文档库 最新最全的文档下载
当前位置:文档库 › 函数图像知识点梳理

函数图像知识点梳理

函数图像知识点梳理
函数图像知识点梳理

《函数及其图像》知识点归纳

华师大版八年级数学下《函数及其图像》知识点归纳一.变量与函数 1 .函数的定义:一般的,在某个变化过程中有两个变量x和y,对于x的每一个数值y都有唯一的值与之对应,我们说x叫做自变量,y叫做因变量,y叫做x的函数。 2.自变量的取值范围: (1)能够使函数有意义的自变量的取值全体。 (2)确定函数自变量的取值范围要注意以下两点:一是使自变量所在的代数式有意义;二是使函数在实际问题中有实际意义。 (3)不同函数关系式自变量取值范围的确定: ①函数关系式为整式时自变量的取值范围是全体实数。 ②函数关系式为分式时自变量的取值范围是使分母不为零的全体实数。 ③函数关系式为二次根式时自变量的取值范围是使被开方数大于或等于零的全体实数。 3 .函数值:当自变量取某一数值时对应的函数值。这里有三种类型的问题: (1)当已知自变量的值求函数值就是求代数式的值。 (2)当已知函数值求自变量的值就是解方程。 (3)当给定函数值的一个取值范围,欲求自变量的取值范围时实质上就是解不等式或不等式组。二.平面直角坐标系: 1.各象限内点的坐标的特征: (1)点p(x,y)在第一象限→x>0,y>0. (2)点p(x,y)在第二象限→x<0,y>0. (3)点p(x,y)在第三象限→x<0,y<0 (4)点p(x,y)在第四象限→x>0,y<0. 2 .坐标轴上的点的坐标的特征: (1)点p(x,y)在x轴上→x为任意实数,y=0 (2)点p(x,y)在y轴上→x=0,y为任意实数 3 .关于x轴,y轴,原点对称的点的坐标的特征: (1)点p(x,y)关于x轴对称的点的坐标为(x,-y). (2)点p(x,y)关于y轴对称的点的坐标为(-x,y). (3)点p(x,y)关于原点对称的点的坐标为(-x,-y) 4 .两条坐标轴夹角平分在线的点的坐标的特征: (1)点p(x,y)在第一、三象限夹角平分在线→x=y.

初三总复习函数及其图像知识点

第六章:函数及其图像 知识点: 一、平面直角坐标系 1、平面内有公共原点且互相垂直的两条数轴,构成平面直角坐标系。在平面直角坐标系内的点和有序实数对之间建立了—一对应的关系。 2、不同位置点的坐标的特征: (1)各象限内点的坐标有如下特征: 点P (x, y )在第一象限?x >0,y >0; 点P (x, y )在第二象限?x <0,y >0; 点P (x, y )在第三象限?x <0,y <0; 点P (x, y )在第四象限?x >0,y <0。 (2)坐标轴上的点有如下特征: 点P (x, y )在x 轴上?y 为0,x 为任意实数。 点P (x ,y )在y 轴上?x 为0,y 为任意实数。 3.点P (x, y )坐标的几何意义: (1)点P (x, y )到x 轴的距离是| y |; (2)点P (x, y )到y 袖的距离是| x |; (3)点P (x, y )到原点的距离是22y x + 4.关于坐标轴、原点对称的点的坐标的特征: (1)点P (a, b )关于x 轴的对称点是),(1b a P -; (2)点P (a, b )关于x 轴的对称点是),(2b a P -; (3)点P (a, b )关于原点的对称点是),(3b a P --; 二、函数的概念 1、常量和变量:在某一变化过程中可以取不同数值的量叫做变量;保持数值不变的量叫做常量。 2、函数:一般地,设在某一变化过程中有两个变量x 和y ,如果对于x 的每一个值,y 都有唯一的值与它对应,那么就说x 是自变量,y 是x 的函数。 (1)自变量取值范围的确是: ①解析式是只含有一个自变量的整式的函数,自变量取值范围是全体实数。 ②解析式是只含有一个自变量的分式的函数,自变量取值范围是使分母不为0的实数。 ③解析式是只含有一个自变量的偶次根式的函数,自变量取值范围是使被开方数非负的实数。 注意:在确定函数中自变量的取值范围时,如果遇到实际问题,还必须使实际问题有意义。 (2)函数值:给自变量在取值范围内的一个值所求得的函数的对应值。 (3)函数的表示方法:①解析法;②列表法;③图像法 (4)由函数的解析式作函数的图像,一般步骤是:①列表;②描点;③连线 三、几种特殊的函数 1、一次函数

三角函数图像与性质知识点总结

三角函数图像与性质知识 点总结 The Standardization Office was revised on the afternoon of December 13, 2020

函数图像与性质知识点总结 一、三角函数图象的性质 1.“五点法”描图 (1)y =sin x 的图象在[0,2π]上的五个关键点的坐标为 (0,0) ? ?? ?? ?π2,1 (π,0) ? ?? ??? 32π,-1 (2π,0) (2)y =cos x 的图象在[0,2π]上的五个关键点的坐标为 (0,1),? ?????π2,0,(π,-1),? ???? ? 3π2,0,(2π,1) 2.三角函数的图象和性质 函数 性质 y =sin x y =cos x y =tan x 定义域 R R {x |x ≠k π+π 2 ,k ∈Z} 图象 值域 [-1,1] [-1,1] R 对称性 对称轴: x =k π+ π2(k ∈Z); 对称轴: x =k π(k ∈Z) 对称中心: 对称中心:? ?? ?? ?k π2,0 (k ∈Z)

3.一般地对于函数(),如果存在一个非零的常数,使得当取定义域内的每一个值时,都有f(x+T)=f(x),那么函数f(x)就叫做周期函数,非零常数T 叫做这个函数的周期,把所有周期中存在的最小正数,叫做最小正周期(函数的周期一般指最小正周期) 4.求三角函数值域(最值)的方法: (1)利用sin x、cos x的有界性; 关于正、余弦函数的有界性 由于正余弦函数的值域都是[-1,1],因此对于?x∈R,恒有-1≤sin x≤1,-1≤cos x≤1,所以1叫做y=sin x,y=cos x的上确界,-1叫做y=sin x,y=cos x的下确界.

三角函数图像与性质知识点总结

函数图像与性质知识点总结 一、三角函数图象的性质 1.“五点法”描图 (1)y =sin x 的图象在[0,2π]上的五个关键点的坐标为 (0,0) ? ?? ?? ? π2,1 (π,0) ? ?? ??? 32π,-1 (2π,0) (2)y =cos x 的图象在[0,2π]上的五个关键点的坐标为 (0,1),? ?????π2,0,(π,-1),? ???? ? 3π2,0,(2π,1) 2.三角函数的图象和性质

3.一般地对于函数(),如果存在一个非零的常数,使得当取定义域内的每一个值时,都有f(x+T)=f(x),那么函数f(x)就叫做周期函数,非零常数T叫做这个函数的周期,把所有周期中存在的最小正数,叫做最小正周期(函数的周期一般指最小正周期) 4.求三角函数值域(最值)的方法: (1)利用sin x、cos x的有界性; 关于正、余弦函数的有界性 由于正余弦函数的值域都是[-1,1],因此对于?x∈R,恒有-1≤sin x≤1,-1≤cos x≤1,所以1叫做y=sin x,y=cos x的上确界,-1叫做y=sin x,y=cos x的下确界.

(2)形式复杂的函数应化为y =A sin(ωx +φ)+k 的形式逐步分析ωx +φ的范围,根据正弦函数单调性写出函数的值域;含参数的最值问题,要讨论参数对最值的影响. (3)换元法:把sin x 或cos x 看作一个整体,可化为求函数在区间上的值域(最值)问题. 利用换元法求三角函数最值时注意三角函数有界性,如:y =sin 2x -4sin x +5,令t =sin x (|t |≤1),则y =(t -2)2+1≥1,解法错误. 5.求三角函数的单调区间时,应先把函数式化成形如y =A sin(ωx +φ) (ω>0)的形式,再根据基本三角函数的单调区间,求出x 所在的区间.应特别注意,应在函数的定义域内考虑.注意区分下列两题的单调增区间不同;利用换元法求复合函数的单调区间(要注意x 系数的正负号) (1)y =sin ? ?????2x -π4;(2)y =sin ? ?? ???π4-2x . 6、y =A sin(ωx +φ)+B 的图象求其解析式的问题,主要从以下四个方面来考虑: ①A 的确定:根据图象的最高点和最低点,即A =最高点-最低点 2; ②B 的确定:根据图象的最高点和最低点,即B = 最高点+最低点 2 ; ③ω的确定:结合图象,先求出周期,然后由T =2π ω (ω>0)来确定ω; ④φ的确定:把图像上的点的坐标带入解析式y =A sin(ωx +φ)+B ,然后根据 φ的范围确定φ即可,例如由函数y =A sin(ωx +φ)+K 最开始与x 轴的交点(最靠近原点)的横坐标为-φω(即令ωx +φ=0,x =-φ ω )确定φ. 二、三角函数的伸缩变化

三角函数图像与性质知识点总结和经典题型

函数图像及性质知识点总结和经典题型 1.正弦函数、余弦函数、正切函数的图像 2.三角函数的单调区间: 求三角函数的单调区间:一般先将函数式化为基本三角函数的标准式,要特别注意A 、ω的正负利用单调性三角函数大小一般要化为同名函数,并且在同一单调区间; x y sin =的递增区间是)(Z k ∈,递减区间是)(Z k ∈; x y cos =的递增区间是[]πππk k 22, -)(Z k ∈,递减区间是[]πππ+k k 22,)(Z k ∈, x y tan =的递增区间是)(Z k ∈, 3.对称轴及对称中心: sin y x =的对称轴为2x k ππ=+,对称中心为(,0) k k Z π∈; cos y x =的对称轴为x k π=,对称中心为2(,0)k ππ+; tan y x =无对称轴,对称中心为k 2 (,0)π ; 对于sin()y A x ωφ=+和cos()y A x ωφ=+来说,对称中心及零点相联系,对称轴及最值点联系。 4.函数B x A y ++=)sin(?ω),(其中00>>ωA

最大值是B A +,最小值是A B -,周期是,频率是,相位是?ω+x ,初 相是?;其图象的对称轴是直线)(2 Z k k x ∈+ =+π π?ω,凡是该图象及直线 B y =的交点都是该图象的对称中心。 y =A sin(ωx +φ)+B 的图象求其解析式的问题,主要从以下四个方面来考虑: ①A 的确定:根据图象的最高点和最低点,即A =最高点-最低点 2 ; ②B 的确定:根据图象的最高点和最低点,即B =最高点+最低点 2 ; ③ω的确定:结合图象,先求出周期,然后由T =2π ω (ω>0)来确定ω; ④φ的确定:把图像上的点的坐标带入解析式y =A sin(ωx +φ)+B ,然后根据φ的范围确定 φ即可,例如由函数y =A sin(ωx +φ)+K 最开始及x 轴的交点(最靠近原点)的横坐标为-φ ω (即 令ωx +φ=0,x =-φ ω )确定φ. 5.三角函数的伸缩变化 先平移后伸缩 sin y x =的图象???0)或向右(0) 平移个单位长度 得sin()y x ?=+的图象() ωωω ?????????→横坐标伸长(0<<1)或缩短(>1) 1 到原来的纵坐标不变 得sin()y x ω?=+的图象()A A A >?????????→纵坐标伸长(1)或缩短(0<<1) 为原来的倍横坐标不变 得sin()y A x ω?=+的图象(0)(0) k k k ><?????????→横坐标伸长或缩短到原来的纵坐标不变 得sin()y A x ω=的图象 (0)(0)???ω >

函数图像知识点归纳梳理

函数的图像 【知识梳理】 一、函数的图像 1、作图方法:描点法和利用基本函数图象变换作图;作函数图象的步骤:①确定函数的定义域;②化简函数的解析式;③讨论函数的性质即单调性、奇偶性、周期性、最值(甚至变化趋势);④描点连线,画出函数的图象。 2、识图:分布范围、变化趋势、对称性、周期性等等方面. 二、函数图像的变化 1、平移变换:(1)水平平移:函数()y f x a =+的图像可以把函数()y f x =的图像沿x 轴方向向左(0)a >或向右(0)a <平移||a 个单位即可得到; (2)竖直平移:函数()y f x a =+的图像可以把函数()y f x =的图像沿x 轴方向向上(0)a >或向下(0)a <平移||a 个单位即可得到. ①()y f x =h 左移→()y f x h =+; ②()y f x =h 右移→()y f x h =-; ③()y f x =h 上移→()y f x h =+; ④()y f x =h 下移→()y f x h =-. 2、对称变换:(1)函数()y f x =-的图像可以将函数()y f x =的图像关于y 轴对称即可得到; (2)函数()y f x =-的图像可以将函数()y f x =的图像关于x 轴对称即可得到; (3)函数()y f x =--的图像可以将函数()y f x =的图像关于原点对称即可得到; (4)函数1 ()y f x -=的图像可以将函数()y f x =的图像关于直线y x =对称得到. ①()y f x =轴 x →()y f x =-;②()y f x =轴 y →()y f x =-;③()y f x =a x =→直线(2)y f a x =-;④()y f x =原点 →()y f x =--. 提示:()i 若()(),R f a x f b x x +=-∈恒成立,则()y f x =的图象关于2 a b x +=成轴对称图形, 若()(),R f a x f b x x +=--∈,则()y f x =的图象关于点( ,0)2 a b +成中心对称图形. ()ii 函数()y f a x =+与函数()y f b x =-的图象关于直线1 ()2 x b a =-对称. 3、翻折变换:(1)函数|()|y f x =的图像可以将函数()y f x =的图像的x 轴下方部分沿x 轴翻折到x 轴上方,去掉原x 轴下方部分,并保留()y f x =的x 轴上方部分即可得到;

函数和图像知识点汇总

《函数及其图像》知识点 一、函数的概念、变量(自变量、因变量)、常量的概念。 ①变量:在某一函数变化过程中,可以取不同数值的量,叫做变量。 ②自变量:在某一函数变化过程中,主动变化的量的叫做自变量。 ③因变量:在某一函数变化过程中,因为自变量的变化而被动变化的量叫做因变量。此时,我们也称因变量是自变量的函数 ④常量:在某一函数变化中,始终保持不变的量,叫做常量。 练习:在函数r c π2=中,自变量是 ,因变量是 ,常量是 , 叫做 的函数。 二、函数的三种表示方法: ①解析法: ②列表法: 三、函数自变量的取值围: 平面直角坐标系。水平的数轴叫做横轴(x 轴),取向右为正方向;铅直的数轴叫做纵轴(y 轴),取向上为正方向;两条数轴的交点O 叫做坐标原点。 x 轴和y 轴将坐标平面分成四个象限(如图): 五、平面点的坐标:(横坐标,纵坐标) 如图:过点P 作x 轴的垂线段,垂足在x 轴上表示的数是2,因此点P 的横坐标为 2 过点P 作y 轴的垂线段,垂足在y 轴上表示的数是3,因此点P 的纵坐标为 3 所以点P 的坐标为(2 , 3) 六、平面特殊位置的点的坐标情况:(连线) 第一象限 第二象限 第三象限 第四象限 x 轴上 y 轴上 (- ,-) (- ,+) (+ ,+) (+ ,-) (0 ,a ) (b , 0) 七、点的表示(横坐标,纵坐标)注意: ①不要丢了括号和中间的逗号; ②表示的意思:当___x =时,___y =如点A (2,1) 表示:当2x =时,1y = ③注意x 轴上点的特征:(___,0)即纵坐标等于0;y 轴上点的特征:(0,___)即:横坐标等于0。 概括:坐标轴上的点的横坐标和纵坐标至少有一个为0。 八、对称点的坐标关系: ⑴关于x 轴对称的点:横坐标 ,纵坐标 。 y x O 第四象限 第三象限第二象限 第一象限

函数与其图像(知识点复习)

函数及其图像(知识点复习) 一、平面直角坐标系 1、平面内有公共原点且互相垂直的两条数轴,构成平面直角坐标系。在平面直角坐标系 内的点和有序实数对之间建立了—一对应的关系。 2、不同位置点的坐标的特征: (1)各象限内点的坐标有如下特征: 点P(x, y)在第一象限x >0,y>0;点P(x, y)在第二象限x<0,y>0; 点P(x, y)在第三象限x<0,y<0;点P(x, y)在第四象限x>0,y<0。 (2)坐标轴上的点有如下特征: 点P(x, y)在x 轴上y 为0,x 为任意实数。 点P(x,y)在y 轴上x 为0,y 为任意实数。 3.点P(x, y )坐标的几何意义: (1)点P(x, y)到x 轴的距离是| y |;(2)点P(x, y)到y 袖的距离是| x |; (3)点P(x, y)到原点的距离是x 2 y2 4.关于坐标轴、原点对称的点的坐标的特征: (1)点P(a, b)关于x 轴的对称点是P1 (a, b) ; (2)点P(a, b)关于x 轴的对称点是P2 ( a, b) ; (3)点P(a, b)关于原点的对称点是P3 ( a, b); 二、函数的概念 1、在某一变化过程中可以取不同数值的量叫做变量;保持数值不变的量叫做常量。 2、函数:一般地,设在某一变化过程中有两个变量x 和y,如果对于x 的每一个值,y 都有唯一的值与它对应,那么就说x 是自变量,y 是x 的函数。 (1)自变量取值范围的确是: ①解析式是只含有一个自变量的整式的函数,自变量取值范围是全体实数。 ②解析式是只含有一个自变量的分式的函数,自变量取值范围是使分母不为0 的实数。 ③解析式是只含有一个自变量的偶次根式的函数,自变量取值范围是使被开方数非负的实 数。 注意:在确定函数中自变量的取值范围时,如果遇到实际问题,还必须使实际问题有意义。 (2)函数值:给自变量在取值范围内的一个值所求得的函数的对应值。 (3)函数的表示方法:①解析法;②列表法;③图像法 (4)由函数的解析式作函数的图像,一般步骤是:①列表;②描点;③连线 三、几种特殊的函数

函数及其图像知识点

函数及其图像知识点

《函数及其图像》知识点 一、函数的概念、变量(自变量、因变量)、常量的概念。 ①变量:在某一函数变化过程中,可以取不同数值的量,叫做变量。 ②自变量:在某一函数变化过程中,主动变化的量的叫做自变量。 ③因变量:在某一函数变化过程中,因为自变量的变化而被动变化的量叫做因变量。此时,我们也称因变量是自变量的函数 ④常量:在某一函数变化中,始终保持不变的量,叫做常量。 练习:在函数r c π2=中,自变量是 ,因变量是 ,常量是 , 叫做 的函数。 二、函数的三种表示方法: ①解析法:就是用一个函数关系式来表示函数变化规律。②列表法:就是用一个数据表来表示函数变化规律。③图像法:就是用线性图像来表示函数变化规律。 三、函数自变量的取值范围: 函数解析式类型 自变量取值满足的条件 应用举例 整式 全体实数 54+-=x y (x 为任意实数) 分式 分母不为零 ()22 3 2≠--= x x x y 二次(偶次)根式 被开方数非负 ()263≥-=x x y 平面直角坐标系。水平的数轴叫做横轴(x 轴),取向右为正方向;铅直的数轴叫做纵轴(y 轴),取向上为正方向;两条数轴的交点O 叫做坐标原点。 x 轴和y 轴将坐标平面分成四个象限(如图): 五、平面内点的坐标:(横坐标,纵坐标) 如图:过点P 作x 轴的垂线段,垂足在x 轴上表示的数是2,因此点P 的横坐标为 2 过点P 作y 轴的垂线段,垂足在y 轴上表示的数是3,因此点P 的纵坐标为 3 所以点P 的坐标为(2 , 3) 六、平面内特殊位置的点的坐标情况:(连线) 第一象限 第二象限 第三象限 第四象限 x 轴上 y 轴上 (- ,-) (- ,+) (+ ,+) (+ ,-) (0 ,a ) (b , 0) 七、点的表示(横坐标,纵坐标)注意: ①不要丢了括号和中间的逗号; ②表示的意思:当___x =时,___y =如点A (2,1) 表示:当2x =时,1y = ③注意x 轴上点的特征:(___,0)即纵坐标等于0;y 轴上点的特征:(0,___)即:横坐标等于0。 概括:坐标轴上的点的横坐标和纵坐标至少有一个为0。 八、对称点的坐标关系: ⑴关于x 轴对称的点:横坐标 ,纵坐标 。 y x O 第四象限 第三象限第二象限 第一象限

二次函数的图像和性质知识点与练习

第二节 二次函数的图像与性质 1.能够利用描点法做出函数y =ax 2 ,y=a(x-h)2,y =a(x-h)2 +k 和c bx ax y ++=2 图象, 能根据图象认识和理解二次函数的性质; 2.理解二次函数c bx ax y ++=2 中a 、b 、c 对函数图象的影响。 一、二次函数2y ax bx c =++图象的画法 五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定 其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们 选取的五点为:顶点、与y 轴的交点()0c , 、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x , ,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点. 例1. 在同一平面坐标系中分别画出二次函数y =x 2 ,y =-x 2 ,y =2x 2 ,y =-2x 2 ,y =2(x-1)2 的图像。 一、二次函数的基本形式 1. y =ax 2 的性质: x y O

2. y=ax2+k的性质:(k上加下减) 3. y=a(x-h)2的性质:(h左加右减) 4. y=a (x-h)2+k的性质: 5. y=ax2+bx+c的性质:

二、二次函数图象的平移 1. 平移步骤: 方法一:⑴ 将抛物线解析式转化成顶点式() 2 y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2. 平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字 “左加右减,上加下减”. 方法二:

函数图像知识点梳理

函数的图像 【考纲说明】 1、掌握基本函数的图象的特征,能熟练运用基本函数的图象解决问题。 2、掌握图象的作法、描点法和图象变换法。 【知识梳理】 一、函数的图像 1、作图方法:描点法和利用基本函数图象变换作图;作函数图象的步骤:①确定函数的定义域;②化简函数的解析式;③讨论函数的性质即单调性、奇偶性、周期性、最值(甚至变化趋势);④描点连线,画出函数的图象。 2、识图:分布范围、变化趋势、对称性、周期性等等方面. 二、函数图像的变化 1、平移变换:(1)水平平移:函数()y f x a =+的图像可以把函数()y f x =的图像沿x 轴方向向左(0)a >或向右(0)a <平移||a 个单位即可得到; (2)竖直平移:函数()y f x a =+的图像可以把函数()y f x =的图像沿x 轴方向向上(0)a >或向下(0)a <平移 ||a 个单位即可得到. ① y=f(x)h 左移→y=f(x+h); ② y=f(x) h 右移→y=f(x h); ③y=f(x) h 上移→y=f(x)+h; ④y=f(x) h 下移→y=f(x) h. 2、对称变换:(1)函数()y f x =-的图像可以将函数()y f x =的图像关于y 轴对称即可得到; (2)函数()y f x =-的图像可以将函数()y f x =的图像关于x 轴对称即可得到; (3)函数()y f x =--的图像可以将函数()y f x =的图像关于原点对称即可得到; (4)函数1 ()y f x -=的图像可以将函数()y f x =的图像关于直线y x =对称得到. ①y=f(x) 轴 x →y= f(x); ②y=f(x) 轴 y →y=f( x); ③y=f(x) a x =→直线y=f(2a x); ④y=f(x) x y =→直线y=f 1(x);

初三总复习函数及其图像知识点

初三总复习函数及其图 像知识点 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第六章:函数及其图像 知识点: 一、平面直角坐标系 1、平面内有公共原点且互相垂直的两条数轴,构成平面直角坐标系。在平面直角坐标系内的点和有序实数对之间建立了—一对应的关系。 2、不同位置点的坐标的特征: (1)各象限内点的坐标有如下特征: 点P (x, y )在第一象限?x >0,y >0; 点P (x, y )在第二象限?x <0,y >0; 点P (x, y )在第三象限?x <0,y <0; 点P (x, y )在第四象限?x >0,y <0。 (2)坐标轴上的点有如下特征: 点P (x, y )在x 轴上?y 为0,x 为任意实数。 点P (x ,y )在y 轴上?x 为0,y 为任意实数。 3.点P (x, y )坐标的几何意义: (1)点P (x, y )到x 轴的距离是| y |; (2)点P (x, y )到y 袖的距离是| x |; (3)点P (x, y )到原点的距离是22y x + 4.关于坐标轴、原点对称的点的坐标的特征: (1)点P (a, b )关于x 轴的对称点是),(1b a P -; (2)点P (a, b )关于x 轴的对称点是),(2b a P -; (3)点P (a, b )关于原点的对称点是),(3b a P --; 二、函数的概念 1、常量和变量:在某一变化过程中可以取不同数值的量叫做变量;保持数值不变的量叫做常量。

2、函数:一般地,设在某一变化过程中有两个变量x和y,如果对于x的每一个值,y都有唯一的值与它对应,那么就说x是自变量,y是x的函数。(1)自变量取值范围的确是: ①解析式是只含有一个自变量的整式的函数,自变量取值范围是全体实数。 ②解析式是只含有一个自变量的分式的函数,自变量取值范围是使分母不为0的实数。 ③解析式是只含有一个自变量的偶次根式的函数,自变量取值范围是使被开方数非负的实数。 注意:在确定函数中自变量的取值范围时,如果遇到实际问题,还必须使实际问题有意义。 (2)函数值:给自变量在取值范围内的一个值所求得的函数的对应值。(3)函数的表示方法:①解析法;②列表法;③图像法 (4)由函数的解析式作函数的图像,一般步骤是:①列表;②描点;③连线 三、几种特殊的函数 1、一次函数

一次函数图像与性质的知识点整理

一次函数的图像与性质知识点总结 知识点1 、 一次函数和正比例函数的概念 若两个变量x ,y 间的关系式可以表示成y=kx+b (k ,b 为常数,k ≠0)的形式,则称y 是x 的一次函数(x 为自变量),特别地,当b=0时,称y 是x 的正比例函数.例如:y=2x+3,y=-x+2,y=21x 等都是一次函数,y=2 1x ,y=-x 都是正比例函数. 知识点2、 函数的图象 把一个函数的自变量x 与所对应的y 的值分别作为点的横坐标和纵坐标在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象.画函数图象一般分为三步:列表、描点、连线. 知识点 3、一次函数的图象 由于一次函数y=kx+b (k ,b 为常数,k ≠0)的图象是一条直线,所以一次函数y=kx+b 的图象也称为直线y=kx+b . 由于两点确定一条直线,因此在今后作一次函数图象时,只要描出适合关系式的两点,再连成直线即可,一般选取两个特殊点:直线与y 轴的交点(0,b ),直线与x 轴的交点(-k b ,0).但也不必一定选取这两个特殊点.画正比例函数y=kx 的图象时,只要描出点(0,0),(1,k )即可. 知识点4 、 一次函数y=kx+b (k ,b 为常数,k ≠0)的性质 (1)k 的正负决定直线的倾斜方向; ①k >0时,y 的值随x 值的增大而增大; ②k ﹤O 时,y 的值随x 值的增大而减小. (2)|k|大小决定直线的倾斜程度,即|k|越大,直线与x 轴相交的锐角度数越大(直线陡),|k|越小,直线与x 轴相交的锐角度数越小(直线缓); (3)b 的正、负决定直线与y 轴交点的位置; ①当b >0时,直线与y 轴交于正半轴上; ②当b <0时,直线与y 轴交于负半轴上; ③当b=0时,直线经过原点,是正比例函数. (4)由于k ,b 的符号不同,直线所经过的象限也不同; ①当k >0,b >0时,直线经过第一、二、三象限(直线不经过 第四 象限); ②当k >0,b ﹥O 时,直线经过第一、三、四象限(直线不经过 第二象限); ③当k ﹤O ,b >0时,直线经过第一、二、四象限(直线不经过第三

高一数学函数图像知识点总结

高一数学函数图像知识 点总结 文件编码(GHTU-UITID-GGBKT-POIU-WUUI-8968)

高一数学函数图像知识点总结一、函数图像知识点汇总 1.函数图象的变换 (1)平移变换 (2)对称变换 由对称变换可利用y=f(x)的图象得到y=|f(x)|与y=f(|x|)的图象. ①作出y=f(x)的图象,将图象位于x轴下方的部分以x轴为对称轴翻折到上方,其余部分不变,得到y=|f(x)|的图象; ②作出y=f(x)在y轴上及y轴右边的图象部分,并作y轴右边的图象关于y轴对称的图象,即得y=f(|x|)的图象. (3)伸缩变换 ①y=af(x)(a>0)的图象,可将y=f(x)图象上每点的纵坐标伸(a>1时)或缩(a<1时)到原来的a倍,横坐标不变.

②y=f(ax)(a>0)的图象,可将y=f(x)的图象上每点的横坐标伸(a<1时)或缩(a>1时)到原来的倍,纵坐标不变. (4)翻折变换 ①作为y=f(x)的图象,将图象位于x轴下方的部分以x轴为对称轴翻折到上方,其余部分不变,得到y=|f(x)|的图象; ②作为y=f(x)在y轴上及y轴右边的图象部分,并作y轴右边的图象关于y轴对称的图象,即得y=f(|x|)的图象. 2.等价变换 可看出函数的图象为半圆.此过程可归纳为:(1)写出函数解析式的等价组;(2)化简等价组;(3)作图. 3.描点法作图 方法步骤:(1)确定函数的定义域;(2)化简函数的解析式;(3)讨论函数的性质即奇偶性、周期性、单调性、最值(甚至变化趋势);(4)描点连线,画出函数的图象. 注意: 一条主线 数形结合的思想方法是学习函数内容的一条主线,也是考查的热点.作函数图象首先要明确函数图象的形状和位置,而取值、列表、描点、连线只是作函数图象的辅助手段,不可本末倒置.

最全三角函数的图像与性质知识点总结

三角函数的图像与性质 一、 正弦函数、余弦函数的图像与性质 二、正切函数的图象与性质 定义域 {|,}2 x x k k Z π π≠ +∈ 函数 y =sin x y =cos x 图 象 定义域 R R 值域 [-1,1] [-1,1] 单调性 递增区间:2,2() 2 2k k k Z ππππ??-+∈??? ? 递减区间:32,2()2 2k k k Z ππππ??++∈??? ? 递增区间:[2k π-π,2k π] (k ∈Z ) 递减区间:[2k π,2k π+π] (k ∈Z ) 最 值 x =2k π+π 2(k ∈Z )时,y max =1; x =2k π-π 2(k ∈Z )时,y min =-1 x =2k π(k ∈Z )时,y max =1; x =2k π+π(k ∈Z ) 时,y min =-1 奇偶性 奇函数 偶函数 对称性 对称中心:(k π,0)(k ∈Z )(含原点) 对称轴:x =k π+π 2,k ∈Z 对称中心:(k π+π 2,0)(k ∈Z ) 对称轴:x =k π,k ∈Z (含y 轴) 最小正周期 2π 2π

三、三角函数图像的平移变换和伸缩变换 1. 由x y sin =的图象得到)sin(?ω+=x A y (0,0A ω>>)的图象 注意:定要注意平移与伸缩的先后顺序,否则会出现错误。 2. )sin(?ω+=x A y (0,0A ω>>)的性质 (1)定义域、值域、单调性、最值、对称性: 将?ω+x 看作一个整体,与相应的简单三角函数比较得出; (2)奇偶性:只有当?取特殊值时,这些复合函数才具备奇偶性: )sin(?ω+=x A y ,当π?k =时为奇函数,当2 ππ?±=k 时为偶函数; (3)最小正周期:ω π2=T

高一数学必修一函数图像知识点总结

高一数学必修一函数图像知识点总结 > 高一数学必修一函数图像知识点 知识点总结 本节知识包括函数的单调性、函数的奇偶性、函数的周期性、函数的最值、函数的对称性和函数的图象等知识点。函数的单调性、函数的奇偶性、函数的周期性、函数的最值、函数的对称性是学习函数的图象的基础,函数的图象是它们的综合。所以理解了前面的几个知识点,函数的图象就迎刃而解了。 一、函数的单调性 1、函数单调性的定义 2、函数单调性的判断和证明:(1)定义法(2)复合函数分析法(3)导数证明法(4)图象法 二、函数的奇偶性和周期性 1、函数的奇偶性和周期性的定义 2、函数的奇偶性的判定和证明方法 3、函数的周期性的判定方法 三、函数的图象 1、函数图象的作法(1)描点法(2)图象变换法 2、图象变换包括图象:平移变换、伸缩变换、对称变换、翻折变换。

常见考法 本节是段考和高考必不可少的考查内容,是段考和高考考查 的重点和难点。选择题、填空题和解答题都有,并且题目难 度较大。在解答题中,它可以和高中数学的每一章联合考查,多属于拔高题。多考查函数的单调性、最值和图象等。 误区提醒 1、求函数的单调区间,必须先求函数的定义域,即遵循“函数问题定义域优先的原则”。 2、单调区间必须用区间来表示,不能用集合或不等式,单 调区间一般写成开区间,不必考虑端点问题。 3、在多个单调区间之间不能用“或”和“ ”连接,只能用逗号隔开。 4、判断函数的奇偶性,首先必须考虑函数的定义域,如果 函数的定义域不关于原点对称,则函数一定是非奇非偶函数。 5、作函数的图象,一般是首先化简解析式,然后确定用描 点法或图象变换法作函数的图象。

一次函数图象与性质知识点

一次函数图象与性质知识点 一次函数知识点 (1)、一次函数的形式:形如y=kx +b(k,b 是常数,k≠0),那么y 叫做x 的一次函数. 当b=0时,y=kx +b 即y=kx ,所以说正比例函数是一种特殊的一次函数. (2)一次函数的图象是一条直线 (3)一次函数与坐标轴的交点:与Y 轴的交点是(0,b )与X 轴的交点是(- k b ,0) (4)增减性: k>0,y 随x 的增大而增大;k<0,y 随x 增大而减小. (5)图像的平移: 当b>0时,将直线y=kx 的图象向上平移b 个单位; 当b<0时,将直线y=kx 的图象向下平移b 个单位. (6)一次函数y=kx +b 的图象的画法. 根据几何知识:经过两点能画出一条直线,并且只能画出一条直线,即两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线即可.一般情况下:是先选取它与两坐标轴的交点:(0,b ) , .即横坐标或纵坐标为0的点. (7)一次函数图象及性质 (8)待定系数法求一次函数的解析式

例题精讲: 1、 做一做,画出函数y =-2x +2的图象,结合图象回答下列问题。 (1) 随着x 的增大,y 将 (填“增大”或“减小”) (2) 它的图象从左到右 (填“上升”或“下降”) (3) 图象与x 轴的交点坐标是 ,与y 轴的交点坐标是 (4) 这个函数中,随着x 的增大,y 将增大还是减小?它的图象从左到右怎样变化? (5) 当x 取何值时,y =0? (6) 当x 取何值时,y >0? 1:.正比例函数(35)y m x =+,当m 时,y 随x 的增大而增大. 2.若23y x b =+-是正比例函数,则b 的值是 ( ) A.0 B. 23 C.23- D.32 - 3.函数y =(k -1)x ,y 随x 增大而减小,则k 的范围是 ( ) A.0k C.1≤k D.1

对数函数图象及其性质知识点及例题解析

对数函数的图象及性质例题解析 题型一 判断对数函数 【例1】函数f (x )=(a 2-a +1)log (a +1)x 是对数函数,则实数a =__________. 解析:由a 2-a +1=1,解得a =0,1. 又a +1>0,且a +1≠1,∴a =1. 【例1-1】下列函数中是对数函数的为__________. (1)y =log a >0,且a ≠1);(2)y =log 2x +2;(3)y =8log 2(x +1); (4)y =log x 6(x >0,且x ≠1);(5)y =log 6x . 解析: 题型二 【例2】如图所示的曲线是对数函数y =log a x 的图象.已知a , 43,35,110 中取值,则相应曲线C 1,C 2,C 3,C 4的a 值依次为( ) A 43,35,110 B ,43,110,35 C .43,35,110 D .43110,35 解析:由底数对对数函数图象的影响这一性质可知,C 4的底数<C 3的底数<C 2的底数<C 1 的底数.故相应于曲线C 1,C 2,C 3,C 443,35,110 .答案:A 点技巧 作直线y =1,它与各曲线的交点的横坐标就是各对数的底数,由此判断各底数的大小. 题型三 对数型函数的定义域的求解 (1)对数函数的定义域为(0,+∞). (2)在求对数型函数的定义域时,要考虑到真数大于0,底数大于0,且不等于1. 若底数和真数中都含有变量,或式子中含有分式、根式等,在解答问题时需要保证各个方面都有意义. (3)求函数的定义域应满足以下原则: ①分式中分母不等于零; ②偶次根式中被开方数大于或等于零; ③指数为零的幂的底数不等于零; ④对数的底数大于零且不等于1; ⑤对数的真数大于零,如果在一个函数中数条并存,求交集. 【例3】求下列函数的定义域. (1)y =log 5(1-x ); (2)y =log (2x -1)(5x -4); (3)y =. 分析:利用对数函数y =log a x (a >0,且a ≠1)的定义求解. 解:(1)要使函数有意义,则1-x >0,解得x <1,故函数y =log 5(1-x )的定义域是{x |x <1}.

函数及其图像知识点归纳

函数及其图像知识点归 纳 Document number【AA80KGB-AA98YT-AAT8CB-2A6UT-A18GG】

华师大版八年级数学下《函数及其图像》知识点归纳一.变量与函数 1 .函数的定义:一般的,在某个变化过程中有两个变量x和y,对于x的每一个数值y都有唯一的值与之对应,我们说x叫做自变量,y叫做因变量,y叫做x的函数。 2.自变量的取值范围: (1)能够使函数有意义的自变量的取值全体。 (2)确定函数自变量的取值范围要注意以下两点:一是使自变量所在的代数式有意义;二是使函数在实际问题中有实际意义。 (3)不同函数关系式自变量取值范围的确定: ①函数关系式为整式时自变量的取值范围是全体实数。 ②函数关系式为分式时自变量的取值范围是使分母不为零的全体实数。 ③函数关系式为二次根式时自变量的取值范围是使被开方数大于或等于零的全体实数。 3 .函数值:当自变量取某一数值时对应的函数值。这里有三种类型的问题: (1)当已知自变量的值求函数值就是求代数式的值。 (2)当已知函数值求自变量的值就是解方程。 (3)当给定函数值的一个取值范围,欲求自变量的取值范围时实质上就是解不等式或不等式组。 二.平面直角坐标系: 1.各象限内点的坐标的特征: (1)点p(x,y)在第一象限→x>0,y>0. (2)点p(x,y)在第二象限→x<0,y>0. (3)点p(x,y)在第三象限→x<0,y<0 (4)点p(x,y)在第四象限→x>0,y<0. 2 .坐标轴上的点的坐标的特征: (1)点p(x,y)在x轴上→x为任意实数,y=0 (2)点p(x,y)在y轴上→x=0,y为任意实数 3 .关于x轴,y轴,原点对称的点的坐标的特征: (1)点p(x,y)关于x轴对称的点的坐标为(x,-y). (2)点p(x,y)关于y轴对称的点的坐标为(-x,y). (3)点p(x,y)关于原点对称的点的坐标为(-x,-y)

初中函数函数知识点总结(掌握函数的定义、性质和图像)

函数知识点总结(掌握函数的定义、性质和图像) (一)平面直角坐标系 1、定义:平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系 2、各个象限内点的特征: 第一象限:(+,+) 点P (x,y ),则x >0,y >0; 第二象限:(-,+) 点P (x,y ),则x <0,y >0; 第三象限:(-,-) 点P (x,y ),则x <0,y <0; 第四象限:(+,-) 点P (x,y ),则x >0,y <0; 3、坐标轴上点的坐标特征: x 轴上的点,纵坐标为零;y 轴上的点,横坐标为零;原点的坐标为(0 , 0)。两坐标轴的点不属于任何象限。 4、点的对称特征:已知点P(m,n), 关于x 轴的对称点坐标是(m,-n), 横坐标相同,纵坐标反号 关于y 轴的对称点坐标是(-m,n) 纵坐标相同,横坐标反号 关于原点的对称点坐标是(-m,-n) 横,纵坐标都反号 5、平行于坐标轴的直线上的点的坐标特征: 平行于x 轴的直线上的任意两点:纵坐标相等; 平行于y 轴的直线上的任意两点:横坐标相等。 6、各象限角平分线上的点的坐标特征: 第一、三象限角平分线上的点横、纵坐标相等。 第二、四象限角平分线上的点横、纵坐标互为相反数。 7、点P (x,y )的几何意义: 点P (x,y )到x 轴的距离为 |y|, 点P (x,y )到y 轴的距离为 |x|。 点P (x,y )到坐标原点的距离为 22y x + 8、两点之间的距离: X 轴上两点为A )0,(1x 、B )0,(2x |AB|||12x x -=

Y 轴上两点为C ),0(1y 、D ),0(2y |CD| ||12y y -= 已知A ),(11y x 、B ),(22y x AB|=2 12212)()(y y x x -+- 9、中点坐标公式:已知A ),(11y x 、B ),(22y x M 为AB 的中点 则:M=( 212x x + , 212y y +) 10、点的平移特征: 在平面直角坐标系中, 将点(x,y )向右平移a 个单位长度,可以得到对应点( x-a ,y ); 将点(x,y )向左平移a 个单位长度,可以得到对应点(x+a ,y ); 将点(x,y )向上平移b 个单位长度,可以得到对应点(x ,y +b ); 将点(x,y )向下平移b 个单位长度,可以得到对应点(x ,y -b )。 注意:对一个图形进行平移,这个图形上所有点的坐标都要发生相应的变化; 反过来,从图形上点的坐标的加减变化,我们也可以看出对这个图形 进行了怎样的平移。 (二)函数的基本知识: 基本概念 1、变量:在一个变化过程中可以取不同数值的量。 常量:在一个变化过程中只能取同一数值的量。 2、函数:一般的,在一个变化过程中,如果有两个变量x 和y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就把x 称为自变量,把y 称为因变量,y 是x 的函数。 *判断A 是否为B 的函数,只要看B 取值确定的时候,A 是否有唯一确定的值与之对应 3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。 4、确定函数定义域的方法: (1)关系式为整式时,函数定义域为全体实数; (2)关系式含有分式时,分式的分母不等于零; (3)关系式含有二次根式时,被开放方数大于等于零; (4)关系式中含有指数为零的式子时,底数不等于零;

相关文档
相关文档 最新文档