文档库 最新最全的文档下载
当前位置:文档库 › 多背压凝汽器——大机组节能新技术

多背压凝汽器——大机组节能新技术

多背压凝汽器——大机组节能新技术
多背压凝汽器——大机组节能新技术

汽机双背压的机理

一、双背压的原因是循环水造成的,也一是一个低压凝汽器循环水出来到的高压凝汽器,所以会产生双背压;这样的话可以给电厂循环水管路的布置在一定情况下提供方便,要知道循环水管路都是很粗大的,布置起来不是很方便; 二、又背压的平均压力要比单背压低,这是教科书上说的,有分析,经济性要比单背压好; 三、也有的厂把设计为双背压的汽轮机当单背压用,比如浙江宁海电厂; 还有一个原因,做成一个太大太重了,从喉部的连接到底部的支撑都不如做成2个方便 就是减少布置循环水管路,接约材质,并且对运行也没有什么多大影响 双背压凝汽器的概念: 背压,是指汽轮机排汽压力,我们公司现有的110MW、220MW机组都是单背压的,即所有低压缸的排汽压力都相等。双背压是指汽轮机有两个不同的排汽压力,这样的汽轮机,被称为双背压汽轮机,相对应的,这样的凝汽器被称为双背压凝汽器。 双背压凝汽器的优点: 1.根据传热学原理,双背压凝汽器的平均背压低于同等条件下单背压凝汽器的背压,因此汽机低压缸的焓降就增大了,从而提高了汽轮机的经济性。 (我们四期工程可研报告中,双背压分别为4.4/5.4KPA,平均背压为4.9 KPA)。 2. 双背压凝汽器的另一个优点就是低背压凝汽器中的低温凝结水可以进入高背压凝汽器中去进行加热,既提高了凝结水温度,又减少了高背压凝汽器被冷却水带走的的冷源损失。低背压凝汽器中的低温凝结水通过管道利用高度差进入高背压凝汽器管束下部的淋水盘,在淋水盘内,低温凝结水与高温凝结水混合在一起,再经盘上的小孔流下,凝结水从淋水盘孔中下落的过程中,凝结水被高背压低压缸的排汽加热到相应的饱和温度。 正因为双被压凝汽器能够提高机组的经济性,所以被广泛应用到600MW三缸四排汽汽轮机中。邹县的600MW亚临界机组,平圩发电厂600MW亚临界机组等,从收资的五家电厂的情况看, 600MW超临界机组也都配置了双背压凝汽器。 600MW三缸四排汽汽轮机设有四台凝汽器,每两台一组,两台低背压凝汽器为一组,两台高背压凝汽器为一组,分别布置在低压缸的下方。不同的背压是由凝汽器不同的循环水进水温度来形成的,循环水管道为串联布置,从两台低背压凝汽器进入,出水进入两台高背压凝汽器排出后进入虹吸井。也就是说每组凝汽器的水侧是双进双出的。每组凝汽器只是壳体是整体的,正常运行中可半边解列进行清洗。 双背压凝汽器工作过程 凝汽器正常工作时,冷却水由低压侧的两个进水室进入,经过凝汽器低压侧壳体内冷却水

凝汽器介绍(600MW)

东方汽轮机厂凝汽器介绍 2000年2月

东方汽轮机厂凝汽器介绍 一东方汽轮机厂凝汽器概况 东方汽轮机厂是国内生产大型电站汽轮机及其配套辅机的主要厂家之一,从建厂至今,共配套提供了各类凝汽器300多台套,功率范围1.5MW~600MW,凝汽器面积从140~36000m2,按冷却管材分有铜管、不锈钢管、钛管凝汽器,按背压分有单、双背压凝汽器,按冷却介质分有淡水、半海水、海水凝汽器。另外,还为300~600MW国外机组配套凝汽器共8套,产品不仅在国内使用,还出口到马来西亚等多个国家,运行实绩良好。 东方汽轮机厂获得国家颁发的一、二类压力容器制造许可证,获得美国机械工程师协会颁发的ASME压力容器设计制造授权证书和U法规钢印,通过了ISO9001质量体系认证;东方汽轮机厂凝汽器开发的发展与水平建立在试验和与高等院校及国外公司的技术交流与合作上;是国内唯一进行过大型凝汽器传热性能及水室流场工业性试验的凝汽器制造厂家;是国内唯一采用大型数值计算程序对壳侧汽相流场进行流场的速度、压力、温度、空气浓度、相对传热系数及热负荷进行计算的凝汽器制造厂家,通过该手段可以优化凝汽器排管;东方汽轮机厂与德国BALCKE-DüRR公司及日本日立公司就300MW及600MW具体工程凝汽器设计、制造进行过广泛技术合作。 二东方汽轮机厂凝汽器特点 东方汽轮机厂凝汽器设计、制造、安装执行的标准为:HEI标准(美国传热协会)、DB3.18.10-1998《凝汽器加工装配技术条件》及

其它相关标准。 凝汽器排管设计是影响凝汽器性能的决定性因素之一,东方汽轮机厂排管设计手段进程:早期手工绘图,经验设计;经过实物对比试验,以验证各排管的优劣;70年代为优化排管,东方汽轮机厂曾用二种排管实物进行了电站工业性试验,这也是国内的制造厂中唯一的一家;在取得电站实测数据的基础上开发了准三维凝汽器汽相流场及传热特性数值模拟计算程序。该程序是可得到凝汽器汽相流速、温度、压力、传热系数、热负荷等重要参数分布图,据此调整管束排列,达到最优化排管,实现设计和排管自动化。该方法目前世界上仅有几家大公司具备,国内仅东汽一家。东方汽轮机厂已广泛用于300~600MW 凝汽器排管设计中。 东方汽轮机厂采用的模块排管,经数值计算程序模拟完全符合优化管束排列的判别标准,经国外工业性试验证明总体传热系数比HEI 计算值提高15~30%。 东方汽轮机厂有二种风格的喉部结构型式:一种为衍架支撑,壳板无加强肋,便于电站布置;一种为喉部壳板采用足够强度和刚度的工字钢,内部支撑杆少,对降低蒸汽流阻有利。在尺寸较大的设备(如低压加热器)和管道(抽汽管等)采用消除下方旋涡的措施。东汽厂凝汽器喉部扩散角合理,曾在70年代作过吹风试验;按ASME标准制作和布置了四个网状探头测量排汽压力;喉部内的低压加热器和抽汽管均有不锈钢罩隔热、防冲罩。所有支撑板均采用使汽阻最小的结构。 东方汽轮机厂凝汽器空冷区采用了在抽空气通道区布置有冷却水管,适当放大孔与管间的间隙,蒸汽至抽汽口的流动是沿抽空气通道区的冷却管流动,并由此造成空气与水间的逆流换热,它既有助于

凝汽器水环真空泵

凝汽器水环式真空泵的原理与运行 庄国霖 摘要:简单介绍了大机组凝汽器配套的水环式真空泵的工作原理、特性及参数,同时还介绍了水环式真空泵与前置抽气器组成的联合抽真空装置的运行原理、操作程序和运行状况。 关键词:水环式真空泵; 结构; 工作原理; 运行状况 凝汽器抽真空的传统设备主要是采用射汽抽气器和射水抽气器,但这两种设备都存着效率低、噪声大的缺点。随着汽轮机组向高参数、大容量方向发展,使用这种设备就显得很不经济。如果采用水环式真空泵和前置抽气器组成的联合抽真空装置,就可以大大提高效率,降低能量消耗和噪声污染。这种水环式真空泵组在0.7~4kPa的吸入压力范围内可以经济运行。与前面两种抽气装置相比,可以节能约在70%以上。 北仑发电厂1号机组共设有4套水环式真空泵组,型号为200NVECM-302,高压凝汽器和低压凝汽器各两套。机组启动凝汽器需要建立真空时,4套水环式真空泵组同时投入运行。当凝汽器真空建立以后,停运两套水环式真空泵组,高、低压凝汽器各保持1套水环式真空泵组运行即可维持机组的正常运行。 1. 水环式真空泵的形式 水环式真空泵根据不同的特性要求,有各种不同的结构形式。常见的有:单级单作用水环式真空泵,单级双作用水环式真空泵和水环一前置抽气器真空泵组等。 北仑发电厂1号机采用单级单作用水环式真空泵与前置抽气器组成的联合抽真空装置。所谓单级单作用是指泵中只有1个叶轮,在叶轮旋转1周中吸气、排气各1次。其特点是:泵体截面为圆型,结构简单,制造容量,可获得较高的真空
度,运行平稳,噪声小,但径向力不能自动平衡。 2. 水环式真空泵的结构 北仑发电厂1号机组高压凝汽器和低压凝汽器配套的水环式真空泵均为单级单作用水环泵结构,叶轮两侧同时吸、排气。叶轮偏心地置于由侧盖和泵体组成的腔室中,叶轮叶片是前弯式的。轴的两端分别由装在轴承架内的滚动止推轴承支承。轴的一端用刚性联轴器与电动机连接。轴封装置为填料轴封,在轴与填料接触部位装有轴套,以防止泵轴腐蚀和磨损。 3. 水环试真空泵的工作原理 当径向式叶轮在部分充水的壳体中运转时,由于受离心力的作用,水被甩向四周,形成同心的水环,该水环被6片叶片等分成6个小水室,因此,小水室中的气体不会被扩展或压缩。然而,当叶轮装成偏心位置后,叶片小室1~3的容积是逐渐扩大的,这就产生了从连接点C开始,经吸入段S的吸气过程;另一方面,叶片小室4~6的容积则随着叶轮的转动而逐渐缩小,这就构成了气体通过压出段D的排气过程。可见,水环式真空泵的工作可分成吸气、压缩、排气3个过程。水环式真空泵就是靠这种叶片小室容积的变化来吸气和排气的。 4. 水环式真空泵组的联合工作原理

汽轮机凝汽器系统真空查漏

汽轮机凝汽器系统真空查漏 机组真空是火力发电厂重要的监视参数之一,真空变化对汽轮机安全、经济运行都有影响,运行经验表明,凝汽器真空降低直接影响循环效率,每降低1KPa真空会使汽轮机热耗增加0.94%,机组煤耗增加 3.2g/kwh。真空下降使循环效率下同时会造成汽轮机排汽温度的升高,引起汽轮机转子上移,轴承中心偏离,严重时会引起汽轮机的振动。此外,凝汽器真空降低时为保证机组出力不变,必须增加蒸汽流量,导致轴向推力增大,变化严重时会影响汽轮机安全运行。另一方面,空气漏入凝结水中会使凝结水溶氧超标,腐蚀汽轮机、锅炉设备,影响机组的安全运行。因此在汽轮机运行中必须严格控制机组真空下降。机组运行中真空主要与循环水量水温及系统严密性有关。如果出现真空下降,排除比较常见的故障外,真空系统的泄漏是造成下降的主要原因。其现象主要表现为真空数值下降、排汽温度升高、主汽流量增加及凝汽器端差增大等,直接影响到机组运行的安全经济性。 我厂凝汽器是由东方汽轮机厂生产制造N17660型表面式换热器,水室采用对分制,便于运行中对凝汽器进行半面清洗,凝汽器、凝结水泵、射水抽汽器、循环水泵及这些部件之间所连接的管道称为凝汽设备,凝汽器真空的高低对汽轮机运行的经济性有着直接的关系,所以要求真空系统(包括凝汽器本体)要有高度的严密性。一般是通过定期进行真空严密性试验来检验真空系统的严密程度。通过试

验,可掌握真空系统严密性的变化情况,鉴定凝汽器工作的好坏,以便采取对策查找及消除漏点,防止空气漏入影响传热效果及真空,不同机组对真空严密性有不同的要求,真空严密性用每分钟真空下降值表示。 凝汽器真空系统的密封点很多,包括与凝汽器连接的负压管道的焊口、膨胀节、疏水扩容器、减温水管道、多级水封、水位计等涉及汽机、热控等多个专业,检修工艺要求严格,检修工艺要求严格,涉及范围广,要求责任心强。真空系统严密性应在机组检修期间得以保证,如果由于密封不严、检修工艺不合理及查漏不全面等在机组运行一段时间后发生泄漏,仍应该采取各种措施,积极进行真空严密泄漏查找工作。为保证汽轮机真空系统查漏工作的顺利进行,确保机组的安全经济运行,特制定如下措施: 一组织措施 1、本工作的开展需要运行、点检、检修及热力试验组协调完成。 2、准备好查漏工作所需要的氦质谱检漏仪、氦气瓶、便携式气袋、喷射用铜管及连接用胶管、对讲机等工器具,保证合格足量的氦气。 3 、査漏工作要确定一个工作负责人,负责査漏工作中各部门的协调联系工作以及査漏工作的分工安排。 4、查漏工作由设备部组织进行,发电部专工、热试组人员、汽机车间检修班组人员配合,运行当值人员保证机组稳定运行并配合进行各阶段严密性试验。

凝汽器真空查漏

凝汽器真空查漏 1 凝汽器真空的成因 凝汽器中形成真空的成因是汽轮机的排汽被冷却成凝结水,其比容急剧缩小。如蒸汽在绝对压力4KPa时,蒸汽的体积比水容积大3万多倍。 当排汽凝结成水后,体积就大为缩小,使凝汽器汽侧形成高度真空,它是汽水系统完成循环的必要条件。 正是因为凝汽器内部为极高的真空,所以所有与之相连接的设备都有可能因为不严而往凝汽器内部漏入空气,加上汽轮机排汽中的不凝结气体,如果不及时抽出,将会逐渐升高凝汽器内的压力值,真空下降,导致蒸汽的排汽焓值上升,有效焓降降低,汽轮机蒸汽循环的效率下降。 有资料显示,真空每下降1KPa,机组的热耗将增加70kj/kw,热效率降低%。射水抽气器或水环真空泵的作用就是抽出凝汽器的不凝结气体,以维持凝器的真空。 2 真空严密性差的危害 汽轮机真空严密性差的危害主要表现在以下三个方面: 一是真空严密性差时,漏入真空系统的空气较多,射水抽气器或水环真空泵不能够将漏入的空气及时抽走,机组的排汽压力和排汽温度就会上升,这无疑要降低汽轮机组的效率,增加供电煤耗,并可能威胁汽轮机的安全运行,另一方面,由于空气的存在,蒸汽与冷却水的换热系数降低,导致排汽与冷却水出水温差增大。 二是当漏入真空系统的空气虽然能够被及时地抽出,但需增加射水抽气器的负荷,浪费厂用电及循环水。

三是由于漏入了空气,导致凝汽器过冷度过大,系统热经济性降低,凝结水溶氧增加,可造成低压设备氧腐蚀。 3 真空查漏的方法 1.通常用灌水法查找真空系统不严密的方法的优缺点 真空系统包含大量的设备及系统,连接的动静密封点多,在轻微漏空气的情况下很难发现漏点,因为空气往里吸,不够直观,传统的运行中用火焰检查法较繁琐且效果不好,多数情况下使用的方法是在机组停机后对真空系统进行灌水找漏。这种方法比较直观,漏点极易被发现,缺点是由于设备的原因,灌水高度最高只能到汽缸的最低轴封洼窝处,高于轴封洼窝的地方因为水上不去而不易发现,特别是与汽轮机汽缸相连接的管道系统。 2.使用氦质谱查找真空系统不严密的方法的优缺点 使用氦质谱方法通常是在可疑点喷氦气,然后在真空泵端检测,看是否能检测到氦气,如果检测到氦气则说明此可疑点泄漏。此方法能确定泄漏大体位置,并有一个相对值数据。但设备使用较费力,需要三到四人操作;氦质谱法受环境影响较大,空气流动性适度都对确定漏点造成麻烦;另外,空冷岛上使用氦质谱检漏难度较大。在管道较多的位置基本难以确定漏点。 3.使用超声波查找真空系统不严密的方法的优缺点 超声波检漏法是一种方便快捷的方法,首先操作简单,一人即可操作;而且能准确确定漏点的位置,使堵漏较方便;应用在空冷岛上更是方便、快捷、准确。缺点是使用时需要一定的操作经验。 火烛法,涂抹肥皂泡,卤素检测等方法较为原始,在此不多描述。

东汽N-3400型凝汽器说明书

版本号:A 东 方 汽 轮 机 厂 第 全 册 N-34000型凝汽器说明书 M700-053000ASM 编号 2003年02月

编号M700-053000ASM 编制 校对 审核 会签 审定 批准

目录 序号章-节名称页数备注1 0-1 N-34000型凝汽器说明书16

0-1 N-34000型凝汽器说明书 1概述 凝汽器是汽轮机辅助设备中最主要的一个部套,它的作用是用循环冷却水使汽轮机排出的蒸汽凝结,在汽轮机排汽空间建立并维持所需要的真空,并回收纯净的凝结水以供锅炉给水。 1.1 特征 1.1.1凝汽器是模块式双背压凝汽器,冷却水为海水。 1.1.2回热管系消除凝结水过冷和减小含氧量,提高机组循环热效率。 1.1.3水室为弧型结构,水力特性、受力特性好,为防腐,与海水接触的水室内表面采用了衬胶处理。 1.1.4冷却水管为钛管,端管板为钛复合板。 1.2 凝汽器的主要特性参数 冷却面积:17000/17000m2 冷却水设计进口温度:20℃ 冷却水设计压力:0.25MPa(g) 冷却水设计流量:73652t/h 设计背压: 4.9 kPa(a)(平均)[LP/HP 4.35/5.51 kPa(a)] 冷却水介质:海水 此外,装配好后无水时凝汽器重量约750t(含低加)。凝汽器正常运行时的水重约450t,汽室中全部充满水时的水重约1550t。 2结构简介 本凝汽器是系双壳体、单流程、双背压表面式凝汽器。由两个斜喉部、两个壳体(包

括热井、水室,回热管系),循环水连通管及底部的滑动、固定支座等组成的全焊结构(见

凝汽器工作原理

凝汽器工作原理 凝汽器:使驱动汽轮机做功后排出的蒸汽变成凝结水的热交换设备。蒸汽在汽轮机内完成一个膨胀过程后,在凝结过程中,排汽体积急剧缩小,原来被 蒸汽充满的空间形成了高度真空。凝结水则通过凝结水泵经给水加热 器、给水泵等输送进锅炉,从而保证整个热力循环的连续进行。为防止 凝结水中含氧量增加而引起管道腐蚀,现代大容量汽轮机的凝汽器内还 设有真空除氧器。 凝汽器的主要作用: 1)在汽轮机排汽口造成较高真空,使蒸汽在汽轮机中膨胀到最低压力,增大蒸汽在汽轮机中的可用焓降,提高循环热效率; 2)将汽轮机的低压缸排出的蒸汽凝结成水,重新送回锅炉进行循环; 3)汇集各种疏水,减少汽水损失。 4)凝汽器也用于增加除盐水(正常补水) 表面式凝汽器的工作原理:凝汽器中装有大量的铜管,并通以循环冷却水。当汽轮机的排汽与凝汽器铜管外表面接触时,因受到铜管内水流的冷却,放出汽化潜热变成凝结水,所放潜热通过铜管管壁不断的传给循环冷却水并被带走。 这样排汽就通过凝汽器不断的被凝结下来。排汽被冷却时,其比容急剧缩小,因此,在汽轮机排汽口下凝汽器内部造成较高的真空。 凝汽器是火力发电厂的大型换热设备。图1为表面式凝汽器的结构示意图。

凝汽器运行时,冷却水从前水室的下半部分进来,通过冷却水管(换热管)进入后水室,向上折转,再经上半部分冷却水管流向前水室,最后排出。低温蒸汽则由进汽口进来,经过冷却水管之间的缝隙往下流动,向管壁放热后凝结为水。真空度定义: 从真空表所读得的数值称真空度。真空度数值是表示出系统压强实际数值低于大气压强的数值,即: 真空度=大气压强—绝对压强 凝汽器中真空的形成主要原因 在启动过程中凝汽器真空是由主、辅抽汽器将汽轮机和凝汽器内大量空气抽出而形成的。 在正常运行中,凝汽器真空的形成是由于汽轮机排汽在凝汽器内骤然凝结成水时其比容急剧缩小而形成的。如蒸汽在绝对压力4kpa时蒸汽的体积比水的体积大3万倍,当排汽凝结成水后,体积就大为缩小,使凝汽器内形成高度真空。凝结器的真空形成和维持必须具备三个条件: 1)凝汽器铜管必须通过一定的冷却水量; 2)凝结水泵必须不断地把凝结水抽走,避免水位升高,影响蒸汽的凝结; 3)抽汽器必须把漏入的空气和排汽中的其它气体抽走。 真空降低的原因: (1)循环水量减少或中断: ①循环水泵跳闸、循进阀门误关、循环水泵出口蝶阀阀芯落、循进滤网堵:水量中断,进水压力下降,出水真空至零,循泵电流至零或升高,须不破坏真空停机;若未关死,立即减负荷恢复; ②循出阀门误关、凝汽器水侧板管堵塞、收球大网板不在运行位置:循环水压上升,温升增大; ③进水不畅:循泵电流晃动,进水压力下降,出水真空降低,循环水温升增大,水量不足;. |4 Q1 j- {3 u ④虹吸破坏(进水压力低、板管堵塞、出水侧漏空气):虹吸作用减小时,会使水量减少,却又提高了循环水母管压力,而压力高对维持水量是有利的,所以虹吸破坏必然是个过程。出水真空晃动且缓慢下降,温升增大。操作:提高循环水压力(关小出水门),对循出放空气,重新建立出水真空。 (2)轴封汽压力低:提高压力,关小轴加排汽风机进气门;冷空气会使转子收缩,负差胀增大。 (3)凝汽器水位高:排汽温度升高同时,凝水温度下降,过冷度增加。端差增大;水位﹥抽汽口高度、运行凝泵跳闸、管路堵、备用泵逆止门坏、系统主要

凝汽器真空分析

凝汽器真空分析 排汽真空度对汽轮机正常运行起着非常重要的作用。真空度下降, 会使汽轮机的汽耗和最后几级叶片的反动度增加、轴向推力增大.随着排汽温度升高, 会引起汽轮机转子旋转中心漂移而产生振动, 甚至引起汽缸变形及动静间隙增大。如因冷水量不足而引起故障的, 还会导致铜管过热而产生振动及破裂, 缩短凝汽器的使用寿命。 凝汽器传热端差值的变化标志着凝汽器运行状况的好坏, 可作 为判别凝汽器运行状态的依据。运行中端差值越小, 则运行情况越好,机组的热效率越高。凝汽器的传热端差是指凝汽器排汽温度与冷却水出口温度的差值。影响凝汽器传热端差的因素比较复杂, 主要包括凝汽器传热性能、热负荷、清洁系数、空气量及循环水系统的特性等。 1.空气量 凝汽器的空气来源有二个,一是由新蒸汽带入汽轮机的, 由于锅炉给水经过除氧, 这项来源极少;二是处于真空状态下的各级与相应的回热系统、排汽缸、凝汽设备等不严密处漏入的, 这是空气的主要来源。空气严密性正常时进入凝汽器的空气量不到蒸汽量的万分之一, 虽然少但危害很大。主要是空气阻碍蒸汽放热, 使传热系数减小, 端差增大从而使真空下降。空气的第二大危害是使凝结水的过冷度增大。降低空气量主要从真空严密性和真空泵的工作性能考虑。 2.真空严密性 真空严密性差是造成汽轮机真空低的主要原因, 在根据工程调 试的经验, 真空系统易泄漏空气的薄弱环节有:

1)凝汽器热井、低压加热器玻璃管水位计经常出现漏点、缺陷, 漏 入空气, 造成严密性下降。 2)轴封加热器水位自动调节失灵导致水位偏低, 水封无法建立, 导 致空气漏入。 3)采用迷宫式水封的给水泵, 其密封水排至凝汽器, 水封无法有效 建立, 导致空气漏入。 4)低压缸防爆门、小汽机排汽管防爆门、凝汽器入孔门等也经常由 于密封不严, 或防爆门出现裂缝, 导致空气漏入。 5)大机、小机低压轴封由于轴封压力不能满足需要, 造成轴封泄漏, 另外, 汽封间隙的大小、汽封的完好程度也是造成轴封泄漏的重要因素。 6)凝结水泵进口法兰、凝泵水封泄漏也经常导致凝结水溶氧不合格。 7)管道安装。目前的新建机组, 安装质量较好, 压力管道均进行水 压试验, 真空管道均进地灌水试验, 由于法兰, 阀门盘根等原因导致泄漏的情况较小。 8)部分低压管道上的疏水阀、排汽阀, 关闭不严, 导致真空泄漏。 根据实际情况及分析研究, 可采用以下处理措施: 机组运行过程中维持轴封系统各疏水、U形水封的正常工作。 1)机组运行过程中维持好轴封加热器的正常水位。 2)按设计要求调整汽轮机轴端汽封间隙, 减小轴端漏汽量。 3)运行中严格控制低压汽封供汽压力、温度, 遇到汽封系统运行不 正常, 应及时进行分析,不可随意提高汽封供汽压力、温度。

宁海电厂百万机组凝汽器双背压抽气系统改造分析

宁海电厂百万机组凝汽器双背压抽气系统改造分析摘要:由于高、低背压凝汽器抽空气管路采用串联布置方式, 导致高背压凝汽器抽气排挤低压凝汽器抽气,致使低压凝汽器抽气不能达到设计要求,造成真空值和高、低背压凝汽器背压差值偏低,降低了系统经济性。采取了相应措施,对双背压凝汽器抽气系统进行了改造,经济效益明显。 关键词:双背压凝汽器;抽气系统;端差;真空;改造方案 中图分类号:tm62文献标识码:a 文章编号: abstract: because of the high and low back pressure condenser time tracheal road series arrangement, leading to high back pressure condenser lashing out low pressure condenser suction causes low pressure condenser that suction can’t meet the design requirements, creates a vacuum value and the high and low back pressure of condenser low pressure differential and reduce the system efficiency. taken measures, to double back pressure condenser suction system was reformed, and the economic benefit is obvious. key words: double back pressure condenser; suction system; poor; vacuum; reform plan 0 概述 宁海电厂二期工程扩建2×1000mw超超临界燃煤机组汽轮机为

13第十三章 凝汽器抽气系统

第1章凝汽器抽气系统 1.1. 概述 凝汽器抽气系统也称为真空系统,其作用就是用来建立和维持汽轮机机组的低背压和凝汽器的真空;正常运行时不断地抽出由不同途经漏入汽轮机及凝汽器的不凝结气体。 对于600MW汽轮机组,目前真空系统的设备主要采用水环式真空泵和汽水分离器相结合。 在高压和低压凝汽器汽室侧聚集的不凝结气体通过真空泵抽出排至大气。凝汽器壳体上还设至1只带有滤网和水封的真空破坏阀。凝汽器水室侧还设有水室真空泵,以便在循环水系统运行时在凝汽器内形成虹吸,以及在长时间运行后抽取水室顶部的空气,保证凝汽器的换热效果。 1.2. 系统特点 双背压凝汽器的抽气区按气体/蒸汽混合物的冷却要求进行设计的。在额定工况下,空气排气口的温度较凝汽器入口压力下的饱和蒸汽温度低4℃。抽气系统为串联抽出系统,即空气由高压凝汽器流向低压凝汽器,经抽气管道抽出。 我公司的汽室真空泵和水室真空泵均为平圆盘单级水环式真空泵,由纳西姆工业(中国)公司生产。汽室真空泵型号为2BW4 353-0MK4;水室真空泵型号为2BE1 253-0BY4。 机组正常运行时,保证两台汽侧真空泵运行就能满足汽轮机在各种负荷工况下,抽出凝汽器内的空气及不凝结气体的需要。汽室真空泵部分运行参数如下: 图13-1 汽室真空泵运行参数 机组启动时,三台真空泵并列运行就可以满足启动时间的要求。三台真空泵运行,可以在下述时间内达到规定的凝汽器压力:

启动抽气时间(分钟)凝汽器压力Mpa(a) 15 0.034 30 0.01 45 0.0034 启动工况凝汽器背压-抽真空时间表如下(3泵运行): 图13-2 凝汽器背压-抽真空时间表 1.3. 水环式真空泵 1.3.1. 水环式真空泵结构 水环式真空泵主要部件是叶轮和壳体, 叶轮是由叶片和轮毂构成,叶片有径向平板 式,也有向前(向叶轮旋转方向)弯式。壳 体内部形成一个圆柱体空间,叶轮偏心地装 在这个空间内,同时在壳体的适当位置上开 设吸气口和排气口。吸气口和排气口开设在 叶轮侧面壳体的气体分配器上,形成吸气和 排气的轴向通道。 壳体不仅为叶轮提供工作空间,更重要 的作用是直接影响泵内工作介质(水)的运 动,从而影响泵内能量的转换过程。 水环泵工作之前,需要向泵内注入一定图13-3 水环式真空泵原理图

双压凝汽器抽真空系统布置方式优化研究

双压凝汽器抽真空系统布置方式优化研究 摘要:本文从介绍双压凝汽器抽真空系统连接方式出发,阐述了采用双压运行的优点和目前存在的问题。文中以信阳电厂660MW汽轮机机组的双压凝汽器抽空气系统为实例,结合现场试验,确定双压凝汽器运行方式和改造方案,分析其节能效果,系统优化后显著提高了经济效益和社会效益,可为同类型机组的抽真空管路改造提供参考。 关键词:双压凝汽器;抽空气系统;连接方式;优化 1.双压凝汽器抽真空系统连接方式 1.1串联抽真空系统 串联布置型式是指高、低压凝汽器的空气抽出管路采用串联方式,即高压凝汽器的抽空气管路直接接入低压凝汽器中,通过低压凝汽器的抽气管路间接地对高压凝汽器抽气。该布置方式的抽空气管路大多布置在凝汽器内部,可减少设备投资和所需场地。但由此带来的问题是凝汽器内聚集的空气不能彻底抽尽,易引起两个汽室之间的互相干扰,影响换热效果。 1.2并联抽真空系统 该布置型式常采用三台真空泵的配置型式即从高、低压凝汽器分别接出抽空气管路,汇合成一根母管后进入真空泵组。优点是可节省一台真空泵,管路连接较简单。但因高、低压侧抽气管相互交叉,易因抽气管道压力差出现排挤现象,导致低压侧抽气受阻,严重时低压侧抽不出空气,影响双压凝汽器的节能效果。 1.3单独抽真空系统 高、低压凝汽器分别配备两套100%容量的水环式真空泵组,高压侧的2个抽气管道汇集后连接到真空泵,低压侧的2个抽气管道汇集后连接到另外一组真空泵,高低压侧抽真空管道互不相连,四台真空泵两运两备,此为单独抽真空系统。此方式避免了抽气存在背压差而出现的排挤现象,提高凝汽器真空。但单独抽真空系统一般配置4台真空泵,增加了初期投资成本。 2.信阳电厂660MW超超临界机组真空系统改造 2.1信阳电厂超超临界机组改造前真空系统介绍 信阳电厂660MW超超临界机组采用N-31000-1型凝汽器,双背压、双进双出、单流程、横向布置结构。设计循环水温20℃,凝汽器平均背压为0.0049MPa,高、低压背压凝汽器抽空气管道连接在一起,凝汽器抽气管道现场布置采用串联方式。改造前为真空系统设计两台100%容量的水环式真空泵,正常运行时一运

凝汽器说明书.

版本号:A ***** 汽轮机厂 N-38000-1型凝汽器说明书 编号M700-102000ASM 第全册 2004年12月

编号M700-102000ASM 编制 校对 审核 会签 审定 批准

N-38000-1型凝汽器说明书 M700-102000ASM 目录 序号章-节名称页数备注 1 0-1 N-38000-1型凝汽器说明书18 错

0-1 N-38000-1型凝汽器说明书 1用途 凝汽器是汽轮机辅助设备中最主要的一个部套,它的作用是用循环冷却水使汽轮机排出的蒸汽凝结,在汽轮机排汽空间建立并维持所需要的真空,并回收纯净的凝结水以供锅炉给水。 2主要特性参数 冷却面积:38000m2 冷却水设计进口温度:21.7℃ 冷却水设计压力:0.40MPa(g) 冷却水设计流量:71748m3/h 设计背压: 5.2 kPa(a)(平均)[LP/HP 4.6/5.8 kPa(a)] 冷却水介质:淡水 此外,装配好后无水时凝汽器重量约860t(含低加)。凝汽器正常运行时的水重约600t,汽室中全部充满水时的重量约2810t。 3结构简介 本凝汽器系双壳体、单流程、双背压表面式凝汽器。是由两个斜喉部、两个壳体(包括热井、水室,回热管系),循环水连通管,汽轮机排汽缸与凝汽器连接所采用的不锈钢波形膨胀节,底部的滑动、固定支座等组成的全焊结构(见图0-1-8)。 3.1 喉部 凝汽器喉部由高压侧(HP侧)喉部和低压侧(LP侧)喉部两部分组成。 凝汽器喉部的四周由20mm厚的钢板焊成,内部采用一定数量的钢管及工

字钢组成桁架支撑,因此整个喉部的刚性较好。

双背压凝汽器

双背压凝汽器简介 凝汽器是凝汽式汽轮机的一个十分重要的设备,其工作性能直接影响着整个汽轮机组的经济性和安全性,当机组容量达到600MW甚至更大等级时,由于材料、叶片制造工艺、机组空间布置等方面的限制,采用多压凝汽嚣成了现代大型电站凝汽器研制发展的一个必然的重要方向,采用多背压可以降低热耗、减小凝汽器表面积,减少冷却水量、改进设备布置和运行。 黄岛电厂两台670MW机组就是采用双背压凝汽器,本文以此为例简单介绍双背压凝汽器的优越性、典型结构及运行中的特殊故障。 黄岛电厂670MW机组凝汽器的主要参数: 型式:双背压、双壳体、单流程、表面式 冷却面积:38000m2 凝汽器平均背压:4.4/5.4kpa 冷却水流量:68300t/h 冷却面积: 36600 m2 循环水允许温升:≤10.28 冷却水设计温度/最高水温:20/33℃ 循环倍率(实际工况凝汽量)55 冷却管规格:φ25×O.5mm(主凝结区) φ25×0.7mm(空冷区及顶部迎汽区) 一、多背压凝汽器的优越性 所谓多背压凝汽器就是由一个串联的冷却水冷却来自汽轮机低压缸两个或以上排出口的 蒸汽,使得蒸汽在分隔开的多个不同绝对压力的凝汽器汽室中凝结成水。多压凝汽器与单压凝汽器相比具有以下优越性: (1)多压凝汽器从根本上改善了蒸汽负荷的不均匀性,从而提高了凝汽器的传热性能。 (2)多压凝汽器在传热过程中,冷却水温度除了在进口处和出口处与单压凝汽器相等外,当中过程均比单压凝汽器低,因此多压凝汽器的传热性能优于单压凝汽器。 (3)把低压侧温度较低的凝结水设法送往高压侧回热,利用高压汽室中的蒸汽将它加热到比单背压凝汽器凝结水温度更高的温度,则送往锅炉的凝结水温度将高于平均温度,从而可使整个系统循环热效率进一步提高。 (4)多背压凝汽器的平均背压低于相同条件下单背压凝汽器的背压,这样就增大了汽轮机

双背压单流程凝汽器真空严密性试验优化

双背压单流程凝汽器真空严密性试验优化 【摘要】某电厂双背压单流程凝汽器水冷机组,长期真空严密性试验发现会出现高压侧与低压侧结果偏差很大等异常现象,对此进行长期总结和分析,对结果重新有一定的认识,进而对真空严密性试验进行优化,为凝汽器高低压侧的严密性提供更准确的信息。 【关键词】真空严密性;优化 1.引言 汽轮机凝汽器真空是汽轮机安全、稳定、经济运行的重要指标,凝汽器真空低会减少蒸汽在汽轮机的有效焓降[1],增加真空泵耗电率,增加了机组的热耗率和供电煤耗率,使机组的热经济性下降;由于漏入空气引起真空低可能导致凝结水含氧量大,引起低压加热器管束腐蚀[1];过低的真空会引起汽轮机的轴向推力增大、低压缸变形、机组振动增大和凝汽器管端连接胀口松动等安全隐患。 为了掌握汽轮机的真空严密性程度,进而提高汽轮机运行真空,需要对汽轮机真空系统进行准确的真空严密性试验。 2.真空严密性试验结果发现的问题 双背压单流程凝汽器有以下优点:(1)一定条件下,双背压式凝汽器的平均折合压力比单压式的低,总的冷却效果好。(2)双背压凝汽器可将低压侧凝结水引入高压侧加热,以提高凝结水温度,减少低压加热器的抽汽量,减小发电热耗率[2]。正因为双背压凝汽器的这些优点,大多机组都采用双背压凝汽器。然而在进行真空严密性试验时,发现某厂的4台双背压单流程凝汽器水冷机组,真空严密性试验结果会出现下面几种现象:(1)高压侧结果远小于低压侧,高压侧结果很小,个别分钟下降出现负值,结果甚至出现负数。(2)两侧真空差值越大,每分钟下降速度相差越大。延长真空严密性试验时间,两侧偏差会降低。(3)通过真空每分钟下降速度初步判断漏点出现的大方位。 3.对真空严密性试验结果发现的问题进行分析 上述的真空严密性试验结果为负值等现象很明显不能真实反应凝汽器真空系统严密性的程度,怎么才能使结果更接近真实值呢,对此我通过具有代表性的1号和2号机组进行举例分析,找到其中的问题并予以解决。 某厂1号和2号机组是上海动力设备有限公司生产的凝汽器型号为N-32400-1,设计为双壳体、双背压、单流程、表面式,冷却面积32400 m2,冷却水量61920m3/h,凝汽器热负荷7.34×105kJ/s,凝结水温度35.7 ℃,可在机组最大出力、循环冷却水温33℃,背压不大于11.8kPa工况下长期运行。循环水系统为闭式循环,补给水为黄河水和地下备用水源。

凝汽器水环式真空泵的原理与运行

凝汽器水环式真空泵的原理与运行 凝汽器抽真空的传统设备主要是采用射汽抽气器和射水抽气器,但这两种设备都存着效率低、噪声大的缺点。随着汽轮机组向高参数、大容量方向发展,使用这种设备就显得很不经济。如果采用水环式真空泵就可以大大提高效率,降低能量消耗和噪声污染。这种水环式真空泵组在0.7~4kPa的吸入压力范围内可以经济运行。与前面两种抽气装置相比,可以节能约在70%以上。 1、水环式真空泵的形式 水环式真空泵根据不同的特性要求,有各种不同的结构形式。常见的有:单级单作用水环式真空泵,单级双作用水环式真空泵和水环一前置抽气器真空泵组等。 北仑发电厂1号机采用单级单作用水环式真空泵与前置抽气器组成的 联合抽真空装置。所谓单级单作用是指泵中只有1个叶轮,在叶轮旋转1周中吸气、排气各1次。其特点是:泵体截面为圆型,结构简单,制造容量,可获得较高的真空 度,运行平稳,噪声小,但径向力不能自动平衡。 2、水环式真空泵的结构 水环式真空泵均为单级单作用水环泵结构,叶轮两侧同时吸、排气。叶轮偏心地置于由侧盖和泵体组成的腔室中,叶轮叶片是前弯式的。轴的两端分别由装在轴承架内的滚动止推轴承支承。轴的一端用刚性联轴器与电动机连接。轴封装置为填料轴封,在轴与填料接触部位装有轴套,以防止泵轴腐蚀和磨损。 3 、水环式真空泵的工作原理 水环式真空泵的工作原理可用图1来具体说明。当径向式叶轮在部分充水的壳体中运转时,由于受离心力的作用,水被甩向四周,如图1(b)所示,形成同心的水环,该水环被6片叶片等分成6个小水室,因此,小水室中的气体不会被扩展或压缩。然而,当叶轮装成如图1(c)所示的偏心位置后,叶片小室1~3的容积是逐渐扩大的,这就产生了从连接点C开始,经吸入段S的吸气过程;另一方面,叶片小室4~6的容积则随着叶轮的转动而逐渐缩小,这就构成了气体通过压出段D的排气过程。可见,水环式真空泵的工作可分成吸气、压缩、排气3个过程。水环式真空泵就是靠这种叶片小室

凝汽器端差

凝汽器端差 Document number:PBGCG-0857-BTDO-0089-PTT1998

凝汽器端差 凝汽器压力下的饱和温度(凝结水温)与循环冷却水出口温度之差称为端差。 理论上,端差越低越小,但实现困难,实际上综合循泵耗功(电)、复水器换热体积,最佳换热流速(及流量),确定出一定(4-6、6-8度)的经济控制指标。 对一定的凝汽器,端差的大小与凝汽器冷却水入口温度、凝汽器单位面积蒸汽负荷、凝汽器铜管的表面洁净度,凝汽器内的漏入空气量以及冷却水在管内的流速有关。一个清洁的凝汽器,在一定的循环水温度和循环水量及单位蒸汽负荷下就有一定的端差值指标,一般端差值指标是当循环水量增加,冷却水出口温度愈低,端差愈大,反之亦然;单位蒸汽负荷愈大,端差愈大,反之亦然。实际运行中,若端差值比端差指标值高得太多,则表明凝汽器冷却表面铜管污脏,致使换热条件恶化。 端差增加的原因有:①凝器铜管水侧或汽侧结垢;②凝汽器汽侧漏入空气;③冷却水管堵塞;④冷却水量增加等(增加太多,端差低了,但循泵耗电多,综合比较定35万以上4-6度,以下为6-8度为经济)。 最佳答案 1.凝汽器铜管或钛管结垢、堵塞、脏污,影响换热效果。 2.汽轮机排汽温度高。 3.凝汽器真空系统泄露等原因造成的真空度低。 4.凝汽器循环水流量不足。 循环水流量增大后,凝结器端差减小,循环水流量减小后,凝结器端差减大.

5.凝汽器水侧上部积空气未排出。 6.凝汽器集水井水位高,淹没铜管。 7.表计误差等其它原因。 以上原因均可造成凝汽器端差偏大。 真空系统严密性下降后,凝汽器的传热端差为什么增大 引起凝结器内真空下降的主要原因是: 1)冷却水温由于环境温度而升高,夏天较低,冬天较佳。 2)凝汽器冷却面积污脏,影响传热效果,引起真空下降。 3)冷却水供水中断或水量不足引起冷却水温升高,引起真空下降。 4)由于真空系统严密性不佳或轴封供汽中断,抽气器工作失常等原因,使漏气量增加而影响排汽压力,降低真空。 5)凝汽量水位升高,使部分调管淹没而减少传热面积,进而影响真空。 6)凝汽器水位过高,超过空气管口。 7)增加负荷或停用抽汽改为纯凝运行。 凝汽器水侧换热面上经长时间运行会造成污垢积聚,不但恶化了真空,降低了汽轮机的经济性,而且能引起铜管的腐蚀、泄漏,威胁汽轮机的安全运行,所以在力求防止凝汽器铜管结垢的同时,还要对形成的污垢定期进行清洗。凝汽器冷却水管一般清洗方法有反冲洗法、机械清洗法、干洗、高压冲洗以及胶球清洗法。目前应用最多的是胶求清洗法。对我有帮助 1 凝汽器设备系统介绍 2真空形成基础理论 1、凝汽器设备系统主要有循环水泵和凝汽器以及冷却塔,汽轮机的排汽进入凝汽器后,被循环水泵送来的循环水冷却成凝结水,体积大大缩小,压力降低。从而在凝汽器汽侧形成高度真空。 2、真空的形成有两个因素: 一是人为建立:没开机时,通过真空泵或者射水臭气系统抽出凝汽器的空气从而建立真空。 二是冷凝形成:汽轮机的排汽被循环水冷却成凝结水,体积大大缩小从而形成真空。 关于发电厂汽机和凝汽器的,什么叫排汽压力,背压,真空,真空度,之间的区别排汽压力:汽轮机做完功后的蒸汽余压。 背压:即汽轮机排汽压力,指低压缸中做完功后还有一定压力和温度的蒸汽,然后排入凝汽器; 真空:当容器中的压力低于大气压力时,把低于大气压力的部分叫做真空,而容器内的压力叫绝对压力,均可以以水银柱高度表示。 真空度:真空用百分比表示就叫做真空度,即真空水银柱高度除以相当于大气压力的水银柱高度,再化为百分数表示,在凝汽器内绝对压力不变的情况下,真空度随着大气压力的变化而变化。所以,在理论计算上使用绝对压力来表示汽轮机凝汽器内的真空较为妥善。 凝汽器真空度对发电煤耗是怎么影响的,请各位详细说明一下。

1空气抽出及凝汽器真空系统详解

1空气抽出及凝汽器真空系统? (1)作用? 建立和维持汽轮机机组的低背压和凝汽器的真空;正常运行时不断地抽出由不同途径漏入汽轮机及凝汽器的不凝结气体。 (2)组成? 凝汽器、真空泵、汽水分离器、冷却器等。 (3)流程? 由凝汽器抽吸来的气体通过气动蝶阀进入真空泵,由真空泵排出的气体经管道进入汽水分离器,分离后的气体经止回阀从气体排出口排向大气,分离出来的水与汽水分离器的补充水一起进入冷却器,冷却后的工作水,一路经孔板喷入真空泵进口,使即将抽入真空泵内气体中的可凝结部分凝结,提高了真空泵的抽吸能力;另一路直接进入泵体,维持真空泵的水环和降低水环的温度。 2凝汽器? ?两侧的设置: 凝汽器壳体两侧设有本体疏水扩容器和高加紧急疏水扩容器,以接收设备及管道疏放水。 ?凝汽器的水室设有分隔板,循环水能通过一侧的进出口单侧运行,此时汽轮机能达到75% TRL的出力。 ?凝汽器上接有一个真空破坏阀,在机组出现紧急事故危及机组安全时,以达到破坏真空的需要。 ?真空的形成: 凝汽器内真空的形成分为两种。 ——启动或停机过程中,凝汽器内的真空是由真空泵将其内的空气抽出而形成的。 ——在正常运行中,凝汽器内真空的形成是由于汽轮机排汽在凝汽器内骤然凝结水时,其比容急剧缩小而形成的;另外由于汽轮机蒸汽中含有少量的不凝结气体,同时凝 汽器本身及其连接系统也存在漏气处,使有部分空气漏入凝汽器内,所以在正常运 行中也要用真空泵将气体连续不断地从凝汽器中抽出,以维持凝汽器在真空下连续 运行,真空泵在汽轮机的正常运行中,维持凝汽器内真空的作用。 ?保护: ——压力: 为了保护凝汽器,以防止压力和温度超过规定,采取了快速关闭蒸汽转换阀的预防 措施。经过三个对应的压力真空监视器(24)、(25)、(42),把它们安排成三中取一, 控制和管理凝汽器的压力。 汽轮机排汽带入冷凝器的空气和漏入冷凝器的空气,如果不及时抽出,就会影响传热,恶化真空,从而增高汽轮机的排汽温度,这不仅影响汽轮机效率而且危及汽轮机安全运行。 3水环式真空泵? (1)作用? ?在机组启动初期或停机过程中建立凝汽器真空。 ?在机组正常运行中保持凝汽器真空,确保机组的安全经济运行。 (2)设置?

凝汽器端差

凝汽器端差 凝汽器压力下的饱和温度(凝结水温)与循环冷却水出口温度之差称为端差。 理论上,端差越低越小,但实现困难,实际上综合循泵耗功(电)、复水器换热体积,最佳换热流速(及流量),确定出一定(4-6、6-8度)的经济控制指标。 对一定的凝汽器,端差的大小与凝汽器冷却水入口温度、凝汽器单位面积蒸汽负荷、凝汽器铜管的表面洁净度,凝汽器内的漏入空气量以及冷却水在管内的流速有关。一个清洁的凝汽器,在一定的循环水温度和循环水量及单位蒸汽负荷下就有一定的端差值指标,一般端差值指标是当循环水量增加,冷却水出口温度愈低,端差愈大,反之亦然;单位蒸汽负荷愈大,端差愈大,反之亦然。实际运行中,若端差值比端差指标值高得太多,则表明凝汽器冷却表面铜管污脏,致使换热条件恶化。 端差增加的原因有:①凝器铜管水侧或汽侧结垢;②凝汽器汽侧漏入空气;③冷却水管堵塞;④冷却水量增加等(增加太多,端差低了,但循泵耗电多,综合比较定35万以上4-6度,以下为6-8度为经济)。 最佳答案 1.凝汽器铜管或钛管结垢、堵塞、脏污,影响换热效果。 2.汽轮机排汽温度高。 3.凝汽器真空系统泄露等原因造成的真空度低。 4.凝汽器循环水流量不足。 循环水流量增大后,凝结器端差减小,循环水流量减小后,凝结器端差减大. 5.凝汽器水侧上部积空气未排出。 6.凝汽器集水井水位高,淹没铜管。 7.表计误差等其它原因。 以上原因均可造成凝汽器端差偏大。 真空系统严密性下降后,凝汽器的传热端差为什么增大? 引起凝结器内真空下降的主要原因是: 1)冷却水温由于环境温度而升高,夏天较低,冬天较佳。 2)凝汽器冷却面积污脏,影响传热效果,引起真空下降。 3)冷却水供水中断或水量不足引起冷却水温升高,引起真空下降。 4)由于真空系统严密性不佳或轴封供汽中断,抽气器工作失常等原因,使漏气量增加而影响排汽压力,降低真空。 5)凝汽量水位升高,使部分调管淹没而减少传热面积,进而影响真空。 6)凝汽器水位过高,超过空气管口。 7)增加负荷或停用抽汽改为纯凝运行。

相关文档
相关文档 最新文档