文档库 最新最全的文档下载
当前位置:文档库 › 构造辅助函数法在微积分证明中的运用

构造辅助函数法在微积分证明中的运用

构造辅助函数法在微积分证明中的运用
构造辅助函数法在微积分证明中的运用

构造辅助函数法在微积分证明中的运用

1、 原函数法

其实是一种逆向思维的方法,在结合微分中值定理求解介值定理(或者零点)问题时,要证明的结论往往是一个函数的导函数的零点,这时可通过不定积分反求出原函数构造出辅助函数,这个证明的步骤:

1.将结论通过恒等变换,化为容易积分的函数形式,在结论积分不是很复杂的情况下一般常用的变换方法是移项将等式一端变换为常数0;

2.用x 替换变换后等式中的变量;

3.用观察法或者凑微分法求出原函数,则原函数即为所要构造的辅助函数。

4.最后结合微分中值定理,推导出结论来。

例1. 设函数()f x 在[,]a b 上可导,试证明存在(,)z a b ∈,使得

()()()()bf b af a f z z f z b a

-'+?=-。 证明:将要证的结论变形为

()()()()0bf b af a f z z f z b a

-'+?-=-, 则根据积分构造辅助函数

()()()[()()]bf b af a F x f x x f x dx b a -'=+?--?()()()bf b af a x f x x b a

-=?--。 可知函数满足罗尔定理的条件,即()()F a F b =,所以,存在(,)z a b ∈,使得

()()()()()0bf b af a F z f z x f z b a

-''=+?-=-。 可知结论得证。

本例题按照归纳的证明步骤,将结论通过恒等变换,移项将等式一端变换为常数0,然后用x 替换变换后等式中的变量z ,再求出原函数,即函数()f x ,则完成了辅助函数的构造,最后运用罗尔得出结论。

例2.()f x 在[],a b 连续,(),a b 可导,则存在(,)a b ξ∈,使

222(()())()()f b f a b a f ξξ'-=-。

证明(证明一):将要证的结论变形得22()()()2f b f a f x b a ξ-'=

?-, 将等式中的ξ记为x ,即22()()()2f b f a f x x b a -'=

?-, 然后积分得222()()()f b f a f x x c b a

-=?+-, 得到辅助函数222

()()()()f b f a F x c f x x b a -==-?-, 显然()F x 在[,]a b 上连续,在(,)a b 内可导,又因为2222

()()()()b f a a f b F a F b b a -==-,满足罗尔定理,所以存在(,)a b ξ∈,使得()0F ξ'=,

故222(()())()()f b f a b a f ξξ'-=-。

例2证明中在构造辅助函数时用了一个技巧,即将积分后的原函数的常数,独立出来移项到一端,则利用常数在区间[,]a b 上的性质,然后运用罗尔定理推导出结论。如果严格按照归纳的步骤来做依然能够得出结论,如下

例2.证明(证明二):将要证明的等式中的ξ记为x ,然后积分得

222(()())()()x f b f a b a f x -=-,

得到辅助函数222()(()())()()F x x f b f a b a f x =---,

可知,()()F a F b =。故由罗尔定理可得

222(()())()()f b f a b a f ξξ'-=-。

通过例2的两个证明我们可以看出,构造函数法是一个发散性思维很强的方法,可以从不同的角度来考虑辅助函数的构造。存在多种构造函数的思路,并且构造函数的形式多种多样,但是我们从中要把握住核心的思路:观察要证明的结论,并进行一定的变换,得出原函数即为构造函数,让这个构造函数能够满足微分中值定理的条件,进而利用中值定理得出要证明的结论。

例3.设()f x 在[0,1]上二阶可导,且(0)(1)0f f ==,求证存在(0,1)ξ∈,使

2()()1f f ξξξ

'''=-。 证明:设辅助函数2()(1)()F x x f x '=-,因为()f x 在[0,1]上二阶可导,则()f x 在[0,1]上连续且在(0,1)内可导,而(0)(1)0f f ==满足罗尔定理,则存在1(0,1)ξ∈内,使1()0f ξ'=。 在1(,1)ξ内,又22111()(1)()0F f ξξξ=-=,2(1)(11)(1)0F f '=-=,则可知()F x 满足罗尔定理,所以存在1(,1)(0,1)ξξ∈?,使得()0F ξ'=, 又2()2(1)()(1)()F x x f x x f x ''''=--+-,

所以2()2(1)()(1)()0F f f ξξξξξ''''=--+-=, 即得:2()()1f f ξξξ

'''=-。 这个构造的辅助函数依然按照根据要证结论的等式进行变换,则可知()2()1f x f x x

''='-,两边积分可得ln ()2ln 1ln f x x c '=--+,得2(1)()c x f x '=-,这样我们就找出了所需要构造的辅助函数。

2、 微分方程通解法

在命题中经常会遇到这样的形式,函数()f x 在区间[],a b 上连续,在(,)a b 内可导,且满足一定的条件,求证存在一点(,)a b ξ∈,使得()[,()]f f ξφξξ'=。在处理这一类的问题时,可以先解微分方程(,)y x y φ'=,得到通解(,)G x y c =,则

可构造出辅助函数为()(,)F x G x y =,这种处理的方法就是微分方程通解法。

例1.设函数()f x 在区间[],a b 上连续,在(,)a b 内可导,且()0f x ≠,(,)x a b ∈。若()()0f a f b ==。证明:对任意的实数k ,存在点(,)a b ξ∈使得

()()

f K f ξξ'=。 证明:将结论中的ξ换成x ,得到可分离变量的微分方程:

()()f x K f x '=,即dy kdx y =, 可知道其通解为()kx f x ce =,即为()kx f x e c -=,

则设辅助函数为()()kx F x f x e -=,则()F x 在[],a b 上连续,在(,)a b 内可导,且()()0F a F b ==。

则由罗尔定理可知,至少存在一点(,)a b ξ∈,使()0F ξ'=,则有()()f K f ξξ'=。 可见微分方程通解法,在证明结论形式为()[,()]f f ξφξξ'=的命题时,将ξ换成x ,再令()y f x =,得到微分方程(,)y x y φ'=,如果能够解得其通解为(,)u x y C =,则可构造辅助函数()(,())F x u x f x =。

例2.设函数(),()f x g x 在[],a b 上连续,在(,)a b 内可导,且()()0F a F b ==,求证:存在点(,)a b ξ∈使得()()(()()1)g f f g ξξξξ''=+-。

证明:将结论中的ξ换成x ,得到一阶线形微分方程

1dy y z dz

=+-(一阶线性微分方程的通解见附录A ),解得()z y z e c -+=,

于是设辅助函数为()()(()())f x F x f x g x e -=+,

由题意可知()F x 在[],a b 上连续,在(,)a b 内可导,且()()0F a F b ==, 则由罗尔定理可知,至少存在一点(,)a b ξ∈,使()0F ξ'=,

即()()(()()1)g f f g ξξξξ''=+-。

此例题的结论形式是()((),())()f x f g g x φξξ'=',则将(),()y f x z g x ==,得出微分方程形式为(,)dy y z dz

φ=,若通解为(,)u y z C =,则可构造的辅助函数即为()((),())F x u f x g x =。

拉格朗日中值定理的结论常称为拉格朗日公式,它有几种常用的等价形式,可根据不同问题的特点,在不同场合灵活采用:

多元函数微分学知识点梳理

第九章 多元函数微分学 内容复习 一、基本概念 1、知道:多元函数的一些基本概念(n 维空间,n 元函数,二重极限,连续等);理解:偏导数;全微分. 2、重要定理 (1)二元函数中,可导、连续、可微三者的关系 偏导数连续?可微???函数偏导数存在 ?连续 (2)(二元函数)极值的必要、充分条件 二、基本计算 (一) 偏导数的计算 1、 偏导数值的计算(计算),(00y x f x ') (1)先代后求法 ),(00y x f x '=0),(0x x y x f dx d = (2)先求后代法(),(00y x f x '=00),(y y x x x y x f ==') (3)定义法(),(00y x f x '=x y x f y x x f x ?-?+→?),(),(lim 00000)(分段函数在分段点处的偏导数) 2、偏导函数的计算(计算(,)x f x y ') (1) 简单的多元初等函数——将其他自变量固定,转化为一元函数求导 (2) 复杂的多元初等函数——多元复合函数求导的链式法则(画树形图,写求导公式) (3) 隐函数求导 求方程0),,(=z y x F 确定的隐函数),(y x f z =的一阶导数,z z x y ???? ,,,(),,y x z z F F z z x y z x F y F x y x y z ''???=-=-?''????? 公式法:(地位平等)直接法:方程两边同时对或求导(地位不平等) 注:若求隐函数的二阶导数,在一阶导数的基础上,用直接法求。 3、高阶导数的计算 注意记号表示,以及求导顺序 (二) 全微分的计算 1、 叠加原理

微积分第一章

高等数学教案 、

第一章 函数、极限与与连续 本章将在分别研究数列的极限与函数的极限的基础上,讨论极限的一些重要性质以及运算法则,函数的连续性,闭区间上连续函数的性质。具体的要求如下: 1. 理解极限的概念(理解极限的描述性定义,对极限的N -ε、δε-定义可在学习过程中 逐步加深理解,对于给出ε求N 或δ不作过高要求)。 2. 掌握极限四则运算法则。 3. 了解极限存在准则(夹逼准则和单调有界准则),会用两个重要极限求极限。 4. 了解无穷小、无穷大及无穷小的阶的概念。能够正确运用等价无穷小求极限。 5. 理解函数在一点连续的概念,理解区间内(上)连续函数的概念。 6. 了解间断点的概念,会求函数的间断点并判别间断点的类型。 7. 了解初等函数的连续性和闭区间上连续函数的性质(最大、最小值定理、零点定理、介值定理)。 第一章共12学时,课时安排如下 绪论 §1.1、函数 §1.2初等函数 2课时 §1.4数列极限及其运算法则 2课时 §1.4函数极限及其运算法则 2课时 §1.4两个重要极限 无穷小与无穷大 2课时 §1.4函数的连续性 2课时 第一章 习题课 2课时 绪论 数学:数学是研究空间形式和数量关系的一门学科,数学是研究抽象结构及其规律、特性的学科。数学具有高度的抽象性、严密的逻辑性和应用的广泛性。 关于数学应用和关于微积分的评价: 恩格斯:在一切理论成就中,未必再有像17世纪下叶微积分的微积分的发现那样被看作人类精神的最高胜利了。如果在某个地方我们看到人类精神的纯粹的和唯一的功绩,那就正是这里。 华罗庚:宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之迷,日用之繁,无处不用数学。 张顺燕:微积分是人类的伟大结晶,它给出了一整套科学方法,开创了科学的新纪元,并因此加强和加深了数学的作用。……有了微积分,人类才有能力把握运动和过程;有了微积分,就有了工业革命,有了大工业生产,也就有了现代的社会。航天飞机,宇宙飞船等现代化交通工具都是微积分的直接后果。数学一下子到了前台。数学在人类社会的第二次浪潮中的作用比第一次浪潮要明显多了(《数学通报》数学与文化2001.1.封二) 初等数学与高等数学的根本区别:用初等数学解决实际问题常常只能在有限的范围内孤立的静止的观念来研究,有很多问题不能得到最终答案,甚至无法解决。高等数学用运动的辨正观点研究变量及其依赖关系,极限的方法是研究变量的一种基本方法,贯穿高等数学的始终。用高等数学解决实际问题,计算往往比较简单,且能获得最终的结果。

高等数学公式(定积分 微积分 三角函数 导函数 等等 应有尽有)

高等数学公式 基本积分表(1)kdx kx C =+? (k 是常数) (2)1 ,1 x x dx C μμ μ+= ++? (1)u ≠- (3)1 ln ||dx x C x =+? (4)2 tan 1dx arl x C x =++? (5) arcsin x C =+ (6)cos sin xdx x C =+? (7)sin cos xdx x C =-+? (8)2 1 tan cos dx x C x =+? (9)21 cot sin dx x C x =-+? (10)sec tan sec x xdx x C =+? (11)csc cot csc x xdx x C =-+? (12)x x e dx e C =+? (13)ln x x a a dx C a =+?,(0,1)a a >≠且 (14)shxdx chx C =+? (15)chxdx shx C =+? (16)22 11tan x dx arc C a x a a =++? (17)2 2 11ln ||2x a dx C x a a x a -=+-+? (18) sin x arc C a =+ (19) ln(x C =++

(20) ln |x C =++ (21)tan ln |cos |xdx x C =-+? (22)cot ln |sin |xdx x C =+? (23)sec ln |sec tan |xdx x x C =++? (24)csc ln |csc cot |xdx x x C =-+? 注:1、从导数基本公式可得前15个积分公式,(16)-(24)式后几节证。 2、以上公式把x 换成u 仍成立,u 是以x 为自变量的函数。 3、复习三角函数公式: 2222sin cos 1,tan 1sec ,sin 22sin cos ,x x x x x x x +=+==21cos 2cos 2 x x += , 21cos 2sin 2 x x -= 。 注:由[()]'()[()]()f x x dx f x d x ????=??,此步为凑微分过程,所以第一类换元法也叫凑微分法。此方法是非常重要的一种积分法,要运用自如,务必熟记基本积分表,并掌握常见的凑微分形式及“凑”的技巧。 小结: 1常用凑微分公式

微积分及三角函数公式

微积分及三角函数基本公式

cos (α±β)=cos α cos β μsin α sin β 2 sin α cos β = sin (α+β) + sin (α-β) 2 cos α sin β = sin (α+β) - sin (α-β) 2 cos α cos β = cos (α-β) + cos (α+β) 2 sin α sin β = cos (α-β) - cos (α+β) sin α - sin β = 2 cos ?(α+β) sin ?(α-β) cos α + cos β = 2 cos ?(α+β) cos ?(α-β) cos α - cos β = -2 sin ?(α+β) sin ?(α-β) tan (α±β)= βαβαtan tan tan tan μ±, cot (α±β)=β αβ αcot cot cot cot ±μ e x =1+x+!22x +!33x +…+! n x n + … sin x = x-!33x +!55x -!77 x +…+)!12()1(12+-+n x n n + … cos x = 1-!22x +!44x -!66 x +…+)!2()1(2n x n n -+ … ln (1+x) = x-22x +33x -44 x +…+)!1()1(1+-+n x n n + … tan -1 x = x-33x +55x -7 7 x +…+)12()1(12+-+n x n n + … (1+x)r =1+r x+ !2)1(-r r x 2+! 3)2)(1(--r r r x 3 +… -1

多元函数微分学及应用(隐函数反函数)

习题课:多元函数求偏导,多元函数微分的应用 多元复合函数、隐函数的求导法 (1) 多元复合函数 设二元函数),(v u f z =在点),(00v u 处偏导数连续,二元函数),(),,(y x v v y x u u ==在点 ),(00y x 处偏导数连续, 并且),(),,(000000y x v v y x u u ==, 则复合函数 )),(),,((y x v y x u f z = 在点),(00y x 处可微,且 ()()()() x y x v v v u f x y x u u v u f x z y x ?????+?????= 00000000) ,(,,,,00??()()()() y y x v v v u f y y x u u v u f y z y x ?????+?????= 00000000) ,(,,,,00?? 多元函数微分形式的不变性:设),(),,(),,(y x v v y x u u v u f z ===,均为连续可微, 则将z 看成y x ,的函数,有 dy y z dx x z dz ??+??= 计算 y v v f y u u f y z x v v f x u u f x z ????+????=??????+????=??,,代人, dv v f du u f dy y v dx x v v f dy y u dx x u u f dy y v v f y u u f dx x v v f x u u f dy y z dx x z dz ??+??= ???? ????+????+???? ????+????=???? ??????+????+??? ??????+????=??+??= 我们将dv v f du u f dy y z dx x z dz ??+??=??+??= 叫做微分形式不变性。 例1 设??? ??=x y xy f x z , 3 ,求y z x z ????,。

高等数学积分公式大全

常 用 积 分 公 式 (一)含有ax b +的积分(0a ≠) 1.d x ax b +? =1 ln ax b C a ++ 2.()d ax b x μ+?=11 ()(1) ax b C a μμ++++(1μ≠-) 3.d x x ax b +? =21 (ln )ax b b ax b C a +-++ 4.2d x x ax b +? =22311()2()ln 2ax b b ax b b ax b C a ?? +-++++???? 5.d () x x ax b +?=1ln ax b C b x +-+ 6.2 d () x x ax b +?=21ln a ax b C bx b x +-++ 7.2d ()x x ax b +? =21(ln )b ax b C a ax b ++++ 8.22 d ()x x ax b +?=2 31(2ln )b ax b b ax b C a ax b +-+-++ 9.2 d ()x x ax b +? = 211ln ()ax b C b ax b b x +-++ 的积分 10.x C + 11.x ?=2 2(3215ax b C a -+ 12.x x ?=2223 2 (15128105a x abx b C a -+ 13.x =22 (23ax b C a - 14.2x =2223 2(34815a x abx b C a -+

15 . =(0) (0) C b C b ?+>< 16 . 2a b - 17 .x =b +18 .x =2a x -+ (三)含有22x a ±的积分 19.22d x x a +?=1arctan x C a a + 20.22d ()n x x a +?=2221222123d 2(1)()2(1)()n n x n x n a x a n a x a ---+-+-+? 21.22 d x x a -? =1ln 2x a C a x a -++ (四)含有2(0)ax b a +>的积分 22.2d x ax b +? =(0) (0) C b C b ?+>+< 23.2 d x x ax b +? =2 1ln 2ax b C a ++ 24.22d x x ax b +?=2d x b x a a ax b -+? 25.2d ()x x ax b +?=2 2 1ln 2x C b ax b ++ 26.22d ()x x ax b +? =21d a x bx b ax b --+?

(完整word)高数微积分公式+三角函数公式考研

高等数学微积分公式大全 一、基本导数公式 ⑴()0c '= ⑵1 x x μ μμ-= ⑶()sin cos x x '= ⑷()cos sin x x '=- ⑸()2 tan sec x x '= ⑹()2 cot csc x x '=- ⑺()sec sec tan x x x '=? ⑻()csc csc cot x x x '=-? ⑼()x x e e '= ⑽()ln x x a a a '= ⑾()1 ln x x '= ⑿( )1 log ln x a x a '= ⒀( )arcsin x '= ⒁( )arccos x '= ⒂()21arctan 1x x '= + ⒃()2 1arccot 1x x '=-+⒄()1x '= ⒅ '=二、导数的四则运算法则 ()u v u v '''±=± ()uv u v uv '''=+ 2u u v uv v v '''-??= ??? 三、高阶导数的运算法则 (1)()()() () () ()()n n n u x v x u x v x ±=±???? (2)()() ()()n n cu x cu x =???? (3)()()() ()n n n u ax b a u ax b +=+???? (4)()()() ()()()()0 n n n k k k n k u x v x c u x v x -=?=???? ∑ 四、基本初等函数的n 阶导数公式 (1)() () !n n x n = (2)() () n ax b n ax b e a e ++=? (3)() () ln n x x n a a a = (4)()() sin sin 2n n ax b a ax b n π??+=++??? ??? ?? (5) ()()cos cos 2n n ax b a ax b n π??+=++??? ???? ? (6)() () () 1 1! 1n n n n a n ax b ax b +??? =- ?+?? + (7) ()() () ()() 1 1! ln 1n n n n a n ax b ax b -?-+=-???? + 五、微分公式与微分运算法则 ⑴()0d c = ⑵()1 d x x dx μ μμ-= ⑶()sin cos d x xdx = ⑷()cos sin d x xdx =- ⑸()2 tan sec d x xdx = ⑹()2 cot csc d x xdx =- ⑺()sec sec tan d x x xdx =? ⑻()csc csc cot d x x xdx =-? ⑼()x x d e e dx = ⑽()ln x x d a a adx = ⑾()1 ln d x dx x =

多元函数微分学及其应用

第8章 多元函数微分学及其应用 参考解答 1、设22 , y f x y x y x ??+=- ??? ,求(),f x y ,(),f x y xy -。 解:()()()()2 21, 1y y x y x f x y x y x y x y x y y x x y x - -??+=+-=+=+ ?+? ? + ,故得 ()2 1,1y f x y x y -=+,()()21,1xy f x y xy x y xy --=-+ 2、求下列各极限: 2242222 2220000 cos sin 1(1) lim lim lim sin 204x r r y x y r r x y r θθθ→→→→===+ 注意:在利用极坐标变换cos , sin x r y r θθ==来求极限时,θ也是变量。本题中,0r →时,2r 为无穷小量,而2 sin 2θ为有界变量,故所求极限为零。 ()00sin sin (2) lim lim 1x t y a xy t xy t →→→== 3、证明极限2 2400 lim x y xy x y →→+不存在。 证明:当2 y kx =时,()2242,1xy k f x y x y k ==++,故2 22420 lim 1y kx x xy k x y k =→=++与k 有关。可见,(),x y 沿不同的路径趋于()0,0时,函数极限不同,故极限不存在。(两路径判别法) 4、讨论下列函数在()0,0点处的连续性: (1)()()()222222 22 ln , 0 ,0, 0 x y x y x y f x y x y ?+++≠?=?+=?? 解: ()() ()()() ()()()2 222,0,0,0,0 lim ,lim ln lim ln 00,0x y x y t f x y x y x y t t f →→→= ++=== 故原函数在()0,0点处连续。

微积分及三角函数公式合集

第一部分:常用积分公式 基本积分公式: 1 kdx kx c =+? 2 1 1 x x dx c μμ μ+= ++? 3 ln dx x c x =+? 4 ln x x a a dx c a =+? 5 x x e dx e c =+? 6 cos sin xdx x c =+? 7 sin cos xdx x c =-+? 8 2 21sec tan cos dx xdx x c x ==+?? 9 22 1 csc cot sin xdx x c x ==-+?? 10 2 1arctan 1dx x c x =++? 11 arcsin x c =+ 12 tan ln cos xdx x c =-+? 13 cot ln sin xdx x c =+? 14 sec ln sec tan xdx x x c =++? 15 csc ln csc cot xdx x x c =-+? 16 22 11arctan x dx c a x a a =++? 17 22 11ln 2x a dx c x a a x a -=+-+? 18 arcsin x c a =+

19 ln x c =+ 分部积分法公式 1 形如n ax x e dx ? ,令n u x =,ax dv e dx = 2 形如sin n x xdx ?令n u x =,sin dv xdx = 3 形如cos n x xdx ? 令n u x =,cos dv xdx = 4 形如arctan n x xdx ?,令arctan u x =,n dv x dx = 5 形如ln n x xdx ?,令ln u x =,n dv x dx = 6 形如sin ax e xdx ? ,cos ax e xdx ? 令,sin ,cos ax u e x x =均可。 常用凑微分公式 1. ()()()1 f ax b dx f ax b d ax b a += ++? ? 2. ()()()11 f x x dx f x d x μμμμμ-= ? ? 3. ()()()1 ln ln ln f x dx f x d x x ?=? ? 4. ()()()x x x x f e e dx f e d e ?=?? 5. ()()()1 ln x x x x f a a dx f a d a a ?= ? ? 6. ()()()sin cos sin sin f x xdx f x d x ?=?? 7. ()()()cos sin cos cos f x xdx f x d x ?=-?? 8. ()()()2 tan sec tan tan f x xdx f x d x ?=?? 9. 2dx f d =? 10.21111()()()f dx f d x x x x =-?? 11.()()()2 cot csc cot cot f x xdx f x d x ?=??

(完整版)高等数学常用公式大全

高数常用公式 平方立方: 22222222 332233223223332233222(1)()()(2)2()(3)2()(4)()()(5)()()(6)33()(7)33()(8)222(a b a b a b a ab b a b a ab b a b a b a b a ab b a b a b a ab b a a b ab b a b a a b ab b a b a b c ab bc ca -=+-++=+-+=-+=+-+-=-+++++=+-+-=-+++++= 21221)(9)()(),(2) n n n n n n a b c a b a b a a b ab b n ----++-=-++++≥L 三角函数公式大全 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1 -cotAcotB + cot(A-B) =cotA cotB 1 cotAcotB -+ 倍角公式 tan2A =A tan 12tanA 2- Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 三倍角公式 sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA tan3a = tana ·tan(3π+a)·tan(3 π -a) 半角公式 sin( 2 A )=2cos 1A - cos( 2 A )=2cos 1A + tan( 2 A )=A A cos 1cos 1+- cot(2 A )=A A cos 1cos 1-+ tan( 2 A )=A A sin cos 1-=A A cos 1sin + 和差化积 sina+sinb=2sin 2b a +cos 2b a - sina-sinb=2cos 2b a +sin 2b a - cosa+cosb = 2cos 2b a +cos 2b a - cosa-cosb = -2sin 2b a +sin 2 b a -

微积分及三角函数公式合集

第一部分:常用积分公式 基本积分公式: 1 kdx kx c =+? 2 1 1 x x dx c μμμ+=++? 3 ln dx x c x =+? 4 ln x x a a dx c a =+? 5 x x e dx e c =+? 6 cos sin xdx x c =+? 7 sin cos xdx x c =-+? 8 221sec tan cos dx xdx x c x ==+?? 9 221csc cot sin xdx x c x ==-+?? 10 21arctan 1dx x c x =++? 11 arcsin x c =+ 12 tan ln cos xdx x c =-+? 13 cot ln sin xdx x c =+? 14 sec ln sec tan xdx x x c =++? 15 csc ln csc cot xdx x x c =-+? 16 2211arctan x dx c a x a a =++? 17 2211ln 2x a dx c x a a x a -=+-+? 18 arcsin x c a =+

19 ln x c =+ 分部积分法公式 1 形如n ax x e dx ?,令n u x =,ax dv e dx = 2 形如sin n x xdx ? 令n u x =,sin dv xdx = 3 形如cos n x xdx ?令n u x =,cos dv xdx = 4 形如arctan n x xdx ? ,令arctan u x =,n dv x dx = 5 形如ln n x xdx ? ,令ln u x =,n dv x dx = 6 形如sin ax e xdx ?,cos ax e xdx ?令,sin ,cos ax u e x x =均可。 常用凑微分公式 1. ()()()1f ax b dx f ax b d ax b a +=++? ? 2. ()()()11f x x dx f x d x μμμμμ-=?? 3. ()()()1ln ln ln f x dx f x d x x ?=?? 4. ()()()x x x x f e e dx f e d e ?=?? 5. ()()()1ln x x x x f a a dx f a d a a ?=?? 6. ()()()sin cos sin sin f x xdx f x d x ?=?? 7. ()()()cos sin cos cos f x xdx f x d x ?=-?? 8. ()()()2tan sec tan tan f x xdx f x d x ?=?? 9. 2dx f d =? 10. 21111()()()f dx f d x x x x =-?? 11. ()()()2cot csc cot cot f x xdx f x d x ?=??

高等数学积分公式大全

创作编号: GB8878185555334563BT9125XW 创作者: 凤呜大王* 常 用 积 分 公 式 (一)含有ax b +的积分(0a ≠) 1. d x ax b +?=1 ln ax b C a ++ 2.()d ax b x μ +? = 11 ()(1) ax b C a μμ++++(1μ≠-) 3. d x x ax b +?=21 (ln )ax b b ax b C a +-++ 4.2d x x ax b +? =22311()2()ln 2ax b b ax b b ax b C a ?? +-++++???? 5. d ()x x ax b +?=1ln ax b C b x +-+ 6. 2 d () x x ax b +? =21ln a ax b C bx b x +-++ 7. 2 d ()x x ax b +?=21(ln )b ax b C a ax b ++++ 8.22 d ()x x ax b +?=2 31(2ln )b ax b b ax b C a ax b +-+-++

9. 2 d () x x ax b +? =211ln ()ax b C b ax b b x +-++ 的积分 10 . x ? C + 11 .x ? =2 2 (3215ax b C a - 12 .x x ? =2223 2(15128105a x abx b C a -++ 13 . x ? =22 (23ax b C a - 14 . 2x ? =222 3 2(34815a x abx b C a -++ 15 .? (0) (0) C b C b ?+>< 16 . ? =2a bx b -- 17 . x ? =b ?18. 2d x x ? =2a + (三)含有2 2 x a ±的积分 19. 22d x x a +?=1arctan x C a a +

微积分及三角函数公式合集

微积分及三角函数公式 合集 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

第一部分:常用积分公式 基本积分公式: 1 kdx kx c =+? 2 1 1 x x dx c μμ μ+= ++? 3 ln dx x c x =+? 4 ln x x a a dx c a =+? 5 x x e dx e c =+? 6 cos sin xdx x c =+? 7 sin cos xdx x c =-+? 8 2 21sec tan cos dx xdx x c x ==+? ? 9 221 csc cot sin xdx x c x ==-+?? 10 2 1 arctan 1dx x c x =++? 11 arcsin x c =+ 12 tan ln cos xdx x c =-+? 13 cot ln sin xdx x c =+? 14 sec ln sec tan xdx x x c =++? 15 csc ln csc cot xdx x x c =-+? 16 22 11arctan x dx c a x a a =++? 17 2211ln 2x a dx c x a a x a -=+-+? 18 arcsin x c a =+

19 ln x c =+ 分部积分法公式 1 形如n ax x e dx ?,令n u x =,ax dv e dx = 2 形如sin n x xdx ?令n u x =,sin dv xdx = 3 形如cos n x xdx ?令n u x =,cos dv xdx = 4 形如arctan n x xdx ?,令arctan u x =,n dv x dx = 5 形如ln n x xdx ?,令ln u x =,n dv x dx = 6 形如sin ax e xdx ?,cos ax e xdx ?令,sin ,cos ax u e x x =均可。 常用凑微分公式 1. ()()()1 f ax b dx f ax b d ax b a +=++?? 2. ()()()11 f x x dx f x d x μμμμμ-= ?? 3. ()()()1ln ln ln f x dx f x d x x ?=?? 4. ()()()x x x x f e e dx f e d e ?=?? 5. ()()()1ln x x x x f a a dx f a d a a ?= ?? 6. ()()()sin cos sin sin f x xdx f x d x ?=?? 7. ()()()cos sin cos cos f x xdx f x d x ?=-?? 8. ()()()2tan sec tan tan f x xdx f x d x ?=?? 9. 2dx f d =? 10.21111()()()f dx f d x x x x =-? ? 11.()()()2cot csc cot cot f x xdx f x d x ?=?? 第二部分:常用微分、导数公式 (c=常数)

多元函数微分学习题

第五部分 多元函数微分学(1) [选择题] 容易题1—36,中等题37—87,难题88—99。 1.设有直线? ??=+--=+++031020 123:z y x z y x L 及平面0224:=-+-z y x π,则直线L ( ) (A) 平行于π。 (B) 在上π。(C) 垂直于π。 (D) 与π斜交。 答:C 2.二元函数??? ??=≠+=)0,0(),(, 0)0,0(),(,),(22y x y x y x xy y x f 在点)0,0(处 ( ) (A) 连续,偏导数存在 (B) 连续,偏导数不存在 (C) 不连续,偏导数存在 (D) 不连续,偏导数不存在 答:C 3.设函数),(),,(y x v v y x u u ==由方程组? ??+=+=2 2v u y v u x 确定,则当v u ≠时,=??x u ( ) (A) v u x - (B) v u v -- (C) v u u -- (D) v u y - 答:B 4.设),(y x f 是一二元函数,),(00y x 是其定义域内的一点,则下列命题中一定正确的是( ) (A) 若),(y x f 在点),(00y x 连续,则),(y x f 在点),(00y x 可导。 (B) 若),(y x f 在点),(00y x 的两个偏导数都存在,则),(y x f 在点),(00y x 连续。 (C) 若),(y x f 在点),(00y x 的两个偏导数都存在,则),(y x f 在点),(00y x 可微。 (D) 若),(y x f 在点),(00y x 可微,则),(y x f 在点),(00y x 连续。 答:D 5.函数2223),,(z y x z y x f +++=在点)2,1,1(-处的梯度是( ) (A) )32,31, 31(- (B) )32,31,31(2- (C) )92,91,91(- (D) )9 2 ,91,91(2- 答:A

(完整版)高等数学第一章函数与极限试题2

高等数学第一章函数与极限试题 一. 选择题 1.设F(x)是连续函数f(x)的一个原函数,""N M ?表示“M 的充分必要条件是N ”,则必有 (A ) F(x)是偶函数?f(x)是奇函数. (B ) F(x)是奇函数?f(x)是偶函数. (C ) F(x)是周期函数?f(x)是周期函数. (D ) F(x)是单调函数?f(x)是单调函数 2.设函数,1 1 )(1 -= -x x e x f 则 (A ) x=0,x=1都是f(x)的第一类间断点. (B ) x=0,x=1都是f(x)的第二类间断点 (C ) x=0是f(x)的第一类间断点,x=1是f(x)的第二类间断点. (D ) x=0是f(x)的第二类间断点,x=1是f(x)的第一类间断点. 3.设f (x)=x x 1-,x ≠0,1,则f [)(1 x f ]= ( D ) A ) 1-x B ) x -11 C ) X 1 D ) x 4.下列各式正确的是 ( C ) A ) lim 0 + →x )x 1 +1(x =1 B ) lim 0 + →x )x 1 +1(x =e C ) lim ∞ →x )x 1 1-(x =-e D ) lim ∞ →x )x 1 +1(x -=e

5.已知9)( lim =-+∞→x x a x a x ,则=a ( C )。 A.1; B.∞; C.3ln ; D.3ln 2。 6.极限:=+-∞→x x x x )1 1(lim ( C ) A.1; B.∞; C.2-e ; D.2e 7.极限:∞ →x lim 332x x +=( A ) A.1; B.∞; C.0; D.2. 8.极限:x x x 11lim 0 -+→ =( C ) A.0; B.∞; C 2 1; D.2. 9. 极限:)(lim 2x x x x -+∞ +→=( D ) A.0; B.∞; C.2; D. 2 1 . 10.极限: x x x x 2sin sin tan lim 30-→=( C ) A.0; B.∞; C. 16 1; D.16. 二. 填空题 11.极限1 2sin lim 2+∞ →x x x x = 2 . 12. lim 0 →x x arctanx =_______________. 13. 若)(x f y =在 点 x 连续,则 f )]()([lim 0→-0 x f x f x x =______f ’(xo)_________; 14. =→x x x x 5sin lim 0_________0.2__; 15. =-∞→n n n )2 1(lim _______e*e__________; 16. 若函数2 31 22+--=x x x y ,则它的间断点是___________2___1_____

微积分及三角函数公式合集

微积分及三角函数公式合 集 Last updated on the afternoon of January 3, 2021

第一部分:常用积分公式 基本积分公式: 1 kdx kx c =+? 2 1 1 x x dx c μμ μ+= ++? 3 ln dx x c x =+? 4 ln x x a a dx c a =+? 5 x x e dx e c =+? 6 cos sin xdx x c =+? 7 sin cos xdx x c =-+? 8 22 1 sec tan cos dx xdx x c x ==+? ? 9 221 csc cot sin xdx x c x ==-+?? 10 2 1 arctan 1dx x c x =++? 11 arcsin x c =+ 12 tan ln cos xdx x c =-+? 13 cot ln sin xdx x c =+? 14 sec ln sec tan xdx x x c =++? 15 csc ln csc cot xdx x x c =-+? 16 22 11arctan x dx c a x a a =++? 17 2211ln 2x a dx c x a a x a -=+-+?

18 arcsin x c a =+ 19 ln x c =+ 分部积分法公式 1 形如n ax x e dx ?,令n u x =,ax dv e dx = 2 形如sin n x xdx ?令n u x =,sin dv xdx = 3 形如cos n x xdx ?令n u x =,cos dv xdx = 4 形如arctan n x xdx ?,令arctan u x =,n dv x dx = 5 形如ln n x xdx ?,令ln u x =,n dv x dx = 6 形如sin ax e xdx ?,cos ax e xdx ?令,sin ,cos ax u e x x =均可。 常用凑微分公式 1. ()()()1 f ax b dx f ax b d ax b a +=++?? 2. ()()()11 f x x dx f x d x μμμμμ-= ?? 3. ()()()1ln ln ln f x dx f x d x x ?=?? 4. ()()()x x x x f e e dx f e d e ?=?? 5. ()()()1ln x x x x f a a dx f a d a a ?= ?? 6. ()()()sin cos sin sin f x xdx f x d x ?=?? 7. ()()()cos sin cos cos f x xdx f x d x ?=-?? 8. ()()()2tan sec tan tan f x xdx f x d x ?=?? 9. 2dx f d =? 10.21111()()()f dx f d x x x x =-? ?

《数学分析》多元函数微分学

第四章多元函数微分学一、本章知识脉络框图

二、本章重点及难点 本章需要重点掌握以下几个方面容: ● 偏导数、全微分及其几何意义,可微与偏导存在、连续之间的关系,复合函数的偏导数 与全微分,一阶微分形式不变性,方向导数与梯度,高阶偏导数,混合偏导数与顺序无关性,二元函数中值定理与Taylor 公式. ● 隐函数存在定理、隐函数组存在定理、隐函数(组)求导方法、反函数组与坐标变换. ● 几何应用(平面曲线的切线与法线、空间曲线的切线与法平面、曲面的切平面与法线. ● 极值问题(必要条件与充分条件),条件极值与Lagrange 乘数法. 三、本章的基本知识要点 (一)平面点集与多元函数 1.任意一点A 与任意点集E 的关系. 1) 点. 若存在点A 的某邻域()U A ,使得()U A E ?,则称点A 是点集E 的点。 2) 外点. 若存在点A 的某邻域()U A ,使得()U A E ?=?,则称点A 是点集E 的外点。 3) 界点(边界点). 若在点A 的任何邻域既含有属于E 得的点,又含有不属于E 的点,则称点A 是点集E 的界点。 4) 聚点. 若在点A 的任何空心邻域()o U A 部都含有E 中的点,则称点A 是点集E 的 聚点。 5) 孤立点. 若点A E ∈,但不是E 的聚点,则称点A 是点集E 的孤立点。 2. 几种特殊的平面点集. 1) 开集. 若平面点集E 所属的每一点都是E 的点,则称E 为开集。 2)闭集. 若平面点集E 的所有聚点都属于E ,则称E 为闭集。 3) 开域. 若非空开集E 具有连通性,即E 中任意两点之间都可用一条完全含于E 得有限折线相连接,则称E 为开域。 4)闭域. 开域连同其边界所成的点集称为闭域。 5)区域. 开域、闭域或者开域连同某一部分界点所成的点集,统称为区域。 3.2 R 上的完备性定理. 1) 点列收敛定义:设{}2 n P R ?为平面点列,2 0P R ∈为一固定点。若对任给的正数ε,存在正整数N ,使得当n N >时,有()0,n P U P ε∈,则称点列{}n P 收敛于点0P ,记作 0lim n n P P →∞ = 或 ()0,n P P n →→∞.

相关文档