文档库 最新最全的文档下载
当前位置:文档库 › He-Ne激光器和CO2激光器工作方式简述

He-Ne激光器和CO2激光器工作方式简述

He-Ne激光器和CO2激光器工作方式简述
He-Ne激光器和CO2激光器工作方式简述

He-Ne激光器和CO2激光器工作方式简述He-Ne激光器

?特性简述

He-Ne激光器在可见波段有输出,输出功率一般仅为几个毫瓦或数十个毫瓦,线宽基本是多普勒加宽,线宽很窄,约1.5GHz,为三能级系统。当调节He-Ne激光器波长时,He-Ne 激光器能够产生偏振方向相互正交的两个纵模。

?工作方式

氦氖激光器的激光放电管内的气体在拥有一定高的电压及电流(在电场作用下气体放电),放电管中的电子就会由负极以高速向正极运动。在运动中与工作物质内的氦原子进行碰撞,电子的能量传给原子,促使原子的能量提高,基态原子跃迁到高能级的激发态。这时如有基态氖原子与两能级上的氦原子相碰,氦原子的能量传递给氖原子,并从基态跃迁到激发的能级状态,而氦原子回到了基态上。因为放电管上所加的电压,电流连续不断供给,原子不断地发生碰撞。这就产生了激光必须具备的基本条件。在发生受激辐射时,分别发出波长3.39μm,632.8nm,1.53μm三种激光。

Fig 1. He-Ne激光器结构图

激光器

CO

2

?特性简述

CO2激光器输出为10.6μm的远红外激光,输出功率很大,转换效率较高,可连续工作或脉冲工作,放电管比He-Ne激光器粗。

?工作方式

在CO2 激光器的放电管内充有CO2 、N2 、He等混合气体,其配比和总气压可以在一定范围内变化(一般比例为CO2:N2 :He= 1:0. 5:2. 5,总气压为1066. 58Pa)。

CO2激光器是将上述混合气体放在光振荡器中,利用CO2 分子的振动和转动能级间的跃迁来产生激光的,激光波长为10. 6um。利用气体放电泵浦方法向CO2 气体分子注入能量,使放电管中CO2 分子达到反转分布状态:将直流电压的两输出端分别接到放电管的两电极上,当不加电压或电压很低时,两电极间的气体完全绝缘,内阻为无穷大,没有电流流过;随着电压的升高,气体中开始有带电粒子移动,气体的内阻开始减小,当电压达到某一电压峰值时,内阻急剧减小,电流迅速增加、气体被击穿、这叫做点火电压。

放电管中的气体被击穿并放电后,电流增长、气体中载流子增加、激光放电管的内阻下降、这又进一步引起电流的增加,这样经过反复的进行,放电管呈现负阻效应,为了使放电能够稳定地工作在放电管电流一电压特性曲线的某一值上,在放电管的供电电路中采取了限流措施。放电管放电时,在混合气体中,N2 分子与电子碰撞、获得的电子能量而被激发,

而在N2分子与CO2分子碰撞时又把它从电子获得的能量转移给CO2 分子,经过多次能量转换,使CO2 分子被激活,更有利于激光的产生;管中的H2 气体有冷却作用,可以有效地阻止CO2 气体温度上升,同时还可以使激光下能级减少,提高激光的输出效率。

Fig 1. CO2激光器结构图

激光器激励原理

激光器激励原理 —固体激光器 1311310黄汉青 1311343张旭日辅导老师:

摘要:固体激光器目前是用最广泛的激光器之一,它有着一些非常突出的优点。介绍固体激光器的工作原理及应用,更能够加深对其的了解。本论文先从基本原理和结构介绍固体激光器,接着介绍一些典型的固体激光器,最后介绍其在军事国防、工业技术、医疗美容等三个方面的应用及未来的发展方向。 关键词:固体激光器基本原理基本结构应用 1引用 世界上第一台激光器—红宝石激光器(固体激光器)于1960年7月诞生了,距今已有整整五十年了。在这五十年时间里固体激光的发展与应用研究有了极大的飞跃,并且对人类社会产生了巨大的影响。 固体激光器从其诞生开始至今,一直是备受关注。其输出能量大,峰值功率高,结构紧凑牢固耐用,因此在各方面都得到了广泛的用途,其价值不言而喻。正是由于这些突出的特点,其在工业、国防、医疗、科研等方面得到了广泛的应用,给我们的现实生活带了许多便利。 未来的固体激光器将朝着以下几个方向发展: a)高功率及高能量 b)超短脉冲激光 c)高便携性 d)低成本高质量 现在,激光应用已经遍及光学、医学、原子能、天文、地理、海洋等领域,它标志着新技术革命的发展。诚然,如果将激光发展的历史与电子学及航空发展的历史相比,你不得不意识到现在还是激光发展的早期阶段,更令人激动的美好前景将要来到。 2激光与激光器

2.1激光 2.1.1激光(LASER) 激光的英文名——LASER,是英语词组Light Amplification by Stimulated Emission of Radiation(受激辐射的光放大)的缩写[1]。2.1.2产生激光的条件 产生激光有三个必要的条件[2]: 1)有提供放大作用的增益介质作为激光工作物质,其激活粒子(原子、分子或离子)有适合于产生受激辐射的能级结构; 2)有外界激励源,将下能级的粒子抽运到上能级,使激光上下能级之间产生粒子数反转; 3)有光学谐振腔,增长激活介质的工作长度,控制光束的传播方向,选择被放大的受激辐射光频率以提高单色性。 3固体激光器 3.1工作原理和基本结构 在固体激光器中,由泵浦系统辐射的光能,经过聚焦腔,使在固体工作物质中的激活粒子能够有效的吸收光能,让工作物质中形成粒子数反转,通过谐振腔,从而输出激光。 如图1所示,固体激光器的基本结构(有部分结构没有画出)。固体激光器主要由工作物质、泵浦系统、聚光系统、光学谐振腔及冷却与滤光系统等五个部分组成[4]。

光纤激光器原理

光纤激光器原理 光纤激光器主要由泵浦源,耦合器,掺稀土元素光纤,谐振腔等部件构成。泵浦源由一个或多个大功率激光二极管阵列构成,其发出的泵浦光经特殊的泵浦结构耦合入作为增益介质的掺稀土元素光纤,泵浦波长上的光子被掺杂光纤介质吸收,形成粒子数反转,受激发射的光波经谐振腔镜的反馈和振荡形成激光输出。 光纤激光器特点 光纤激光器以光纤作为波导介质,耦合效率高,易形成高功率密度,散热效果好,无需庞大的制冷系统,具有高转换效率,低阈值, 光纤激光器原理图1: 峰值功率:脉冲激光器,顾名思义,它输出的激光是一个一个脉

冲,每单个脉冲有一个持续时间,比如说10 ns(纳秒),一般称作单个脉冲宽度,或单个脉冲持续时间,我们用t 表示。这种激光器可以发出一连串脉冲,比如,1 秒钟发出10 个脉冲,或者有的就发出一个脉冲。这时,我们就说脉冲重复(频)率前者为10,后者为1,那么,1 秒钟发出10 个脉冲,它的脉冲重复周期为0.1 秒,而1 秒钟发出1 个脉冲,那么,它的脉冲重复周期为1 秒,我们用T 表示这个脉冲重复周期。 如果单个脉冲的能量为E,那么E/T 称作脉冲激光器的平均功率,这是在一个周期内的平均值。例如, E = 50 mJ(毫焦),T = 0.1 秒,那么,平均功率P平均= 50 mJ/0.1 s = 500 mW。 如果用 E 除以t,即有激光输出的这段时间内的功率,一般称作峰值功率(peak power),例如,在前面的例子中E = 50 mJ, t = 10 ns, P峰值= 50 ×10^(-3)/[10×10^(-9)] = 5×10^6 W = 5 MW(兆瓦),由于脉冲宽度t 很小,它的峰值功率很大。 脉冲能量E=1mj 脉宽t=100ns 重复频率20-80K 脉冲持续时间T=1s/2k=?秒 平均功率P=E/T=0.001J/0.00005s=20W P峰值功率=E/t 激光的分类: 激光按波段分,可分为可见光、红外、紫外、X光、多波长可调谐,目前工业用红外及紫外激光。例如CO2激光器10.64um红外

CO2激光器原理及应用

目录 摘要 (1) 关键词 (1) Abstract (1) Keywords (1) 1引言 (2) 2激光 (2) 2.1激光产生的三个条件 (3) 2.2激光的特点 (3) 2.3激光器 (3) 3 CO2激光器的原理 (5) 3.1 CO2激光器的基本结构 (5) 3.2 CO2激光器基本工作原理 (7) 3.3 CO2激光器的优缺点 (8) 4 CO2激光器的应用 (9) 4.1军事上的应用 (9) 4.2医疗上的应用 (10) 4.3工业上的应用 (12) 5 CO2激光器的研究现状与发展前景 (14) 5.1 CO2激光器的研究现状 (14) 5.2 CO2激光器的发展前景 (15) 6 结束语 (17) 参考文献 (19) 致谢 (20)

摘要:本文从引言出发介绍了CO2激光技术的基本情况,简单介绍了激光和激光器的一些特点,重点介绍了气体激光器中的CO2激光器的相关应用,目前CO2激光器是用最广泛的激光器之一,它有着一些非常突出的高功率、高质量等优点。论文首先介绍了应用型CO2激光器的基本结构和工作原理,着重介绍了应用型CO2激光器在军事、医疗和工业三个主要领域的应用,最后介绍应用型CO2激光器的研究前景和现状。通过这些介绍使得人们能够加深对CO2激光器的了解和认识。 关键词: CO2激光器;基本原理;基本结构;应用; Abstract: This departure from the introduction of CO2 laser technology, introduced the basic situation, briefly introduced some of the characteristics of laser and laser to highlight the CO 2gas laser in laser-related applications, the current CO 2 laser was one of the most extensive laser, it had some very prominent high-power, high quality and so on. Paper introduced the application of CO 2 laser-type basic structure and working principle, focusing on the application type CO 2 laser in the military, medical and industrial application of the three main areas, Finally, applied research prospects for CO 2 laser and status. Through these presentations allowed people to deepen their knowledge and understanding of CO s lasers. Keywords:CO2Laser Basic Principle Basic Structure Application

半导体激光器工作原理及主要参数

半导体激光器工作原理及主要参数 OFweek激光网讯:半导体激光器又称为激光二极管(LD,Laser Diode),是采用半导体材料作为工作物质而产生受激发射的一类激光器。常用材料有砷化镓(GaAs)、硫化镉(CdS)、磷化铟(InP)、硫化锌(ZnS)。激励方式有电注入、电子束激励和光泵浦激励三种形式。半导体激光器件,一般可分为同质结、单异质结、双异质结。同质结激光器和单异质结激光器室温时多为脉冲器件,而双异质结激光器室温时可实现连续工作。半导体激光器的优点在于体积小、重量轻、运转可靠、能耗低、效率高、寿命长、高速调制,因此半导体激光器在激光通信、光存储、光陀螺、激光打印、激光医疗、激光测距、激光雷达、自动控制、检测仪器等领域得到了广泛的应用。 半导体激光器工作原理是:通过一定的激励方式,在半导体物质的能带(导带与价带)之间,或者半导体物质的能带与杂质(受主或施主)能级之间,实现非平衡载流子的粒子数反转,当处于粒子数反转状态的大量电子与空穴复合时便产生受激发射作用。半导体激光器的激励方式主要有三种:电注入式、电子束激励式和光泵浦激励式。电注入式半导体激光器一般是由GaAS(砷化镓)、InAS(砷化铟)、Insb(锑化铟)等材料制成的半导体面结型二极管,沿正向偏压注入电流进行激励,在结平面区域产生受激发射。电子束激励式半导体激光器一般用N型或者P型半导体单晶(PbS、CdS、ZhO等)作为工作物质,通过由外 部注入高能电子束进行激励。光泵浦激励式半导体激光器一般用N型或P型半导体单晶(GaAS、InAs、InSb等)作为工作物质,以其它激光器发出的激光作光泵激励。 目前在半导体激光器件中,性能较好、应用较广的是:具有双异质结构的电注入式GaAs 二极管半导体激光器。 半导体光电器件的工作波长与半导体材料的种类有关。半导体材料中存在着导带和价带,导带上面可以让电子自由运动,而价带下面可以让空穴自由运动,导带和价带之间隔着一条禁带,当电子吸收了光的能量从价带跳跃到导带中去时就把光的能量变成了电,而带有电能的电子从导带跳回价带,又可以把电的能量变成光,这时材料禁带的宽度就决定了光电器件的工作波长。 小功率半导体激光器(信息型激光器),主要用于信息技术领域,例如用于光纤通信及光交换系统的分布反馈和动态单模激光器(DFB-LD)、窄线宽可调谐激光器、用于光盘等信息处理领域的可见光波长激光器(405nm、532nm、635nm、650nm、670nm)。这些 器件的特征是:单频窄线宽、高速率、可调谐、短波长、光电单片集成化等。 大功率半导体激光器(功率型激光器),主要用于泵浦源、激光加工系统、印刷行业、生物医疗等领域。 半导体激光器主要参数: 波长nm:激光器工作波长,例如405nm、532nm、635nm、650nm、670nm、690nm、780nm、810nm、860nm、980nm。 阈值电流Ith:激光二极管开始产生激光振荡的电流,对小功率激光器而言其值约在数 十毫安。

常用激光器简介

几种常用激光器的概述 一、CO2激光器 1、背景 气体激光技术自61年问世以来,发展极为迅速,受到许多国家的极大重视。特别是近两年,以二氧化碳为主体工作物质的分子气体激光器的进展更为神速,已成为气体激光器中最有发展前途的器件。 二氧化碳分子气体激光器不仅工作波长(10.6微米)在大气“窗口”,而且它正向连续波大功率和高效率器件迈进。1961年,Pola-nyi指出了分子的受激振动能级之间获得粒子反转的可能性。在1964年1月美国贝尔电话实验室的C.K.N.Pate 研制出第一支二氧化碳分子气体激光器,输出功率仅为1毫瓦,其效率为0.01%。不到两年,现在该类器件的连续波输出功率高达1200瓦,其效率为17 %,电源激励脉冲输出功率为825瓦,采用Q开关技术已获得50千瓦的脉冲功率输出。最近,有人认为,进一步提高现有的工艺水平,近期可以达到几千瓦的连续波功率输出和30~40% 的效率。 2、工作原理 CO2激光器中,主要的工作物质由CO?,氮气,氦气三种气体组成。其中CO?是产生激光辐射的气体、氮气及氦气为辅助性气体。加入其中的氦,可以加速010能级热弛预过程,因此有利于激光能级100及020的抽空。氮气加入主要在CO?激光器中起能量传递作用,为CO?激光上能级粒子数的积累与大功率高效率的激光输出起到强有力的作用。CO?分子激光跃迁能级图CO?激光器的激发条件:放电管中,通常输入几十mA或几百mA的直流电流。放电时,放电管中的混合气体内的氮分子由于受到电子的撞击而被激发起来。这时受到激发的氮分子便和CO?分子发生碰撞,N2分子把自己的能量传递给CO2分子,CO?分子从低能级跃迁到高能级上形成粒子数反转发出激光。 3、特点 二氧化碳分子气体激光器不但具有一般气体激光器的高度相干性和频率稳定性的特点,而且还具有另外三个独有的特点: (1)工作波长处于大气“窗口”,可用于多路远距离通讯和红外雷达。 (2)大功率和高效率( 目前,氩离子激光器最高连续波输出功率为100瓦,其效率为0.17 %,原子激光器的连续波输出功率一般为毫瓦极,其效率约为0.1%,而二氧化碳分子激光器连续波输出功率高达1200瓦,其效率为17%)。 (3)结构简单,使用一般工业气体,操作简单,价格低廉。由此可见,随着研究工作的进展、新技术的使用,输出功率和效率会不断提高,寿命也会不断增长,将会出现一系列新颖的应用。例如大气和宇宙通讯、相干探测和导航、超外

2020年常用激光器简介

作者:非成败 作品编号:92032155GZ5702241547853215475102 时间:2020.12.13 几种常用激光器的概述 一、CO2激光器 1、背景 气体激光技术自61年问世以来,发展极为迅速,受到许多国家的极大重视。特别是近两年,以二氧化碳为主体工作物质的分子气体激光器的进展更为神速,已成为气体激光器中最有发展前途的器件。 二氧化碳分子气体激光器不仅工作波长(10.6微米)在大气“窗口”,而且它正向连续波大功率和高效率器件迈进。1961年,Pola-nyi指出了分子的受激振动能级之间获得粒子反转的可能性。在1964年1月美国贝尔电话实验室的C.K.N.Pate 研制出第一支二氧化碳分子气体激光器,输出功率仅为1毫瓦,其效率为0.01%。不到两年,现在该类器件的连续波输出功率高达1200瓦,其效率为17 %,电源激励脉冲输出功率为825瓦,采用Q开关技术已获得50千瓦的脉冲功率输出。最近,有人认为,进一步提高现有的工艺水平,近期可以达到几千瓦的连续波功率输出和30~40% 的效率。 2、工作原理 CO2激光器中,主要的工作物质由CO?,氮气,氦气三种气体组成。其中CO?是产生激光辐射的气体、氮气及氦气为辅助性气体。加入其中的氦,可以加速010能级热弛预过程,因此有利于激光能级100及020的抽空。氮气加入主要在CO?激光器中起能量传递作用,为CO?激光上能级粒子数的积累与大功率高效率的激光输出起到强有力的作用。CO?分子激光跃迁能级图CO?激光器的激发条件:放电管中,通常输入几十mA或几百mA的直流电流。放电时,放电管中的混合气体内的氮分子由于受到电子的撞击而被激发起来。这时受到激发的氮分子便和CO?分子发生碰撞,N2分子把自己的能量传递给CO2分子,CO?分子从低能级跃迁到高能级上形成粒子数反转发出激光。 3、特点 二氧化碳分子气体激光器不但具有一般气体激光器的高度相干性和频率稳定性的特点,而且还具有另外三个独有的特点: (1)工作波长处于大气“窗口”,可用于多路远距离通讯和红外雷达。 (2)大功率和高效率( 目前,氩离子激光器最高连续波输出功率为100瓦,

激光原理复习题重点难点

《激光原理》复习 第一部分知识点 第一章激光的基本原理 1、自发辐射受激辐射受激吸收的概念及相互关系 2、激光器的主要组成部分有哪些?各个部分的基本作用。激光器有哪些类型?如何对激光器进行分类。 3、什么是光波模式和光子状态?光波模式、光子状态和光子的相格空间是同一概念吗?何谓光子的简并度? 4、如何理解光的相干性?何谓相干时间,相干长度?如何理解激光的空间相干性与方向性,如何理解激光的时间相干性?如何理解激光的相干光强? 5、EINSTEIN系数和EINSTEIN关系的物理意义是什么?如何推导出EINSTEIN 关系? 4、产生激光的必要条件是什么?热平衡时粒子数的分布规律是什么? 5、什么是粒子数反转,如何实现粒子数反转? 6、如何定义激光增益,什么是小信号增益?什么是增益饱和? 7、什么是自激振荡?产生激光振荡的基本条件是什么? 8、如何理解激光横模、纵模? 第二章开放式光腔与高斯光束 1、描述激光谐振腔和激光镜片的类型?什么是谐振腔的谐振条件? 2、如何计算纵模的频率、纵模间隔? 3、如何理解无源谐振腔的损耗和Q值?在激光谐振腔中有哪些损耗因素?什么是腔的菲涅耳数,它与腔的损耗有什么关系? 4、写出(1)光束在自由空间的传播;(2)薄透镜变换;(3)凹面镜反射 5、什么是激光谐振腔的稳定性条件? 6、什么是自再现模,自再现模是如何形成的? 7、画出圆形镜谐振腔和方形镜谐振腔前几个模式的光场分布图,并说明意义 8、基模高斯光束的主要参量:束腰光斑的大小,束腰光斑的位置,镜面上光斑的大小?任意位置激光光斑的大小?等相位面曲率半径,光束的远场发散角,模体积 9、如何理解一般稳定球面腔与共焦腔的等价性?如何计算一般稳定球面腔中高斯光束的特征 10、高斯光束的特征参数?q参数的定义? 11、如何用ABCD方法来变换高斯光束? 12、非稳定腔与稳定腔的区别是什么?判断哪些是非稳定腔。 第三章电磁场与物质的共振相互作用 1、什么是谱线加宽?有哪些加宽的类型,它们的特点是什么?如何定义线宽和线型函数?什么是均匀加宽和非均匀加宽?它们各自的线型函数是什么? 2、自然加宽、碰撞加宽和多普勒加宽的线宽与哪些因素有关? 3、光学跃迁的速率方程,并考虑连续谱和单色谱光场与物质的作用和工作物质的线型函数。 4、画出激光三能级和四能级系统图,描述相关能级粒子的激发和去激发过程。建立相应能级系统的速率方程。 5、说明均匀加宽和非均匀加宽工作物质中增益饱和的机理。 6、描述非均匀加宽工作物质中增益饱和的“烧孔效应”,并说明它们的原理。

激光的原理及激光器分类

激光器的原理及分类 一、基础原理 量子理论认为,所有物质都是由各种微观”粒子”组成,如分子,原子,质子,中子,电子等。在微观世界里,各种粒子都有其固有的能级结构。当一个粒子从高能级掉到低能级时,根据能量守恒定律,它要把两个能级相差部分的能量释放出来,通常这个能量以光和热两种形式释放出来。 二、自发辐射、受激辐射 1、自发辐射 普通常见光源的发光(如电灯、火焰、太阳等地发光)是由于物质在受到外来能量(如光能、电能、热能等)作用时,原子中的电子就会吸收外来能量而从低能级跃迁到高能级,即原子被激发。激发的过程是一个“受激吸收”过程。但是处在高能级(E2)的电子寿命很短(一般为10-8~10-9秒),在没有外界作用下会自发地向低能级(E1)跃迁,跃迁时将产生光(电磁波)辐射。辐射光子能量=E2-E1。过程各自独立、互补关联,所有辐射的光在发射方向上是无规律的

射向四面八方,并且频率不同、偏振状态和相位不同。 2、受激辐射 在原子中也存在这样一些特定高能级,一旦电子被激发到这个高能级之上,却由于不满足跃迁的条件,发生跃迁的几率很低,电子能够在高能级上的时间很长,就所谓的亚稳定状态。但在能在外界光场的照射下发生往下跃迁,并且向下跃迁时释放出一个与射入光场相同的光子,在同一个方向、有同一个波长。这就是受激辐射,激光正是利用这一原理激发出来。 二、粒子数反转 通过受激辐射出来的光子,不仅可以引起其他粒子受激辐射,也可以引起受激吸收。只有在处于高能级的原子数量大于处于低能级原子数时,所产生的受激辐射才能大于受激吸收。但是在自然条件下,原子都是都处于稳定的基态,只能通过技术手段将大量的原子都调整到高能级的状态,才能有多余的辐射向外产生。这个技术叫粒子数反转。

激光原理及应用实验讲义 -4个实验

实验一CO2激光器及激光扫描实验 一、实验目的 1、了解CO2激光器的工作原理及典型结构; 2、掌握CO2激光器的输出特性; 3、掌握CO2激光器的使用方法; 4、掌握激光扫描及F-Theta镜的工作原理。 二、实验器材 CO2激光管1支,激光电源1台,功率计1台,水冷系统1套,扫描系统1套,控制器1套,计算机1台 三、实验原理 1、CO2激光器工作原理 CO2激光器的工作气体是CO2、N2和He的混合气体。波长9-11um间,处于大气传输窗口(吸收小,2-2.5um;3-5um;8-14um)。利用同一电子态的不同振动态(对称、弯曲和反对称振动)的转动能级间的跃迁。 图1 CO2激光器典型结构 CO2激光器由工作气体、放电管、谐振腔和电源等组成。放电管大多采用硬质玻璃(如GG)制成,放电管的内径和长度变化范围很大。为了防止内部气压和气压比的变化而影响17 器件寿命,放电管外加有贮气管。为了防止发热而降低输出功率,加有水冷装置。激光器的 输出功率随着放电管长度加长而增大。 CO2激光器中与激光跃迁有关的能级是由CO2分子和N2分子的电子基态的低振动能级构成的。CO2振动模型如图1所示。 激光跃迁主要发生在0001→1000和0001→0200两个过程,分别输出10.6um和9.6um。激光低能级100和020都可以首先通过白发辐射到达0l0,再次通过自发辐射到达基态000,但由于自发辐射的几率不大,远不如碰撞驰豫过程快,其主要的驰豫过程如图2。

分子反对称振动 CO 2 分子振动模型 图1 CO 2 图2 CO2分子能级跃迁过程 其中前两个过程进行得很快,而后两个过程进行得很慢,故分子堆积在010能级上,形成瓶颈效应,而使粒子数反转减小,特别是温度升高时,由热激发而使010能级上分子增加,造成粒子数反转的严重下降,甚至停振,最后一个式子中的M代表辅助气体。如果选择恰当的气体(常见的如H2O和H2)作为辅助气体,可促进010能级上分子的弛豫过程。另外由于010能级上的分子扩散到管壁上会引起消激发,这就使器件的管壁不能太粗。另外,为了增加气体的热导率,通过在气体中加入He气,可实现对放电管的冷却,同样使气体流动,都是降低温的好办法。 气体中一般还需要加入N2气,利用其v=1能级与CO2分子的001能级相差较小,可以实现共振转移,选择性激励co2分子进入001态,特别由于N2气的v=1态不能通过自发

CO2激光器基本原理.

CO2 激光器基本原理 CO2 激光器基本原理、机构介绍 CO2激光器效率高,不造成工作介质损害,发射出10.6μm波长的不可见激光,是一种比较理想的激光器。按气体的工作形式可分封闭式及循环式,按激励方式分电激励,化学激励,热激励,光激励与核激励等。在医疗中使用的CO2 激光器几乎百分之百是电激励。 CO2激光器的工作原理:与其它分子激光器一样,CO2激光器工作原理其受激发射过程也较复杂。分子有三种不同的运动,即分子里电子的运动,其运动决定了分子的电子能态;二是分子里的原子振动,即分子里原子围绕其平衡位置不停地作周期性振动——并决定于分子的振动能态;三是分子转动,即分子为一整体在空间连续地旋转,分子的这种运动决定了分子的转动能态。分子运动极其复杂,因而能级也很复杂。 CO2分子为线性对称分子,两个氧原子分别在碳原子的两侧,所表示的是原子的平衡位置。分子里的各原子始终运动着,要绕其平衡位置不停地振动。根据分子振动理论,CO2有三种不同的振动方式:①二个氧原子沿分子轴,向相反方向振动,即两个氧在振动中同时达到振动的最大值和平衡值,而此时分子中的碳原子静止不动,因而其振动被叫做对称振动。②两个氧原子在垂直于分子轴的方向振动,且振动方向相同,而碳原子则向相反的方向垂直于分子轴振动。由于三个原子的振动是同步的,又称为变形振动。③三个原子沿对称轴振动,其中碳原子的振动方向与两个氧原子相反,又叫反对称振动能。在这三种不同的振动方式中,确定了有不同组别的能级。 CO2激光的激发过程:CO2激光器中,主要的工作物质由CO2,氮气,氦气三种气体组成。其中CO2是产生激光辐射的气体、氮气及氦气为辅助性气体。加入其中的氦,可以加速010能级热弛预过程,因此有利于激光能级100及020 的抽空。氮气加入主要在CO2激光器中起能量传递作用,为CO2激光上能级粒子数的积累与大功率高效率的激光输出起到强有力的作用。 CO2分子激光跃迁能级图 CO2激光器的激发条件:放电管中,通常输入几十mA或几百mA的直流电流。放电时,放电管中的混合气体内的氮分子由于受到电子的撞击而被激发起来。这

详解二氧化碳激光管的三个组成部分

详解二氧化碳激光管的三个组成部分 本文章出自:https://www.wendangku.net/doc/df13803402.html, 作者:陈凌志公司:https://www.wendangku.net/doc/df13803402.html, CO2激光打标机,激光管的结构主要由硬质玻璃、谐振腔、电极三部分组成。下面主要来介绍一个三部分的详细结构及原理, 第一部分:硬质玻璃部分;本部件由GG17料烧制成放电管、水冷套、储气套和回气管而组成。封离式CO2激光器通常为三层套管结构。最里面的是放电管,中间是水净套,最外一层是储气套,回气管是用于连通放电管和储气管。 第二部分:谐振腔部分:本部件由全反镜和输出反射镜组成。谐振腔的全反镜一般以光学玻璃为基底,表面渡金膜,金膜反射镜在10.6um附近的反射率达98%以上;谐振腔的输出反射镜一般采用能透射10.6um辐射的红外线材料锗(Ge)为基底,在上面渡上多层介质膜而制成。 第三部分:电极部分:CO2激光器一般采用冷阴极,形状为圆筒形,阴极材料选用对激光器的寿命有很大的影响,对阴极材料的基本要求是:溅射率低,气体吸收率小, 对于co2激光打标机而言,激光管的质量和性能直接影响到co2激光打标机的工作效率,这也是co2激光打标机最重要的部分之一。一般co2激光打标机激光器常用硬质玻璃制成,一般采用层套筒式结构。最里面一层是放电管,第2层为水冷套管,最外一层为储气管。二氧化碳激光器放电管直径比He-Ne激光管粗。放电管的粗细一般来说对输出功率没有影响,主要考虑到光斑大小所引起的衍射效应,应根据管长而定。管长的粗一点,管短的细一点。放电管长度与输出功率成正比。在一定的长度范围内,每米放电管长度输出的功率随总长度而增加。加水冷套的目的是冷却工作气体,使输出功率稳定。 放电管在两端都与储气管连接,即储气管的一端有一小孔与放电管相通,另一端经过螺旋形回气管与放电管相通,这样就可使气体在放电管中与储气管中循环流动,放电管中的气体随时交换。被广泛适用于亚克力、塑料产品等非金属打标、雕刻;并且发展到对电镀低碳钢打标的能力。CO2激光器还被用在自动化系统中对电子仪器的柔性电路板和膜片的聚酰亚胺和聚酯薄板。所以了解激光CO2激光打标机,激光管的结构后才能进行进一步的了解。

固体激光器原理及应用

编号 赣南师范学院学士学位论文固体激光器原理及应用 教学学院物理与电子信息学院 届别 2010届 专业电子科学与技术 学号 060803013 姓名丁志鹏 指导老师邹万芳 完成日期 2010.5.10

目录 摘要 (1) 关键词 (1) Abstract (1) Key words (1) 1引用 (2) 2激光与激光器 (2) 2.1激光 (2) 2.2激光器 (3) 3固体激光器 (4) 3.1工作原理和基本结构 (4) 3.2典型的固体激光器 (8) 3.3典型固体激光器的比较 (11) 3.4固体激光器的优缺点 (12) 4固体激光器的应用 (13) 4.1军事国防 (13) 4.2工业制造 (15) 4.3医疗美容 (17) 5结束语 (17) 参考文献 (19)

摘要:固体激光器目前是用最广泛的激光器之一,它有着一些非常突出的优点。介绍固体激光器的工作原理及应用,更能够加深对其的了解。本论文先从基本原理和结构介绍固体激光器,接着介绍一些典型的固体激光器,最后介绍其在军事国防、工业技术、医疗美容等三个方面的应用及未来的发展方向。 关键词:固体激光器基本原理基本结构应用 Abstract:Solid-state laser is currently one of the most extensive laser,it has some very obvious advantages.The working principle of solid-state lasers and applications were described in the paper and it can enhance the understanding.In this paper, starting with the basic principles and structure of the introduced solid-state laser,and then some typical solid-state lasers and a presentation on its military defense,industrial technology,medical and cosmetic applications in three areas and future development direction were introduced. Key words:Solid-state Laser Basic Principle Basic Structure Application

二氧化碳激光器的工作原理及发光过程

二氧化碳激光器简介 二氧化碳激光器,可称“隐身人”,因为它发出的激光波长为10.6 微米,“身”处红外区,肉眼不能觉察,它的工作方式有连续、脉冲两种。连续方式产生的激光功率可达20 千瓦以上。脉冲方式产生波长10.6 微米的激光也是最强大的一种激光。 二氧化碳激光器的工作原理 二氧化碳分子为线性对称分子,两个氧原子分别在碳原子的两侧,所表示的是原子的平衡位置。分子里的各原子始终运动着,要绕其平衡位置不停地振动。 根据分子振动理论,二氧化碳有三种不同的振动方式: ①二个氧原子沿分子轴,向相反方向振动,即两个氧在振动中同时达到振动的最大值和平衡值,而此时分子中的碳原子静止不动,因而其振动被叫做对称振动。 ②两个氧原子在垂直于分子轴的方向振动,且振动方向相同,而碳原子则向相反的方向垂直于分子轴振动。由于三个原子的振动是同步的,又称为变形振动。 ③三个原子沿对称轴振动,其中碳原子的振动方向与两个氧原子相反,又叫反对称振动能。在这三种不同的振动方式中,确定了有不同组别的能级。 二氧化碳激光器的发光过程 二氧化碳激光器中,主要的工作物质由二氧化碳,氮气,氦气三种气体组成。 其中二氧化碳是产生激光辐射的气体、氮气及氦气为辅助性气体。加入其中的氦,可以加速010能级热弛预过程,因此有利于激光能级100及020的抽空。氮气加入主要在二氧化碳激光器中起能量传递作用,为二氧化碳激光上能级粒子数的积累与大功率高效率的激光输出起到强有力的作用。二氧化碳分子激光跃迁能级图二氧化碳激光器的激发条件:放电管中,通常输入几十mA或几百mA的直流电流。放电时,放电管中的混合气体内的氮分子

由于受到电子的撞击而被激发起来。这时受到激发的氮分子便和二氧化碳分子发生碰撞,N2分子把自己的能量传递给CO2分子,二氧化碳分子从低能级跃迁到高能级上形成粒子数反转发出激光。

常用激光器简介

几种常用激光器的概述 一、CO 激光器 2 1、背景 气体激光技术自61年问世以来,发展极为迅速,受到许多国家的极大重视。特别是近两年,以二氧化碳为主体工作物质的分子气体激光器的进展更为神速,已成为气体激光器中最有发展前途的器件。 二氧化碳分子气体激光器不仅工作波长(10.6微米)在大气“窗口”,而且它正向连续波大功率和高效率器件迈进。1961年,Pola-nyi指出了分子的受激振动能级之间获得粒子反转的可能性。在1964年1月美国贝尔电话实验室的C.K.N.Pate研制出第一支二氧化碳分子气体激光器,输出功率仅为1毫瓦,其效率为0.01%。不到两年,现在该类器件的连续波输出功率高达1200瓦,其效率为17 %,电源激励脉冲输出功率为825瓦,采用Q开关技术已获得50千瓦的脉冲功率输出。最近,有人认为,进一步提高现有的工艺水平,近期可以达到几千瓦的连续波功率输出和30~40% 的效率。 2、工作原理 CO2激光器中,主要的工作物质由CO?,氮气,氦气三种气体组成。其中CO?是产生激光辐射的气体、氮气及氦气为辅助性气体。加入其中的氦,可以加速010能级热弛预过程,因此有利于激光能级100及020的抽空。氮气加入主要在CO?激光器中起能量传递作用,为CO?激光上能级粒子数的积累与大功率高效率的激光输出起到强有力的作用。CO?分子激光跃迁能级图CO?激光器的激发条件:放电管中,通常输入几十mA或几百mA的直流电流。放电时,放电管中的混合气体内的氮分子由于受到电子的撞击而被激发起来。这时受到激

发的氮分子便和CO?分子发生碰撞,N2分子把自己的能量传递给CO2分子,CO?分子从低能级跃迁到高能级上形成粒子数反转发出激光。 3、特点 二氧化碳分子气体激光器不但具有一般气体激光器的高度相干性和频率稳定性的特点,而且还具有另外三个独有的特点: (1)工作波长处于大气“窗口”,可用于多路远距离通讯和红外雷达。 (2)大功率和高效率( 目前,氩离子激光器最高连续波输出功率为100瓦,其效率为0.17 %,原子激光器的连续波输出功率一般为毫瓦极,其效率约为0.1%,而二氧化碳分子激光器连续波输出功率高达1200瓦,其效率为17%)。 (3)结构简单,使用一般工业气体,操作简单,价格低廉。由此可见,随着研究工作的进展、新技术的使用,输出功率和效率会不断提高,寿命也会不断增长,将会出现一系列新颖的应用。例如大气和宇宙通讯、相干探测和导航、超外差技术和红外技术等。 4、应用 二氧化碳分子激光器以其独有的特点获得广泛的应用,现就某些方面的应用介绍如下: 1、热效应的应用 可以毫不困难地把激光器的射束直径聚成100微米。在此情况下。300瓦的功率就相当于107瓦/厘米2数量级的能量密度,此值已超过太阳光的能量密度,能达到极高的温度。例如Garver公司研制的800 瓦二氧化碳激光器在2秒钟之内就能烧穿4寸厚的耐火砖。因而,可以想象这些分子激光器可以用于解决高温材料的焊接、融熔和钻孔。例如6200型二氧化碳激光器连续波输出10瓦,可用

激光器的工作原理及应用

激光器 一、固体激光器。 1.Nd:YAG 图1 固体激光器Nd:YAG 的组成图 图2固体激光器Nd:YAG 的工作原理图

图3 激光腔的构造 b. Nd:YAG激光的光学特性 图4 Nd:YAG激光的光学特性 图5 Nd:YAG激光脉冲的相关参数

图6 激光聚焦的光学特性(聚焦一) 图7 激光聚焦的光学特性(聚焦二) 二、DFB(Distributed Feedback Laser):分布式反馈激光器,属于侧面发射的激光器。 其不同之处是内置了布拉格光栅(Bragg Grating),属于侧面发射的半导体激光器。DFB激光器主要以半导体材料为介质,包括锑化镓(GaSb)、砷化镓(GaAs)、磷化铟(InP)、硫化锌(ZnS)等。DFB激光器最大特点是具有非常好的单色性(即光谱纯度),它的线宽普遍可以做到1MHz以内,以及具有非常高的边模抑制比(SMSR),目前可高达40-50dB以上。

优点:DFB激光器是在FP激光器的基础上采用光栅虑光器件使器件只有一 个纵模输出,此类器件的特点:输出光功率大、发散角较小、光谱极窄、调制速率高,适合于长距离通信。多用在1550nm波长上,速率为2.5G以上。 DFB芯片设计:芯片分为P极和N极,当注入p-n结的电流较低时,只有自发辐射产生,随电流值的增大增益也增大,达阈值电流时,p-n结产生激光。 DFB激光器有以下性能参数: 工作波长:激光器发出光谱的中心波长。 边模抑制比:激光器工作主模与最大边模的功率比。 -20dB光谱宽度:由激光器输出光谱的最高点降低20dB处光谱宽度。 阈值电流:当器件的工作电流超过阈值电流时激光器发出相干性很好的激光。 输出光功率:激光器输出端口发出的光功率。 三、FP激光器 FP激光器是以FP腔为谐振腔,发出多纵模相干光的半导体发光器件。这类器件的特点:输出光功率大、发散角较小、光谱较窄、调制速率高,适合于较长距离通信。 FP激光器有以下性能参数: 工作波长:激光器发出光谱的中心波长。 光谱宽度:多纵模激光器的均方根谱宽。 阈值电流:当器件的工作电流超过阈值电流时激光器发出相干性很好的激光。 输出光功率:激光器输出端口发出的光功率。 光接入网络是由OLT(Optical Line Terminal,光线路终端)和ONU(Optical Network Unit , 光网络单元)以及ODN(Optical Distribution Network , 光分配网络)三部分组成;其中OLT和ONU是光接入网络的核心部件。PON(Passive Optical Network , 无源光网络)

激光器的工作原理

激光器的工作原理 激光器工作原理 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 激光器广泛用于各种产品和技术,其种类之多令人惊叹。从CD播放机、牙钻、高速金属切割机到测量系统,似乎所有东西都有激光器的影子,它们都需要用到激光器。但是,到底什么是激光器呢?激光光束和手电筒光束的区别何在呢? 1. 引言 2. 原子基础知识 3. 原子形成激光的核心原理 4. 激光器与原子的关系 5. 激光 6. 红宝石激光器 7. 三级激光器 8. 激光器类型 9. 激光器的波长 10. 激光器分类 11. 了解更多信息 12. 阅读所有物理学类文章 NASA供图 美国国家航空航天管理局兰利研究中心(Langley Research Center) 的光学损伤阀值测试装置有三部激光器:高能脉冲钕-钇铝石榴石激光器、钛-蓝宝石激光器和谐振氦氖激光器。 原子基础知识 整个宇宙中大约只有100多种不同的原子。我们看到的所有东西都是由这100多种原子以穷极无限的方式组合而成。这些原子之间排

列组合的方式决定了构成的物体是一杯水、一块金属或是汽水瓶中的泡沫! 原子是永恒运动着的。它们不停地振动、移动和旋转,就连构成我们座椅的原子也是不断运动着的。固体实际上也在运动!原子有几种不同的激发状态,换言之,它们具有不同的能量。如果赋予原子足够的能量,它就可以从基态能量层级上升到激发态能量层级。激发态能量层级的高低取决于通过热能、光能、电能等形式赋予原子的能量有多少。下图可以很好地阐释原子的结构: 最简单的原子模型 由原子核和沿轨道旋转的电子组成。 简单原子由原子核(含有质子和中子)和电子云组成。我们可以把电子云中的电子想象成沿多个不同轨道环绕原子核运动。 原子形成激光的核心原理 想一想上一页中的原子结构图。即便以现代技术观察原子,我们也无法看到电子的离散轨道,但把这些轨道设想成原子不同的能级会对我们的理解有所帮助。换言之,如果我们对原子加热,处于低能量轨道上的部分电子可能受激发而跃迁到距离原子核更远的高能量轨道。 能量吸收: 原子可以吸收热能、光能、电能等形式的能量。然后电子可以从低能 量轨道跃迁至高能量轨道。

CO2激光器原理与应用.

CO2激光器原理及其应用 课程激光原理与技术 班级光信息121801班 学号 201218010126 姓名曾庆苏 指导教师杨旭东 完成日期 2015.6.15

目录 前言 (1) 激光器简介 (1) 一、CO 2 激光器分类 (2) 二、CO 2 三、CO 激光器输出特性及其缺点 (3) 2 激光器结构 (3) 四、CO 2 4.1 激光管 (4) 4.2 光学谐振腔 (4) 4.3 电源及泵浦 (4) 激光器原理 (5) 五、CO 2 5.1 CO 分子的的能级结构 (5) 2 分子的振转跃迁 (5) 5.2 CO 2 5.3 CO 激光器激光上能级的激发过程 (6) 2 5.4 CO 激光器激光下能级的弛豫 (7) 2 5.5 CO 激光器激光产生 (7) 2 激光器的应用 (8) 六、CO 2 6.1工业应用 (8) 6.2医疗应用 (8) 6.3军事应用 (9) 6.4环境应用 (9) 激光器发展特点 (10) 七、CO 2 7.1发展历史 (10) 7.2发展现状 (10) 7.3发展前景 (11) 八、结束语 (11)

前言: 二氧化碳激光于1964年首次运用其波长为10.6μm。因为这是一种非常有 效率的激光,作为商业模型来说其转换效率达到10%,所以二氧化碳激光广泛用于激光切割,焊接,钻孔和表面处理。作为商业应用激光可达45千瓦,这是目前最强的物质处理激光。二氧化碳激光器是目前连续输出功率较高的一种激光,它发展较早,商业产品较为成熟,被广泛应用到材料加工、医疗使用、军事武器、环境量测等各个领域,是用最广泛的激光器之一。二氧化碳激光器的出现是激光发展中的重大进展,也是光武器和核聚变研究中的重大成果。 论文首先介绍了应用型CO 2 激光器的基本结构和工作原理,着重介绍了应用 型CO 2 激光器在军事、医疗、工业和环境四个主要领域的应用,最后介绍应用型 CO 2激光器的发展历史、现状、以及前景。通过这些介绍使得大家能够加深对CO 2 激光器的了解和认识。 一、CO2激光器简介 1964年,Patel等人首先发现了用CO 2 气体观察到大约10.6微米的连续波激 光作用,(其中还有9.6微米)经过多年对CO 2 气体激光的研究,今天它已经成为产品,广泛用于各种领域。 CO 2 激光器是分子气体激光器,分子气体由碳和氧组成(最常用),分子气体激光器通过分子能级间的跃迁产生激发振荡的一种激光器,实现高效率与高功率 输出。CO 2分子气体激光器中主要物质为CO 2 ,辅助气体有氮气,氦气等。它的 光电转换效率(输出激光功率与输出电功率之比)较高,一般为15%左右,输出功 率从瓦级直到万瓦级。由于CO 2 结构类型差异很大,它应用于不同的领域,其中 应用最为广泛的当属激光医学,CO 2 激光器输出波长为10.6um,是不可见的红外光,它极易被人体组织200pm内的表层所吸收,稳定性较好,是医学上应用最为广泛的一种气体激光 工作物质:CO 2 、N2和He的混合物 激光波长:10.6微米、9.6微米(远红外光)(利用基态的不同振动态的转动能级之间的跃迁,故光子能量小) 特点:激光器效率高、输出能量大、功率高。

激光器原理及其应用讲解

激光器原理及其应用 应用化学0402班宋彬 0120414450201 摘要由于激光器具备的种种突出特点,因而被很快运用于工业、农业、精密测量和探测、通讯与信息处理、医疗、军事等各方面,并在许多领域引起了革命性的突破。关键词激光器激光工作物质激励(泵浦系统光学共振腔分类及应用 正文: 激光器 laser 能发射激光的装置。1954年制成了第一台微波量子放大器,获得了高度相干的微波束。1958年A.L. 肖洛和C.H. 汤斯把微波量子放大器原理推广应用到光频范围,并指出了产生激光的方法。1960年T.H. 梅曼等人制成了第一台红宝石激光器。1961年A. 贾文等人制成了氦氖激光器。1962年R.N. 霍耳等人创制了砷化镓半导体激光器。以后,激光器的种类就越来越多。按工作介质分,激光器可分为气体激光器、固体激光器、半导体激光器和染料激光器4大类。近来还发展了自由电子激光器,其工作介质是在周期性磁场中运动的高速电子束,激光波长可覆盖从微波到X 射线的广阔波段。按工作方式分,有连续式、脉冲式、调Q 和超短脉冲式等几类。大功率激光器通常都是脉冲式输出。各种不同种类的激光器所发射的激光波长已达数千种,最长的波长为微波波段的0.7毫米,最短波长为远紫外区的210埃,X 射线波段的激光器也正在研究中。 除自由电子激光器外,各种激光器的基本工作原理均相同,装置的必不可少的组成部分包括激励(或抽运)、具有亚稳态能级的工作介质和谐振腔(见光学谐振腔)3部分。激励是工作介质吸收外来能量后激发到激发态,为实现并维持粒子数反转创造条件。激励方式有光学激励、电激励、化学激励和核能激励等。工作介质具有亚稳能级是使受激辐射占主导地位,从而实现光放大。谐振腔可使腔内的光子有一致的频率、相位和运行方向,从而使激光具有良好的定向性和相干性。

相关文档