?uxes are related to a-spherical

accumulations

Fig.10.The dust density distribution is strongly constrained to by the slope of the IRAS data (open circles).The synthetic BB photom-etry derived for slightly steeper or ?atter power laws does not ?t.An increase of the geometrical shell thickness to preserves the observed slope (upper dashed line),whereas a decrease to

underestimates the slope (dash dotted line).The solid boxed line gives the reprocessed spectrum for and ,but fails to model the excess observed at 800m (see text)

of cold dust by carbon-rich grain ejection in a preferred direc-tion,possibly from the equator (i.e.forming an equatorial dust torus),as discussed by Whitelock et al.(1997).They compute a distance of 593pc (or at least half this value)from the Galactic plane which is too large a distance in order to explain the sub-mm excess by emission from IS dust in equilibrium with the IS radiation ?eld.Note further that Le Bertre et al.(1995)have also suggested possible contributions of circumstellar molecu-lar emission to the sub-mm ?uxes in the carbon-rich variable GL 3068,after Avery et al.(1992)who estimate these contri-butions to 70%at 850m for another well-studied carbon star IRC+10216.However,an investigation of the excess ?ux be-yond 100m of R For and other C-stars is outside the scope of our present modelling method which focuses here on the prop-erties near the dust condensation/destruction radius .

3.5.Dust condensation temperature

The dust condensation temperature

(assuming identical for amC and SiC)can be ?xed from the absolute IRAS ?uxes and the mid-IR dust emission ?uxes.In Fig.11it is shown that an increase of from 800K to 1400K does not affect the de-scending slope in the IR.Although the determination of this parameter interferes with variations of at these long wave-lengths,its value can strongly be constrained from the least-squares method because is strongly constrained by the shape of the entire SED.And as is strongly ?xed by the

optical data,the value of

can accurately be determined be-cause it does not affect the optical ?uxes.We ?nd a best ?t to the 11.3m feature for 1300100K.The difference with the

7 of about1000K obtained in Le Bertre(1997)can therefore

be attributed to our higher value and the different?ux dis-

tribution of our input model.Note further that the UKIRT spec-

trum of’93(and the IRAS LRS spectrum)can be well-?tted for

=1000K(Fig.11lower panel,upper open and?lled circles),

keeping all other parameters held?xed.However,we doubt that

this change of by300K properly re?ects a possible physical

change of the temperature or density at the dust condensation

radius because the changes of and the related changes of

the dust optical depth with the stellar variability are not ac-

counted for in the latter?t,as coeval optical data is lacking. The high dust condensation temperature derived by us con?rms the value of1300K obtained for IRC+10216by Danchi et al. (1990).In a recent study of properties of dust shells around

carbon Mira variables Groenewegen et al.(1998)also obtained =1300K for R For,although their radiative transfer calcu-lations just assume an input blackbody of only2300K and the BB photometric data and mid-IR spectra are not coeval. They compute values for SiC/amC of0.04and=0.12,in

?ne agreement with our result of10%SiC and=0.105.Our method however selects a synthetic stellar model spectrum with considerably higher=3200K,whereas their blackbody in-put distribution overestimates the optical BB photometry,also found by Le Bertre(1997).As our synthetic BB photometry

accounts for the optical molecular opacities we can further con-strain the grain radius by accurate SED?ts to the shorter wave-lengths.

3.6.Grain radius

The dust grain radius is chie?y constrained from the optical data.In Fig.12we compute the SED for single grain radii with 0.01m0.2m,treated as homogeneous spheres.A best?t to the BVRI data constrains their sizes between0.05 m and0.07m and also properly?ts the SiC feature(Fig.12 lower panel).As the grain radius is increased,more optical light

is absorbed and redistributed to the longer wavelengths.But for grain radii larger than2000?the scattering of stellar optical radiation by the circumstellar dust cloud into the line of sight increases strongly,particularly for larger optical depths which sample the denser and hotter inner portion of the shell.How-ever,for R For the dust scattering is rather small as the average grain size remains below0.1m and the central star is too faint at shorter wavelengths.Further best-?t calculations with grain size power-law distributions of the form,hav-ing sharp boundaries at0.01m0.25m,favour rather high values between3.5and4.5.From this steep drop-off in grain size we integrate that only1.7percent of the total dust particle number may contain grains with radii larger than0.05 m in the tenuous outer layers.This result con?rms SED mod-elling studies by Grif?n(1990)and by Bagnulo et al.(1995)for IRC+10216.Note that Jura et al.(1997)found that for amor-phous carbon grains around this object about1%of the mass must contain particles that are larger than0.05m in radius in order to explain the observed circumstellar

polarisation.Fig.11.Upper panel:The dust condensation temperature is strongly constrained from the IRAS data(open circles)because the dust radiates mainly at longer wavelengths.Lower panel:An accurate value for ranging between1200K and1300K is derived from a best?t to the dust emission feature of’95(lower dots)for=0.105.Other dust emission intensities are also shown by the boxed curves computed for =800K,1000K and1400K

4.Dynamic modelling

Measurements of the half width at zero intensity of the rota-tional CO(J=1-0)millimetre emission lines give values rang-ing from16to20for the gas expansion velocity of the circumstellar envelope of R For,yielding an estimate for the gas mass loss rate of1.2to(Olofsson et al.1988,1993;Loup et al.1993).Note that these values are likely to be systematically overestimated,as they are derived for optically thick shells(Knapp&Morris1985,Loup et al. 1993),whereas the circumstellar dust shell(CDS)of R For is rather optically thin.The variable P-Cygni pro?les of the K line at7699?and the variable H emission displaying blue-shifts above10(Barnbaum&Morris1993)may indi-cate variable mass-loss rates from the stellar surface.

4.1.Mass-loss rate and terminal velocity

Gas mass-loss rates can be derived via dynamical modelling of the SED.Three forces act on a dust grain in the CDS:the ra-diation pressure,the gravitational pull of the star and the drag force of the gas(Netzer&Elitzur1993).When these forces are included in the equation of motion and coupled to the radiative transfer,the importance of radiation pressure on grains driving the envelope expansion can be evaluated.In this‘full dynamic’calculation the dust density structure follows from the momen-

8Modelling the SED and variability of R

Fornacis

Fig.12.Upper panel:The grain radius is strongly constrained by the optical BB data (open circles).A best ?t is derived for single-grain radii between 0.05m (bold curve)and 0.07m (short-dashed curve).

Scattering by the dust remains negligible for

0.2m (long-dashed curve)because R For is too faint toward shorter wavelengths.The other curves are computed for =0.01m (long-dash dotted)and 0.1m (short-dash dotted).Lower panel:As the shell optical depth at 11.3m is rather small an increase of the grain radius from 0.01m to 0.2m results in minor increases of the dust emission ?ux levels

tum transfer between radiation and dust,whereas the steady-wind solution of Sect.3requires an a priori knowledge of the density pro?le which permits to neglect this transfer.As the density pro?le is constrained by the IRAS BB photometry and adopts a gradient of ,the other shell parameters are well de-termined and applicable in the full dynamical treatment where

and the shell optical depth are varied with stellar pulsa-tion.The dust condensation temperature is ?xed at 1300K and is set to 0.05m because multi-grain sizes result in a range of dust drift velocities which we currently do not consider.In Fig.13we show that the density gradient computed from these parameters strongly matches the law as found before from the steady-state ?t.

In Table 1we list the parameters of the models with the same optical depth as those shown in Fig.8.Columns 1–6give the stellar effective temperature,the optical depths at 11and 1m,the dust condensation radius,the gas mass-loss rate,and its terminal velocity .Column 7lists an upper value on the stellar mass below which the effect of gravity is negligible and the computed density pro?le remains independent of .The values for gas mass-loss rate and velocity are derived for the

canonical gas-to-dust mass ratio of

=200and a dust grain bulk density of =

.The latter value has been com-puted on the basis of an estimate of =(Rouleau

Table 1.Gas mass-loss rate and terminal velocity computed by ra-diation pressure on the dust envelope for the models of Fig.8.The parameters of the ?ts to the SED in the phase of maximum light of Jan.’96are also given

Sept.’9532000.0100.18 1.240.5536.70.832000.057 1.05 1.32 2.0240.4 1.532000.105 1.91 1.37 3.0139.2 1.832000.153 2.78 1.42 3.8636.4 1.932000.200 3.64 1.46

4.6634.5 1.9Jan.’9632000.070 1.27 1.33 2.2841.3 1.63500

0.092 1.69 1.50

3.03

38.9

2.0

9

Fig.13.When including radiation pressure on the dust shell the com-

puted density pro?le(solid line with?lled circles)matches an-

law.Other power-laws are shown for and.The gas out-

?ow velocity increases from8at to the terminal velocity

of39,whereas the dust drift velocity increases from42to57

(boxed curves)

Table2.Near-IR magnitudes on the raising branch of the light curve

of R For observed at SAAO(excerpt from Table2of Whitelock et al.

(1997)).The data of Sept.6was obtained by us at CST and is presently

modelled in conjunction with coeval optical BB photometry and mid-

IR spectroscopy

Aug.021*******.7 4.82 3.03 1.650.17

Aug.1819959948.6 4.84 3.03 1.650.22

Sept.0619959967.7 4.49 2.92 1.550.07()

Sept.1419959975.5 4.76 2.98 1.610.14

Oct.10199510001.5 4.68 2.90 1.540.14

Nov.12199510034.4 4.46 2.73 1.420.01

Dec.0519*******.3 4.14 2.47 1.23-0.16

Jan.0519*******.3 3.81 2.20 1.02-0.34

Jan.28199610111.3 3.66 2.050.92-0.42

10Modelling the SED and variability of R

Fornacis

Fig.15.Variability of the optical and near-IR SED of R For between

Sept.’95(open circles)and maximum light(boxes)of Table1.The

best?t(bold line)to the SED of Sept.’95is obtained for=3200

K and=0.105.The maximum phase is best?tted for(3200,0.07)

(thin solid line)or(3500,0.09)(dash-dotted line)

(with=3.8erg),resulting from the chang-

ing stellar angular diameter and changes of the.Note that

the SEDs in Fig.14are scaled according to these observed

values for both phases.

In Fig.15we show that good?ts to the,and max-

ima are derived for(,)=(3200,0.07)or(3500,0.09).We

can interpret this decrease of the optical depth of the CDS as

being caused by the raise of.In Table1we compute that

an increase of300K enlarges the dust condensation radius

from1.37cm to1.5cm and as dust then forms far-

ther out in the wind at lower density,the overall dust density

of the shell diminishes and hence its optical depth.However,

we show in Fig.15that the amplitudes observed in the and

band cannot be modelled together with the amplitudes ob-

served at shorter wavelengths by varying and.We?nd

that changes of the dust properties can neither account for this

discrepancy.A strong reduction of the grain radius to=0.001

m increases the optical?uxes but leaves the and magni-

tudes practically invariable.An increase of to the dust nucle-

ation limit of1500K also produces changes which are rather

marginal at these wavelengths.The same follows from varying

the dust composition,which is moreover unlikely as the weak

SiC emission of R For displays an invariable shape.We there-

fore think that the failure of modelling the and amplitudes

originates in the time-independence of the smooth shell density

structure we presently consider in our models.

In a time-dependent hydrodynamic modelling Winters et

al.(1994)computed near-IR light curves of R For which match

the observed amplitudes.Their models reveal a multi-periodic

formation of new discrete dust layers around minimum light at

the inner dust envelope where grains can form at low tempera-

ture and grow by compression of pulsation density waves while

driven outward by radiation pressure.These models also ex-

plain the systematic drift in magnitude observed in these bands.

Detailed radiative transport calculations through an expanding

onion-like density structure of the CDS is outside the scope of

our present modelling from synthetic input spectra.However,

our assumption of an(average)radially monotonic decreasing

density pro?le shows already that the optical amplitudes and

and amplitudes are mainly affected by small changes of

with pulsation and of the dust optical depth.When neglect-

ing the hydrodynamic contribution in the momentum equation

for the radiative driving of the outer dust envelope we compute

(Table1)that the changes of the stellar input spectrum between

minimum and maximum light hardly affect the mass-loss rate

(1%)and that the terminal velocity remains practically

constant(2).

5.Conclusions

.We have modelled the circumstellar environment of the no-

torious carbon Mira R For for a pulsation phase in Sept.’95.

To this end we have developed a new modelling method which

accurately determines the conditions of the CDS and the

of the central source.Therefore our method requires coeval BB

optical and near-IR photometry in conjunction with spectra of

mid-IR dust emission.This precise modelling of the observed

SED is achieved by means of detailed stellar model spectra

which are reprocessed through the dusty envelope and from

which we compute‘synthetic’BB photometry.The of the

input spectrum is therefore determined from a comparison with

observed optical spectra.

.Since our method properly accounts for molecular opac-

ity sources,the SED of R For at shorter wavelengths reveals

that the star has3200K and is surrounded by a rather

optically thin dust shell with a mean grain radius of0.05m

and mainly composed of‘warm’amorphous carbon and only

10%SiC with1300K.The density structure of the outer

envelope assumes a gradient by radiation pressure onto

dust.When2this pressure provides suf?cient drag

momentum to model the observed envelope expansion velocity

with a gas mass-loss rate of3-4.

.The modelling of the SED variability of R For shows

that the amplitudes of the optical and near-IR light curves are

strongly affected by changes of of only a few hundred

degrees and by subsequent small variations of the shell opti-

cal depth.The near-IR and amplitudes can however not

be modelled in conjunction with the optical light curves by

changes of these model parameters or by changes of the dust

properties.We conclude therefore that these?uxes may also be

affected by density variations with pulsation at the inner radius

of the dust envelope.

We plan to model the SED variability of Cet(Mira)from

stellar input spectra with time-dependent hydrodynamic mod-

els of density waves in the CDS.The newly presented method

will serve next to investigate possible changes of the dust prop-

erties from the recently observed changes of the shape of the

silicate feature.

11

Acknowledgements.The authors are grateful to Dr.C.Barnbaum for providing us with high resolution spectra of R For.A.L.would like to thank Drs.D.Andrews,F.Byrne and R.D.Cannon for providing him with high-quality AAO spectra of C-stars and Dr.D.Kilkenny for information on the calibration of the optical photometry.The au-thors thank Dr.P.Hauschildt for invaluable information on the pro-vided input model grid for M-S-C giants.The authors are grateful to Dr.T.Tsuji for useful comments on an early version of this paper and discussion about this research.This work was carried out under PPARC grant L21259.SB has been supported by the Austrian Fonds zur F¨o rderung der Wissenschaftlichen Forschung,project P12101-AST.Research at Armagh Observatory is grant-aided by the Dept. of Education for N.Ireland,while partial support is provided in terms of both software and hardware by the STARLINK Project which is funded by the UK PPARC.The UKIRT is operated by the Joint As-tronomy Centre on behalf of PPARC.

References

Alksne Z.K,Ikaunieks Ya.Ya.,1981,J.H.Baumert(ed.),’Carbon Stars’,Astronomy and Astrophysics Series V ol.11,Chapter4, Pachart Publ.House,Tucson,USA

Allard F.,Hauschildt P.H.,1995,ApJ445,433

Allard F.,Lawlor T.,Alexander D.R.,Hauschildt P.H.,1995,BAAS 187,103.11

Alonso A.,Arribas S.,Martinez-Roger C.,1994,A&AS107,365 Avery L.W.,Amano T.,Bell M.B.,1992,ApJS83,363

Bagnulo S.,1996,Ph.D.dissertation p.116,Modelling of Circum-stellar Environments around Carbon-and Oxygen-Rich Stars, Queen’s University Belfast,N.Ireland

Bagnulo S.,Doyle J.G.,Grif?n I.P.,1995,A&A301,501

Bagnulo S.,Doyle J.G.,Skinner C.J.,Camphens M.,1997,A&A321, 605

Bagnulo S.,Doyle J.G.,Andretta V.,1998,MNRAS296,545 Barnbaum C.,1994,ApJSS90,317

Barnbaum C.,Morris M.,1993,in Schwarz H.E.,ed.,Proceedings of the Second ESO/CTIO Workshop:Mass Loss on the AGB and Beyond,ESO,Garching,p.280

Barnbaum C.,Stone R.P.S.,Keenan P.C.,1996,ApJSS105,419 Barth`e s D.,Chenevez J.,Mattei J.A.1996,AJ111,No.6,2391 Battrick B.,Wapstra H.,(eds.),1997,in The H IPPARCOS and T YCHO Catalogues,Hipparcos Variability Annex:Light Curves,SP1200-V ol.12,ESA Publications Division,Noordwijk,The Netherlands Bowen G.H.,1988,ApJ329,299

Cohen M.,1979,MNRAS186,837

Danchi W.C.,Bester M.,Degiacomi C.G.,McCullough P.R.,Townes

C.H.,1990,ApJ359,L59

Feast M.W.,Whitelock P.A.,Catchpole R.M.,Roberts G.,Overbeek M.D.,1984,MNRAS211,331

Feast M.W.,Whitelock P.A.,Carter B.S.,1990,MNRAS247,227 Fleischer A.J.,Gauger A.,Sedlmayr E.,1992,A&A266,321

Grif?n I.P.,1990,MNRAS247,591

Groenewegen M.A.T.,Whitelock P.A.,Smith C.H.,Kerschbaum F., 1998,MNRAS293,18

Hanner M.S.,1988,Infrared Observations of Comets Halley and Wil-son and Properties of the Grains(NASA89-13330),22 Hauschildt P.H.,Baron E.,Allard F.,1997,ApJ488,428

Haisch B.M.,1979,A&A72,161

Ivezi′c Z.,Elitzur M.,1995,ApJ445,414

Ivezi′c Z.,Elitzur M.,1997,MNRAS287,799Ivezi′c Z.,Nenkova M.,Elitzur M.,1996,’User Manual for D USTY’, 1st draft,available on Internet

Ivezi′c Z.,Groenewegen M.A.T.,Men’shchikov A.,Szczerba R., 1997,MNRAS291,121

Jura M.,Turner J.,Balm S.P.,1997,ApJ474,741

Knapp G.R.,Morris M.,1985,ApJ292,640

Landolt-B¨o rnstein,1982,Numerical Data and Functional Relation-ships in Science and Technology,K.Schaifers and H.H.V oigt (eds.),V ol.2b,Stars and Star Clusters,Springer,New York,p.

71

Le Bertre T.,1988,A&A190,79

Le Bertre T.,1992,A&ASS94,377

Le Bertre T.,Gougeon S.,Le Sidaner P.,1995,A&A299,791

Le Bertre T.,1997,A&A324,1059

Little-Marenin I.R.,Little S.J.,1988,ApJ333,305

Loup C.,Forveille T.,Omont A.,Paul J.F.,1993,A&AS99,291 Milne D.K.,Aller L.J.,1980,AJ85,17

Monnier J.D.,Geballe T.R.,Danchi W.C.,1998,ApJ502,833 Netzer N.,Elitzur M.,1993,ApJ410,701

Olofsson H.,Eriksson K.,Gustafsson B.,1988,A&A196,L1 Olofsson H.,Eriksson K.,Gustafsson B.,Calstr¨o m U.,1993,ApJS87, 267

P′e gouri′e B.,1988,A&A194,335

Rouleau F.,Martin P.G.,1991,ApJ377,526

Schutte W.A.,Tielens A.G.G.M.,1989,ApJ343,369

Speck A.K.,Barlow M.J.,Skinner C.J.,1997,MNRAS288,431 Tielens A.G.G.M.,1983ApJ271,702

Treffers R.,Cohen M.,1974,ApJ188,545

Whitelock P.A.,1997,in Wing R.F.,ed.,Proc.IAU Symp.177,The Carbon Star Phenomenon,Kluwer,Dordrecht

Whitelock P.A.,Feast M.W.,Marang F.,Overbeek M.D.,1997,MN-RAS288,512

Winters J.M.,Fleischer A.J.,Gauger A.,Sedlmayr E.,1994,A&A 290,623

Zubko V.G.,Mennella V.,Colangeli L.,Bussoletti E.,1996,MNRAS 282,1321

一生励志的正能量短句子大全

一生励志的正能量短句子大全 一生励志的正能量短句子摘抄 1. 不经历风雨,长不成大树,不受百炼,难以成钢。 2. 耐心和恒心总会得到报酬的。 3. 宝剑锋从磨砺出,梅花香自苦寒来。 4. 表示惊讶,只需一分钟;要做出惊人的事业,却要许多年。 5. 不放弃!决不放弃!永不放弃! ——邱吉尔 6. 不积跬步,无以至千里;不积小流,无以成江海。——荀子 7. 苟有恒,何必三更起五更眠;最无益,只怕一日曝十日寒。——毛泽东 8. 成功最终属于耐心等待得人。 9. 凡是新的事情在起头总是这样一来的,起初热心的人很多,而不久就冷淡下去,撒手不做了,因为他已经明白,不经过一番苦工是做不成的,而只有想做的人,才忍得过这番痛苦。——陀思妥耶夫斯基 10. 放弃时间的人,时间也会放弃他。——莎士比亚 11. 斧头虽小,但经历多次劈砍,终能将一棵最坚硬的

橡树砍刀。 12. 告诉你使我达到目标的奥秘吧,我惟一的力量就是我的坚持精神——巴斯德 13. 一个人最痛苦的时候不是吃不上饭的时候,而是想努力奋斗没有机会。 14. 与其做一个有价钱的人,不如做一个有价值的人;与其做一个忙碌的人,不如做一个有效率的人。 15. 没有目标的人,永远为有目标的人打工。 16. 智者创造机会,强者把握机会,弱者坐等机会。 17. 说出的苦不叫苦,说不出的苦才叫苦。 18. 人若把自己框在一定的范围内,就容易限制了自己的思维和格局。 19. 人往往年轻时用健康换财富,老时再用财富换健康。发达国家的人们是透支金钱,储存健康;我们国家的人是透支健康,储存金钱。 20. 人因为有理想、梦想而变得伟大,而真正伟大就是不断努力实现理想、梦想。 一生励志的正能量短句子精选 1. 一件事被所有人都认为是机会的时候,其实它已不是机会了。 2. 天上最美的是星星,人间最美的是真情。 3. 活鱼会逆流而上,死鱼才随波逐流。 4. 怕苦的人苦一辈子,不怕苦的人苦一阵子。

能量的转化和转移-初中物理知识点习题集

能量的转化和转移(北京习题集)(教师版) 一.选择题(共5小题) 1.(2016秋?昌平区期末)下列说法中不正确的是 A .发电机工作时,将机械能转化为电能 B .电风扇工作时,扇叶的机械能是由电能转化的 C .在被阳光照射时,太阳能电池将太阳能转化为电能 D .干电池给小灯泡供电时,干电池将电能转化为化学能 2.(2016秋?西城区校级期中)下列生活实例中,只有能量的转化而没有能量的转移的是 A .利用煤气灶将冷水烧热 B .汽车行驶一段路程后,轮胎会发热 C .太阳能水箱中的水被晒热了 D .把冰块放在果汁里,饮用时感觉很凉快 3.(2015秋?东城区校级期中)在能的转化过程中,下列叙述不正确的是 A .木柴燃烧过程中是化学能转化为内能 B .发电机工作时是机械能转化为电能 C .电源是将其它形式的能转化为电能的装置 D .干电池使用时,是把电能转化为化学能 4.(2014秋?北京校级月考)下列现象中,只有能的转移而不发生能的转化的过程是 A .水蒸气会把壶盖顶起来 B .洗衣机工作 C .用锤子打铁件,铁件发热 D .冬天用手摸户外的东西时感到冷 5.(2011秋?西城区校级月考)下列过程中,机械能转化为内能的是 A .锯木头,经过一段时间后,锯条和木头都发热 B .锅里的水沸腾时,水蒸气把锅盖顶起 C .神州号飞船点火后,腾空而起 D .礼花弹在节日的夜空中绽开 二.多选题(共1小题) 6.(2008?宣武区二模)在以下事例中,机械能转化为内能的是 ()()()() ()()

A .流星与空气摩擦,生热发光 B .水壶中的水沸腾后,壶盖被水蒸气顶起 C .反复弯折铁丝,铁丝弯折处温度升高 D .金属汤勺放在热汤中,其温度升高 三.填空题(共3小题) 7.(2016秋?西城区校级期中)如果你去参观中国科技馆四层“挑战与未来” 厅 “新型材料”展区,你就可以看到这种能发电的神奇布料。会发电的衣服是用一种可以利用运动产生电力的新型纤维织造的,当人穿上这种纤维织成的衣物后,在身体运动过程中会产生一些压折,或者遇上一阵微风,就能够形成源源不断的电流,这种发电方式是将人体的 能转化为电能、并加以应用的最简单也最经济的方式。发电纤维与压电陶瓷都是通过压力来产生电力,而使小灯泡发光的。 8.(2013?西城区一模)如图所示是北京郊区官厅风力发电场的巨大的风车。这种装置可以利用风能带动扇叶转动,并把风车的机械能转化为 能。 9.(2012秋?宣武区校级月考)某人使用手机通话时,锂电池此时的能量转化是 。 四.实验探究题(共1小题) 10.(2016秋?海淀区期中)阅读《压电陶瓷》回答问题。 压电陶瓷 打火机是日常生活中常用的物品,最初的打火机是靠拨动齿轮与火石摩擦起火的,而今人们常用的是压电式打火机。这种打火机中装有一块压电陶瓷。使用时只需按压点火开关,利用压电陶瓷的压电效应,在两点火极之间产生 的电压而引起火花,引燃丁烷气(如图甲所示)。 某些物质在沿一定方向上受到外力的作用而变形时,就会在它的两个相对表面上形成一定的电压。当外力去掉后,它又会恢复到不带电的状态,这种现象称为压电效应。这种压电效应不仅仅用于打火机,还应用于煤气灶打火开关、炮弹触发引线、压电地震仪等许多场合。 某种压电陶瓷片外形如图乙所示。它是把圆形压电陶瓷片与金属振动片粘合在一起。当在压电陶瓷片上施加一个压力时,在陶瓷片与金属振动片之间就会产生电压。可用如图丙的方法来观察压电现象并检查压电陶瓷片的质量好坏,即用导线把金属振动片和压电陶瓷片分别与电压表的、接线柱连接,当用拇指与食指挤压压电陶瓷片和金属振动片的两面时,电压表的指针就会偏转,这说明在压电陶瓷片与金属振动片之间产生了电压。 在压力相同的情况下,电压表指针摆幅越大,说明压电陶瓷片的灵敏度越高 。 A --10~20kV +-

工作励志正能量句子

工作励志正能量句子 1)对于攀登者来说,失掉往昔的足迹并不可惜,迷失了继续前时的方向却很危险。 2)奋斗者在汗水汇集的江河里,将事业之舟驶到了理想的彼岸。 3)含泪播种的人一定能含笑收获。 4)很多失败不是因为能力有限,而是因为没有坚持到底。 5)机会不会主动找到你,必须亮出你自己。 6)驾驭命运的舵是奋斗。不抱有一丝幻想,不放弃一点机会,不停止一日努力。 7)困难和挫折都不可怕,可怕的是丧失做人的志气和勇气。 8)漫漫长路,你愿一人独撑,忍受着孤独与寂寞,承受着体力与精神的压迫,只任汗水溶于泪水,可脚步却从不停歇。好样的,纵然得不了桂冠,可坚持的你,定会赢得最后的掌声。 9)莫找借口失败,只找理由成功。 10)世上没有绝望的处境,只有对处境绝望的人。 11)每一发奋努力的背后,必有加倍的赏赐。 12)赚钱之道很多,但是找不到赚钱的种子,便成不了事业家。 13)大多数人想要改造这个世界,但却罕有人想改造自己。 14)当一个人先从自己的内心开始奋斗,他就是个有价值的人。 15)即使爬到最高的山上,一次也只能脚踏实地地迈一步。 16)穷人缺的是钱而不是时间,富人缺的是时间而不是钱。

17)好心不一定会换来感恩,但千万不要因此而灰心。 18)若不给自己设限,则人生中就没有限制你发挥的藩篱。 19)最有效的资本是我们的信誉,它小时不停为我们工作。 20)人生不是一种享乐,而是一桩十分沉重的工作。 1)忙于采集的蜜蜂,无暇在人前高谈阔论。 2)你追我赶拼搏争先,流血流汗不留遗憾。 3)懦弱的人只会裹足不前,莽撞的人只能引为烧身,只有真正勇敢的人才能所向披靡。 4)勤奋是你生命的密码,能译出你一部壮丽的史诗。 5)人生伟业的建立,不在能知,乃在能行。 6)你的上司越忙,你的饭碗越危险。 7)如果你最近的工作很闲,注意了,这可能是危机的先兆。 8)到处都是有才华的穷人,千万别觉得自己无可替代。 9)每一个成功者都有一个开始。勇于开始,才能找到成功的路。 10)当一个人用工作去迎接光明,光明很快就会来照耀着他。 11)如果我们想要更多的玫瑰花,就必须种植更多的玫瑰树。 12)漂亮的脸孔是给别人看的,而有智慧的头脑才是给自己利用的。 13)人只有在布满陡峭的路上,才能使自己的脚跟变的更稳;人只有在布满荆棘的路上,才能使自己的身体变的不怕伤痕;人只有在布满危险的路上,才能使自己的战斗力变的无比之强! 14)选择自信,就是选择豁达坦然,就是选择在名利面前岿然不动,就是选择在势力面前昂首挺胸,撑开自信的帆破流向前,展示搏击的风采。

正能量励志短句子(精选300句)

正能量励志短句子(精选300句) 2021-02-28 正能量励志短句子(精选300句) 1、当你尽了自我的最大努力时,失败也是伟大的。 2、生命力的意义在于拼搏,因为世界本身就是一个竞技场。 3、荆棘的存在是为了野草不轻易地任人践踏。 4、少一点预设的期盼,那份对人的关怀会更自在。 5、当你能梦的时候就不好放下梦。 6、以往拥有的,不要忘记;已经得到的,更要珍惜;属于自我的,不要放下;已经失去的,留着回忆;想要得到的,必须努力;但最重要的,是好好爱惜自我。 7、留心记下自我平常所说的话,看看其中有多少是陈述性的,有多少是询问性的。假如你总是向别人发问,你就是在寻求赞许。 8、学习是苦根上长出来的甜果。 9、我们一向以为最艰难的总是当下,却发现人生从来不曾有最艰难,只会有更艰难。唯一还值得庆幸的是,所有打不倒你的都将使你变得更强大,所有打倒了你的也并没将你彻底击垮。风是无常的,人,也是无常的,我的忙碌,也是无常,世事无常。 10、生活中若没有兄弟姐妹,就像生活中没有阳光一样。 11、不要因为没有掌声而放下你的梦想。 12、人生就是一般此刻时和此刻进行时,没有一般过去时。 13、拒绝严峻的冶炼,矿石并不比被发掘前更有价值。 14、人生的路经历过,才知道有短有长;岁月,在无憾中微笑,才美丽;回过头,想着明天抱一抱。那些年最初的梦想在我们心中依旧完美,我们只需要记住那些完美。把握此刻,活在当下才是真理。 15、此岸,彼岸,终究是尘归尘,土归土。一季绯红也只是一季花凉,几许艳丽,几许妩媚,几经风雨,尘埃落地。活着,就要慢慢老去,途径坎坷,感受

悲喜,生命最终是寂灭。缘有长短,人有来去,再深的情也会淡泊,再浓的意也会无痕,初见永远不会再见。 16、命是弱者的借口,运是强者的谦词。 17、要假设你融不到一分钱的情景去做事业。 18、人生如逆旅,我亦是行人。 19、就算全世界都说我漂亮,但你却说我不漂亮,那么我就是不漂亮。 20、如果我们能够改变情绪,我们就能够改变未来。 21、拥有的,要珍惜,要知足;做人必须要有一颗平常心,肤浅的羡慕,无聊的攀比,笨拙的效仿,只会让自我整天活在他人的影子里面。我们应当认清自我,找到属于自我的位置,走自我的道路,过自我的生活。 22、一些伤口之所以总会痛,那是因为你总是去摸。 23、一个人变强大的最好方式,就是拥有一个想要保护的人。 24、欲望得不到满足痛苦;欲望一旦满足就无聊,生命就是在痛苦和无聊之间摇摆。 25、萤火虫的光点虽然微弱,但亮着便是向黑暗挑战。 26、人格的完善是本,财富的确立是末。 27、若不尝试着做些本事之外的事,你就永远不会成长。 28、名利都是虚幻的,自我的心才是最实在的。[由https://www.wendangku.net/doc/d313009345.html,整理] 29、要诚恳,要坦然,要慷慨,要宽容,要有平常心。 30、做一名自信者,牢牢把住自我生命的罗盘,让生命充畅。做一名自谦者,慢慢拓展自我生命的容量,让生命充实。做一名自爱者,深深领会自我生命的价值,让生命充美。做一名自安者,悄悄抚平自我生命的伤痕,让生命充悦。做一名自洁者,时时清除自我生命的淤积,让生命充盈。 31、经过云端的道路,只亲吻攀登者的足迹。 32、单纯是我追求的一种生活方式,也是我持续的一种创作心态,但追求单纯需付出许多代价,你必须要有勇气承担因为单纯而带来的被他人利用欺瞒及孤立。但我觉得人生本来就该尽可能坚持一种单纯的状态,因这种状态是最接近自我的内心,一个纯静的内心会把许多事情导入正向,让你拥有一个物质之外的丰富人生。

初中物理能量的转化和守恒教案

《能量的转化和守恒》教案 一、教学目标: 1、知道各种形式的能是可以相互转化的。 2、知道在转化的过程中,能量的总量是保持不变的。 3、列举出日常生活中能量守恒的实例。 4、有用能量守恒的观点分析物理现象的意识。 教学重点:能的转化和守恒定律,强调能的转化和守恒定律是自然科学中最基本定律。 教学难点:运用能的转化和守恒原理计算一些物理习题;运用能的转化和守恒定律对具体的自然现象进行分析,说明能是怎样转化的。 二、资料准备:教材分析: 教材从能量的转化与守恒中,列举出生活中的能量守恒实例来加强教学。 三、教学过程: 环节一:引入新课 我们知道物体的动能和热能,是由物体的机械能运动情况决定的能量,内能跟物体内部分子的热运动和分子间的相互作用情况有关。物体内部分子的热运动,物体的机械运动都是物质运动的形式,由于运动形式不同,与之相联系的能量也不相同。 环节二:进行新课 的事例,说明各种形式的能的转化和转移)。在热传递过程中,高温物体的内能转移到低温物体。运动的甲钢球碰击静止的乙钢球,甲球的机械能转移到乙球。在这种转移的过程中能量形式没有变。 在自然界中能量的转化也是普遍存在的。小朋友滑滑梯,由于摩擦而使机械能转化为内能;在气体膨胀做功的现象中,内能转化为机械能;在水力发电中,水的机械能转化为电能;在火力发电厂,燃料燃烧释放的化学能,转化成电能;在核电站,核能转化为电能;电流通过电热器时,电能转化为内能;电流通过电动机,电能转化为机械能。有关能量转化的事例同学们一定能举出许多,课本图2-17中画出了一些农常用的生活、生产设备。请同学分析在使用图中设备时能量的转化。 (3)在能量转化和转移的过程中,能的总量保持不变。大量事实证明,在普遍存在的能量的转化和转移过程中,消耗多少某种形式的能量,就得到多少其他形式的能量。如在热传递过程中,高温物体放出多少热量(减少多少内能),低温物体就吸收多少热量(增加多少内能);克服摩擦力做了多少功,就有多少机械能转化为能量,但能量的总量不变。就是说某物体损失的能量等于几个物体得到几个物体得到的能量的总和。例如,把烧热的金属块,投到冷水中,冷水,盛水的容器以及周围的空气等,都要吸收热量,它们所吸收的热量总和跟金属块放出的热量相等。再如水电站里,水从高处流下,损失了机械能,一方面由于推动发电机转动而转化为电能,一方面水跟水轮机、管道摩擦而转化为内能。那么水的机械能的损失等于产生的电能和内能的总和。 以上规律是人类经过长期的实践探索,直到19世纪,才确立了这个自然界最普遍的定律棗能量的转化守恒定律。通常把它表述为: 能量既不会消灭,也不会创生,它只会从一种形式转化为其他形式,或者从一个物体转移

50条超励志的正能量经典句子

50条超励志的正能量经典句子 1、当你觉得自已充满斗志,充满信心,别人就会觉得你就是值得相信的你。 2、当你觉得没有人来爱你,别人看见的就是可怜兮兮,毫无魅力的你。 3、当你觉得自己满怀希望,对未来充满信心,别人看到的就是有魅力,风华绝代的你。 4、人生与其说你有不幸的事实存在,倒不如说是你的悲观的观念所带来的。 5、有一则谚语说,绵羊每"咩咩"叫上一次,它就会失掉一口干草,如果你的心态是沉重的,总是抱怨你的苦恼,那么每说一次你便失掉一个快乐的机会。 6、相信自已。 不要妄加评判自已,也不会把自已交给别人评判,更不会贬低自已。 7、你想要别人是你的朋友,你必须是别人的朋友,心要靠心来交换,感情只有用感情来博取。 8、人生的游戏不在于拿了一副好牌,而在于怎样去打好坏牌,世上没有常胜将军,勇于超越自我者才能得到最后的奖杯。 9、既然时间是最宝贵的财富,那么珍惜时间,合理地运用时间就很重要,如何合理地花费时间,就如同花钱的规划一样重要,钱花

完了可再挣,时间花完了就不能再生,因此,更要利用好你的时间。 10、解铃还需系铃人,躲避责任会解决不了任何问题,它只导致一个失败的人生。 11、人不怕走在黑夜里,就怕心中没有阳光。 12、逃避不一定躲得过,面对不一定难受.转身不一定最软 弱.13、话多不如话少,话少不如话好。 14、曾经拥有的不要忘记,已经得到的要珍惜,属于自已的不要放弃。 15、永远都不要停止微笑,即使是在你难过的时候,说不定哪一天有人会因为你的笑容面爱上你。 16、因为某人不如你所愿爱你,并不意味着你不被别人所爱。 17、一个真正的朋友会握着你的手,触动你的心。 18、也许上帝让遇见那个适合你的人之前,会遇见很多错误的人,所以当一切发生的时候,你应该心存感激。 19、勇敢的面对不一定成功,但你不面对就一定不成功。 20、黑夜的转弯是白天,愤怒的转弯是快乐,所以有的时候让心情转个弯就好了。 21、一天要做三件事,第一要笑,第二要微笑,第三要哈哈大笑。 22、小树会大,大树会老,老树会凋零。 23、如果你不想做,你可以找一个理由,如果你肯做,你也可以

(励志句子)激励自己奋斗的正能量励志句子

激励自己奋斗的正能量励志句子 励志句子 1、在别人肆意说你的时候,问问自己,到底怕不怕,输不输的起。不必害怕,不要后退,不须犹豫,难过的时候就一个人去看看这世界。多问问自己,你是不是已经为了梦想而竭尽全力了? 2、人生从来没有真正的绝境。无论遭受多少艰辛,无论经历多少苦难,只要一个人的心中还怀着一粒信念的种子,那么总有一天,他就能走出困境,让生命重新开花结果。 3、幻想一步成功者突遭失败,会觉得浪费了时间,付出了精力,却认为没有任何收获;在失败面前,懦弱者痛苦迷茫,彷徨畏缩;而强者却坚持不懈,紧追不舍。 4、进步和成长的过程总是有许多的困难与坎坷的。有时我们是由于志向不明,没有明确的目的而碌碌无为。但是还有另外一种情况,是由于我们自己的退缩,与自己亲密的妥协没有坚持到底的意志,才使得机会逝去,颗粒无收。 5、决不能习惯失败,因为你要知道,身体的疲惫,不是真正的疲惫;精神上的疲惫,才是真的劳累。 6、理想是什么?它不是口上说的计划,也不是敷衍的借口,它是自己的心,理想的最终汇集地,是幸福,为了自己有了理想,为了恋人有了理想,为了家人有了理想,有了理想才有梦,梦想与理想,一字之差千里之遥。

7、路是自己选的,后悔的话,也只能往自己的肚子里咽。 8、没有钱、没有经验、没有阅历、没有社会关系,这些都不可怕。没有钱,可以通过辛勤劳动去赚;没有经验,可以通过实践操作去总结;没有阅历,可以一步一步去积累;没有社会关系,可以一点一点去编织。但是,没有梦想、没有思路才是最可怕的,才让人感到恐惧,很想逃避! 9、每颗珍珠原本都是一粒沙子,但并不是每一粒沙子都能成为一颗珍珠。想要卓尔不群,就要有鹤立鸡群的资本。忍受不了打击和挫折,承受不住忽视和平淡,就很难达到辉煌。年轻人要想让自己得到重用,取得成功,就必须把自己从一粒沙子变成一颗价值连城的珍珠。 10、每一个人的成功之路或许都不尽相同,但我相信,成功都需要每一位想成功的人去努力、去奋斗,而每一条成功之路,都是充满坎坷的,只有那些坚信自己目标,不断努力、不断奋斗的人,才能取得最终的成功。但有一点我始终坚信,那就是,当你能把自己感动得哭了的时候,你就成功了!

正能量励志的句子经典短句50个

正能量励志的句子经典短句50个 1、经历,只是让我们在下一次面对困难时更加淡定和从容! 2、十年前,你周围的人会根据你父母的收入对待你。十年后,你周围的人会根据你的收入对待你的父母和你的孩子!这就是人性和人生,除了努力别无选择。记住:没有伞的孩子,必须努力奔跑! 3、成功没有快车道,幸福没有高速路,一份耕耘一份收获,所有的成功都来自不倦的努力和奔跑,所有幸福都来自平凡的奋斗和坚持。 4、立志越高,所需要的能力越强,相应的,逼迫自己所学的,也就越多。 5、人活着不是要用眼泪博得同情,而是用汗水赢得掌声。 6、认定了的路,再痛也不要皱一下眉头,再怎么难走都是你自己选的,你没有资格喊疼。 7、该来的自然来,会走的留不住。不违心,不刻意,不必太在乎,放开执念,随缘是最好的生活。 8、有句话说的好,不打没有准备的仗,做事之前要修炼自己,有能力才会有魄力,有魄力才会有勇气,有这样的胆色才能把能力发挥到极致,那么你就成功了! 9、人生是一种承受,我们要学会支撑自己。人的成长,在于学习,也在于经历。人的修养,在于领悟,也在于静修。人的幸福,在于得到,也在于放下。人生秘诀,在于别人,也在于自己。

10、世界那么大,你的野心再大,它也一定装得下。 11、走过的路成为背后的风景,不能回头不能停留,若此刻停留,将会错过更好的风景,保持一份平和,保持一份清醒。 12、多和优秀的人在一起,他们就像一团光芒,呆久了,就再也不想走回黑暗了。 13、每天提升正能量,心中充满小太阳。 14、没有太晚的开始,不如就从今天行动。总有一天,那个一点一点可见的未来,会在你心里,也在你的脚下慢慢清透。生活,从不亏待每一个努力向上的人。 15、如果你真的想做一件事情,那么就算障碍重重,你也会想尽一切办法去办到它。但若是你不是真心的想要去完成一件事情,那么纵使前方道路平坦,你也会想尽一切理由阻止自己向前。 16、过去的事,交给岁月去处理;将来的事,留给时间去证明。我们真正要做的,就是牢牢地抓住今天,让今天的自己胜过昨天的自己。 17、做事不需要人人都理解,但你要尽心尽力;做人不需要人人都喜欢,但你要坦坦荡荡。梦想的坚持注定有孤独彷徨,因为少不了他人的质疑和嘲笑,但那又怎样,哪怕遍体鳞伤,也要活得漂亮! 18、人的一生不长,今天的辛酸经历,就是明天最美好的回忆,今天的努力将成为明天更多的收获!错过的就让它永远的错过。要珍惜眼前的生活,活出自己的人生,为自己的人生加油! 19、你走过的每一条弯路,其实都是必经之路,你要记住的是,

苏科初中物理九下《18.4能量转化的基本规律》word教案 (3)

四、能量转化的基本规律 学习要求 1.知道能量守恒定律。能举出日常生活中能量守恒的实例。有用能量转化与守恒的分析物理现象的意识。 2.初步了解在现实生活中能量的转化与转移有一定的方向性。 3.讨论和分析两个具体的永动机设计方案,说明永动机是不可能的。 学习指导 1.能量守恒定律:能量既不会凭空消灭,也不会凭空产生,它只会从一种形式转化为另一种形式,或者从一个物体转移到另一个物体,而在转化或转移的过程中,其总量保持不变。能量守恒定律是自然界最普遍、最重要的基本定律之一。一切有能量转化或转移的场合,大到宇宙、小到原子核内部,也不论是生物、化学还是物理、地质现象,都遵守能量守恒定律。自然界中能的总量保持不变,但是对于某一物体可能改变。 2.能量转化和转移的方向性:热量只能从高温物体转移到低温物体,不能相反,具有方向性,否则就要消耗其他的能。不是什么能源都可以利用,能源的利用是有条件的,也是有代价的,有的东西能成为能源,有的则不能。虽然能量在转化和转移的过程中是守恒的,但具有方向性,因此我们一定要节约能源。 典型范例 例题市场经济的今天,一些厂商一改过去“酒香不怕巷子深”的做法,纷纷对产品进行广告宣传。可是有些厂商在广告上弄虚作假,夸大其词,欺骗消费者。如某品牌电热水器这样写道:“我厂电热水器功率只有55W,烧开一瓶水只需5min,节钱省电,最适合普通家庭使用。”这则广告可信吗? 精析:电热水器烧开水,是电能转化为热能被水吸收的过程。方法一:根据题意求出电热水器所产生的热能,再利用热量公式,算出这些热量能够烧开多少质量的水,与事实进行比较,判断信息是否可信;方法二:先求出电热电热水器所产生的热能,再估算出烧开一瓶水所需要的热量,两者进行比较,判断信息是否可信,判断的依据是能量守恒定律。 全解:方法一:电热水器产生的热能为W=Pt=55W×5×60s=1.65×104J。 假设一般情况下烧开水是把水从20℃加热到100℃,则这些热量可以烧开的水的质量m= Q c△t = W c△t = 1.65×104J 4.2×103J/(kg·℃×(100℃-20℃)) =0.049kg。

关于唯美励志充满正能量的句子和图片.doc

关于唯美励志充满正能量的句子和图片 在路上,我们生命得到了肯定,一路上,我们有失败也有成功,有泪水也有感动,有曲折也有坦途,有机遇也有梦想。下面是我精心整理的唯美励志充满正能量的句子和图片,希望能给大家带来帮助! 1.你不喜欢我,我一点都不介意。因为我活下来,不是为了取悦你! 2.要成功,就要长期等待而不焦躁,态度从容却保持敏锐,不怕挫折且充满希望。 3.行走红尘,别被欲望左右迷失了方向,别被物质打败做了生活的奴隶,给心灵腾出一方空间,让那些够得着的幸福安全抵达,攥在自己手里的,才是实实在在的幸福。 4.所谓成长,就是逼着你一个人,踉踉跄跄的受伤,跌跌撞撞的坚强。 5.如有谁让你难过,一定不要难过太久,因为太多时候,都是被自己编织故事困扰,只是从自己的角度看了事实的一角,只是需求没有满足的夸大,只是习惯于按自己的模式判断,远离事实真相的结果。真相往往没有你想像的悲壮和恶劣,真相中,多有你的误解,和自以为是的受伤,而真心伤人的人真不多见。 6.有时候不是不懂,只是不想懂;有时候不是不知道,只是不想说出来;有时候不是不明白,而是明白了也不知道该怎么做,于是就保持了沉默。 7.人生的每一场相遇,都是缘分,没有对错。人生的每一个清晨,

都该努力,不能拖延。 8.有些人、有些话、说不说、理不理都无所谓。因为看清了,也就看轻了。 9.爱上一个人,会从高傲变成卑微。一举一动,一句话,都会小心翼翼如履薄冰。但对方若爱你,肯定会将这卑微慢慢扳平,变成毫无拘束的相处。如果一段感情让你只能处在下风才能进行,那一定不是真正相互深爱的感情。 10.不管脚步有多慢都不要紧,只要你在走,总会看到进步。 11.如果我在意的人对我忽冷忽热,而我又为此感到了患得患失,那么我便会选择不辞而别,因为我没那么多耐心去品尝患得患失的感觉。 .一辈子不长,只有珍惜了,才不至于后悔。 13.人生是坎坷的,人生是崎岖的。我坚信:在人生中只有曲线前进的快乐,没有直线上升的成功。只有珍惜今天,才会有美好的明天;只有把握住今天,才会有更辉煌的明天!人生啊,朋友啊!还等什么?奋斗吧! 14.没有伞的孩子,必须努力奔跑! 15.当我觉得我倒霉了,我就会想:这是在挥洒我的霉运,挥洒之后,剩下的就全都是幸运了! 16.如果你的面前有阴影,那是因为你的背后有阳光。 17.心情的颜色是活泼热烈的红色,是生机盎然的绿色,是尊贵华丽的黄色,好好地,用这种种颜色做心情,来书写生活,不要让它变得灰暗...... 18.你向我张开手臂,我会小跑几步;你向我微笑,我会驻足聆听;

精品-关于拼搏正能量励志句子大全100句

关于拼搏正能量励志句子大全100句 关于拼搏正能量励志句子大全100句 1、没有人陪你走一辈子,所以你要适应孤独,没有人会帮你一辈子,所以你要一直奋斗。 2、我们自己选择的路,即使跪着也要走完;因为一旦开始,便不能终止。这才叫做真正的坚持。 3、不如意的时候不要尽往悲伤里钻,想想有笑声的日子吧。 4、把困难举在头上,它就是灭顶石;把困难踩在脚下,它 就是垫脚石。 5、思路决定出路,气度决定高度,细节决定成败,性格决定命运。 6、后悔是一种耗费精神的情绪,后悔是比损失更大的损失,比错误更大的错误,所以不要后悔。

7、我们比较容易承认行为上的错误、过失和缺点,而对于思想上的错误、过失和缺点则不然。 8、相信朋友的忠诚。相信自己的勇气。相信敌人的愚蠢。 9、每一枝玫瑰都有刺正如每个人的性格里都有你不能容忍的部分。 10、为自己选择的跑道去冲刺,即使很漫长,即使有阻碍,即使会跌倒;但是,坚定的信念会一直陪伴着我欢笑的、努力地、飞快地奔跑。即使非常非常的辛苦,只要有坚持下去的勇气,再大的山、再阔的海都可以跨越,努力的奔跑,天空的那一边就不再遥远! 11、在人生的道路上,谁都会遇到困难和挫折,就看你能 不能战胜它。战胜了,你就是英雄,就是生活的强者。 12、顺境的美德是节制,逆境的美德是坚韧,这后一种是 较为伟大的德性。 13、一个社团的基本努力或许就是设法使其成员平等,但 其成员个人的自尊心却总是希望自己出人头地,在某处形成某种对自己有利的不平等。

14、在青春的世界里,沙粒要变成珍珠,石头要化作黄金,青春的魅力,应当叫枯枝长出鲜果,沙漠布满森林,这才是青春的美,青春的快乐,青春的本分! 15、穷人缺什么:表面缺资金,本质缺野心,脑子缺观念,机会缺了解,骨子缺勇气,改变缺行动,事业缺毅力。 16、人终归是要生活着的,“不要以为你的努力徒劳无功,权当做磨练你的意志”,只要努力去做事了,多多少少会有收获,一直坚持做下去,就会走向成功! 17、成功不是将来才有的,而是从决定去做的那一刻起, 持续累积而成。 18、只有感受饥饿,才能知道温饱幸福;只有经历风雨,才能见到七彩虹;只有历尽崎岖,才能全力奋起拼搏。在以后的 生活中,我不知道我会遇到多少坎坷但是我相信,我会用全力征服挫折。 19、在世界的前进中起作用的不是我们的才能,而是我们 如何运用才能。 20、人世间,比青春再可宝贵的东西实在没有,然而青春

正能量工作励志短句子

正能量工作励志短句子 1.我走得很慢,但我从不后退! 2.微笑拥抱每一天,做像向日葵般温暖的女子。 3.待人对事不好太计较,如果太计较就会有悔恨! 4.仅仅活着是不够的,还需要有阳光自由,和一点花的芬芳。 5.世上没有绝望的处境,只有对处境绝望的人。 6.有人问我,如果看不到确定的未来,还要不好付出。我只能说,并不是每一种付出都是在追寻结果。有时在付出的路上,能够收获的,是清楚地看到了自我想要的,或者不想要的,这又何尝不是一 种宝贵的结果。命运会厚待温柔多情的人,好过冷漠的一颗心。 7.没有伞的孩子务必发奋奔跑! 8.失败是什么?没有什么,只是更走近成功一步;成功是什么?就 是走过了所有通向失败的路,只剩下条路,那就是成功的路。 9.坚信梦想是价值的源泉,坚信眼光决定未来的一切,坚信成功的信念比成功本身更重要,坚信人生有挫折没有失败,坚信生命的 质量来自决不妥协的信念。 10.人的生命要疯狂一次,无论是为一个人,一段情,一段旅途,或一个梦想。 11.只有十分十分年轻时,人们才能那么用力地,去喝酒交朋友 打人耳光,往人脸上泼酒,才能如此猛烈地摧残自我。青春期的人,动作总是变形的,每一样感情的流露都放大了一百倍,爱和恨,孤 独与喜悦,都是。 12.天再高又怎样,踮起脚尖就更接近阳光。

13.自我选取的路跪着也要把它走完。 14.不乱于心,不困于情,不畏将来,不念过往。如此,安好。 15.不好去追一匹马,用追马的时刻种草,待到来年春暖花开之时,就会有一批骏马任你选取。 1.只有经历过地狱般的折磨,才有征服天堂的力量。只有流过血的手指才能弹出世间的绝唱。 2.世界愈悲伤,我要愈快乐。当人心愈险恶,我要愈善良。当挫折来了,我要挺身应对。我要做一个乐观向上,不退缩不屈不饶不 怨天尤人的人,勇敢去理解人生所有挑战的人。 3.人生没有彩排,每一天都是现场直播。 4.每个人的性格中,都有某些无法让人理解的部分,再完美的人也一样。因此不好苛求别人,不好埋怨自我。玫瑰有刺,正因是玫瑰。 5.前有阻碍,奋力把它冲开,运用炙热的激情,转动心中的期盼,血在澎湃,吃苦流汗算什么。 6.人生太短,岁月太长。生活是公平的,要活出精彩,需要一颗奋进的心。以勤为本,以韧为基,尽自己的全力,求最好的结果, 行动成就梦想,奋斗成就人生。人生苦短,财富地位都是附加的, 生不带来死不带去,简单的生活就是快乐的生活。 7.“我羡慕你,但我还是做我自我!”——成熟的人生态度。 8.必须要有你所向往的生活,那将会是你最终得到的生活。 9.沉默不是冷漠,只是不想再让那些无关痛痒的人看到真实的自我。热闹的日子看不清未来,一个人也能独自盛开。 10.沉默不是冷漠,只是不想再让那些无关痛痒的人看到真实的 自我。热闹的日子看不清未来,一个人也能独自盛开。 11.没有一种不透过蔑视忍受和奋斗就能够征服的命运。

(九年级物理)能量(能量的转移和转化)

能量(能量的转移和转化) 【复习要点】: 要点(40):了解能量及其存在的不同形式,描述各种能量和生产生活的联系; 例题1:关于信息和能源,下列说法正确的是() A.电风扇工作时,电能主要转化为内能 B.目前的核电站是利用核裂变释放的核能工作的 C.煤、石油、风能、天然气等都是不可再生能源 D.能量在转移、转化过程中总是守恒的,我们无需节约能源 要点(41):通过实验,认识能量可以从一个物体转移到另一个物体,不同形式的能量可以互相转化; 例题2:随着智能手机的普及,人们的聊天方式也不断推陈出新,由于智能手机的待机时间很短,因此需要经常充电,当给电池充电时是将能转化成能.当手机正常使用时是将能转化成。将微风扇通电时它可以转动,这是将能转化成能,如果转动微风扇的风叶,还可以使与风扇插头相连的二极管发光,这是将 能转化成能。 要点(42):结合实例,认识功的概念。知道做功的过程就是能量转化或转 移的过程; 例题3:如图,在空气压缩引火仪玻璃筒的底部放一小撮干燥的棉絮,用力 将活塞迅速向下压,棉絮燃烧起来。此实验得到的结论是:对(选 填“棉絮”或“筒内气体”)做功,它的内能会增加,其能量转化情况与 单缸四冲程汽油机的冲程相同,若汽油机的转速是2400r/min,则此汽油机每秒对外做功次。

要点(43):知道动能、势能和机械能。通过实验,了解动能和势能的相互转化。举例说明机械能和其它形式能量的相互转化。 例题4:如图所示是演示点火爆炸的实验装置.按动电火花发生器的按钮,点燃盒内酒精,盒盖被打出去.在汽油机工作的四个冲程中,与此能量转化相同的冲程示意图是() 【反馈练习】: 1.以下说法正确的是() A.太阳能和核能都属于可再生能源 B.发光二极管主要使用的材料是超导体 C.热量不能自发地从低温物体传递给高温物体,说明能量转移具有方向性, D.飞 机的 机翼 做成 上面 凸起,下面平直.是因为流过机翼上方的空气流速大,压强大。 2.周末小明骑自行车去傅家边游玩.自行车下坡的过程中,为了减小车速,他捏紧车闸,这是通过的方法增大摩擦,此时刹车皮会发热,这是通过

正能量的励志句子100条

正能量的励志句子100条 1.踩着垃圾到达的高度和踩着金子到达的高度是一样的。 2.每天告诉自己一次:我真的很不错。 3.人生最大的挑战没过于战胜自己! 4.愚痴的人,一直想要别人了解他。有智慧的人,却努力的了解自己。 5.生命的道路上永远没有捷径可言,只有脚踏实地走下去。 6.只要还有明天,今天就永远是起跑线。 7.火把倒下,火焰依然向上。 8.认真可以把事情做对,而用心却可以做到完美。 9.宁可自己去原谅别人,莫等别人来原谅自己。 10.如果我们一直告诫自己要开心过每一天,就是说我们并不开心。 11.天气影响身体,身体决定思想,思想左右心情。 12.不论你在什么时候结束,重要的是结束之后就不要悔恨。 13.你把思考交给了电视,把联系交给了手机,把双腿交给了汽车,把健康交给了药丸。 14.不是某人使你烦恼,而是你拿某人的言行来烦恼自己。 15.人生要用简单的心境,对待复杂的人生,最无情的不是人,是时间;最珍贵的不是金钱,是情感;最可怕的不是失恋,是心身不

全;最舒适的不是酒店,是家里;最难听的不是脏话,是无言;最美好的不是未来,是今天。 16.在一切变好之前,我们总要经历一些不开心的日子,这段日子也许很长,也许只是一觉醒来。有时候,选择快乐,更需要勇气。 17.不要因为众生的愚疑,而带来了自己的烦恼。不要因为众生的无知,而痛苦了你自己。 18.如果你的生活已处于低谷,那就,大胆走,因为你怎样走都是在向上。 19.你可以哭但不能输,你可以难过但不可以落魄,你不努力怎么会知道自己可以赢得多少掌声?如果你能每天呐喊遍“我用不着为这一点小事而烦恼”,你会发现,你心里有一种不可思议的力量,试试看,很管用的。 20.我不敢休息,因为我没有存款。我不敢说累,因为我没有成就。我不敢偷懒,因为我还要生活。我能放弃选择,但是我不能选择放弃。坚强、拼搏是我唯一的选择。 21.生活不是用来妥协的,你退缩得越多,能让你喘息的空间就越有限。日子不是用来将就的,你表现得越卑微,一些幸福的东西就会离你越远。 22.过去的事,就让它过去吧,我们错过了昨日的日落,再也不能错过今日的日出,保持平衡的心态,以最美好的心情来对待每一天,每一天都会充满阳光,洋溢着希望。 23.一粒尘埃,在空气中凝结,最后生成磅礴的风雨;一粒沙石,

滨州市邹平县初中物理九年级全册14.3能量的转化和守恒练习题

滨州市邹平县初中物理九年级全册14.3能量的转化和守恒练习题 姓名:________ 班级:________ 成绩:________ 一、练习题 (共12题;共25分) 1. (2分)某品牌手机充电宝,上面标有电压为5V,容量为12000mA?h,它充满电后,可以储存的电能是________J,在充电过程中,将电能转化为________能储存. 2. (2分)大量事实证明“永动机”是不可能存在的,因为它违背了________定律。热机的效率总是会________1.(填“大于”“小于”或“等于”) 3. (2分)木材燃烧是将化学能转化为________能,这一过程能量的总量将________(填变大、变小或不变). 4. (3分) 2017年1月5日19时45分,西昌卫星发射中心用长征三号运载火箭,成功发射两颗北斗三号全球组网卫星。预计到22018年底,将有18颗北斗卫星发射升空,服务区覆盖“一带一路”沿线国家及周边国家,长征三号乙运载火箭起飞过程中燃料燃烧释放的内能将转化为火箭的________能,加速上升过程中受到________(选填“平衡力”或“非平衡力”)作用,北斗卫星与地面之间通过________传递信息。 5. (2分)(2020·绵阳模拟) 如图甲所示,小明在吹气球时,被吹大了的气球没能用手握住,呼啸着飞了出去,若他及时捡拾起气球,将会感觉到它喷气的嘴部温度和原来相比________(选填“变高”、“变低”或“没有变化”),发生的能量转化与汽油机的________冲程的能量转化是一致的。 6. (2分)关于热机中的能量转化关系,下列说法中正确的是() A . 热机是将机械能转化为内能的机器 B . 热机是将内能转化为机械能的机器 C . 热机是将燃料的化学能转化为机械能的机器 D . 热机是利用化学能来做功,它是将化学能转化为内能 7. (2分) (2017九上·广州月考) 如图所示,在一个配有活塞的厚壁玻璃筒里放一小团硒化棉布,用力把活塞迅速下压,棉花就会立即燃烧.根据该实验现象,下列结论正确的是()

关于拼搏的人生的正能量励志句子合集

关于拼搏的人生的正能量励志句子合集 大家要始终相信一句话:只要更好,不求最好!奋斗是成功之父! 1.人生有几件绝对不能失去的东西:自制的力量,冷静的头脑,希望和信心。 2.买得起自己喜欢的东西,去得了自己想去的地方,不会因为身边人的来或走损失生活的质量,反而会因为花自己的钱,来得更有底气一些,这就是应该更努力的原因。 3.最珍贵的不是你现在有多好,而是经过努力,每一天的自己都比之前更好。 4.你是老师的百分之一,是父母的百分之五十,但却是你自己的百分之百,所以要非常非常努力,去追求自己想要的一切。 5.不要去拒绝忙碌,因为它是一种充实;不要去抱怨挫折,因为它是一种坚强;不要去拒绝微笑,因为爱笑的女孩最美。你的优秀,不需要任何人来证明。 6.人有两条路要走,一条是必须走的,一条是想走的,你必须把必须走的路走漂亮,才可以走想走的路。 7.愿你沉稳又执着,对热爱的事情都全力以赴,又满载而归。 8.一件事如果想做,就早点下定决心。拖一天就纠结一天,早一天就多赚一天。 9.自己喜欢的日子,就是最美的日子;适合自己的生活,是最好的活法。

10.安全感不是别人给的,它取决于你有多爱自己,吃饱穿暖,手机有电,钱包永远不扁。 11.成功的人懂得熬,失败的人懂得逃,卓越的人懂得迎风前行并思考!其实放弃和坚持就在一瞬间,扛住了,世界就是你的。 12.做人要抬头有勇气,面对现实。低头有底气,面对自己。做事要有骨气,据理力争。做人要有志气,铮铮铁骨。凡事要争气。 13.在哪里跌倒,就在哪里站起来,所有不能打败你的,都会促成你的成长。 14.不要用自己的时间去见证别人的成功,愿你走过的所有弯路,最后都成为美丽彩虹! 15.没有谁的幸运,凭空而来。只有当你足够努力,你才会足够幸运,这世界不会辜负每一份努力和坚持。 16.有能力的人影响别人,没能力的人受人影响;不是某人使自己烦恼不安,而是自己拿某人的言行来烦恼自己;树一个目标,一步步前行,做好自己就好。 17.雄鹰,不需鼓掌,也在飞翔;小草,没人心疼,也在成长;野花,没人欣赏,也在芬芳;做事不需人人都理解,只需尽心尽力;做人不需人人都喜欢,只需坦坦荡荡。 18.努力到无能为力,拼搏到感动自己;吃过的苦,受过的累,会照亮未来的路;没有年少轻狂,只有胜者为王。 19.真正成功的人生,不在于成就的大小,而在于你是否努力地去实现自我,喊出自己的声音,走出属于自己的道路。 20.选一个方向,定一个时间;剩下的只管努力与坚持,时间

正能量激励人奋斗上进的好句子

正能量激励人奋斗上进的好句子也许你想成为太阳,可你却只是一颗星辰;也许你想成为大树,可你却是一棵小草。于是,你有些自卑。其实,你和别人一样,也是一片风景:做不了太阳,就做星辰,在自己的星座发光发热;做不了大树,就做小草,以自己的绿色装点希望…… 行走红尘,别被欲望左右迷失了方向,别被物质打败做了生活的奴隶,给心灵腾出一方空间,让那些够得着的幸福安全抵达,攥在自己手里的,才是实实在在的幸福。 如果寒暄只是打个招呼就了事的话,那与猴子的呼叫声有什么不一样呢?事实上,正确的寒暄务必在短短一句话中明显地表露出你对他的关怀。 人活着,要有所追求,有所梦想,要生活得开心,快乐,这才是理想的人生。上天给我们机会,让我们来到世间走一遭,我们要珍惜,因为生命是如此的短暂,如果我们不知道珍惜,它将很快的逝去,到头来我们将一事无成。 要成功,就要时时怀着得意淡然失意坦然的乐观态度,笑对自己的挫折和苦难,去做,去努力,去争取成功!

人生是坎坷的,人生是崎岖的。我坚信:在人生中只有曲线前进的快乐,没有直线上升的成功。只有珍惜今天,才会有美好的明天;只有把握住今天,才会有更辉煌的明天!人生啊,朋友啊!还等什么?奋斗吧! 认定了的路,再痛也不要皱一下眉头,你要知道,再怎么难走都是你自己选的,你没有资格喊疼。到最后,你总会明白,谁是虚心假意,谁是真心实意,谁为了你不顾一切。不去期望,失去了不会伤心,得到了便是惊喜。对于过去,不可忘记,但要放下。因为有明天,今天永远只是起跑线。 敏感之人,遭遇一点风声也会千疮百孔。命运给每个人同等的安排,而选择如何经营自己的生活,酿造自己的情感,则在于自己的心性。人生应该活得舒心。人生,就是不断的面对,人生很残酷,错过的,不要奢望还会重来,放下了,才知道它的沉重,今天不做的事,往后可能永远没有机会。 恐惧自我受苦的人,已经正因自我的恐惧在受苦。 夫妇一条心,泥土变黄金。 用心的人在每一次忧患中都看到一个机会,而消极的人则在每个机会都看到某种忧患。

激励励志正能量句子50个

激励励志正能量句子50个 导读:1、哪有什么错过的人,会离开的都是路人。愿你脚踏实地,也愿你仰望星空,往事不回头,未来不将就! 2、小黄人没有肩膀照样穿背带裤,没耳朵照样戴眼镜啊,别老埋怨你的世界缺点什么。 3、环境永远不会十全十美,消极的人受环境控制,积极的人却控制环境。 4、我不怕别人在背后捅我一刀,我怕回头后看到背后捅我的人,是我用心对待的人;我不怕把心里话告诉最好的朋友,我怕回过头他把它当成笑话告诉别人。 5、走不下去到时候停下来想想,总会找到坚持下去的理由。 6、这世界上最强大的人,就是那些能一个人孤单生活的人。 7、人与人之间的距离,要保持好,太近了会扎人,太远了会伤人。 8、别总是抱怨生活不够幸运,是你欠了生活一份努力,每一个你讨厌的现在,都有一个不够努力的曾经,未来美不美,取决于你现在拼不拼。 9、高一步立身,退一步处世。 10、人生没有如果,只有后果和结果。少问别人为什么,多问自己凭什么。现在不玩命,将来命玩你,现在不努力,未来不给力。现在不努力,将来拿什么向曾经抛弃你的人证明它有多瞎!

11、不管失败多少次,都要面对生活,充满希望。竹根即使被埋在地下无人得见,也决然不会停止探索而力争冒出新笋。希望,只有和勤奋作伴,才能如虎添翼。 12、世上没有白费的努力,也没有碰巧的成功,一切无心插柳,其实都是水到渠成。人生没有白走的路,也没有白吃的苦,跨出去的每一步,都是未来的基石与铺垫。 13、其实,没有过不去的事情,只有过不去的心情。很多事情,我们之所以过不去,是因为我们心里放不下。比如被欺骗了,报复放不下,被讽刺了,怨恨放不下,被批评了,面子放不下。 14、做个内心向阳的人。不忧伤,不心急。坚强、向上,靠近阳光。 15、成功不是将来才有的,而是从决定去做的那一刻起,持续累积而成。 16、梦想不会让一个人瞬间伟大,而是让生活拥有色彩和希望。只要你愿意努力,只要你相信,总有一天你会同样熠熠发光。 17、每个人的背后都会有心酸,都会有无法言说的艰难。每个人都会有自己的泪要擦,都会有自己的路要走。 18、人生的路漫长而多彩,在阳光中我学会欢笑,在阴云中我学会坚强;在狂风中我抓紧希望,当我站在终点回望,我走出了一条属于我的人生之路。 19、坚持不一定成功,但不坚持一定不会成功,并不是井里没水,

相关文档
相关文档 最新文档