文档库 最新最全的文档下载
当前位置:文档库 › 数理统计

数理统计

数理统计
数理统计

第一章

例1:将n 只球随机地放入N (N ≥n )个盒子中去,试求下列事件的概率:

(1)每个盒子至多有一只球;

(2)某指定的n 个盒子各有一个质点; (3)任意n 个盒子中各有一个质点; (4)某指定盒中恰有m 个质点。

例2:袋中有a 只白球, b 只红球, k 个人依次在袋中取一只球,

(1)作放回抽样; (2)作不放回抽样,

求第i(i=1,2,...,k)个人取到白球(记为事件B)的概率(k ≤a+b).

例3:8只乒乓球队中,有两个强队,将8个球队任意分为两组(每组4个队)进行比赛,

求这两个强队被分在一个组内的概率是多少?

)

B A (P )4()

B A (P )3()B A (P )2()AB (P 1.3.0)B (P ,2.0)B A (P ,5.0)A (P 4-

-

-

-

?-===)(求::已知例

例5:将一枚硬币抛掷两次, 观察其出现正反面的情况.

设事件A 为“至少有一次为H ”,

事件B 为“两次掷出同一面“.

现在求已知事件A 已经发生条件下事件B 发生的概率.

例6:已知某批产品的合格率为0.9,检验员检验时,将合格品误认为次品的概率为0.02,而

一个次品被误认为合格的概率为0.05.求:

(1)检查任一产品被认为是合格品的概率 (2)被认为是合格品的产品确实合格的概率

例7.:甲乙两人独立对目标射击一次,其命中率分别是0.6和0.5,现已知目标被击中,求

是被甲击中的概率。

例8.:设10件产品中有4件不合格,从中任取2件,求:

(1)两件都不合格的概率。

(2)已知第一件合格,第二件也合格的概率。 (3)在这2件中已知有1件不合格,另一件也不合

格的概率。

例9:对以往数据分析结果表明, 当机器调整得良好时, 产品的合格率为98%, 而当机器发

生某种故障时, 其合格率为55%. 每天早上机器开动时,机器调整良好的概率为95%,

试求已知某日早上第一件产品是合格品时, 机器调整良好的概率是多少?

例10: 玻璃杯成箱出售,每箱20只,假设各箱含0、1、2只次品的概率分别是0.8,0.1,0.1,一顾客欲购买一箱玻璃杯,购买时,随意抽取一箱,顾客开箱随机查看4只,

若无次品则购买。

求 (1)顾客买下该箱的概率

(2)顾客买下的一箱中,确实没有次

品的概率

例11:设三次独立试验中事件A 出现的概率相等,已知A 至少发生一次的概率为19/27,求

A 最多发生一次的概率。

例12:已知P(A)= P(B)= P(C)=1/4, P(AB)=0,

P(AC)=P(BC)=1/8,求A,B,C 全不发生的概率。

第二章

例1:某种彩票每周开奖一次,每次中大奖的概率为十万分之一,若每周买一张彩票,坚持买了十年,试求从未中过大奖的概率。

例2:设1小时内进入某图书馆的读者人数服从泊松分布,已知1小时内无人进入图书馆的

概率为0.01,求一小时内至少有两人进入图书馆的概率。

例3:

}

21{)3()(210

,0,

0,)(2

/2

<

?≤>+=-x P x f B A x x Be

A x F x

)(的值

与)求:(

例4:电子元件的寿命X(年)服从参数为1/3的

指数分布

(1)求该电子元件寿命超过2年的概率。

(2)已知该电子元件已使用了1.5年,求它还 能使用两年的概率为多少?

例5:设某种仪器内装有三只同样的电子管,电子管的使用寿命X 的概率密度函数为 :

求(1)开始150小时内没有电子管损坏的概率; (2)在这段时间内有一只电子管损坏的概率; (3)分布函数F(x)

例6:设随机变量X 在[2,5]上服从均匀分布,现对X 进行三次独立观测,求至少有两次的观

测值大于3的概率。 例7:一民航送客车载有20位旅客自机场开出, 旅客有10个车站可以下车. 如到达一个车站

没有旅客下车就不停车. 以X 表示停车的次数, 求E (X )

(设每位旅客在各个车站下车是等可能的, 并设各旅客是否下车相互独立). 例8:).()(),1,0(~X D X E N X 和求设 例9:求二项分布方差;求泊松分布方差; 例10:}1Y {,9

5}1{),,3(~),,2(~.≥=

≥P X P P B Y P B X 求:若

例11:.用抽样调查检查某地人口普查的质量,抽查了1000户的登记卡片,发现某些卡片有

1个错误,少数有两个错误,极少有3个错误,总的来看,错误的多少与卡片的数目成比例,这1000张卡片共有30个错误。试求随机抽取10张卡片而没有发现错误的概率。

2100

,100()0x f x x

?≥?=???

,其它

例12:某超市平均每小时72人光顾,那么在3分钟之内到达4名顾客的概率是多少? 例13:已知某工厂生产的笔记本的使用寿命服从参数=0.4的指数分布。厂家承诺,如果电

池在半年之内不能使用的话,可以免费更换。已知能够正常使用的电池的平均利润为每个200元,更换电池的成本每个600元,该厂家最终的平均利润是多少?

第三章

考点一:样本均数:∑

==

n

i i

X n

X 1

1

样本方差:()

∑=--=

n

i i

X

X

n S 1

2

2

1

1

标准样本方差:()

∑=--=n

i i

X

X

n S 1

2

1

1

样本的偏度和峰度:

4

2

12

1

4

3

1

3

)3)(2)(1(])()[1(3)()1()2)(1()

(s

n n n x x n x x n n Ku s

n n x x n SK n

i i n

i i n

i i -------+=

---=

∑∑∑===

考点二:样本标准误:

∑==

k

i i

x k

x 1

1

1

)

(1

2

--=

∑=k x x

S k

i i

x

考点三:

575.296

.1645.1005.0025.005.0===z z z

t 分布:设)(~,)1,0(~2

n Y N X χ,X Y 相互独立 n

Y X T =

则称 T 服从自由度为 n 的T 分布

F 分布:设)(~),(~2

2

m Y n X χχ,X Y 相互独立

m

Y n X F //=

则称 F 服从为第一自由度为n ,第二自由度为 m 的F 分布

)1,0(~N n

X σμ

-

X S S =

)1(~)1(2

2

2

--n S

n χσ

)1(~--n t n

S

X μ

)1,1(~212

2

2

221

21--n n F S S σσ

)2(~112

)1()1()(212

1

2122

221

121-++

-+-+----n n t n n n n S

n S n Y X μμ

)

1,0(~)

()()

,(~2

2

21

2

1

212

2

21

2

1

21N n n Y X n n N Y X σσμμσσμμ+

---+

--

第四章

考点一:正态总体均数的估计

(1)方差σ 2已知,μ 的置信区间:),(n

z X n

z X σσα

α

+-

(2)方差σ 2未知,μ 的置信区间:??

? ?

?-+--n S n t X n

S n t X )

1(,)

1(2

2

αα (3)当μ未知时,方差σ 2 的置信区间:?

??

? ??-----)1()1(,)1()1(2

12222

2n S n n S n ααχχ 例1:已知某地幼儿的身高服从正态分布。现从该地一幼儿园大班抽查9名幼儿,

测的身高(单位:厘米)分别为:

115,120,115,131,109,115,115,105 ,110 设大班幼儿园身高总体的标准差为7厘米,在置信水平

为0.95下,求总体均值的置信区间。

例2:设X 的样本方差为1,样本容量为100,样本均值为5,求总体均值置信水平为0.95的置信区间。

例3:为了估计产品使用寿命的均值和方差,测试了10件产品,求得样本均值为

1500,标准差为20,已知产品使用寿命服从正态分布,求总体均值和标准差置信度为0.95的置信区间。

考点二:正态总体均数之差的区间估计

(1)22

21,σσ已知,21μμ-的置信区间:)(2

2

2

1

2

1

2

n n Z Y X σσα

+

+

-

(2)2221,σσ未知,21μμ-的置信区间:

同方差大样本: 同方差小样本:???

?

?

?

-+-+-+

±-2

)1()1(11)(212

222112

1

2n n S n S n n n t Y X α

异方差大样本:

异方差小样本:

例5:甲医院治愈2570名病人,平均住院天数为13.60天,乙医院治愈2000名病

人,平均住院天数为14.36天,根据经验,住院天数的标准差甲院为1.25

天,乙院为1.16天,做出两院平均住院天数差的区间估计。

(假设两院住院天数服从正态分布,给定1-α=0.95)

例6:为研究正常成年男女血液红细胞的平均数之差别,检查某地正常成年男子

156名,正常成年女子74名,计算得男性红细胞平均数为465.13万/(mm)3,

样本标准差为54.80万/(mm)3;女性红细胞平均数为422.16万/(mm)3,样本标准差为49.2万/(mm)3。试计算该地正常成年男女的红细胞平均数之差的置信区间(置信度为0.99)

例7:设超大牵伸纺机的抗拉强度和普通纺机的抗拉强度服从正态分布,标准差

分别为2.18,1.76。现对前者抽取样本容量为200的样本,对后者抽取100的样本,经计算均值分别为5.32和5.76.求均值之差置信度为0.95的置信区间。

例8:从甲乙两厂生产的蓄电池产品中,分

别抽取一批样品,测得蓄电池的电容量如下:

甲厂:144 141 138 142 141 138 143 137

乙厂:142 143 139 140 138 141 140 138 142 136 求(1)电容量方差之比置信度为0.95的置信区间 (2)电容量均值之差置信度为0.95的置信区间 (设总体方差相等)

x y ?

?

x y ?

?

x y ?

?

()

()

2

22

12122

2

2

2

112

2

121

1

S S n n d f S n S n n n ??

+ ???=

+

--

考点三:例9:用某种中医疗法治疗青少年近视眼15例,有效例数10例,试求有效总体率的95%的置信区间。

例10:某医院用复方当归注射液静脉滴注治疗脑动脉硬化症188例,其中显效83例,试估计当归注射液显效率的置信区间(α=0.05)。

第五章

例1:某药厂用一台包装机包装硼酸粉,额定标准为每袋净重0.5kg,设每袋硼酸粉重服从正态分布,且根据长期的经验知其标准差(0.014kg)。某天开工后,为检验包装机的工作是否正常,随机抽取它所包装的硼酸粉10袋,称得净重(kg)为

0.496 0.510 0.515 0.506 0.518

0.497 0.488 0.511 0.512 0.524

问这天包装机的工作是否正常?

例2:某药厂原来生产的一种安眠药,经临床使用测得平均睡眠时间为18.6小时,标准差为

1.5小时,该厂技术人员为了增加睡眠时间,改进了旧工艺,为检验是否达到了预期的

目的,收集了一组改进工艺后生产的安眠药的睡眠时间:

23.4,25.6,24.3,21.2,21,

26,25.5,26.2,24.3,24。

试问,从收集到的数据能否说明改进了工艺后生产的安眠药提高了疗效。(假定睡眠时间服从正态分布显著水平为0.05)

例3:某药厂生产某种中药丸,要求有效期不得低于1000天,现从某一天生产的药丸中随机抽取25个,测得其有效期平均值为950天。已知该种药丸的有效期服从标准差为σ=100天的正态分布,试在显著水平0.05下检验这天生产的药丸有效期的均值是否小于1000天。

例4:某中药厂用旧设备生产的六味地黄丸,

丸重的均数为8.9g,更新了设备后,从所生产的产品

中随机抽取9丸,其重量为:

9.2,10,9.6,9.8,8.6,10.3,9.9,9.1,8.9。

问设备更新前后药丸的平均重量是否有变化?

(假设丸重服从正态分布,α=0.10)

例5:甲药厂进行有关麻疹疫苗效果的研究,用X表示一个人用这种疫苗注射后的抗体强度,假定随机变量X是服从正态分布,另一家与之竞争的乙药厂生产的同种疫苗的平均抗体强度为1.9,若甲厂为证实其产品有更高的平均抗体强度,从产品中随机地抽取了16个样本值:

1.2

2.5 1.9 1.5 2.7 1.7 2.2 2.2

3.0 2.4 1.8 2.6 3.1 2.3 2.4 2.1

试问据该样本值能否证实甲厂平均抗体强度高于乙厂(α=0.05)。

例6:某药厂生产甘草流浸膏,现从产品中随机地抽取4个样品,测得甘草酸含量的均数=8.30(%),标准差S=0.03(%),设测定值总体服从正态分布,据以往的经验,甘草流膏中甘草酸含量的均数为8.32(%),试在显著水平0.05下,检验此厂生产的甘草流浸膏中甘草酸的含量是否低于总体水平。

例7:某剂型药物正常的生产过程中,含碳量服从正

态分布N(1.408,0.048*0.048),今从某班产品中

任取5件,测量其含碳量为

1.32,1.55,1.36,1.40和1.44 (%) 。问这个班

生产的药物含碳量的总体方差是否正常?(α=0.10)

例8:某药厂准备生产一批新药 通常收率的标准差在5%以内认为是稳定的,现试产9批,

得收率(%)为

73.2,78.6,75.4,75.7,74.1,76.3,

72.8,74.5,76.6。问此药的生产是否稳

定?(α=0.01)

例9:甲乙两厂生产同一药物,现分别从其产品中抽取若干样品测定其含量,结果如下:甲厂0.51 0.49 0.52 0.55 0.48 0.47

乙厂0.56 0.58 0.52 0.59 0.49 0.57 0.54

在显著性水平0.05下判断两厂药物含量的总体方差

是否相等?

例10:合成车间某中间体生产的工艺条件改革后,收率似有提高,但工人师傅反映新工艺的条件不易控制,收率波动较大,为此,对新老工艺分别抽查若干批,试解释工人师傅的问题?(显著性水平0.05)

老工艺收率:

83.5 83.3 82.5 82.0 84 83.1 84.1 82.1 83.4

新工艺收率:

86.5 87.7 88.0 87.5 85.6 84.2 86.0 83.2 87.0 86.1

例11:在平炉进行一项试验以确定改变操作方法的建议是否会增加钢的得率,试验是同一只平炉上进行的。每炼一炉钢时除操作方法外,其它条件都尽可能做到相同。

用标准方法炼一炉,然后用建议的新方法炼一炉,以后交替进行,各炼了10炉,

得率分别为

标准方法78.1 72.4 76.2 74.3 77.4 78.4 76.0 75.5 76.7 77.3

新方法79.1 81.0 77.3 79.1 80.0 79.1 79.1 77.3 80.2 82.1

例12:甲乙两厂生产同一药物,现分别从其产品中抽取若干样品测定其含量,结果如下:甲厂0.51 0.49 0.52 0.55 0.48 0.47

乙厂0.56 0.58 0.52 0.59 0.49 0.57 0.54

已知甲乙药物含量的总体方差相等,在显著性水平

0.05下判断两厂药物含量的总体均数是否相等?

例13:在中成药的研究中,需镜检六味地黄丸中茯苓的菌丝数。检测75次,得其均数为56.5,方差为9.4;镜检熟地的棕色核状物数,检测65次,得其均数为65,方差为5.5。给定显著性水平为0.05问镜检六味地黄丸中菌丝数与熟地的棕色核状物数的差异是否有显著意义?

例14:某中西医结合医院科研室,成组比较单味大黄与西药(氨甲苯酸)治疗急性上消化道出血的效果,以止血天数为指标,结果如下:

西药治疗组n1=20 X1=6.90天S1=6.90天

单味大黄治疗组n2=30 X2=1.50天S2=0.88天

取α=0.05,试问均数是否有差别?

例15:根据以往经验,一般胃溃疡病患者20%发生胃出血症状。某医院观察65岁以上胃溃

疡病人304例,有96例发生胃出血症状。问老年患者是否比较容易出血(α=0.01)?

例16:抽检库房保存的两批首乌注射液。第一批随机抽240支,发现有15支变质;第二批

随机抽180支,发现有14支变质。试问两批的变质率是否有显著差异(α=0.05)?

数理统计课后答案.doc

数理统计 一、填空题 1、设n X X X ,,21为母体X 的一个子样,如果),,(21n X X X g , 则称),,(21n X X X g 为统计量。不含任何未知参数 2、设母体 ),,(~2 N X 已知,则在求均值 的区间估计时,使用的随机变量为 n X 3、设母体X 服从修正方差为1的正态分布,根据来自母体的容量为100的子样,测得子样均值为5,则X 的数学期望的置信水平为95%的置信区间为 。 025.010 1 5u 4、假设检验的统计思想是 。 小概率事件在一次试验中不会发生 5、某产品以往废品率不高于5%,今抽取一个子样检验这批产品废品率是否高于5%, 此问题的原假设为 。 0H :05.0 p 6、某地区的年降雨量),(~2 N X ,现对其年降雨量连续进行5次观察,得数据为: (单位:mm) 587 672 701 640 650 ,则2 的矩估计值为 。 1430.8 7、设两个相互独立的子样2121,,,X X X 与51,,Y Y 分别取自正态母体)2,1(2 N 与 )1,2(N , 2 *2 2*1,S S 分别是两个子样的方差,令2*2222*121)(,S b a aS ,已知)4(~),20(~22 2221 ,则__________, b a 。 用 )1(~)1(22 2 * n S n ,1,5 b a 8、假设随机变量)(~n t X ,则 2 1 X 服从分布 。)1,(n F 9、假设随机变量),10(~t X 已知05.0)(2 X P ,则____ 。 用),1(~2 n F X 得),1(95.0n F

【免费下载】概率论与数理统计案例

实例1 发行彩票的创收利润某一彩票中心发行彩票 10万张, 每张2元. 设头等奖1个, 奖金 1万元, 二等奖2个,奖金各 5 千元;三等奖 10个, 奖金各1千元; 四等奖100个, 奖金各100元; 五等奖1000个, 奖金各10 元.每张彩票的成本费为 0.3 元, 请计算彩票发行单位的创收利润.解:设每张彩票中奖的数额为随机变量X , 则X 10000 5000 1000 100 10 0p 51/1052/10510/105100/1051000/100p 每张彩票平均能得到奖金 05512()10000500001010E X p =? +?++? 0.5(),=元每张彩票平均可赚20.50.3 1.2(), --=元因此彩票发行单位发行 10 万张彩票的创收利润为:100000 1.2120000().?=元实例2 如何确定投资决策方向?某人有10万元现金,想投资于某项目,预估成功的机会为 30%,可得利润8万元 , 失败的机会为70%,将损失 2 万元.若存入银行,同期间的利率为5% ,问是否作此项投资?解:设 X 为投资利润,则 X 8 -2p 0.3 0.7()80.320.71(),E X =?-?=万元存入银行的利息:故应选择投资.1050.5(),%?=万元实例3 商店的销售策略某商店对某种家用电器的销售采用先使用后付款的方式,记使用寿命为X (以年计),规定1,1500;12,2000;23,2500; 3,3000.X X X X ≤<≤<≤>一台付款元一台付款元一台付款元一台付款元10,1e ,0,()100, 0.x X x f x x Y -?>?=??≤? 设寿命服从指数分布概率密度为试求该商店一台家用电器收费的数学期望定盒位置保护层防腐跨接地线弯曲半径标高等,要求技术交底。管线敷设技术、电气课校对图纸,编写复杂设备与装置高中资料试卷调试方案,编写重要设备高中资料、电气设备调试高中中资料试卷工况进行自动处理,尤其要避免错误高中资料试卷保护装置动作,并

《数理统计》试卷及答案

---------------------------------------- 说明:本试卷总计100分,全试卷共 5 页,完成答卷时间2小时。 ---------------------------------------- 一、填空题(本大题共8小题,每题4分,共32分) 1、随机事件A 、B 互不相容,且A =B ;则()P A = 2、已知,10/1)/(,5/1)(,5/2)(===B A P B P A P 则=+)(B A P 3、同时掷三枚均匀硬币,则恰有两枚正面向上的概率为 。 4、若随机变量)2.0,20(~B X ,则X 的最可能值是 。 5、若n X X X ,...,,21为来自泊松分布)(λP 的一个样本,2,S X 分别为样本均值和样本方差,则 =)(X E ,=)(2S E 。 6、样本0,5,10,-3样本均数为 ,样本方差为 。 7、2σ已知时检验假设0100:;:μμμμ≠=H H ,应构造统计量为 ,拒绝域为 。 8、考查4个3水平的因子A,B,C,D 及其交互作用A ×B 与A ×C ,则做正交实验设计时,可选用的行数最少的正交表为 。 二、单项选择题(本大题共8小题,每题4分,共32分) 1、设随机事件A 、B 互不相容,且()0,()0,P A P B >>则下列结论只有( ) 成立。 A 、A 、 B 是对立事件; B 、A 、B 互不相容; C 、A 、B 不独立; D 、 A 、 B 相互独立。 2、射击三次,事件i A 表示第i 次命中目标(i =1,2,3),下列说法正确的是( )。 A 、321A A A 表示三次都没击中目标; B 、313221A A A A A A ++表示恰有两次击中目标; C 、313221A A A A A A ++表示至多一次没击中目标;D 、321A A A 表示至少有一次没击中目标。 3、随机变量),(~2σμN X ,则随着σ的减小,)|(|σμ<-X P 应( )。 A 、单调增大; B 、单调减少; C 、保持不变; D 、增减不能确定

数理统计作业三

第一部分统计基础与概率计算(共10题,10分/题) 1.某人在每天上班途中要经过3个设有红绿灯的十字路口。设每个路口遇到红 灯的事件就是相互独立的,且红灯持续24秒而绿灯持续36秒。试求她途中遇到红灯的次数的概率分布及其期望值与方差、标准差。 解:读题可知每个路口遇到红灯的概率就是P=24/(24+36)=0、4 假设遇到红灯的次数为X,则,X~B(3,0、4),概率分布如下 0次遇到红灯的概率P0=(1-0、4)3=0、216 1次遇到红灯的概念P1=(1-0、4)2*0、4=0、432 2次遇到红灯的概念P2=(1-0、4)*0、42=0、288 3次遇到红灯的概念P3=0、43=0、064 期望:E(x)=nP=0、4*3=1、2 方差:D(X)=δ2=nPq=0、4*3*(1-0、4)=0、72 标准差: 2、一家人寿保险公司某险种的投保人数有20000人,据测算被保险人一年中的死亡率为万分之5。保险费每人50元。若一年中死亡,则保险公司赔付保险金额50000元。试求未来一年该保险公司将在该项保险中(这里不考虑保险公司的其它费用): (1)至少获利50万元的概率; (2)亏本的概率; (3)支付保险金额的均值与标准差。 解:设被保险人死亡数为X,X~B(20000,0、0005) 2.总收入为2万×50=100万,要获利至少50万,则赔付的保险金额应该不超过50万,也就就 是被保险的人当中死亡人数不能超过10人,精确点就就是用二项分布来做,但就是由于20000这个数比较大,就可以用正态近似来做,就就是认为死亡人数服从与原二项分布的均值方差相同的正态分布,结用正态函数表示。概率为P(X≤10)=0、58304

数理统计试题及答案

数理统计考试试卷 一、填空题(本题15分,每题3分) 1、总体得容量分别为10,15得两独立样本均值差________; 2、设为取自总体得一个样本,若已知,则=________; 3、设总体,若与均未知,为样本容量,总体均值得置信水平为得置信区间为,则得值为________; 4、设为取自总体得一个样本,对于给定得显著性水平,已知关于检验得拒绝域为2≤,则相应得 备择假设为________; 5、设总体,已知,在显著性水平0、05下,检验假设,,拒绝域就是________。 1、; 2、0、01; 3、; 4、; 5、。 二、选择题(本题15分,每题3分) 1、设就是取自总体得一个样本,就是未知参数,以下函数就是统计量得为( )。 (A) (B) (C) (D) 2、设为取自总体得样本,为样本均值,,则服从自由度为得分布得统计量为( )。 (A) (B) (C) (D) 3、设就是来自总体得样本,存在, , 则( )。 (A)就是得矩估计(B)就是得极大似然估计 (C)就是得无偏估计与相合估计(D)作为得估计其优良性与分布有关 4、设总体相互独立,样本容量分别为,样本方差分别为,在显著性水平下,检验得拒绝域为( )。 (A) (B) (C) (D) 5、设总体,已知,未知,就是来自总体得样本观察值,已知得置信水平为0、95得置信区间为(4、71,5、69),则取显著性水平时,检验假设得结果就是( )。 (A)不能确定(B)接受(C)拒绝(D)条件不足无法检验 1、B; 2、D; 3、C; 4、A; 5、B、 三、(本题14分) 设随机变量X得概率密度为:,其中未知 参数,就是来自得样本,求(1)得矩估计;(2)得极大似然估计。 解:(1) , 令,得为参数得矩估计量。 (2)似然函数为:, 而就是得单调减少函数,所以得极大似然估计量为。 四、(本题14分)设总体,且就是样本观察值,样本方差,

数理统计学作业

数理统计学作业 专业:飞行器设计 姓名:刘炜华 学号: 20130302002 2013年9月

1.数据的采集及说明 1.1数据的搜集方法及说明 当复合材料结构开始大量应用之后,在实际使用中可以积累大量的故障统计数据,航空公司在对故障数据进行收集和统计之后,可以对故障数据作故障率直方图和故障频率分布图来进行故障频率信息的统计和分析。 表 1是一架飞机在某段时间内故障间隔飞行小时,下面以该数据集为基础简单估计该架飞机在该时间段内的故障率曲线分布。 表1某飞机一段时间内故障间隔飞行小时 1.2.数据整理 1.表中共有 100 个维修数据,找出其中的最大值为max 652L =小时,最小值为 min 1L =小时; 2.计算组数: 根据经验公式:1 3.32lg k n =+, 计算得1 3.32lg 1 3.32lg1008k n =+=+≈, 所以将数据分为8组; 3.计算组距: max min 6521 828 L L t k --?= =≈; 4.根据公式计算并将所得的结果列成表2: 频率:/j j W f n =

表2故障频率分析过程计算结果 5.计算得:202.98X =,167.0697S =; 根据公式3 1 13 () 1.1035(1)n i i X X V n S =-= =-∑ 6.计算峰度: 根据公式4 1 24 () 3.4853(1)n i i X X V n S =-= =-∑ 1.3.直方图与折线图 图1-1故障频数直方图

图1-2故障频率折线图 图1-3故障频率直方图 图1-4累计频率折线图

从频率直方图即图3中可以看出,靠近左侧的数据出现较多。通过比较频率曲线和指数分布曲线可以看出,该图显示故障呈现典型的指数分布,所以说明趋势方程是指数函数。趋势线方程代表故障频数随时间的发展趋势,据此可以预测未来某一时间段内的故障数,来实现故障相关维修成本的估算。 1.4.经验分布函数 根据定义得出,总体X 的经验分布函数为: 0,1 (),1652,1,2,...,991001,652 n x k F x x k x

概率论与数理统计期末考试题及答案

创作编号: GB8878185555334563BT9125XW 创作者: 凤呜大王* 模拟试题一 一、 填空题(每空3分,共45分) 1、已知P(A) = 0.92, P(B) = 0.93, P(B|A ) = 0.85, 则P(A|B ) = 。 P( A ∪B) = 。 3、一间宿舍内住有6个同学,求他们之中恰好有4个人的生日在同一个月份的概率: ;没有任何人的生日在同一个月份的概率 ; 4、已知随机变量X 的密度函数为:, ()1/4, 020,2 x Ae x x x x ??

8、设总体~(0,)0X U θθ>为未知参数,12,,,n X X X 为其样本, 1 1n i i X X n ==∑为样本均值,则θ的矩估计量为: 。 9、设样本129,, ,X X X 来自正态总体(,1.44)N a ,计算得样本观察值10x =, 求参数a 的置信度为95%的置信区间: ; 二、 计算题(35分) 1、 (12分)设连续型随机变量X 的密度函数为: 1, 02()2 0, x x x ??≤≤?=???其它 求:1){|21|2}P X -<;2)2 Y X =的密度函数()Y y ?;3)(21)E X -; 2、(12分)设随机变量(X,Y)的密度函数为 1/4, ||,02,(,)0, y x x x y ?<<??

数理统计第二次作业

数理统计第二次作业 ? 1. 某百货公司连续40 天的商品销售额如下(单位:万元): 41 46 35 42 25 36 28 36 29 45 46 37 47 37 34 37 38 37 30 49 34 36 37 39 30 45 44 42 38 43 26 32 43 33 38 36 40 44 44 35 根据上面的数据进行适当的分组,编制频数分布表,并绘制直方图。(数据见练 习1 数据.xls —练习 1.1 )解:频数分布表及直方图如下:由直方图可以看出,该百货公司连续 40 天的销售额近似服从单峰对称的正态分布。 2. 为了确定灯泡的使用寿命(小时),在一批灯泡中随机抽取100 只进行测试,所 得结果如下: 700 706 716 715 728 712 719 722 685 691 709 708 691 690 684 692

705 707 718 701 708 729 694 681 695 685 706 661 735 665 668 710 693 697 674 658 698 666 696 698 706 692 691 747 699 682 698 700 710 722 694 690 736 689 696 651 673 749 708 727 688 689 683 685 702 741 698 713 676 702 701 671 718 707 683 717 733 712 683 692 693 697 664 681 721 720 677 679 695 691 713 699 725 726 704 729 703 696 717 688 (1) 利用计算机对上面的数据进行排序; (2) 以组距为10 进行等距分组,整理成频数分布表,并绘制直方图;(3) 绘制茎叶图,并与直方图作比较. 解( 1)排序如下 (2)频数分布表及频数分布直方图如下:从直方图可以看出,灯泡的使用寿命近似服从单 峰对称的正态分布。 (3)茎叶图如下 与频数分布表比较可知:当频数分布表频数分布间隔为10,且从整10 开始,则茎叶 图各茎所含叶片数与对应频数区间所含项数相等。 3. 某企业决策人考虑是否采用一种新的生产管理流程。据对同行的调查得知,采用新生产管理流程后产品优质率达95%的占四成,优质率维持在原来水平(即80%)的占六成。该企业利用新的生产管理流程进行一次试验,所生产 5 件产品全部达到优质。问该企业决策者会倾向于如何决策? 解:设A =优质率达95%, C =优质率为80%, B =试验所生产的5件全部优质。 P(A) = 0.4 , P(A ) = 0.6 , P(B|A)=0.955 , P(B|A )=0.85 ,所求概率为:P (A I B ) P(A) ?P(B I A) P(A) ?P(B II A)+P(A ) ?P(B I A ) 0.50612 0.30951 0.6115 决策者会倾向于采用新的生产管理流程。

数理统计试题及答案

一、填空题(本题15分,每题3分) 1、总体得容量分别为10,15得两独立样本均值差________; 2、设为取自总体得一个样本,若已知,则=________; 3、设总体,若与均未知,为样本容量,总体均值得置信水平为得置信区间为,则得值为________; 4、设为取自总体得一个样本,对于给定得显著性水平,已知关于检验得拒绝域为2≤,则相应得备择假设为________; 5、设总体,已知,在显著性水平0、05下,检验假设,,拒绝域就是________。 1、; 2、0、01; 3、; 4、; 5、。 二、选择题(本题15分,每题3分) 1、设就是取自总体得一个样本,就是未知参数,以下函数就是统计量得为( )。 (A ) (B ) (C ) (D ) 2、设为取自总体得样本,为样本均值,,则服从自由度为得分布得统计量为( )。 (A ) (B ) (C ) (D ) 3、设就是来自总体得样本,存在, , 则( )。 (A )就是得矩估计 (B )就是得极大似然估计 (C )就是得无偏估计与相合估计 (D )作为得估计其优良性与分布有关 4、设总体相互独立,样本容量分别为,样本方差分别为,在显著性水平下,检验得拒绝域为( )。 (A ) (B ) (C ) (D ) 5、设总体,已知,未知,就是来自总体得样本观察值,已知得置信水平为0、95得置信区间为(4、71,5、69),则取显著性水平时,检验假设得结果就是( )。 (A )不能确定 (B )接受 (C )拒绝 (D )条件不足无法检验 1、B ; 2、D ; 3、C ; 4、A ; 5、B 、 三、(本题14分) 设随机变量X 得概率密度为:,其中未知 参数,就是来自得样本,求(1)得矩估计;(2)得极大似然估计。 解:(1) θθθ322)()(022 ===??∞+∞-x d x x d x f x X E , 令,得为参数得矩估计量。 (2)似然函数为:),,2,1(,022),(1212n i x x x x L i n i i n n n i i i Λ=<<==∏∏==θθθθ, , 而就是得单调减少函数,所以得极大似然估计量为。

数理统计的起源

课程文化2-数理统计的起源 数理统计是伴随着概率论的发展而发展起来的一个数学分支,研究如何有效 的收集、整理和分析受随机因素影响的数据,并对所考虑的问题作出推断或预测,为采取某种决策和行动提供依据或建议. 数理统计的发展大致可分为古典时期、近代时期和现代时期三个阶段. 古典时期(19世纪以前).这是描述性的统计学形成和发展阶段,是数理统计的萌芽时期.在这一时期里,瑞土数学家雅各布·伯努利(Jakob Bernoulli?,1654-1705)较早地系统论证了大数定律.1763年,英国数学家贝叶斯(Thomas Bayes,1701-1761)提出了一种归纳推理的理论,后被发展为一种统计推断方法― 贝叶斯方法,开创了数理统计的先河.法国数学家棣莫佛(de Moivre,1667-1754)于1733年首次发现了正态分布的密度函数并计算出该曲线在各种不同区间内的概率,为整个大样本理论奠定了基础.1809年,德国数学家高斯(Gauss.Garl Friedrich,1777-1855,德国)和法国数学家勒让德(Adrien Marie Legendre1752-1833)各自独立地发现了最小二乘法,并应用于观测数据的误差分析.在数理统计的理 论与应用方面都作出了重要贡献,他不仅将数理统计应用到生物学,而且还应用到教育学和心理学的研究.并且详细地论证了数理统计应用的广泛性,高斯曾预言:"统计方法,可应用于各种学科的各个部门." 近代时期(19世纪末至1845年).数理统计的主要分支建立,是数理统计的形成时期.上一世纪初,由于概率论的发展从理论上接近完备,加之工农业生产迫切需要,推动着这门学科的蓬勃发展. 1889年,英国数学家皮尔逊(Karl Pearson,1857-1936)提出了矩阵估计法,次年 又提出了频率曲线的理论,并于1900年在德国大地测量学者赫尔梅特(F.Helmert)1876年研究正态总体的样本方差时发现的一个十分重要的分布的基础上提出了 检验,这是数理统计发展史上出现的第一个小样本分布. 1908年,英国的统计学家戈塞特(W.S.Gosset,1876-1937)创立了小样本检验代替了大样本检验的理论和方法(即t分布和t检验法),这为数理统计的另一分支---多元分析奠定了理论基础. 1912年,英国统计学家费歇(R.A.Fisher,1890-1962)推广了t检验法,同时发展了显著性检验及估计、方差分析等数理统计新分支. 这样,数理统计的一些重要分支如假设检验、回归分析、方差分析、正交设 计等都有了决定其基本面貌的内容和理论框架.数理统计成为应用广泛、方法独特的一门数学学科. 现代时期(1945年以后).美籍数理统计学家瓦尔德(A.Wald,1902-1950)致力于用数学方法使统计学精确化、严密化,取得了很多重要成果.他发展了决策理论,提出了一般的判别问题,创立了序贯分析理论,提出了著名的序贯概率比检验 法(比如,用于贵重产品的抽样检查与验收).瓦尔德的两本著作《序贯分析》和《统计决策函数论》,被认为是数理发展史上的经典之作.统计决策理论从人与大自 然进行博弈的观点出发,把形形色色的统计问题纳入一个统一的模式之下,对战后数理统计许多分支的发展产生了很大的影响,特别是参数估计这个分支.

概率论与数理统计试题与答案

概率论与数理统计试题 与答案 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

概率论与数理统计试题与答案(2012-2013-1) 概率统计模拟题一 一、填空题(本题满分18分,每题3分) 1、设,3.0)(,7.0)(=-=B A P A P 则)(AB P = 。 2、设随机变量p)B(3,~Y p),B(2,~X ,若9 5 )1(= ≥X p ,则=≥)1(Y p 。 3、设X 与Y 相互独立,1,2==DY DX ,则=+-)543(Y X D 。 4、设随机变量X 的方差为2,则根据契比雪夫不等式有≤≥}2EX -X {P 。 5、设)X ,,X ,(X n 21 为来自总体)10(2 χ的样本,则统计量∑==n 1 i i X Y 服从 分布。 6、设正态总体),(2σμN ,2σ未知,则μ的置信度为α-1的置信区间的长度 =L 。(按下侧分位数) 二、选择题(本题满分15分,每题3分) 1、 若A 与自身独立,则( ) (A)0)(=A P ; (B) 1)(=A P ;(C) 1)(0<

西安交大数理统计作业(完整版)

第一章 1.1 X~N(μ,2 σ) 则X~N(μ, 2 n σ ),所以X-μ~N(0, 2 n σ ) P{X-μ <1}= P{ = 0.95 N(0,1),而(0.975) 1.96 Φ= 所以n最小要取[2 1.96x2σ]+1 1.2 (1)至800小时,没有一个元件失效 这个事件等价于P{ 123456 X X X X X X>800}的概率 由已知X服从指数分布,可求得P{ 123456 X X X X X X>800}=7.2 e-(2)至3000小时,所有六个元件都失效的概率 等价与P{ 123456 X X X X X X<3000}的概率 可求得P{ 123456 X X X X X X<3000}= 4.56 (1) e- - 1.5 2 1 () n i i X a = - ∑=2 1 [()()] n i i X X X a = -+- ∑ =22 111 ()2()()() n n n i i i i i X X X a X X X a === -+--+- ∑∑∑ 因为 1 () n i i X X = - ∑=0 所以2 1 () n i i X a = - ∑=22 11 ()() n n i i i X X X a == -+- ∑∑ =22 1 () n i nS X a = +- ∑ 所以当a=X时,2 1 () n i i X a = - ∑有最小值且等于2nS 1.6 (1)由 1 1n i i X X n= =∑

有等式的左边= 221 12n n i i i i X X n μμ==-+∑∑ 等式的右边= 22221122n n i i i i X X X nX nX nX n μμ==-++-+∑∑ = 22 2 2 211 22n n i i i i X nX nX nX X n μμ==-++-+∑∑ = 221 1 2n n i i i i X X n μμ==-+∑∑ 左边等于右边,结论得证。 (2) 等式的左边= 22 11 2n n i i i i X X X nX ==-+∑∑=221 n i i X nX =-∑ 等式的右边= 221 n i i X nX =-∑ 左边等于右边,结论得证。 1.7 (1)由11n n i i X X n ==∑ 及 22 1 1()n n i n i S X X n ==-∑ 有左边=1111111111()1111 n n n n n i i n i i i i X X X X X X n n n n ++++=====+=+++++∑∑∑ 111 ()111 n n n n n nX X X X X n n n ++= +=+-+++=右边 左边等于右边,结论得证。 (2)由 左边=12 21 11 1()1n n i n i S X X n +++==-+∑ 121111[()]11 n i n n n i X X X X n n ++==---++∑ 121111[()()]11 n i n n n i X X X X n n ++==---++∑ 12 2112 1121[()()()()]11(1) n i n i n n n n n i X X X X X X X X n n n +++==----+-+++∑

概率论与数理统计习题集及答案

《概率论与数理统计》作业集及答案 第1章 概率论的基本概念 §1 .1 随机试验及随机事件 1. (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形. 样本空间是:S= ; (2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ; 2.(1) 丢一颗骰子. A :出现奇数点,则A= ;B :数点大于2,则B= . (2) 一枚硬币连丢2次, A :第一次出现正面,则A= ; B :两次出现同一面,则= ; C :至少有一次出现正面,则C= . §1 .2 随机事件的运算 1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件: (1)A 、B 、C 都不发生表示为: .(2)A 与B 都发生,而C 不发生表示为: . (3)A 与B 都不发生,而C 发生表示为: .(4)A 、B 、C 中最多二个发生表示为: . (5)A 、B 、C 中至少二个发生表示为: .(6)A 、B 、C 中不多于一个发生表示为: . 2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则 (1)=?B A ,(2)=AB ,(3)=B A , (4)B A ?= ,(5)B A = 。 §1 .3 概率的定义和性质 1. 已知6.0)(,5.0)(,8.0)(===?B P A P B A P ,则 (1) =)(AB P , (2)()(B A P )= , (3))(B A P ?= . 2. 已知,3.0)(,7.0)(==AB P A P 则)(B A P = . §1 .4 古典概型 1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率, (2)最多有2个女同学的概率,(3) 至少有2个女同学的概率. 2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率. §1 .5 条件概率与乘法公式 1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。 2. 已知,2/1)|(,3/1)|(,4/1)(===B A P A B P A P 则=?)(B A P 。 §1 .6 全概率公式 1. 有10个签,其中2个“中”,第一人随机地抽一个签,不放回,第二人再随机地抽一个 签,说明两人抽“中‘的概率相同。 2. 第一盒中有4个红球6个白球,第二盒中有5个红球5个白球,随机地取一盒,从中 随机地取一个球,求取到红球的概率。

《概率与数理统计》试题与参考答案

一、填空题(本大题共有10个小题,每小题3分,共30分) 1.设C B A 、、是3个随机事件,则“三个事件中至少有两个事件发生” 用 C B A 、、 表示为 ; 2.设P (A )=0.3,P (B )=0.6,若A 与B 独立,则)(B A P ?= ; 3.设X 的概率分布为C k k X P k ?-= =21 2)(,4,3,2,1=k ,则=C ; 4.设随机变量ξ~),(p n B ,且4=ξE ,2=ξD ,则n = ; 5.设随机变量ξ的密度函数为????? ≤ =其他,02||,cos )(πx x C x f ,则常数 C = ; 6.设n X X X ,,,21 是来自),(2σμN 的样本,则=)(X E ; 7.设随机变量X 与Y 相互独立,且X ~N (0,9),Y ~N (0,1),令Z =X -2Y ,则 D (Z )= ; 8.n X X X ,,,21 是取自总体),(2 σμN 的样本,则∑== n i i X n X 1 1 ~ ; 9.若总体),(~2σμN X ,且2σ未知,用样本检验假设0H :0μμ=时,则采用的统计量是 ; 10.设总体)(~λP X ,则λ的最大似然估计为 。

二、单项选择题(本大题共10小题,每小题2分,共20分) 1.若 A 与 B 互为对立事件,则下式成立的是 ( ) A.P (A ?B )=Ω B.P (AB )=P (A )P (B ) C. P (AB )=φ D. P (A )=1-P (B ) 2.已知一射手在两次独立射击中至少命中目标一次的概率为0.96,则该射手每次射击的命中率为 ( ) A.0.04 B.0.2 C.0.8 D.0.96 3.设A ,B 为两事件,已知P (A )=31,P (A|B )=32,5 3)A |B (P =,则P (B )=( ) A. 5 1 B. 5 2 C. 5 3 D. 5 4 4. 随机变量X )3(~E ,则=)(X D ( ) A. 31 B. 91 C. 271 D. 81 1 5. 设随机变量X ~N (2,32),Φ(x )为标准正态分布函数,则P { 2

最新数理统计大作业题目和答案--0348资料

1、设总体X 服从正态分布),(2 σμN ,其中μ已知,2 σ未知,n X X X ,,,21 为其样本, 2≥n ,则下列说法中正确的是( ) 。 (A ) ∑=-n i i X n 1 2 2 )(μσ是统计量 (B ) ∑=n i i X n 1 22 σ是统计量 (C ) ∑=--n i i X n 1 2 2 )(1μσ是统计量 (D ) ∑=n i i X n 1 2 μ 是统计量 2、设两独立随机变量)1,0(~N X ,)9(~2 χY ,则 Y X 3服从( )。 )(A )1,0(N )(B )3(t )(C )9(t )(D )9,1(F 3、设两独立随机变量)1,0(~N X ,2 ~(16)Y χ )。 )(A )1,0(N )(B (4)t )(C (16)t )(D (1,4)F 4、设n X X ,,1 是来自总体X 的样本,且μ=EX ,则下列是μ的无偏估计的是( ). ) (A ∑ -=-1 1 1 1n i i X n )(B ∑=-n i i X n 1 11 )(C ∑=n i i X n 21 )(D ∑-=111n i i X n 5、设4321,,,X X X X 是总体2 (0,)N σ的样本,2 σ未知,则下列随机变量是统计量的是 ( ). (A )3/X σ; (B ) 4 1 4 i i X =∑; (C )σ-1X ; (D ) 4 221 /i i X σ=∑ 6、设总体),(~2 σμN X ,1,,n X X L 为样本,S X ,分别为样本均值和标准差,则 下列正确的是( ). 2() ~(,)A X N μσ 2() ~(,) B n X N μσ 222 1 1 () ()~()n i i C X n μχσ=-∑ () ~()D t n 7、设总体X 服从两点分布B (1,p ),其中p 是未知参数,15,,X X ???是来自总体的简单随机样本,则下列随机变量不是统计量为( ) ( A ) . 12X X + ( B ) {}max ,15i X i ≤≤

数理统计课后答案

) 数理统计 一、填空题 1、设n X X X ,,21为母体X 的一个子样,如果),,(21n X X X g , 则称),,(21n X X X g 为统计量。不含任何未知参数 2、设母体σσμ),,(~2 N X 已知,则在求均值μ的区间估计时,使用的随机变量为 n X σ μ - 3、设母体X 服从修正方差为1的正态分布,根据来自母体的容量为100的子样,测得子样均值为5,则X 的数学期望的置信水平为95%的置信区间为 。 025.010 1 5u ?± ; 4、假设检验的统计思想是 。 小概率事件在一次试验中不会发生 5、某产品以往废品率不高于5%,今抽取一个子样检验这批产品废品率是否高于5%, 此问题的原假设为 。 0H :05.0≤p 6、某地区的年降雨量),(~2 σμN X ,现对其年降雨量连续进行5次观察,得数据为: (单位:mm) 587 672 701 640 650 ,则2 σ的矩估计值为 。 ~ 7、设两个相互独立的子样2121,,,X X X 与51,,Y Y 分别取自正态母体)2,1(2 N 与 )1,2(N , 2 *2 2*1,S S 分别是两个子样的方差,令2*2222*121)(,S b a aS +==χχ,已知)4(~),20(~22 2221χχχχ,则__________,==b a 。 用 )1(~)1(22 2 *--n S n χσ,1,5-==b a 8、假设随机变量)(~n t X ,则 21 X 服从分布 。)1,(n F

9、假设随机变量),10(~t X 已知05.0)(2 =≤λX P ,则____=λ 。 用),1(~2 n F X 得),1(95.0n F =λ 10、设子样1621,,,X X X 来自标准正态分布母体)1,0(N , X 为子样均值,而 01.0)(=>λX P , 则____=λ 01.04)1,0(~1z N n X =?λ 11、假设子样1621,,,X X X 来自正态母体),(2 σμN ,令∑∑==-=16 11 10 1 43i i i i X X Y ,则Y 的 分布 )170,10(2 σμN % 12、设子样1021,,,X X X 来自标准正态分布母体)1,0(N ,X 与2 S 分别是子样均值和子 样方差,令2*2 10S X Y =,若已知01.0)(=≥λY P ,则____=λ 。)9,1(01.0F =λ 13、如果,?1θ2?θ都是母体未知参数θ的估计量,称1?θ比2?θ有效,则满足 。 )?()?(2 1θθD D < 14、假设子样n X X X ,,,21 来自正态母体),(2σμN ,∑-=+-=1 1 2 12 )(?n i i i X X C σ 是2σ的一个无偏估计量,则_______=C 。 ) 1(21 -n 15、假设子样921,,,X X X 来自正态母体)81.0,(μN ,测得子样均值5=x ,则μ的置信度是95.0的置信区间为 。025.03 9 .05u ?± 16、假设子样10021,,,X X X 来自正态母体),(2 σμN ,μ与2 σ未知,测得子样均值 5=x ,子样方差12=s ,则μ的置信度是95.0的置信区间为 。 025.0025.0025.0)99(),99(10 1 5z t t ≈?± 17、假设子样n X X X ,,,21 来自正态母体),(2 σμN , μ与2σ未知,计算得

概率论与数理统计MOOC课程中的案例设计

概率论与数理统计MOOC课程中的案例设计 发表时间:2018-07-06T10:44:29.247Z 来源:《防护工程》2018年第5期作者:郭珂琪 [导读] 概率论与数理统计是工程数学非常重要的组成部分,甚至有西方学者提出:在大数据时代,统计比微积分更基础。 北京计算机技术及应用研究所北京 100854 摘要:概率论与数理统计是工程数学非常重要的组成部分,甚至有西方学者提出:在大数据时代,统计比微积分更基础。在西方,这门课是几乎所有大学生都要学习的必修课程,在我国,概率论与数理统计也是理工,农林,经管,医药卫生等各领域学生的必修课程,如何让学生学好这门课程一直是很多教师关注的热点。这门课程成为MOOC 课程,可以面向更多的学生,整合并充分利用优质教育资源,方便不同专业的交流;但同时也面临了学生专业跨度大,数学基础差别大的困难。针对这样的学生群体,该课程的MOOC 课程制作面临更大的挑战,必须深入浅出,形象生动,难度层次递进,且有连贯性,才能达到更好的教学效果,并有效降低学生辍学率。 关键词:MOOC 课程;概率论与数理统计;案例教学;概率统计 随着各种MOOC资源平台的涌现和推广,新的在线教学模式—MOOC已经成为大学教育中不可忽视的一种教育模式。MOOC对学校而言,能更好地整合教育资源;对学生而言,能更好地锻炼自学、思考和反思的能力。但MOOC也存在一些较难克服的障碍,对于内容抽象、学习难度大的课程,基础有欠缺、自制力缺乏的学生的辍学率始终居高不下,故可以预见,在较长时期内,部分学生还是会选择以传统课堂教学课程为主的学习方式。对于这门内容抽象、学习难度大的课程,如何保证学生课下自学的效果,不影响课程内容的进度,成为翻转课堂实施的一个关键问题,MOOC相关课程的资源便成为学生课下自学中最好的辅助;同时在课上讨论中,为了更好地提高学生的兴趣,锻炼学生的思考能力,也可以适当结合和借鉴MOOC灵活开放的教学方式。 一、案例教学对概率论与数理统计课堂教学的意义 在概率论与数理统计课堂教学中积极提倡案例教学是十分必要的,并具有其独特的意义。 1、概率论与数理统计的教学目标,既有学习理论方面的目标,又有实践层面的目标,既培养学生具有扎实的概率统计基础理论,又能将该理论和实践结合起来。而案例教学能将理论和实践很好地结合起来,可以使两个目标得以同时实现,且在两者结合方面拉近了距离,使得理论不再是空中楼阁,而是活生生的理论,实践也不是盲目的实践,而是有指导、有方向、有目的的实践。概率论与数理统计是一门应用性很强的学科,很适合用案例教学方法来组织课堂教学。 2、概率论与数理统计是一门研究随机现象的学科,在学习中有许多难点,需辅以案例教学才能理解概率论与数理统计的思想方法、基本原理和统计工具。概率论与数理统计这门课程不同于以往学习的确定性数学,其中随机变量、分布函数、大数定理、中心极限定理、极大似然估计方法以及假设检验的思想方法等都是该课程中难以理解的内容,如果教师在课堂教学上照本宣科,只强调教学过程的理论性、严谨性和逻辑性而脱离实际应用,学生要真正掌握和理解概率统计思想方法和概率统计模型是很困难的,必须从案例出发,才能清晰地阐明其概念和统计思想,必须通过案例的描述、假设、建模与求解,演示理论与方法的应用过程。 3、在概率论与数理统计课堂教学中实施案例教学也是教学改革的必然要求。案例教学法是把案例作为一种教学工具,把学生引导到实际问题中去,通过分析与相互讨论,调动学生的主动性和积极性,并提出解决问题的基本方法和途径的一种教学方法,它是连接理论和实践的桥梁。将理论教学与实际案例有机地结合起来,使得课堂讲解生动而清晰,可收到良好的教学效果。同时案例教学可以促进学生全面地看问题,从数量的角度分析事物的变化规律,使概率与数理统计的思想和方法在现实生活中得到更好的应用,从而提高学生分析问题和解决问题的能力。 二、案例教学在概率论与数理统计课堂教学中的运用 案例教学一般适合于既要注重理论教学,又注重实际操作的课程,而概率论与数理统计作为一门应用性很强的随机学科,在课堂上很适合采用案例教学方法,根据该学科的特点,在案例教学时应按照以下步骤组织实施: 1、案例的选择。选择合适的案例是整个案例教学的核心,同时也是一项十分复杂的工作,这主要是由于大学各理工科的专业性质不同,对案例的选择也不同,一般来说,所选择的案例要与相应专业比较接近,这样才能调动学生学习的积极性,以达到好的教学效果。因而在选择案例时需把握以下几点:一要考虑案例的实用性;二要考虑案例的典型性;三要考虑案例的针对性。根据案例的选择原则,这就要求我们在选择案例时要深入各个相关专业进行调研,与专业教师交流探讨,对专业教材阅读分析,收集专业课程中使用概率论与数理统计知识的案例和学生感兴趣的案例,安排教研活动组织专题讨论,进行分类汇总,编写《概率论与数理统计案例选编》,对于来自各个学科专业的数学应用案例,要有问题的提出和分析,有模型的建立与求解,有应用的讨论和评注。 2、明确案例教学思路,做好案例教学设计。根据教学内容,结合学生的专业特点,从概率论与数理统计案例选编中选取合适案例,选取好案例后,要合理分配好课堂上案例讨论与分析的时间,选择好教学方法和教学手段,并以多媒体的形式在课堂上呈现。概率论与数理统计从内容到方法与以往的数学课程有本质的不同,因此其基本概念的引入就显得更为重要。在教学中,应首先从案例出发引入概率统计的相关概念、概率统计的基本原理、统计方法,然后再选择合适案例来说明概率统计原理与方法的应用。当然,在课堂上不是要一味地讲解案例,也不是案例越多越好,而是要把握好案例与课堂知识点的结合,不能公式化,在教学过程中要充分体现“实践—理论—实践”的认识过程,做到理论与实际的有机结合。 3、有效组织案例教学,做好案例的讨论、分析。案例的讨论与分析是案例教学的中心环节,对案例进行讨论的目的是提出解决问题的途径与方法,可以从自身角度出发来剖析案例,说明自己的观点和看法,教师要掌握讨论的进程,让学生成为案例讨论的主体,同时把握好案例讨论的重点和方向,进行必要的引导。同时在组织案例教学时要辅以各种有效的教学方法,如启发式教学、讨论式教学,让学生积极参与,大胆发表意见,提出观点,深入思考,激发学生的学习热情及科研兴趣,使案例教学效果达到最佳,培养学生运用概率统计原理解决实际问题的能力。 4、案例的总结。案例总结是保证和提高案例教学质量的必备环节。对案例的总结一般要包括以下内容:一是对讨论过程进行总结,对于一个案例,让学生提出各种观点及其案例所包含的概率统计原理,让学生通过分析和评价案例,掌握正确处理和解决复杂多变的现实

相关文档
相关文档 最新文档