文档库 最新最全的文档下载
当前位置:文档库 › 2018年高三最新 高考数学第二轮专题复习----探索性专题 精品

2018年高三最新 高考数学第二轮专题复习----探索性专题 精品

2018年高三最新 高考数学第二轮专题复习----探索性专题 精品
2018年高三最新 高考数学第二轮专题复习----探索性专题 精品

高考中的探索性问题

一、高考大纲剖析

2018年以前数学考试说明中能力要求没有创新意识。

2018年数学考试说明:能力要求中指出,能力是指思维能力、运算能力、空间想象能力以及实践能力和创新意识。其中创新意识指对新颖的信息、情境和设问,选择有效的方法和手段收集信息,综合与灵活地应用所学的数学知识、思想和方法,进行独立的思考、探索和研究,提出解决问题的思路,创造性地解决问题.命题基本原则中指出,创新意识和创造能力是理性思维的高层次表现.在数学学习和研究过程中知识的迁移、组合、融汇的程度越高,展示能力的区域就越宽泛,显现出的创造意识也就越强.命题时要注意试题的多样性,设计考查数学主体内容,体现数学素质的题目;反映数、形运动变化的题目;研究型、探索型或开放型的题目.让考生独立思考,自主探索,发挥主观能动性,研究问题的本质,寻求合适的解题工具.梳理解题程序,为考生展现其创新意识,发挥创造能力,创设广阔的空间.

2018年数学考试大纲(必修+选I):能力要求中创新意识增加了:创新意识是理性思维的高层次表现。对数学问题的“观察、猜测、抽象、概括、证明”,是发现问题和解决问题的重要途径,对数学知识的迁移、组合、融会的程度越高,显示出的创造意识也就越强。考查要求指出对创新意识的考查是对高层次理性思维的考查。在考试中创设比较新颖的问题情境,构造有一定深度和广度的数学问题,要注重问题的多样化,体现思维的发散性。精心设计考察数学主体内容,体现数学素质的试题;反映数、形运动变化的试题;研究型、探索型、开放型的试题。

两年考试大纲对比,说明今年高考对学生创新意识要求更高,近几年高考试题中对这方面考查主要通过探索性问题来实现的。那么什么是探索性问题呢?如果把一个数学问题看作是由条件、依据、方法和结论四个要素组成的一个系统,那么把这四个要素中有两个是未知的数学问题称之为探索性问题.条件不完备和结论不确定是探索性问题的基本特征.

二、高考试题研究

高考中的探索性问题主要考查学生探索解题途径,解决非传统完备问题的能力,是命题者根据学科特点,将数学知识有机结合并赋予新的情境创设而成的,要求考生自己观察、分析、创造性地运用所学知识和方法解决问题.由于这类题型没有明确的结论,解题方向不明,自由度大,需要先通过对问题进行观察、分析、比较、概括后方能得出结论,再对所得出的结论予以证明.其难度大、要求高,是训练和考查学生的创新精神,数学思维能力、分析问题和解决问题能力的好题型.

近几年高考中探索性问题分量加重,在选择题、填空题、解答题中都已出现.如2018年高考江苏卷第16题(立几)、第20题(解几);2018年高考全国卷第15题(立几)、第22题(解几);2018年高考上海卷第12题(填空题,解几)、第21题(Ⅲ)(解几)、第22题(理:集合与函数,文:数列与组合数);2018年高考江苏卷第6题(统计图)、第13题(表格);2018年高考上海卷第12题(填空题,数列)、第16题(选择题,招聘信息表)、第21题(3)(立几)、第22题(3)(圆锥曲线);2018年高考北京卷第

14题(填空题,数列)、第20题(不等式证明);2018年高考福建卷第15题(概率)、第21题(Ⅱ)(导数与不等式);2018年春季高考上海卷第9题(数列)、第16题(函数)、第21题(2)(函数与直线)、第22题(3)(椭圆)等。题目设计背景新颖,综合性强,难度较大,是区分度较高的试题,基本上都是每份试卷的压轴题。

高考常见的探索性问题,就其命题特点考虑,可分为归纳型、题设开放型、结论开放型、题设和结论均开放型以及解题方法的开放型几类问题.其中结论开放型探索性问题的特点是给出一定的条件而未给出结论,要求在给定的前提条件下,探索结论的多样性,然后通过推理证明确定结论;题设开放型探索性问题的特点是给出结论,不给出条件或条件残缺,需在给定结论的前提下,探索结论成立的条件,但满足结论成立的条件往往不唯一,答案与已知条件对整个问题而言只要是充分的、相容的、独立的.就视为正确的;全开放型,题设、结论都不确定或不太明确的开放型探索性问题,与此同时解决问题的方法也具有开放型的探索性问题,需要我们进行比较全面深入的探索,才能研究出解决问题的办法来。

三、高考复习建议

1.复习建议:

(1)在第二轮复习的过程中要重视对探索性问题的专题训练,题型要多样化,题目涉及的知识覆盖面尽量广一些,难度由浅入深;

(2)近几年高考探索性问题重点出在函数、数列、不等式、立体几何和解析几何,今年高考这些内容还是出探索性问题的热点(特别是解答题),应加强对这些内容的研究;

(3)注意总结探索性问题的解题策略。

2.解题策略:

解探索性问题应注意三个基本问题:认真审题,确定目标;深刻理解题意;开阔思路,发散思维,运用观察、比较、类比、联想、猜想等带有非逻辑思维成分的合理推理,以便为逻辑思维定向.方向确定后,又需借助逻辑思维,进行严格推理论证,这两种推理的灵活运用,两种思维成分的交织融合,便是处理这类问题的基本思想方法和解题策略

解决探索性问题,对观察、联想、类比、猜测、抽象、概括诸方面有较高要求,高考题中一般解这类问题有如下方法:

(1)直接法:直接从给出的结论入手,寻求成立的充分条件;直接从给出的条件入手,寻求结论;假设结论存在(或不存在),然后经过推理求得符合条件的结果(或导出矛盾)等

B1C1D1—ABCD中,当底面四边

例1.如图,在直四棱柱A

形ABCD满足条件__________时,有A1C⊥B1D1(注:填上

你认为正确的条件即可,不必考虑所有可能的情况)

分析:本题是条件探索型试题,即寻找结论A1C⊥B1D1成立

的充分条件,由AA1⊥平面A1C1以及A1C⊥B1D1(平面A1C1

的一条斜线A1C与面内的一条直线B1D1互相垂直),容易联

想到三垂线定理及其逆定理。因此,欲使A1C⊥B1D1,只需

B1D1与CA1在平面A1C1上的射影垂直即可。显然,CA1在

平面A1C1上的射影为A1C1,故当B1D1⊥A1C1时,有A1C⊥

B1D1,又由于直四棱柱的上、下底面互相平行,从而B1D1∥BD,A1C1∥AC。因此,当

BD ⊥AC 时,有A 1C ⊥B 1D 1。由于本题是要探求使A 1C ⊥B 1D 1成立的充分条件,故当四边形ABCD 为菱形或正方形时,依然有BD ⊥AC ,从而有A 1C ⊥B 1D 1,故可以填:①AC ⊥BD 或②四边形ABCD 为菱形,或③四边形ABCD 为正方形中的任一个条件即可。

点评: AC⊥BD 是结论A 1C⊥B 1D 1成立的充要条件,而所填的ABCD 是正方形或菱形则是使结论A1C⊥B 1D 1成立的充分而不必要的条件. 本例中,满足题意的充分条件不唯一,具有开放性特点,这类试题重在考查基础知识的灵活运用以及归纳探索能力。

例2.(2000年全国高考试题)如图,E 、F 分别为正方体的面ADD 1A 1和面BCC 1B 1的中心,则四边形BFD 1E 在该正方体的面上的射影可能是_____________(要求把可能的图形

的序号都填上)

分析:本题为结论探索型的试题,要求有一定的空间想象能力。

解:由于正方体的6个面可分为互为平行的三对,而四边形BFD 1E 的在互为平行的平面上的射影相同,因此可把问题分为三类:a :在上、下两面上的射影为图②;b :在前、后两面上的射影为图②;c :在左、右两面上的射影为图③. 综上可知,在正方体各面上的射影是图②或图③。

点评:这也是一道结论探索型问题,结论不唯一,应从题设出发,通过分类以简化思维,再利用射影的概念,得到正确的结论。 例3.已知函数1)(2++=ax c bx x f (a ,c ∈R ,a >0,b 是自然数)是奇函数,f (x )有最大值2

1

,且f (1)>

5

2

.(1)求函数f (x )的解析式;(2)是否存在直线l 与y =f (x )的图象交于P 、Q 两点,并且使得P 、Q 两点关于点(1,0)对称,若存在,求出直线l 的方程,若不存在,说明理由.

分析:本题考查待定系数法求函数解析式、最值问题、直线方程及综合分析问题的能力. 解:(1)∵f (x )是奇函数

∴f (–x )=–f (x ),即

1

122++-=++-ax c

bx ax c bx ,∴–bx +c =–bx –c ,∴c =0

∴f (x )=

1

2+ax bx

.由a >0,b 是自然数得当x ≤0时,f (x )≤0,

当x >0时,f (x )>0,∴f (x )的最大值在x >0时取得. ∴x >0时,22111)(b a

bx

x b a x f ≤+=

当且仅当

bx

x b a 1= 即a

x 1

=

时,f (x )有最大值212

1

2

=

b a ∴2b

a =1,∴a =

b 2 ① 又f (1)>

5

2,∴1+a b >52

,∴5b >2a +2 ②

把①代入②得2b 2–5b +2<0解得21<b <2,又b ∈N ,∴b =1,a =1,∴f (x )=1

2+x x

(2)设存在直线l 与y =f (x )的图象交于P 、Q 两点,且P 、Q 关于点(1,0)对称,

P (x 0,y 0)则Q (2–x 0,–y 0),∴???

????-=+--=+0

2

00

020

1)2(21y x x y x x ,消去y 0,得x 18–2x 0–1=0

解之,得x 0=1±2,∴P 点坐标为(42,

21+)或(4

2

,21--) 进而相应Q 点坐标为Q (42,21-

-)或Q (4

2,21+). 过P 、Q 的直线l 的方程:x –4y –1=0即为所求.

点评:充分利用题设条件是解题关键.本题是存在型探索题目,注意在假设存在的条件下推理创新,若由此导出矛盾,则否定假设,否则,给出肯定的结论,并加以论证. (2)观察——猜测——证明

例4.观察sin 220°+cos 250°+sin20°cos50°=

43,sin 215°+cos 245°+sin15°cos45°=4

3, 写出一个与以上两式规律相同的一个等式 .

答案:sin 2α+cos 2(α+30°)+sin αcos(α+30°)=

4

3

例5.(2018高考上海卷)已知数列}{n a (n 为正整数)是首项是a 1,公比为q 的等比数列.

(1)求和:;,3

34233132031223122021C a C a C a C a C a C a C a -+-+-

(2)由(1)的结果归纳概括出关于正整数n 的一个结论,并加以证明. (3)设q ≠1,S n 是等比数列}{n a 的前n 项和,

求:n

n

n n n n n n C S C S C S C S C S 134231201)1(+-++-+- 解:(1)

.

)1(33,

)1(23

131211133

42331320

312121112

23122021q a q a q a q a a C a C a C a C a q a q a q a a C a C a C a -=-+-=-+--=+-=+-

(2)归纳概括的结论为:

若数列}{n a 是首项为a 1,公比为q 的等比数列,则

n

n

n n n n n n n n n

n

n n

n

n

n n n

n n n n n n n n n n n n n n n q a C q C q C q qC C a C

q a C q a C q a qC a C a C a C a C a C a C a n q a C a C a C a C a C a )1(])1([)1()1(:.,)1()1(133********

122

1110

11342312011134231201-=-++-+-=-++-+-=-++-+--=-++-+-++ 证明为正整数

(3)因为,111q

q a a S n

n --=

.)1(1

])1([1])1([11)1(111)1(13322101321011

1123111211011134231201n n

n n n n n n n n

n n n n n n n n

n n n n n n

n

n n n n n n q q q a C q C q C q qC C q q a C C C C C q a C q

q a a C q q a a C q q a a C q q a a C S C S C S C S C S --=-++-+----++-+--=---++--+-----=-++-+-++ 所以 例6.由下列各式:

112111123

111111312345672111

122315>

++>++++++>++++>

你能得出怎样的结论,并进行证明.

分析:对所给各式进行比较观察,注意各不等式左边的最后一项的分母特点:1=21-1,3=22-1,7=23-1,15=24-1,…,一般的有2n -1,对应各式右端为一般也有2

n . 解:归纳得一般结论

*

1111()23

212

n

n n N ++++

>∈- 证明:当n=1时,结论显然成立. 当n ≥2时,

33331111111111

11()()2321244222211111111()()22

22222222

n n n n n n n n n n ++++

>+++++++++

-++++-=-=+->

故结论得证.

(3)特殊—一般—特殊:其解法是先根据若干个特殊值,得到一般的结论,然后再用特殊值解决问题。

例7.设二次函数f(x)=ax 2+bx+c (a,b,c ∈R,a ≠0)满足条件: ①当x ∈R 时,f(x-4)=f(2-x),且f(x)≥x ;②当x ∈(0,2)时,f(x)≤2

)2

1(

+x ③f(x)在R 上的最小值为0。

求最大值m(m>1),使得存在t ∈R ,只要x ∈[1,m],就有f(x+t)≤x

分析:本题先根据题设求出函数f (x )解析式,然后假设t 存在,取x=1得t 的范围,再令x=m 求出m 的取值范围,进而根据t 的范围求出m 的最大值。 解法一:∵f(x -4)=f(2-x),∴函数的图象关于x= -1对称 ∴12-=-

a

b

即b=2a 由③知当x= -1时,y=0,即a -b+c=0;由①得 f(1)≥1,由②得 f(1)≤1. ∴f(1)=1,即a+b+c=1,又a -b+c=0 ∴a=

41 b=21 c=4

1 ,∴f(x)=4121412++x x

假设存在t ∈R ,只要x ∈[1,m],就有f(x+t)≤x 取x=1时,有f(t+1)≤1?

41(t+1)2+21(t+1)+4

1

≤1?-4≤t ≤0 对固定的t ∈[-4,0],取x=m ,有 f(t +m)≤m ?

41(t+m)2+21(t+m)+4

1

≤m ?m 2-2(1-t)m+(t 2+2t+1)≤0 ?t t 41---≤m ≤t t 41-+- ∴m ≤t t

41--≤)4(4)4(1-?-+--=9

当t= -4时,对任意的x ∈[1,9],恒有f(x -4)-x=41(x 2-10x+9)=4

1

(x -1)(x -9)≤0 ∴m 的最大值为9.

解法二:∵f(x -4)=f(2-x),∴函数的图象关于x=-1对称 ∴ 12-=-

a

b

b=2a 由③知当x= -1时,y=0,即a -b+c=0;由①得 f(1)≥1,由②得 f(1)≤1

∴f(1)=1,即a+b+c=1,又a -b+c=0

∴a=

41 b=21 c=4

1∴f(x)=4121412++x x =41

(x+1)2

由f(x+t)=4

1

(x+t+1)2≤x 在x ∈[1,m]上恒成立

∴4[f(x+t)-x]=x 2+2(t-1)x+(t+1)2≤0当x ∈[1,m]时,恒成立 令 x=1有t 2+4t ≤0?-4≤t ≤0

令x=m 有t 2+2(m+1)t+(m-1)2≤0当t ∈[-4,0]时,恒有解 令t= -4得,m 2-10m+9≤0?1≤m ≤9

即当t= -4时,任取x ∈[1,9]恒有f(x-4)-x=

41(x 2-10x+9)=4

1

(x -1)(x -9)≤0 ∴ m min =9

点评:本题属于存在性探索问题,处理这道题的方法就是通过x 的特殊值得出t 的大致范围,然后根据t 的范围,再对x 取特殊值,从而解决问题。 (4)联想类比

例8.在平面几何里,有勾股定理:“设△ABC 的两边AB ,AC 互相垂直,则AB 2+AC 2=BC 2”拓展到空间,类比平面几何的勾股定理,研究三棱锥的侧面面积与底面面积间的关系,可以得出的正确结论是:“设三棱锥A —BCD 的三个侧面ABC 、ACD 、ADB 两两相互垂直,

则2222BCD AD B ACD ABC S S S S ????=++.”

例9.若数列{a n }是等差数列,数列{b n }满足b n =

*12()n

a a a n N n

++

+∈,则{b n }也为等差

数列.类比上述性质,相应地,若数列{c n }是等比数列,且c n >0,数列{d n }满足d n = ,

则数列{d n }也为等比数列. 答案:d n (n ∈N *)

例10.(2018年上海市春季高考题)设()

f x =

n 项和

的公式的方法,可求得(5)(4)(3)(0)(5)(6)f f f f f f -+-+-+++++的值是

分析:利用f (1-x )+f (x )(5)(4)(3)(0)(5)(6)f f f f f f -+-+-+

++++=(5)赋值推断

例11.(2018年高考上海卷16)某地2018年第一季度应聘和招聘人数排行榜前5个行业的情况列表如下

若用同一行业中应聘人数与招聘人数比值的大小来衡量该行业的就业情况,则根据表中数据,就业形势一定是( B )

A .计算机行业好于化工行业

B .建筑行业好于物流行业.

C .机械行业最紧张.

D .营销行业比贸易行业紧张

例12.(2018年高考江苏卷)二次函数y=ax 2+bx+c(x ∈R )的部分对应值如下表:

则不等式ax 2+bx+c>0的解集是),3()2,(+∞--∞ . (6)几何意义法

几何意义法就是利用探索性问题的题设所给的数或式的几何意义去探索结论,由于数学语言的抽象性,有些探索性问题的题设表述不易理解,在解题时若能积极地考虑题设中数或式的几何意义所体现的内在联系,巧妙地转换思维角度,将有利于问题的解决。 例13.设x 、y 为实数,集合A ={(x,y )|y 2―x ―1=0},B={{(x,y)|16x 2+8x ―2y+5=0}, C={(x,y)|y =kx+b},问是否存在自然数k,b 使(A ∪B )∩C =φ?

分析:此题等价于是否存在自然数k ,b ,使得直线y =kx+b 与抛物线y 2―x ―1=0和16x 2+8x ―2y+5=0都没有交点。

解:因为抛物线y 2―x ―1=0和16x 2+8x ―2y+5=0在y 轴上的截距分别为1、

5

2

,所以取b=2,由221

y kx y x =+??=+?

无实数解,得1122k -<<+,从而k=1, 此时方程组2

2

5842

y kx y x x =+??

?=++??无实数解.故存在k=1,b=2满足(A ∪B )∩C =φ. 点评:与集合运算有关的一类探索性问题,它的题设往往都具有鲜明的几何意义。

四、高考命题展望

随着以培养学生的创新精神和实践能力为重点的素质教育的深入发展和新课程改革

的不断深入,高考命题将更加关注“探索性问题”.从最近几年来高考中探索性问题逐年攀升的趋势,可预测探索性问题仍将是高考命题“孜孜以求的目标”.我们认为进行探索性问题的训练,是数学教育走出困境的一个好办法.由于数学开放探索题有利于学生创新

2020版高考数学二轮复习专题汇编全集

第1讲 三角函数与平面向量 A 组 基础达标 1.若点? ????sin 5π 6,cos 5π6在角α的终边上,则sin α的值为________. 2.已知α∈? ????0,π2,2sin2α=cos2α+1,那么sin α=________. 3.(2019·榆林模拟)若sin ? ????A +π4=7210,A ∈? ?? ??π4,π,则sin A =________. 4.若函数f (x )=2sin ? ????2x +φ-π6(0<φ<π)是偶函数,则φ=________. 5.已知函数y =A sin (ωx +φ)+B (A >0,ω>0,|φ|<π 2)的部分图象如图所示,那 么φ=________. (第5题) 6.已知sin ? ????α+π3=1213,那么cos ? ?? ??π6-α=________. 7.在距离塔底分别为80m ,160m ,240m 的同一水平面上的A ,B ,C 处,依次测得塔顶的仰角分别为α,β,γ.若α+β+γ=90°,则塔高为________m. 8.(2019·湖北百校联考)设α∈? ????0,π3,且6sin α+2cos α= 3. (1) 求cos ? ????α+π6的值; (2) 求cos ? ????2α+π12的值.

B 组 能力提升 1.计算:3cos10°-1 sin170°=________. 2.(2019·衡水模拟改编)设函数f (x )=2cos (ωx +φ)对任意的x ∈R ,都有f ? ????π3-x =f ? ????π3+x ,若函数g (x )=3sin (ωx +φ)+cos (ωx +φ)+2,则g ? ?? ??π3的值是________. 3.已知函数f (x )=sin (ωx +φ)(ω>0)的图象的一个对称中心为? ????π2,0,且f ? ?? ? ?π4=1 2 ,那么ω的最小值为________. 4.已知函数f (x )=sin ? ????ωx +π5(ω>0),f (x )在[0,2π]上有且仅有5个零点,给出以下四个结论: ①f (x )在(0,2π)上有且仅有3个极大值点; ②f (x )在(0,2π)上有且仅有2个极小值点; ③f (x )在? ????0,π10上单调递增; ④ω的取值范围是???? ??125,2910. 其中正确的结论是________.(填序号) 5.(2019·浙江卷)已知函数f (x )=sin x ,x ∈R . (1) 当θ∈[0,2π)时,函数f (x +θ)是偶函数,求θ的值; (2) 求函数y =??????f ? ????x +π122+??????f ? ????x +π42 的值域. 6.(2019·临川一中)已知函数f (x )=M sin (ωx +π 6)(M >0,ω>0)的大致图象如图所示, 其中A (0,1),B ,C 为函数f (x )的图象与x 轴的交点,且BC =π. (1) 求M ,ω的值;

(完整word版)2018年高考数学总复习概率及其计算

第十三章概率与统计本章知识结构图

第一节 概率及其计算 考纲解读 1.了解随机事件发生的不确定性、频率的稳定性、概率的意义、频率与概率的区别。 2.了解两个互斥事件的概率的加法公式。 3.掌握古典概型及其概率计算公式。 4.了解随机数的意义,能运用模拟方法估计概率。 5.了解几何概型的意义。 命题趋势探究 1.本部分为高考必考内容,在选择题、填空题和解答题中都有渗透。 2.命题设置以两种概型的概率计算及运用互斥、对立事件的概率公式为核心内容,题型及分值稳定,难度中等或中等以下。 知识点精讲 一、必然事件、不可能事件、随机事件 在一定条件下: ①必然要发生的事件叫必然事件; ②一定不发生的事件叫不可能事件; ③可能发生也可能不发生的事件叫随机事件。 二、概率 在相同条件下,做次重复实验,事件A 发生次,测得A 发生的频率为,当很大时,A 发生的频率总是在某个常数附近摆动,随着的增加,摆动幅度越来越小,这时就把这个常数叫做A 的概率,记作。对于必然事件A ,;对于不可能事件A ,=0. 三、基本事件和基本事件空间 在一次实验中,不可能再分的事件称为基本事件,所有基本事件组成的集合称为基本事件空间。 四、两个基本概型的概率公式 1、古典概型 条件:1、基本事件空间含有限个基本事件 2、每个基本事件发生的可能性相同 ()(A) = ()A card P A card = Ω包含基本事件数基本事件总数 2、几何概型 条件:每个事件都可以看作某几何区域Ω的子集A ,A 的几何度量(长度、面积、体积或时间)记为 A μ.

()P A = A μμΩ 。 五、互斥事件的概率 1、互斥事件 在一次实验中不能同时发生的事件称为互斥事件。事件A 与事件B 互斥,则 ()()() P A B P A P B =+U 。 2、对立事件 事件A,B 互斥,且其中必有一个发生,称事件A,B 对立,记作B A =或A B =。 ()() 1P A p A =- 。 3、互斥事件与对立事件的联系 对立事件必是互斥事件,即“事件A ,B 对立”是”事件A ,B 互斥“的充分不必要条件。 题型归纳及思路提示 题型176 古典概型 思路提示 首先确定事件类型为古典概型,古典概型特征有二:有限个不同的基本事件及各基本事件发生的可能性是均等的;其次计算出基本事件的总数及事件A 所包含的基本事件数;最后计算 ()A P A = 包含基本事件数 基本事件总数。 例13.1 设平面向量(),1m a m =,()2,n b n = ,其中{}, 1.2,3,4m n ∈ (1)请列出有序数组(),m n 的所有可能结果; (2) 若“使得()m m n a a b ⊥-成立的(),m n 为事件A ,求事件A 发生的概率。 分析:两向量垂直的充要条件是两向量的数量积为0,从而可得m 与n 的关系,再从以上 (),m n 的16个有序数组中筛选出符合条件的,即得事件A 包含的基本事件个数。 解析:(1)由{}, 1.2,3,4m n ∈,有序数组(),m n 的所有可能结果为()1,1 , ()()() 1,2,1,3,1,4, ()()()() 2,1,2,2,2,3,2,4, ()()()() 3,1,3,2,3,3,3,4, ()()()()4,1,4,2,4,3,4,4 共16个。 (2)因为(),1m a m =,()2,n b n =,所以()2,1m n a b m n -=-- .又()m m n a a b ⊥-,得 ()(),12,10m m n ?--= ,即22m 10m n -+-= ,所以()21n m =- 。故事件A 包含的

2018年高考数学—导数专题

导数 (选修2-2P18A7改编)曲线y=sin x x在x= π 2处的切线方程为() A.y=0 B.y=2π C.y=- 4 π2 x+ 4 π D.y= 4 π2 x 解析∵y′=x cos x-sin x x2,∴y′|x= π 2=- 4 π2 , 当x=π 2时,y= 2 π , ∴切线方程为y-2 π =- 4 π2? ? ? ? ? x- π 2 ,即y=- 4 π2 x+ 4 π . (2016·天津卷)已知函数f(x)=(2x+1)e x,f′(x)为f(x)的导函数,则f′(0)的值为________. 解析因为f(x)=(2x+1)e x, 所以f′(x)=2e x+(2x+1)e x=(2x+3)e x, 所以f′(0)=3e0=3. (2017·西安月考)设曲线y=ax-ln(x+1)在点(0,0)处的切线方程为y=2x,则a=________. 解析y′=a- 1 x+1 ,由题意得y′|x=0=2,即a-1=2, 所以a=3. (2017·威海质检)已知函数f(x)=x ln x,若直线l过点(0,-1),并且与曲线y=f(x)相切,则直线l的方程为() A.x+y-1=0 B.x-y-1=0 C.x+y+1=0 D.x-y+1=0

解析 ∵点(0,-1)不在曲线f (x )=x ln x 上, ∴设切点为(x 0,y 0). 又∵f ′(x )=1+ln x ,∴?????y 0=x 0ln x 0, y 0+1=(1+ln x 0)x 0, 解得x 0=1,y 0=0. ∴切点为(1,0),∴f ′(1)=1+ln 1=1. ∴直线l 的方程为y =x -1,即x -y -1=0. (2015·全国Ⅱ卷)已知曲线y =x +ln x 在点(1,1)处的切线与曲线y =ax 2+(a +2)x +1相切,则a =________. 解析 法一 ∵y =x +ln x ,∴y ′=1+1 x ,y ′|x =1=2. ∴曲线y =x +ln x 在点(1,1)处的切线方程为y -1=2(x -1),即y =2x -1. ∵y =2x -1与曲线y =ax 2+(a +2)x +1相切, ∴a ≠0(当a =0时曲线变为y =2x +1与已知直线平行). 由?????y =2x -1,y =ax 2 +(a +2)x +1消去y ,得ax 2+ax +2=0. 由Δ=a 2-8a =0,解得a =8. 法二 同法一得切线方程为y =2x -1. 设y =2x -1与曲线y =ax 2+(a +2)x +1相切于点(x 0,ax 20+(a +2)x 0+1). ∵y ′=2ax +(a +2),∴y ′|x =x 0=2ax 0+(a +2). 由?????2ax 0+(a +2)=2,ax 20+(a +2)x 0+1=2x 0-1,解得???x 0=-12,a =8. 答案 8 (2017·西安质测)曲线f (x )=x 3-x +3在点P 处的切线平行于直线y =2x -1,则P

(word完整版)2018高考数学专题复习三角换元法

三角换元法 摘要:本文归纳总结了三角换元法的基本用法,以常见例题的形式讲述了三角换元法在解题过程中的具体应用。 大家知道,换元法的实质是通过换元将原来比较复杂的、非标准的形式转化为简单的、标准的形式,以利于揭示问题的本质、题目的分析和解决。三角换元法是众多换元法中的一种,它以三角函数为“元”,将代数问题转化为易于应用三角函数性质求解的问题,三角换元法在求解方程、不等式、解析几何和函数最值等方面都有着广泛的应用。一般情况下,在运用三角换元的题目中,往往在表达式的形式或字母的取值范围等方面明显反映出三角函数式的特征,这一点给三角换元法的应用提供了线索。具体表现在该方法对于含有被开方式为二次式的二次根式问题能起到除去二次根式的作用,因为二次根式c bx ax ++2总是可以转化为22t k -、t k +2或22k t -的形式,其中t 为变量,k 为非负常量。现对于此类问题归纳如下: 1.形如),(22x a x f y -=的形式,其中f 是x 和 22x a -的代数函数。令 )2 2 ,0(,sin π π ≤ ≤- >=t a t a x 此时,[]a a x ,-∈或令),0,0(,cos π≤≤>=t a t a x 同理[]a a x ,-∈, 2.形如),(22a x x f y +=的形式,其中f 是x 和22x a +的代数函数。令 ),2 2 ,0(,tan π π < <- >=t a t a x 此时,),(+∞-∞∈x 或令),0,0(cot π<<>=t a t a x ),(+∞-∞∈x 。 3.形如),(22a x x f y -=的形式,其中f 是x 和22a x -的代数函数。令 ),2 3 ,20,0(,sec πππ <≤<≤>=t t a t a x 此时,),,[],(+∞?--∞∈a a x 或令t a x csc = ),2 0,02 ,0(π π ≤ <<≤- >t t a 其中),[],(+∞?--∞∈a a x 。 注:上面替换中应注意,t 的范围应满足: 1°根式中变量的取值要求。 2°二次根式的化简唯一。 以上是常见的用法,其具体应用现分类介绍如下: 一、三角换元法在解方程及解不等式中的应用。 例1. 解方程:12 351 2= -+ x x x 解:该方程的根必然为正(否则左负右正),所以设)2 0(,sec π ≤ ≤=t t x ,则方程变为

2017-2018年高考数学总复习:极坐标

2017-2018年高考数学总复习:极坐标 x cos sin y ρθ ρθ =?? =? 222x y ρ+= 考点一。直角坐标化极坐标 (1)点M 的直角坐标是(1-,则点M 的极坐标为______. 解:点M 极坐标为:2(2,2),()3 k k Z π π+ ∈. (2)求直线3x-2y+1=0的极坐标方程。 解:极坐标方程为01sin 2cos 3=+-θρθρ。 (3)在极坐标系中,圆心在π)且过极点的圆的极坐标方程为______. 解:圆心:)02(,-,22(2x y +=。圆的极坐标方 程为ρθ。 考点二。极坐标化直角坐标 (1)求普通方程)3 R ∈=ρπ θ(。 解:y=kx,且k=33 tan =π ,则x 3y =的直线。 (2)将曲线的极坐标方程ρ=4sin θ化 成直角坐标方程。 解:将ρ=2 2y x +,sin θ= 2 2y x y +代入ρ=4sin θ,得x 2+y 2=4y ,即x 2+(y-2)2 =4. (3)求过圆4cos =ρθ的圆心,且垂直于极轴的直线极坐标方程. 解:由θρcos 4=得θρρcos 42=.所以x y x 42 2=+,22(2)4x y -+=圆心坐标(2,0) 直线方程为2=x .直线的极坐标方程为2cos =θρ。 (4)将极坐标方程4sin 2 θ=3化为普通方程。 解:由4sin 2 θ=3,得4·2 22y x y +=3,即y 2=3 x 2 ,y=±x 3. (5)化极坐标方程2 4sin 52 θ ρ?=为普通方程。

解:2 1c o s 4s i n 4 22c o s 52 2 θ θρρρρθ-?=?=-=, 即25x =,化简225 54 y x =+ .表示抛物线. (6)求点 (,)π 23 到圆2cos ρθ= 的圆心的距离。 解:)3 , 2(π化为)3,1(,圆θρcos 2=化为0222=-+x y x ,圆心的坐标是)0,1(,故距 离为3。 (7)求点M (4, )到直线l :ρ(2cos θ+sin θ)=4的距离. (8)已知21,C C 极坐标方程分别为θρθρcos 4,3cos ==(2 0,0θρ<≤≥),求曲线1 C 与2C 交点极坐标. 解:21,C C 分别为4)2(,32 2=+-=y x x ,且0≥y ,两曲线交点为(3,3). 所以,交 点的极坐标为?? ? ? ?6, 32π。 考点三。极坐标应用 命题点1.求面积(12121 A B S =sin -2 ραρβρραβ?∴(,),(,) ()) (1)在极坐标系中,已知两点A ,B 的极坐标分别为? ????3,π3,? ????4,π6,求△AOB 的面积. 解: 由题意得S △AOB =12×3×4×sin ? ????π3-π6=1 2 ×3×4×sin π6=3. (2)在极坐标系中,已知两点A ,B 的极坐标分别为 ),)和(,(6 5-53 4π π ,求△AOB 的面积. 解: 由题意得5))6 5(3sin(5421S =--???= ?π π. )化成为()

2018年高考数学专题23基本初等函数理

专题2.3 基本初等函数 【三年高考】 1. 【2017课标1,理11】设x 、y 、z 为正数,且235x y z ==,则 A .2x <3y <5z B .5z <2x <3y C .3y <5z <2x D .3y <2x <5z 【答案】D 【解析】试题分析:令235(1)x y z k k ===>,则2log x k =,3log y k =,5log z k = ∴ 22lg lg 3lg 913lg 23lg lg8x k y k =?=>,则23x y >,22lg lg5lg 2515lg 25lg lg32 x k z k =?=<,则25x z <,故选D. 2. 【2017天津,理6】已知奇函数()f x 在R 上是增函数,()()g x xf x =.若2(log 5.1)a g =-,0.8(2)b g =,(3)c g =,则a ,b ,c 的大小关系为 (A )a b c << (B )c b a << (C )b a c << (D )b c a << 【答案】C 【解析】因为()f x 是奇函数且在R 上是增函数,所以在0x >时,()0f x >,从而()()g x xf x =是R 上的偶函数,且在[0,)+∞上是增函数,22(log 5.1)(log 5.1)a g g =-=,0.822<,又4 5.18<<,则22log 5.13<<,所以即0.8 202 log 5.13<<<, 0.82(2)(log 5.1)(3)g g g <<,所以b a c <<,故选C . 3. 【2017北京,理8】根据有关资料,围棋状态空间复杂度的上限M 约为3361 ,而可观测宇宙中普通物质的原子总数N 约为1080.则下列各数中与 M N 最接近的是( )(参考数据:lg3≈0.48) (A )1033 (B )1053 (C )1073 (D )1093 【答案】D 4. 【2016高考新课标3理数】已知4 32a =,254b =,13 25c =,则( ) (A )b a c << (B )a b c << (C )b c a << (D )c a b << 【答案】A 【解析】因为422335244a b ==>=,122333 2554c a ==>=,所以b a c <<,故选A .

2018届高三数学基础专题练习:导数与零点(答案版)

导数与函数的零点专题 研究方程根或函数的零点的情况,可以通过导数研究函数的单调性、最大值、最小值、变化趋势等,根据题目要求,画出函数图象的走势规律,标明函数极(最)值的位置,通过数形结合的思想去分析问题,可以使问题的求解有一个清晰、直观的整体展现. 例题精讲 例1、已知函数f (x )=x 3-3x 2+ax +2,曲线y =f (x )在点(0,2)处的切线与x 轴交点的横坐标为-2. (1)求a ;(2)证明:当k <1时,曲线y =f (x )与直线y =kx -2只有一个交点. 解析:f ′(x )=3x 2-6x +a ,f ′(0)=a . 曲线y =f (x )在点(0,2)处的切线方程为y =ax +2,由题设得-2 a =-2,所以a =1. (2)证明 由(1)知,f (x )=x 3-3x 2+x +2,设g (x )=f (x )-kx +2=x 3-3x 2+(1-k )x +4. 由题设知1-k >0. 当x ≤0时,g ′(x )=3x 2-6x +1-k >0,g (x )单调递增,g (-1)=k -1<0,g (0)=4,所以g (x )=0在(-∞,0]有唯一实根. 当x >0时,令h (x )=x 3-3x 2+4,则g (x )=h (x )+(1-k )x >h (x ). h ′(x )=3x 2-6x =3x (x -2),h (x )在(0,2)单调递减,在(2,+∞)单调递增,所以g (x )>h (x )≥h (2)=0. 所以g (x )=0在(0,+∞)没有实根. 综上,g (x )=0在R 有唯一实根,即曲线y =f (x )与直线y =kx -2只有一个交点. 例2、已知函数 . (I)讨论的单调性;(II)若 有两个零点,求a 的取值范围. 【解析】(Ⅰ)()(1)2(1)(1)(2)x x f x x e a x x e a '=-+-=-+. ( i )当0a ≥时,则当1x >时,()0f x '>;当1x <时,()0f x '< 故函数()f x 在(,1)-∞单调递减,在(1,)+∞单调递增. ( ii )当0a <时,由()0f x '=,解得:1x =或ln(2)x a =- ①若ln(2)1a -=,即2 e a =-,则x R ?∈,()(1)()0x f x x e e '=-+≥ 故()f x 在(,)-∞+∞单调递增.

精编2018年高考数学总复习全书汇编

专题一集合、常用逻辑用语、平面向量、复数、算法、合情推理[高考领航]————————————摸清规律预测考情

考点一 集合、常用逻辑用语 1.设有限集合A ,card(A )=n (n ∈N *),则

(1)A 的子集个数是2n ; (2)A 的真子集个数是2n -1; (3)A 的非空子集个数是2n -1; (4)A 的非空真子集个数是2n -2; (5)card(A ∪B )=card A +card B -card(A ∩B ). 2.(1)(?R A )∩B =B ?B ??R A ; (2)A ∪B =B ?A ?B ?A ∩B =A ; (3)?U (A ∪B )=(?U A )∩(?U B ); (4)?U (A ∩B )=(?U A )∪(?U B ). 3.若p 以集合A 的形式出现,q 以集合B 的形式出现,即A ={x |p (x )},B ={x |q (x )},则关于充分条件、必要条件又可叙述为: (1)若A ?B ,则p 是q 的充分条件; (2)若A ?B ,则p 是q 的必要条件; (3)若A =B ,则p 是q 的充要条件. 类型一 集合的概念及运算 [典例1] (2016·高考全国卷Ⅰ)设集合A ={x |x 2-4x +3<0},B ={x |2x -3>0},则A ∩B =( ) A.? ????-3,-32 B.? ? ? ??-3,32 C.? ????1,32 D.? ?? ??32,3 解析:通解:(直接法)解x 2-4x +3<0,即(x -1)(x -3)<0,得1<x <3,故A ={x |1<x <3};

江苏版2018年高考数学一轮复习专题1.1集合的概念及其基本运算讲

专题1.1 集合的概念及其基本运算【考纲解读】 内容 要求 5年统计 A B C 集合 集合及其表示√2017.1 2016.1 2015.1 2014.1 2013·4 子集√ 交集、并集、补集√ 【直击考点】 题组一常识题 1.【教材改编】设全集U={小于9的正整数},A={1,2,3},B={3,4,5,6},则?U(A∪B)=________. 【答案】{7,8} 2.【教材改编】已知集合A={a,b},若A∪B={a,b,c},则这样的集合B有________个.【答案】4 【解析】因为A∪B?B,A={a,b},所以满足条件的B可以是{c},{a,c},{b,c},{a,b,c},所以集合B有4个.学# 3.【教材改编】设全集U={1,2,3,4,5, 6,7,8,9},?U(A∪B)={1,3},A∩(?U B)={2,4},则集合B=________. 【答案】{5,6,7,8,9} 【解析】由?U(A∪B)={1,3},得1,3?B;由A∩(?U B)={2,4},得2,4?B,所以B={5,6,7,8,9}. 题组二常错题 4.设集合M={(x,y)|y=x2},N={(x,y)|y=2x},则集合M∩N的子集的个数为________.【答案】8 【解析】由函数y=x2与y=2x的图像可知,两函数的图像在第二象限有1个交点,在第一象限有2个交点(2,4),(4,16),故M∩N有3个元素,其子集个数为23=8. 5.已知集合M={x︱x-a=0},N={x︱ax-1=0},若M∩N=N,则实数a的值是________.【答案】0或1或-1 【解析】M={a},∵M∩N=N,∴N?M,∴N=?或N=M,∴a=0或a=±1. 6.已知集合A={m+2,2m2+m},若3∈A,则m=________.

2020高考数学二轮专题复习 三角函数

三角函数 【考纲解读】 1.了解任意角的概念,了解弧度制的概念,能进行弧度与角度的互化;理解任意角的三角函数(正弦、余弦、正切)的定义. 2.能利用单位圆中的三角函数线推导出 2 πα±,πα±的正弦、余弦、正切的诱导公式; 理解同角的三角函数的基本关系式:sin 2 x+cos 2 x=1, sin tan cos x x x =. 3.能画出y=sinx, y=cosx, y=tanx 的图象,了解三角函数的周期性;2.理解正弦函数,余弦函数在区间[0,2π]上的性质(如单调性,最大值和最小值以及与x 轴的交点等),理解正切函数在区间(- 2π,2 π )内的单调性. 4.了解函数sin()y A x ω?=+的物理意义;能画出sin()y A x ω?=+的图象,了解 ,,A ω?对函数图象变化的影响. 5.会用向量的数量积推导两角差的余弦公式;能利用两角差的余弦公式导出两角和与差的正弦、余弦和正切公式,了解它们的内在联系. 6.能利用两角差的余弦公式导出二倍角的正弦、余弦、正切公式,了解它们的内在联系;能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆). 【考点预测】 从近几年高考试题来看,对三角函数的考查:一是以选择填空的形式考查三角函数的性质及公式的应用,一般占两个小题;二是以解答题的形式综合考查三角恒等变换、sin()y A x ω?=+的性质、 三角函数与向量等其他知识综合及三角函数为背景的实际问题等. 预测明年,考查形式不变,选择、填空题以考查三角函数性质及公式应用为主,解答题将会以向量为载体,考查三角函数的图象与性质或者与函数奇偶性、周期性、最值等相结合,以小型综合题形式出现. 【要点梳理】 1.知识点:弧度制、象限角、终边相同的角、任意角三角函数的定义、同角三角函数基本关系式、诱导公式、三角函数线、三角函数图象和性质;和、差、倍角公式,正、余弦定理及其变形公式. 2.三角函数中常用的转化思想及方法技巧: (1)方程思想:sin cos αα+, sin cos αα-,sin cos αα三者中,知一可求二;

2018年高考数学总复习专题1.1集合试题

专题1.1 集合 【三年高考】 1.【2017高考江苏1】已知集合{1,2}A =,2{,3}B a a =+,若{1}A B =,则实数a 的值为 ▲ . 【答案】1 【解析】由题意1B ∈,显然233a +≥,所以1a =,此时234a +=,满足题意,故答案为1. 【考点】集合的运算、元素的互异性 【名师点睛】(1)认清元素的属性.解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件. (2)注意元素的互异性.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致错误. (3)防范空集.在解决有关,A B A B =??等集合问题时,往往容易忽略空集的情况,一 定要先考虑?时是否成立,以防漏解. 2.【2016高考江苏1】已知集合{1,2,3,6},{|23},A B x x =-=-<<则=A B . 【答案】{}1,2- 【解析】 试题分析:{} {}{}1,2,3,6231,2A B x x =--<<=-.故答案应填:{}1,2- 【考点】集合运算 【名师点睛】本题重点考查集合的运算,容易出错的地方是审错题意,属于基本题,难度不大.一要注意培养良好的答题习惯,避免出现粗心而出错,二是明确江苏高考对于集合题的考查立足于列举法,强调对集合运算有关概念及法则的理解. 2.【2015高考江苏1】已知集合{ }3,2,1=A ,{}5,4,2=B ,则集合B A 中元素的个数为_______. 【答案】5 【解析】{123}{245}{12345}A B ==,,,,,,,,,,,则集合B A 中元素的个数为5个. 【考点定位】集合运算

高考数学(理科)二轮复习【专题2】函数的应用(含答案)

第2讲函数的应用 考情解读(1)函数零点所在区间、零点个数及参数的取值范围是高考的常见题型,主要以填空题的形式出现.(2)函数的实际应用以二次函数、分段函数模型为载体,主要考查函数的最值问题. 1.函数的零点与方程的根 (1)函数的零点 对于函数f(x),我们把使f(x)=0的实数x叫做函数f(x)的零点. (2)函数的零点与方程根的关系 函数F(x)=f(x)-g(x)的零点就是方程f(x)=g(x)的根,即函数y=f(x)的图象与函数y=g(x)的图象交点的横坐标. (3)零点存在性定理 如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,且有f(a)·f(b)<0,那么,函数y =f(x)在区间(a,b)内有零点,即存在c∈(a,b)使得f(c)=0,这个c也就是方程f(x)=0的根.注意以下两点: ①满足条件的零点可能不唯一; ②不满足条件时,也可能有零点. (4)二分法求函数零点的近似值,二分法求方程的近似解. 2.函数模型 解决函数模型的实际应用题,首先考虑题目考查的函数模型,并要注意定义域.其解题步骤是(1)阅读理解,审清题意:分析出已知什么,求什么,从中提炼出相应的数学问题;(2)数学建模:弄清题目中的已知条件和数量关系,建立函数关系式;(3)解函数模型:利用数学方法得出函数模型的数学结果;(4)实际问题作答:将数学问题的结果转化成实际问题作出解答. 热点一函数的零点 例1(1)函数f(x)=2x+x3-2在区间(0,1)内的零点个数是________.

(2)(2014·辽宁改编)已知f (x )为偶函数,当x ≥0时,f (x )=??? cos πx ,x ∈[0,1 2 ], 2x -1,x ∈(1 2 ,+∞),则不等式 f (x -1)≤1 2 的解集为________. 思维升华 (1)根据二分法原理,逐个判断;(2)画出函数图象,利用数形结合思想解决. 答案 (1)1 (2)[14,23]∪[43,7 4 ] 解析 (1)先判断函数的单调性,再确定零点. 因为f ′(x )=2x ln 2+3x 2>0, 所以函数f (x )=2x +x 3-2在(0,1)上递增, 且f (0)=1+0-2=-1<0,f (1)=2+1-2=1>0, 所以有1个零点. (2)先画出y 轴右边的图象,如图所示. ∵f (x )是偶函数,∴图象关于y 轴对称,∴可画出y 轴左边的图象,再画直线y =1 2.设与曲线交 于点A ,B ,C ,D ,先分别求出A ,B 两点的横坐标. 令cos πx =12,∵x ∈[0,1 2], ∴πx =π3,∴x =1 3 . 令2x -1=12,∴x =34,∴x A =13,x B =34 . 根据对称性可知直线y =12与曲线另外两个交点的横坐标为x C =-34,x D =-1 3. ∵f (x -1)≤12,则在直线y =1 2上及其下方的图象满足, ∴13≤x -1≤34或-34≤x -1≤-1 3, ∴43≤x ≤74或14≤x ≤23 . 思维升华 函数零点(即方程的根)的确定问题,常见的有①函数零点值大致存在区间的确定;②零点个数的确定;③两函数图象交点的横坐标或有几个交点的确定.解决这类问题的常用方法有解方程法、利用零点存在的判定或数形结合法,尤其是方程两端对应的函数类型不同

2018年高考数学分类汇编专题十三极坐标与参数方程

《2018年高考数学分类汇编》 第十三篇:极坐标与参数方程 一、填空题 1. 【2018北京卷10】在极坐标系中,直线cos sin (0)a a ρθρθ+=>与圆=2cos ρθ相切, 则a =__________. 2.【2018天津卷12】)已知圆22 20x y x +-=的圆心为C ,直线2 1,232 ? =-??? ?=-?? x y (t 为参数)与该圆相交于A ,B 两点,则ABC △的面积为 . 二、解答题 1.【2018全国一卷22】在直角坐标系xOy 中,曲线1C 的方程为||2y k x =+.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为2 2cos 30ρρθ+-=. (1)求2C 的直角坐标方程; (2)若1C 与2C 有且仅有三个公共点,求1C 的方程. 2.【2018全国二卷22】在直角坐标系中,曲线的参数方程为(为参数), 直线的参数方程为 (为参数). (1)求和的直角坐标方程; (2)若曲线截直线所得线段的中点坐标为,求的斜率. 3.【2018全国三卷22】在平面直角坐标系中,的参数方程为(为参数), xOy C 2cos 4sin x θy θ =??=?, θl 1cos 2sin x t αy t α =+?? =+?, t C l C l (1,2)l xOy O ⊙cos sin x y θθ=??=? , θ

过点且倾斜角为的直线与交于两点. (1)求的取值范围; (2)求中点的轨迹的参数方程. 4.【2018江苏卷21C 】在极坐标系中,直线l 的方程为π sin()26 ρθ-=,曲线C 的方程为 4cos ρθ=,求直线l 被曲线C 截得的弦长. 参考答案 一、填空题 1.21+ 2. 2 1 二、解答题 1.解: (1)由cos x ρθ=,sin y ρθ=得2C 的直角坐标方程为22(1)4x y ++=. (2)由(1)知2C 是圆心为(1,0)A -,半径为2的圆. 由题设知,1C 是过点(0,2)B 且关于y 轴对称的两条射线.记y 轴右边的射线为1l ,y 轴左边的射线为2l .由于B 在圆2C 的外面,故1C 与2C 有且仅有三个公共点等价于1l 与 2C 只有一个公共点且2l 与2C 有两个公共点,或2l 与2C 只有一个公共点且1l 与2C 有两 个公共点. 当1l 与2C 只有一个公共点时,A 到1l 所在直线的距离为22 21 k =+,故 4 3 k =-或0k =. 经检验,当0k =时,1l 与2C 没有公共点;当4 3 k =-时,1l 与2C 只有一个公共点,2l 与2C 有两个公共点. (02, αl O ⊙A B ,αAB P

高考数学二轮专题复习 数学思想方法

高考数学二轮专题复习 数学思想方法 【考纲解读】 1.熟练掌握函数与方程思想、数形结合思想、分类讨论思想、转化与化归思想. 2.能够对所学知识进行分类或归纳,能应用数学思想方法分析和解决问题,系统地把握知识间的内在联系. 【考点预测】 1.函数知识涉及的知识点多、面广,在概念性、应用性、理解性都有一定的要求,所以是高考中考查的重点,也是高考的一个热点。对函数试题的设计仍然会围绕几个基本初等函数和函数的性质、图象、应用考查函数知识;与方程、不等式、解析几何等内容相结合,考查函数知识的综合应用;在函数知识考查的同时,加强对函数方程、分类讨论、数形结合、等价转化等数学思想方法的考查。 2.预测在今年的高考中,数形结合与分类讨论思想仍是考查的一个热点,数形结合的考查方式常以数学式、数学概念的几何意义、函数图象、解析几何等为载体综合考查,分类讨论思想的考查重点为含有参数的函数性质问题、与等比数列的前n 项和有关的计算推证问题、直线与圆锥曲线的位置关系不定问题等。 3.预测在今年的高考中,运用化归与转化思想解题的途径主要有:借助函数、方程(组)、辅助命题、等价变换、特殊的式与数的结构、几何特征进行转化,其方法有:正反转化、数形转化、语义转化、等与不等、抽象问题与具体问题化归,一般问题与特殊问题化归,正向思维与逆向思维化归。 【要点梳理】 1.函数与方程思想:我们应用函数思想的几种常见题型是:遇到变量,构造函数关系解题;有关的不等式、方程、最小值和最大值之类的问题,利用函数观点加以分析;含有多个变量的数学问题中,选定合适的主变量,从而揭示其中的函数关系;实际应用问题,翻译成数学语言,建立数学模型和函数关系式,应用函数性质或不等式等知识解答;等差、等比数列中,通项公式、前n 项和的公式,都可以看成n 的函数,数列问题也可以用函数方法解决。 2.数形结合的思想:是解答高考数学试题的一种常用方法与技巧,特别是在解选择与填空题时发挥着奇特功效.具体操作时,应注意以下几点:(1)准确画图,注意函数的定义域;(2)用图象法讨论方程的解的个数. 3.与分类讨论有关的知识点有:直线的斜率分为存在和不存在两种情形、等比数列中的公比1q =和1q ≠、由参数的变化引起的分类讨论、由图形的不确定性引起的分类讨论、指对函数的底数a 分为1a >和01a <<两种情形等。分类的原则是:不重复、不遗漏、分层次讨论。分类讨论的一般流程是:明确讨论的对象、选择分类的标准、逐类进行讨论、归纳整合。 4.转化与化归常用的方法有:直接转化法、换元法、数形结合法、构造法、坐标法、类比法、特殊化方法等。 【考点在线】 考点一 函数与方程思想 函数描述了自然界中数量之间的关系,函数思想通过提出问题的数学特征,建立函数关系型的数学模型,从而进行研究。它体现了“联系和变化”的辩证唯物主义观点。一般地,函数思想是构造函数从而利用函数的性质解题,经常利用的性质是:f(x)、f -1 (x)的单调性、 奇偶性、周期性、最大值和最小值、图像变换等,要求我们熟练掌握的是一次函数、二次函数、幂函数、指数函数、对数函数、三角函数的具体特性。在解题中,善于挖掘题目中的隐

2018年高考数学总复习 统计与统计案例

第三节 统计与统计案例 考纲解读 1. 理解随机抽样的必要性和重要性。 2. 会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样方法。 3. 了解分布的意义和作用,会列频率分布表,会画出频率分布直方图、频率折线图、茎叶图,理解它们各自的特点。 4. 理解样本数据标准差的意义和作用,会计算数据标准差。 5. 能从样本的频率分布估计总体分布,会用样本的基本数字牲估计总体的基本数字特征,理解用样本估计总体的思想。 6. 会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题。 7. 会作两个有关联变量的数据的散点图,会利用散点图认识变量间的相关关系。 8. 了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程。 9. 了解常见的统计方法,并能应用这些方法解决一些实际问题。 (1)独立性检验 了解独立性检验(只要求2×2列联表)的基本思想、方法及其简单应用。 (2)回归分析 了解回归分析的基本思想、方法及其简单应用。 命题趋势探究 1. 本节内容是高考必考内容,以选择题、填空题为主。 2. 命题内容为:(1)三种抽样(以分层抽样为主);(2)频率分布表和频率分布直方图的制作、识图及运用。(1)(2)有结合趋势,考题难度中下。 3. 统计案例为新课标教材新增内容,考查考生解决实际问题的能力。 知识点精讲 一、抽样方法 三种抽样方式的对比,如表13-7所示。 类型 共同点 各自特点 相互关系 使用范围 简单随机抽样 抽样过程都是不放回抽样,每个个体被抽到的机会均等,总体容量N ,样本容量n ,每个个体被抽到的概率n P N = 从总体中随机逐个抽取 总体容量较小 系统抽样 总体均分几段,每段T 个, 第一段取a 1, 第二段取a 1+T , 第三段取a 1+2T , …… 第一段简单随机抽样 总体中的个体个数较多 分层抽样 将总体分成n 层,每层按比例抽取 每层按简单随机抽样或系统抽样 总体由差异明显的几部分组成 二、样本分析 (1)样本平均值:1 1n i i x x n ==∑。 (2)样本众数:样本数据中出现次数最多的那个数据。 (3)样本中位数:将数据按大小排列,位于最中间的数据或中间两个数据的平均数。

2020高考数学第二轮专题复习:专题二

专题二 万能答题模板——助你解题得高分 数学解答题题型解读 数学解答题是高考数学试卷中的一类重要题型,通常是高考的把关题和压轴题,具有较好的区分层次和选拔功能.目前的高考解答题已经由单纯的知识综合型转化为知识、方法和能力的综合型解答题.要求考生具有一定的创新意识和创新能力等特点,解答题综合考查运算能力、逻辑思维能力、空间想象能力和分析问题、解决问题的能力. 针对不少同学答题格式不规范,出现“会而不对,对而不全”的问题,规范每种题型的万能答题模板,按照规范的解题程序和答题格式分步解答,实现答题步骤的最优化. 万能答题模板以数学方法为载体,清晰梳理解题思路,完美展现解题程序,把所有零散的解题方法与技巧整合到不同的模块中,再把所有的题目归纳到不同的答题模板中,真正做到题题有方法,道道有模板,使学生从题海中上岸,知点通面,在高考中处于不败之地,解题得高分. 模板1 三角函数的性质问题 例1 已知函数f (x )=cos 2????x +π12,g (x )=1+1 2 sin 2x . (1)设x =x 0是函数y =f (x )图象的一条对称轴,求g (x 0)的值; (2)求函数h (x )=f (x )+g (x )的单调递增区间. 审题破题 (1)由x =x 0是y =f (x )的对称轴可得g (x 0)取到f (x )的最值;(2)将h (x )化成y =A sin(ωx +φ)的形式. 解 (1)f (x )=12? ???1+cos ????2x +π6, 因为x =x 0是函数y =f (x )图象的一条对称轴, 所以2x 0+π 6=k π (k ∈Z ), 即2x 0=k π-π 6 (k ∈Z ). 所以g (x 0)=1+12sin 2x 0=1+1 2sin ????k π-π6,k ∈Z . 当k 为偶数时,g (x 0)=1+12sin ????-π6=1-14=34. 当k 为奇数时,g (x 0)=1+12sin π6=1+14=5 4. (2)h (x )=f (x )+g (x ) =12[1+cos ????2x +π6]+1+1 2 sin 2x

2018年高考数学—不等式专题

不等式 (必修5P80A3改编)若关于x 的一元二次方程x 2-(m +1)x -m =0有两个不相等的实数根,则m 的取值范围是________. 解析 由题意知Δ=[(m +1)]2+4m >0.即m 2+6m +1>0, 解得m >-3+22或m <-3-2 2. 答案 (-∞,-3-22)∪(-3+22,+∞) (2016·全国Ⅱ卷)若x ,y 满足约束条件???x -y +1≥0, x +y -3≥0,x -3≤0, 则 z =x -2y 的最小值为 ________. 解析 画出可行域,数形结合可知目标函数的最小值在直线x =3与直线x -y +1=0的交点(3,4)处取得,代入目标函数z =x -2y 得到-5. 答案 -5 (2016·全国Ⅲ卷)设x ,y 满足约束条件???2x -y +1≥0, x -2y -1≤0,x ≤1, 则z =2x +3y -5的最小值为_____. 解析 画出不等式组表示的平面区域如图中阴影部分所示.由题意可知, 当直线y =-23x +53+z 3过点A (-1,-1)时,z 取得最小值,即z min =2×(-1)+3×(-1)-5=-10.

(2017·西安检测)已知变量x ,y 满足???2x -y ≤0, x -2y +3≥0,x ≥0, 则z =(2)2x +y 的最大值为________. 解析 作出不等式组所表示的平面区域,如图阴影部分所示.令m =2x +y ,由图象可知当直线y =-2x +m 经过点A 时,直线y =-2x +m 的纵截距最大,此时m 最大,故z 最大.由?????2x -y =0,x -2y +3=0,解得?????x =1,y =2, 即A (1,2).代入目标函数z =(2)2x +y 得,z =(2)2×1+2=4. 答案 4 (2016·北京卷)若x ,y 满足???2x -y ≤0,x +y ≤3,x ≥0, 则2x +y 的最大值为( ) A.0 B.3 C.4 D.5 解析 画出可行域,如图中阴影部分所示, 令z =2x +y ,则y =-2x +z ,当直线y =-2x +z 过点A (1,2)时,z 最大,z max =4. 答案 C (2016·山东卷)若变量x ,y 满足???x +y ≤2, 2x -3y ≤9,x ≥0, 则x 2+y 2的最大值是( )

相关文档
相关文档 最新文档