文档库 最新最全的文档下载
当前位置:文档库 › 片状g-C3N4可见光响应催化剂的热聚合法制备及光催化活性

片状g-C3N4可见光响应催化剂的热聚合法制备及光催化活性

片状g-C3N4可见光响应催化剂的热聚合法制备及光催化活性
片状g-C3N4可见光响应催化剂的热聚合法制备及光催化活性

铋基光催化剂的调控与污染物降解机理研究

铋基光催化剂的调控与污染物降解机理研究伴随着我国社会和工业技术的不断发展,大量污染物尤其是抗生 素等难降解有机污染物被排放到天然水体当中,由此引起的水质污染 和供水安全问题,已成为关乎可持续发展和实现小康社会的关键因素。因此,急需发展自由基强化氧化技术,以实现水中污染物的高效降解 和安全转化。半导体光催化技术是通过将光能转化为化学能,在光能 的驱动下催化产生羟基自由基(·OH)、、超氧自由基 (O2·-)、单线态氧 (1O2)和空穴(h+)等活性氧物种以达到降解水中有机污染物的效果,它具有氧化能力强、污染物 降解彻底、反应条件温和与环境友好的特点,在水污染治理方面具有 较好的应用前景。然而,传统的光催化材料如二氧化钛由于禁带宽度 大(3.2 eV),只能吸收占太阳光4%的紫外光,对占太阳光约43%的可见光的利用效率低,极大限制了该技术的实际应用。为提高太阳能的 利用率,特别是可见光的利用率,构筑高效可见光催化剂成为现阶段 光催化领域的发展前沿。对于具有较宽带隙或较窄带隙的半导体材料,通过调控禁带宽度可以有效提高半导体材料对可见光的响应;对于本 身具有较强可见光吸收的半导体材料,通过构建异质结构,促进光生 载流子的传导,从而抑制光生电子-空穴复合可以有效提高其对可见 光的利用效率;借助上述两种手段,设计并构建纳米复合材料,发展可 见光催化技术,可以有效解决上述问题。近年来,一系列含铋的半导体材料被报道具有优良的光催化活性,其具有独特且可调的电子能带结

水热法制备纳米材料

实验名称:水热法制备纳米TiO2 水热法属于液相反应的范畴,是指在特定的密闭反应器中采用水溶液作为反应体系,通过对反应体系加热、加压而进行无机合成与材料处理的一种有效方法。在水热条件下可以使反应得以实现。在水热反应中,水既可以作为一种化学组分起反应并参与反应,又可以是溶剂和膨化促进剂,同时又是一种压力传递介质,通过加速渗透反应和控制其过程的物理化学因素,实现无机化合物的形成和改进。 水热法在合成无机纳米功能材料方面具有如下优势:明显降低反应温度(100-240℃);能够以单一步骤完成产物的形成与晶化,流程简单;能够控制产物配比;制备单一相材料;成本相对较低;容易得到取向好、完美的晶体;在生长的晶体中,能均匀地掺杂;可调节晶体生成的环境气氛。 一.实验目的 1.了解水热法的基本概念及特点。 2.掌握高温高压下水热法合成纳米材料的方法和操作的注意事项。 3.熟悉XRD操作及纳米材料表征。 4.通过实验方案设计,提高分析问题和解决问题的能力。 二.实验原理 水热法的原理是:水热法制备粉体的化学反应过程是在流体参与的高压容器中进行,高温时,密封容器中有一定填充度的溶媒膨胀,充满整个容器,从而产生很高的压力。为使反应较快和较充分的进行,通常还需要在高压釜中加入各种矿化物。 水热法一般以氧化物或氢氧化物(新配置的凝胶)作为前驱物,他们在加热过程中溶解度随温度的升高而增加,最终导致溶液过饱和并逐步形成更稳定的氧化物新相。反应过程的驱动力是最后可溶的的前驱物或中间产物与稳定氧化物之间的溶解度差。 三.实验器材 实验仪器:10ml量筒;胶头滴管;50ml烧杯;高压反应釜;烘箱;恒温磁力搅拌器。 实验试剂:无水TiCl4;蒸馏水;无水乙醇。 四.实验过程 1.取10mL量筒, 50mL的烧杯洗净并彻底干燥。 2.取适量冰块放入烧杯中,并加入一定的蒸馏水形成20mL的冰水混合物,用恒温磁力搅拌器搅拌,速度适中。

水热法合成二氧化钛及研究进展

水热法合成二氧化钛及研究进展 摘要:水热法合成了不同晶型、形貌、大小和研定形貌的二氧化钛。究了pH值、水热反应温度和水热反应时间对纳米二氧化钛晶型、形貌和晶粒尺寸的影响,对TiO2晶形影响光催化活性的原因进行了探讨。同时从二氧化钛水解制氢、废水处理、空气净化、抗菌、除臭方面介绍了纳米二氧化钛在环境治理方面的应用和发展趋势,并对纳米二氧化钛的制备方法与应用作出展望。 关键词:二氧化钛;晶型;水热法;光催化;制备;应用 纳米二氧化钛(TiO2)具有比表面积大、磁性强、光吸收性好、表面活性大、热导性好、分散性好等性能。纳米TiO2是一种重要的无机功能材料, 可应用于随角异色涂料、屏蔽紫外线、光电转换、光催化等领域,在光催化领域环境治理方面具有举足轻重的地位,可应用在环保中的各个领域,它在环境污染治理中将日益受到人们的重视,具有广阔的应用前景,因此制备高光催化性能的纳米TiO2,拓展纳米二氧化钛的应用也是学者研究的重点。水热法合成纳米TiO2粉体具有晶粒发育完整、粒径分布均匀、不需作高温煅烧处理、颗粒团聚程度较轻的特点。 1.TiO2的制备方法、材料的性能 1.1不同晶型纳米二氧化钛的水热合成 1.1.1实验方法 边搅拌边将2mol·L- 1的四氯化钛水溶液缓慢滴加到115mol·L- 1的氢氧化钠水溶液中,保持30℃反应,生成纳米TiO2前驱体,反应终点的pH值分别控制为110、310、510、810、1110、1210。把纳米TiO2前驱体装入内衬聚四氟乙烯的不锈钢反应釜中进行水热反应,120℃~200℃反应1h~48h,反应结束后,冷却至室温,产物经过滤和蒸馏水洗至滤液中无Cl-,在100℃下鼓风干燥10h,粉碎后得到不同结构的纳米TiO2 粉体。选择不同的特征峰(金红石型选110面、锐钛矿型选101面,板钛矿型选121面),根据特征衍射峰的半高宽,利用Scherrer 公式展宽法估算出其晶粒尺寸。 1.1.2研究与开发 1.1. 2.1pH值对纳米TiO2晶型和形貌的影响 在水热反应温度为200 ℃和水热反应时间24 h的条件下。当pH = 1.0时,产

卤氧化铋基光催化剂的合成及光催化性能

卤氧化铋基光催化剂的合成及光催化性能 铋基半导体卤氧化铋(BiOX,X=Cl,Br,I)由于具有良好的光学、电学性能和优异的光催化活性而备受关注。然而,光生电子-空穴对的快速复合限制了它们的光催化效率与实际应用。 为了进一步提高BiOX的光催化活性,大量的策略被采用,如:微结构调控、掺杂、晶面工程化、碳材料修饰和形成异质结等。本文采用碳量子点(CQDs)修饰BiOBr和Bi2WO6复合BiOCl分别成功制备了 CQDs/BiOBr和Bi2WO6/BiOCl复合光催化剂,显著地提 高了催化剂的光催化活性,论文还探讨它们光催化活性增强的可能机制。 具体的研究内容如下:1.通过用PVP修饰的水热法合成了碳量子点修饰的BiOBr微球。在罗丹明B和环丙沙星水溶液的光催化降解中,结果显示CQDs/BiOBr 的可见光催化活性明显优于纯BiOBr和P25。 活性增强的原因归结为催化剂的比表面积增大、光生电子-空穴的传导效率和光捕获性能的提高。本文还探讨了光催化增强机理和考察了催化剂的稳定性。 结果显示,CQDs/BiOBr光催化剂具有良好的光催化活性和稳定性。本工作可以给高催化效率和稳定性的CQDs基光催化材料的开发提供有价值的信息。 2.采用一步水热法成功合成了Bi2WO6/BiOCl异质结光催化剂,并考察了罗丹明B和四环素光催化降解性能。结果表明,对比于纯的Bi2WO6和 BiOCl,Bi2WO6/BiOCl光催化剂显著提高了对罗丹明B 和四环素的光催化降解活性。 活性增强的原因归结为复合催化剂BET表面积、电子空穴的传导效率的提高。

纳米催化剂的介绍及其制备

纳米催化剂的介绍及其制备 --工业催化剂小论文 姓名:蒋应战 班级:化工091 学号:0806044111(32号) 指导老师:宫惠峰老师 学校:邢台职业技术学院

目录 1.纳米材料作催化剂的特点 (2) 2.纳米催化剂制备……………………………….. ..2-3 3.微乳液法制备纳米催化剂………………………...4-9 4.纳米粒子催化剂的应用 (10) 5.纳米催化剂的展望................................. . (11) 参考文献................................. . .. (11)

纳米催化剂的介绍及其制备 纳米材料是指颗粒尺寸为纳米量级(1nm~l00nm)的超细粒子材料。纳米技术是当前材料学中研究的前沿和热点,纳米粒子具有比表面积大、表面晶格缺陷多,表面能高的特性,在一些反应中表现出优良的催化性能。纳米催化剂的制备已成为催化剂制备学科中的一个热点。纳米催化剂相对常规尺寸的催化剂具有更高的表面原子比和比表面积,其催化活性和选择性大大高于传统催化剂,可作为新型材料应用于化工中。 1. 纳米材料作催化剂的特点 工业生产中的催化剂应具有表面积大,稳定性好,活性高等优点。而纳米材料恰恰满足这些特点。采用纳米材料制备的催化剂比常规催化剂的催化效率选择性更高。例如,利用纳米材料可用作加氢催化剂,粒经小于0.3nm的镍和铜—锌合金的纳米材料的催化效率比常规镍催化剂高10倍。又如纳米稀土氧化物/氧化锌可作为二氧化碳选择性氧化乙烷制乙烯的催化剂,用这种纳米催化剂,乙烷和二氧化碳反应可高选择性地转化为乙烯,乙烷转化率可达60%,乙烯选择性可达90%。 1.1 纳米催化剂的表面与界面效应 纳米催化剂颗粒尺寸小,位于表面的原子占的体积分数很大,产生了相当大的表面能,随着纳米粒子尺寸的减少,比表面积急剧加大,表面原子数及所占的比例迅速增大。例如,某纳米粒子粒径为5nm时,比表面积为180/g,表面原子所占比例为50%,粒径为2nm时,比表面积为450/g,表面原子所占比例为80%,由于表面原子数增多,比表面积大,原子配位数不足,存在不饱和键,导致纳米颗粒表面存在许多缺陷,使其具有很高的活性,容易吸附其它原子而发生化学反应。这种表面原子的活性不但引起纳米粒子表面输送和构型的变化,同时也引起表面电子自旋、构象、电子能谱的变化。 1.2纳米催化剂的量子尺寸效应 当粒子的尺寸降到(1~10)nm时,电子能级由准连续变为离散能级,半导体纳米粒子存在不连续的最高被占据分子轨道和最低未被占据的分子轨道能级,能隙变宽,此现象即量子尺寸效应,量子尺寸效应会导致能带蓝移,并有十分明显的禁带变宽现象,使得电子/空穴具有更强的氧化电位,从而提高了纳米半导体催化剂的光催化效率。 1..3纳米粒子宏观量子隧道效应 量子隧道效应是从量子力学观点出发,解释粒子能穿越比总能量高的势垒的一种微观现象。近年来发现,微颗粒的磁化强度和量子相干器的磁通量等一些宏观量也具有隧道效应,即宏观量子隧道效应。研究纳米这一特性,对发展微电子学器件将具有重要的理论和实践意义。 2. 纳米催化剂制备 目前制备纳米材料微粒的方法有很多,但无论采用何种方法,制备的纳米粒子必须符合下列要求:a.表面光洁;b.粒子形状、粒径及粒度分布可控;c.粒子不易团聚、易于收集;d.包产出率高。

【CN110052285A】一种铋基复合光催化剂及其合成方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910299204.2 (22)申请日 2019.04.15 (71)申请人 安徽理工大学 地址 232000 安徽省淮南市泰丰大街168号 (72)发明人 张雷 朱元鑫 吕超南 张鑫  (74)专利代理机构 合肥市长远专利代理事务所 (普通合伙) 34119 代理人 段晓微 (51)Int.Cl. B01J 27/25(2006.01) C02F 1/30(2006.01) C02F 101/34(2006.01) C02F 101/36(2006.01) C02F 101/38(2006.01) (54)发明名称 一种铋基复合光催化剂及其合成方法 (57)摘要 本发明公开了一种铋基复合光催化剂及其 合成方法,所述合成方法包括以下步骤:将硝酸 铋和十六烷基三甲基溴化铵与多元醇溶剂混合, 搅拌均匀后形成反应液,其中,反应液中,硝酸铋 与十六烷基三甲基溴化铵的摩尔比为1:3-1:6; 将反应液在90-130℃下进行反应4-24h,反应结 束后经冷却、固液分离、洗涤、干燥得到所述铋基 复合光催化剂。本发明提出的铋基复合光催化剂 的合成方法过程简单,条件温和,产率高,得到的 复合光催化剂光催化活性高, 稳定性好。权利要求书1页 说明书5页 附图7页CN 110052285 A 2019.07.26 C N 110052285 A

权 利 要 求 书1/1页CN 110052285 A 1.一种铋基复合光催化剂的合成方法,其特征在于,包括以下步骤:将硝酸铋和十六烷基三甲基溴化铵与多元醇溶剂混合,搅拌均匀后形成反应液,其中,反应液中,硝酸铋与十六烷基三甲基溴化铵的摩尔比为1:3-1:6;将反应液在90-130℃下进行反应4-24h,反应结束后经冷却、固液分离、洗涤、干燥得到所述铋基复合光催化剂。 2.根据权利要求1所述铋基复合光催化剂的合成方法,其特征在于,所述多元醇溶剂为乙二醇、丙三醇、一缩二乙二醇、聚乙二醇400中的一种或者多种的混合物。 3.根据权利要求1或2所述铋基复合光催化剂的合成方法,其特征在于,所述多元醇溶剂为乙二醇。 4.根据权利要求1-3中任一项所述铋基复合光催化剂的合成方法,其特征在于,在反应液中,硝酸铋的浓度为0.02-0.08mol/L。 5.根据权利要求1-4中任一项所述铋基复合光催化剂的合成方法,其特征在于,反应液中,硝酸铋与十六烷基三甲基溴化铵的摩尔比为1:3。 6.根据权利要求1-5中任一项所述铋基复合光催化剂的合成方法,其特征在于,包括以下步骤:将0.0012mol的硝酸铋和0.0036-0.0072mol的十六烷基三甲基溴化铵加入15-60ml 乙二醇中,搅拌均匀后形成反应液;将反应液置于圆底烧瓶中,在90-130℃下反应4-24h,反应结束后自然冷却,离心分离后将所得固体洗涤、干燥得到所述铋基复合光催化剂。 7.根据权利要求1-6中任一项所述铋基复合光催化剂的合成方法,其特征在于,包括以下步骤:将0.0012mol的硝酸铋和0.0036-0.0072mol的十六烷基三甲基溴化铵加入45ml乙二醇中,搅拌均匀后形成反应液;将反应液置于圆底烧瓶中,在110℃下反应7h,反应结束后自然冷却,离心分离后将所得固体洗涤、干燥得到所述铋基复合光催化剂。 8.一种铋基复合光催化剂,其特征在于,采用如权利要求1-7中任一项所述铋基复合光催化剂的合成方法制备而成。 2

沉淀法

沉淀法、浸渍法制备催化剂 沉淀法(Deposition-precipitation,简称DP法)是将金属氧化物载体加入 到HAuCl4的水溶液中形成悬浮液,在充分搅拌的条件下,控制一定的温度和pH值,使之沉积在载体表面上,随后进行过滤、洗涤、干燥、焙烧等处理,得到负载金催化剂。对于制备高活性的纳米金催化剂,该方法是广泛使用并且比较有效的方法之一。该方法的关键是控制合适的pH值,从而可以得到活性组分均匀分散、粒度较小、活性较高的纳米金催化剂。通常认为,控制反应液浓度10mol/L,最佳pH值范围7~8,反应温度323~363K,氯金酸的水溶液就会选择性的以氢氧化金的形式沉积在载体表面,而尽可能少的在液相中沉淀。通常,采用DP法制备纳米金催化剂最合适的载体是等电点在6~9之间的氧化物,如TiO2 (IEP=6),CeO2 (IEP=6.75),ZrO2 (IEP=6.7),Fe2O3 (IEP=6.5~6.9)和Al2O3 (IEP=8~9)等。该法的优点在于活性组分全部保留在载体表面,提高了活性组分的利用率;得到的催化剂金颗粒尺寸分布比较均匀。该法对于制备低负载量金催化剂非常有效,但是要求载体有较高的比表面积(至少50m/g),而且不适用于等电点小于5的金属氧化物和活性炭载体。步骤制成催化剂。这也是常用于制备高含量非贵金属、金属氧化物、金属盐催化剂的一种方法。具体可以分为共沉淀、均匀沉淀和分步沉淀等方法。借助于沉淀反应。用沉淀剂将可溶性的催化剂组分转变为难溶化合物。经过分离、洗涤、干燥和焙烧成型或还原等。 2.1、共沉淀方法 将催化剂所需的两个或两个以上的组分同时沉淀的一个方法,可以一次同时获得几个活性组分且分布较为均匀。为了避免各个组分的分步沉淀,各金属盐的浓度、沉淀剂的浓度、介质的pH值以及其他条件必须同时满足各个组分一起沉淀的要求。 2.2、均匀沉淀法 它不是把沉淀剂直接加到待沉淀的溶液中,也不是加沉淀剂后立即产生沉淀反应,而是首先使沉淀的溶液与沉淀剂母体充分混合,造成一个均匀的体系,然后调节温度、逐渐提高PH值或在体系中逐渐生成沉淀剂等方式,创造形成沉淀的条件,使沉淀作用缓慢地进行。 例如,在铝盐溶液中加入尿素,混合均匀后加热升温至90℃~100℃,溶液中由于尿素的分解而放出OH—离子,于是氢氧化铝就均匀地沉淀出来。 沉淀条件对催化剂性能的影响 1.沉淀剂的影响 2.溶液浓度的影响 3.沉淀温度的影响 4.沉淀PH值的影响 5.加料方式的影响 6.搅拌温度的影响 7.沉淀的陈化影响 8.沉淀洗涤的影响 9.干燥、焙烧、活化的影响

水热法制备石墨烯TiO2催化剂

水热法制备石墨烯/TiO2催化剂 2.1 水热法制备石墨烯/TiO2 2.1.1实验准备 主要试剂:天然石墨粉(含碳量90.0%~99.9%,国药集团化学试剂有限公司),双氧水(浓度≥30%,分析纯A.R,上海桃浦化工厂),过硫酸钾(分析纯A.R,天津市科密欧化学试剂有限公司),五氧化二磷(分析纯A.R,天津市光复科技有限公司),浓硫酸(质量分数95%~98%,分析纯A.R,白银化学试剂厂),浓盐酸(质量分数36%~38%,分析纯A.R,成都市科龙化工试剂厂),三氯化钛(质量分数15%,分析纯A.R,国药集团化学试剂有限公司),去离子水,无水乙醇(分析纯A.R,烟台市双双化工有限公司),高锰酸钾(分析纯A.R,成都市科龙化工试剂厂)。 仪器:85-2型恒温磁力搅拌器(上海司乐仪有限公司),电子天平(上海越平科学仪器有限公司),电热鼓风干燥箱(上海一恒科学仪器有限公司),KH-100B 型超声波清洗器(昆山禾创超声仪器有限公司),离心机(安徽中科中佳科学仪器有限公司)。 2.1.2实验过程 (1)氧化石墨烯的制备 氧化石墨烯是通过修正后的Hummer法合成。具体步骤如下: 浓硫酸50ml加入300ml烧杯,升温加热到90度;过硫酸钾10g,五氧化二磷10g加入烧杯中,磁力搅拌至完全溶解;溶液冷却到80度,向其中加入12g 石墨粉;混合物在80度保持4.5h后用2L水稀释,过滤纸过滤,清洗去除酸;过滤并真空干燥;将400ml浓硫酸加入到2L的烧杯,冷却到0度(冰水浴),再将预氧化的石墨加入。称取高锰酸钾60g缓慢加入使温度不高于10度;加热到35度,2h后将920ml的水加入,搅拌2h,向其中加入2.8L水,再加50ml 左右的过氧化氢,溶液变成亮黄色;放置一天,移出上清液,剩余的溶液用5升10%的HCl和5L去离子水离心清洗;清洗后的氧化石墨烯溶液透析两个星期,去除其他金属离子;将透析好的溶液冷冻干燥备用。 (2)石墨烯/TiO2复合催化剂的制备 称取7mg 氧化石墨烯加入20ml去离子水中,超声分散20min得到溶液A;将2mL的15wt% TiCl3加入到20ml不同浓度(本实验中分别选取0.5mol/L、

铋基材料的发展综述汇总

环境友好型铋基材料的制备及其性能研究 1 概述 能源危机和环境问题的日益加重已成为影响全人类可持续发展的重要问题。近年来,可再生与不可再生资源日益枯竭,使得人们不得不高度重视排放物、废弃物的妥善处理和循环再生,减少不可再生资源的消耗和环境的污染,同时寻求绿色环保、可持续发展的新能源就逐渐受到世界各国的广泛关注。 光催化实际上是光催化剂在某些波长光子能量的驱动下,体内的空穴电子对分离,后又引发了一系列氧化还原反应的过程。光催化氧化技术由于其具有环境友好,能有效去除环境中尤其是废水中的污染物,且能耗少,无二次污染等优点已被慢慢重视起来。 自1972 年Fujishima等[1]在《Nature》报道了TiO2在紫外光照射下可以催化水的分解后,半导体光催化剂一直是广大学者们研究的热点。光催化被认为是解决能源问题的关键有效方法之一,近年来受到广大研究者的不断探究。 为了充分利用太阳光,人们对光催化材料进行了众多研究:一方面是对TiO2半导体进行改性,另一方面是寻求新型的非TiO2半导体光催化材料。含铋光催化材料属于非TiO2半导体光催化材料中的一种,电子结构独特,价带由Bi-6s和O-2p轨道杂化而成。这种独特的结构使其在可见光范围内有较陡峭的吸收边,阴阳离子间的反键作用更有利于空穴的形成与流动,使得光催化反应更容易进行。 本文将对近年来含铋光催化剂的研究进展进行综述。 2 铋类光催化剂的制备 2.1铋氧化物光催化剂

铋氧化物是很重要的功能材料,在光电转化、医药制药材料等方面有着很广泛的运用。其中,纯相还具有折射率高、能量带隙低和电导率高的特点。 Bi 2O 3有单斜、四方、体立方和面立方四种结构,只有单斜结构室温下可稳定存在,其他结构在室温下均会转变成单斜结构。 化学沉积法、声化学方法、溶胶-凝胶法、微波加热法等都是制备纳米Bi 2O 3的方法。产品的形态也可根据方法不同而不同,如颗粒状、薄膜状、纤维状等。Wang 等[2] 利用沉积法合成钙铋酸盐(CaBi 6O 10/Bi 2O 3)复合光催化剂,在可见光下(波长大于420nm )降解亚甲基蓝,催化效果显著。反应过程见下图,CaBi 6O 10的导带边比Bi 2O 3更接近阴极,当CaBi 6O 10受到太阳光照射后,产生的光生电子迅速转移到Bi 2O 3的导带边上,Bi 2O 3的光生空穴转移到CaBi 6O 10的价带上,有效实现了光生电子-空穴对的分离,减少了复合率,光催化活性大大提高。 2.2 卤氧化铋光催化剂 卤氧化铋BiO X (X=Cl 、Br 、I )因其较高的稳定性和光催化活性受到研究者的关注,发现光催化活性明显高于P25,并且随着卤素原子序数的增加,卤氧化物BiO X (X=Cl 、Br 、I )的光催化活性逐渐增大,表2.1列出了卤氧化铋光催化剂几种典型制备方法[3-6]。 表2.1 卤氧化铋光催化剂的制备方法与形貌 BiO X (X=Cl 、Br 、I )的晶型为PbFCl 型,是一种高度各向异性的层状结构半导体,属于四方晶系[7]。以BiOCl 为例,Bi 3+周围的O 2?和Cl ?成反四方柱配位,Cl ?层为正方配位,其下一层为正方O 2?层,Cl ?层和O 2?层交错 BiOX 制备方法 形貌和尺寸 BiOCl 水解法 珠光皮状,粒度5~10μm BiOBr 水热合成法 球状颗粒,2~10μm 软模板法 200~300nm 的纳米颗粒 BiOI 快速放热固态复 分解法 粒径约为70nm 复合而成的微米层

催化剂制备方法大全

催 化 剂 的 制 备 方 法 与 成 型 技 术 总 结 应用化学系1202班 王宏颖 2012080201

催化剂的制备方法与成型技术 一、固体催化剂的组成: 固体催化剂主要有活性组分、助剂和载体三部分组成: 1.活性组分:主催化剂,是催化剂中产生活性的部分,没有它催化剂就不能产生催化作用。 2.助剂:本身没有活性或活性很低,少量助剂加到催化剂中,与活性组分产生作用,从而显著改善催化剂的活性和选择性等。 3.载体:载体主要对催化活性组分起机械承载作用,并增加有效催化反应表面、提供适宜的孔结构;提高催化剂的热稳定性和抗毒能力;减少催化剂用量,降低成本。 目前,国内外研究较多的催化剂载体有:SiO2,Al2O3、玻璃纤维网(布)、空心陶瓷球、有机玻璃、光导纤维、天然粘土、泡沫塑料、树脂、活性炭,Y、β、ZSM-5分子筛,SBA-15、MCM-41、LaP04等系列载体。 二、催化剂传统制备方法 1、浸渍法 (1)过量浸渍法 (2)等量浸渍法(多次浸渍以防止竞争吸附) 2、沉淀法(制氧化物或复合氧化物)(注意加料顺序:正加法或倒加法,沉淀剂 加到盐溶液为正,反之为倒加) (1)单组分沉淀法 (2)多组分共沉淀法 (3)均匀沉淀法(沉淀剂:尿素) (4)超均匀沉淀法 (NH4HCO3和NH4OH组成的缓冲溶液pH=9) (5)浸渍沉淀法 浸渍沉淀法是在浸渍法的基础上辅以均匀沉淀法发展起来的,即在浸渍液中预先配入沉淀剂母体,待浸渍单元操作完成后,加热升温使待沉淀组分沉积在载体表面上。此法,可以用来制备比浸渍法分布更加均匀的金属或金属氧化物负载型催化剂。 (6)导晶沉淀法 本法是借晶化导向剂(晶种)引导非晶型沉淀转化为晶型沉淀的快速有效方法。举例:以廉价易得的水玻璃为原料的高硅酸钠型分子筛,包括丝光沸石、Y型、X型分子筛。 3、共混合法 混合法是将一定比例的各组分配成浆料后成型干燥,再经活化处理即可。如合成气制甲醇用的催化剂就是将氧化锌和氧化铬放在一起混合均匀(适当加入铬

光催化剂

光催化剂研究进展 李少坤 (化学院11级材料化学3班,20110480) 【摘要】:本文主要介绍了近几年工业上光催化剂的最新研究进展,主要涉及到纳米TiO2光催化剂的改性进展,光催化制氢用纳米结构光催化剂的研究进展以及新型光催化剂ZrW2O7(OH)2(H2O)2的光解水产氢产氧性能等。 【关键词】:纳米TiO2;光催化剂;水分解;改性 自从1972年Fujishima A 等发现TiO 2 单晶电极可以实现光分解水以来,多相光催化反应一直是催化领域的一个极其重要的研究课题,光催化分解水制氢,光 催化还原CO 2 制备有机物、光降解有机污染物等重要光催化过程向人们展示了诱人的应用前景。30多年来,光催化研究无论是在理论上还是在应用研究方面都取得了重要的进展。 一、纳米TiO2光催化剂的改性进展 1.纳米TiO 2 光催化的反应机理 纳米TiO 2 多相光催化过程是指TiO2材料吸收外界辐射光能,激发产生导带电子(e-)和价带空穴(h+),进而与吸附在催化剂表面上的物质发生一系列化学反应 的过程。如锐钛矿型TiO 2 的禁带宽度为3.2 eV,它具有较强的光活性,当它吸收了波长小于或等于387.5 nm的光子后,价带中的电子就会被激发到导带,形成带负电的高活性电子e-,同时在价带上产生带正电的空穴h+,在电场的作用下,电子与 空穴发生分离,迁移到粒子表面的不同位置。分布在表面的h+可以将吸附在TiO 2 表面的OH-和H 2 O分子氧化成·OH自由基。·OH自由基的氧化能力是水体系中存在的氧化剂中最强的,可破坏有机物中C—C键、C—H键、C—N键、C—O键、O—H键和N—H键,因而能氧化大多数的有机污染物及部分无机污染物,将其最终降解为 CO 2、H 2 O等无害物质[1, 2]。 2、纳米TiO2光催化剂的改性

含铋化合物光催化剂研究

论坛/ Forum 文|刘超君 徐悦华 李 鑫 光 催化反应利用半导体光催化剂在光照下产生光生电子和空穴,进一步引发一系列的氧化 和还原反应,具有节能和环境友好等优点,在降解有机污染物、选择性氧化反应等方面有很广阔的应用前景。TiO 2以其无毒、化学稳定性好、氧化能力强、无二次污染等优点成为理想的光催化剂,但其禁带宽度3.2eV,仅能吸收波长小于387nm 的紫外光,在太阳光谱中仅占4%~6%,太阳光利用率低。为了有效地利用太阳光,寻求廉价、环境友好并具有高活性的可见光光催化剂将是光催化技术进一步走向实用化的必然趋势。目前在这方面的研究工作主要集中于两个方向,一是对TiO 2进行掺杂改性以改善其光催化活性;二是开发非二氧化钛光催化剂,使其能被可见光激发,且具有高的光催化活性,提高太阳光的利用率。因此,含铋化合物光催化剂正是在这样的背景下被研究开发,并取得了一系列重大成果。 氧化铋催化剂 Bi 2O 3具有很多的优良特性,比如:有很大的禁带宽度变化(2~3.96eV),这是由于Bi 2O 3有5种不同的晶体结构,它的电导率变化范围可以超过5个数量级;有很高的折射率和介电常数,除此以外还有好的光导性。Bi 2O 3粉体同TiO 2类似,当受到能量大于其带隙的光照射时, 会产生导带电子和价带空穴。 近年来,有报道用多元醇介质法和氨水沉淀法制备的Bi 2O 3纳米粒子的光催化活性均高于商品Bi 2O 3纳米粒子。 Zhang 等 [1] 在超声波的作用下合成粒径为40~100nm 的Bi 2O 3光催化剂,在可见光照射下(λ>400nm),100min 后甲基橙的降解率为86%,比微米级的Bi 2O 3和TiO 2(P25)两者的催化性能都要好。He 等采用溶胶-凝胶法合成Bi 2O 3,不同的温度下得到正方晶型和单斜晶型的Bi 2O 3,实验结果表明在550℃的煅烧温度下得到的四方晶型氧化铋的催化性能最好,3.5h 后罗丹明B 完全分解。 因单独使用Bi 2O 3的催化效果不理想,所以研究者很少单独利用Bi 2O 3作为催化剂,一般都是Bi 2O 3与其它化合物复合。如用溶胶-凝胶法制备的Bi 2O 3-TiO 2复合薄膜,在太阳光下,Bi 2O 3-TiO 2复合薄膜光催化降解活性艳红X-3B 的活性高于纯TiO 2。 卤化氧铋光催化剂 卤化氧铋(BiOX,X=F、Cl、Br、I)是一种新型的半导体材料,其具有独特的电子结构、良好的光性能和催化性能,因此卤化氧铋成为光催化剂研究的一个新方向。 黄富强课题组用水解方法合成了BiOCl 粉末,BiOCl 是第一种被用为光催化剂的卤氧化物,循环3次降解甲基橙溶液的实验结果表明,每次其光催化性能都优于P25。该课题组又用 软化学方法合成了xBiOB-(1-x)BiOI、xBiOP(1-x)-BiOCl 等化合物,实验证明它们都具有很高的催化活性,都能很好地响应可见光。Meng 等[2]用水热法合成片状的BiOBr 光催化剂,pH 为4.5时,在可见光照射下,120min 甲基橙的降解率达到96%,这表明BiOBr 具有很高的光催化性能。而且循环5次降解,BiOBr 仍稳定且活性不变。 铋的含氧酸盐光催化剂 1. 钛酸铋光催化剂 周静涛课题组在研究Bi 掺杂改性TiO 2时偶然发现,钛酸铋具有较高的光催化性能,是一种很有前途的新型光催化剂。研究表明,几种不同晶相的钛酸铋Bi 4Ti 3O 12、 Bi 2Ti 2O 7、 Bi 12TiO 20的纳米粉体光催化剂有着较高的光催化性能。与TiO 2相比,Bi 4Ti 3O 12、Bi 12TiO 20有着更宽的光响应范围和更高的光催化效率。在它们的结构中均存在TiO 6八面体或TiO 4四面体, 含铋化合物光催化剂研究 寻求廉价、环境友好并具有高活性的可见光光催化剂是光催化技术走向实用化的关键。本文阐述了氧化铋、卤化氧铋、铋的含氧酸盐及其改性等含铋可见光光催 化剂的制备与光催化性能的研究情况。 世界有色金属 2009年第9期 64

光催化剂

光催化剂论文纳米催化剂 液相法制备纳米TiO2光催化剂的研究进展论文 [摘要]论述不同的液相法制各纳米二氧化钛的过程,并且分析不同制备方法的优缺点、以及许多影响样品的粒径大小和分散性、结晶度和纯度等性质的因素(原料、水解方法、沉淀剂、元素掺杂、反应温度和压力、焙烧温度等);并且论述不同的方法的操作条件和复杂程度以及工业化应用前景。 [关键词]纳米二氧化钛粉体液相法制备 一、前言 纳米TiO2一般有三种晶体结构类型:板钛型、锐钛型和金红石型:纳米TiO2具有表面活性大,光催化、吸收性能好,分散性好,悬浮液稳定等优点,因此在环境保护、光电材料等方面具有广泛的应用前景。 液相法制各纳米TiO2具有其他的制备方法所不具有的优点:合成温度低、所得样品的粒径较小、连续性强、易操作和设备简单、成本低、反应时间短等;目前实验室和工业上广泛应用的液相法制备纳米TiO2粉体。纳米TiO2颗粒的粒度分布和均匀性、形貌、几何形态、分散性对于其光催化活性影响较大,分析不同的制各纳米粉体的液相法优缺点以及提出新的可能的研究领域是很有必要的。 二、液相法制备纳米二氧化钛 液相法是目前研究最广泛的制各纳米TiO2的方法:它又一般分为沉淀法、水热法、W/O微乳液法、溶胶一凝胶法等几种方法:它一般以TiCl4、Ti(SO4)2、钛的醇盐等为原料水解生成TiO2水合物,经干燥、高温焙烧后得到纳米二氧化钛粉体。同时纳米TiO2粉体在制备的过程中也存在一些缺点:反应器局部存在浓度和温度不均匀、粉体颗粒易发生团聚现象、难分离、成本高,以及某些表面湿润性、光性和反应特性较差。 (一)沉淀法制备纳米二氧化钛粉体 沉淀法是制各纳米TiO2的一种简便方法,一般以无机钛盐和有机钛盐为原料,向反应体系中加入沉淀剂(如(NH4)2CO3、NH4OH)后,于一定温度下使溶液发生水解,形成不溶性的氢氧化钛,将生成的TiO(OH)2沉淀物过滤、洗涤、干燥,然后,经高温煅烧即可得到所需要的TiO2粉体。 沉淀法制备纳米二氧化钛粉体的优点是工艺简单、可实现反应物在分子和原子水平上的均匀混合、易设定反应条件、可以控制所得产品的纯度和相组成、所得粉体性能稳定等等。改变纳米粉体制各过程中的某些环节对于缩短制各时间、提高样品的纯度和粒径的均匀性、实现样品颗粒的改性等方面具有重要的意义:张凌云等采用反萃沉淀法制各了纳米TiO2的前驱体:反萃沉淀法制各的纳米TiO2的最佳煅烧温度为350℃,此时样品已结晶完好,并且随着氨水浓度的降低,催化剂的晶粒粒径和颗粒粒度减小;同时乙醇助剂浓度越高有利于生成更小的催化剂颗粒。张美红等以尿素为均相沉淀剂和使用TIC14、SnC14作为原料,采用微波加热、均相沉淀法合成出了一系列sn掺杂纳米TiO2介孔材料:样品的颗粒为平均粒径20hm的球体:XRD分析表明反应前驱体为非晶态,400℃以上转变为锐钛矿结构。均匀沉淀法制各纳米TiO2的过程中沉淀剂离子是通过化学反应均匀缓慢生成的,沉淀的生成速度均匀,并且可以获得的粒度均匀、致密、性能优良的纳米粒子。沉淀法在制各粉体的实际操纵过程中也会遇到一些问题:直接沉淀法制备粉体的过程中容易引入杂质:共沉淀法控制各个工序的工艺参数的过程比较复杂;均匀沉淀法作为工业化前景最好的一种制备方法,但是必须通过液固分离才能得到沉淀物,需反复洗涤来除去杂离子,同时也存在工艺流程长、废液多、产物损失较大的现象[6],也需要考虑怎样减少反应时间来提高效率。 (二)水热法制备纳米粉体 水热法是制备纳米材料的常用方法,是用前驱体在高温、高压环境下,采用水作反应介质,使得通常难溶的物质溶解的并且得到晶态纳米颗粒。水热法制备纳米粉体的一般过程为:首先制各钛的氢氧化物凝胶,然后将凝胶转入高压釜内,升高到适宜的温度,以形成高温、高压的环境,使难溶或不容的物质溶解并且重结晶,恒温一段时间,卸压后,经洗涤、干燥即可得到纳米级的TiO2粉体。水热法可直接得到分散且结晶良好的粉体,不需作高温灼热处理,避免了微粒硬团聚的形成;水解条件下粉体的制备有水热结晶法、水热合成法、水热分解法,近年来发展了微波水热合成法。

催化剂的制备性能评价及使用技术多相催化剂常用哪些

第二章催化剂的制备、性能评价及使用技术 1.多相催化剂常用哪些方法来制备?为什么制备固体催化剂都需要经过热处理,其目的是什么? 多相催化剂常用的制备方法有:(1)天然资源的加工,结构不同,含量不同的硅铝酸盐采用不同的方法和条件加工后能适用于某一特定的催化反应;(2)浸渍法,将载体置于含活性组分的溶液中浸泡,达到平衡后将剩余液体除去,再经干燥、煅烧、活化等步骤即得催化剂。此法要求浸渍溶液中所含活性组分溶解度大、结构稳定、受热后分解为稳定的化合物;(3)滚涂法和喷涂法,滚涂法是将活性组分先放在一个可摇动的容器中,再将载体布于其上,经过一段时间的滚动,活性组分逐渐粘附其上,为了提高滚涂效果,有时也添加一定的粘合剂。喷涂法与滚涂法类似,但活性组分不同载体混在一起,而是用喷枪附于载体上;(4)沉淀法,在含金属盐类的水溶液中,加进沉淀剂,以便生成水合氧化物、碳酸盐的结晶或凝胶。将生成的沉淀物分离、洗涤、干燥后,即得催化剂;(5)共混合法:将活性组分与载体机械混合后,碾压至一定程度,再经挤条成型,最后缎烧活化;(6)沥滤法(骨架催化剂的制备方法),将活性组分金属和非活性金属在高温下做成合金,经过粉碎,再用苛性钠来溶解非活性金属即得;(7)离子交换法: 是在载体上金属离子交换而负载的方法, 合成沸石分子筛一般也是先做成Na型,需经离子交换后方显活性;(8) 均相络合催化别的固载化: 将均相催化剂的活性组分移植于载体上, 活性组分多为过渡金属配合物,载体包括无机载体和有机高分子载体。优点是活性组分的分散性好,而且可根据需要改变金属离子的配体。制备各固体催化剂,无论是浸渍法,沉淀法还是共混合法,有的钝态催化剂经过缎烧就可以转变为活泼态,有的还需要进一步活化。 所以,催化剂在制备好以后,往往还要活化;除了干燥外,还都需要较高温度的热处理-煅烧的目的:1)通过热分解除掉易挥发的组分而保留一定的化学组成,使催化剂具有稳定的催化性能。2)借助固态反应使催化剂得到一定的晶型、晶粒大小、孔隙结构和比表面。3)提高催化剂的机械强度。 2.沉淀法制备催化剂的原理是什么?金属盐和沉淀剂的选择原则是什么? 沉淀法制备催化剂的原理是沉淀反应,金属盐一般首选硝酸盐来提供无机催化剂材料所需的阳离子;金、铂、钯等贵金属不溶于硝酸,但可溶于王水。 沉淀剂的选择原则是:(1)尽可能使用易分解并含易挥发成分的沉淀剂;(2)沉淀便于过滤和洗涤;(3)沉淀剂自身的溶解度要足够大;(4)沉淀物的溶解度应很小;(5)沉淀剂必须无毒,不造成环境污染。

葡萄糖水热法制备纳米碳球

葡萄糖水热法制备纳米碳球 广州华南农业大学理学院09材化(2)班林勋,200930750211 引言 炭微球材料由于其具有高密度、高强度、高比表面积以及在锂离子电池方面的应用前景,已经引起许多研究人员的兴趣。碳微球的形状和大小显著影响着其电学性能。 葡萄糖在水热条件下会发生许多化学反应,实验结果表明:炭微球的增长似乎符合LaMer 模型(见图1),当0.5 mol·L-1 的葡萄糖溶液在低于140 C 或反应时间小于1h 时不会形成炭球,在此条件下反应后溶液呈橙色或红色并且粘度增强,表明有芳香族化合物和低聚糖形成,这是反应的聚合步骤。当反应条件为0.5 mol·L-1、160℃、3h 时开始出现成核现象,这个碳化步骤可能是由于低聚糖之间分子间脱水而引起的交联反应,或者在先前步骤中有其它大分子的形成,然后形成的核在溶液中各向同性生长所致。从现有的研究结果表明,制备过程中的反应条件如葡萄糖的起始浓度、反应温度和反应时间直接影响炭球的粒径分布,其中反应时间对颗粒粒径影响很大,随着反应时间的延长,这些纳米炭球粒径从150nm(最初核的大小,实验所得到的最小的尺寸)生长到1500 nm。 由葡萄糖水热法制备纳米炭球具有绿色环保无污染的特点,实验过程中没有引入任何引发剂以及有毒溶剂,制备得到的炭球粒径均匀,大小可控,同时表面含有大量活性官能团,具有优良的亲水性和表面反应活性,可应用于生物化学、生物诊断以及药物传输领域,也可以作为制备核壳结构材料或者多孔材料的模板等等,具有令人欣喜的应用前景。 图1 水热法形成炭球的结构变化示意图 1 实验部分 1.1 实验仪器与试剂

葡萄糖,去离子水,95%乙醇,50mL 高压反应釜,鼓风干燥箱,电子天平,抽滤装置(有机滤膜),滤纸,玻璃棒 1.2 纳米碳球的制备 纳米碳球的制备参见文献[1]。用电子天平称取 6g 葡萄糖放入50mL 反应釜内衬(图2)中,用移液管准确移取35mL 去离子水(葡萄糖溶液的浓度为0.952 mol·L -1 )加入到上述反应釜中,用玻璃棒搅拌溶液,使葡萄糖全部溶解,然后装入反应釜中,用扳手拧紧反应釜,放入烘箱中。设定反应条件为:温度 180?C ,反应时间 4~12 h 。待反应结束后,降至室温,取出反应釜,将釜内黑褐色溶液抽滤(用40 um 有机滤膜),并及时清洗反应釜内衬,抽滤时用去离子水和 95% 乙醇清洗至滤液为无色。将样品用滤纸包好放入干燥箱中70℃干燥 4h 。收集样品,称重并计算产率。 图2 反应釜实物与结构示意图 1.3 纳米碳球的表征 1.3.1 X-射线衍射分析 测定所制备碳球的晶型以判断该碳球所属的类型(如普通碳还是石墨型碳) 1.3.2 红外光谱分析 测定碳球的活性官能团,表征不同制备条件下得到的碳球活性官能团变化 2 结果与讨论 2.1 实验数据 实验最终制备得到的纳米碳球的质量为 0.1255 g ,根据下列化学方程式 C 6H 12O 6 6C+6H 2O 可得产率23%.5100%4 .21255.0100%理论产率实际产率ω=?=?=

水热法制备纳米二氧化钛

水热法制备纳米二氧化钛 一、实验目的 1、了解水热法制备纳米二氧化钛的原理、方法和操作 2、掌握根据实验原理选择实验装置的一般方法。 二、实验原理 TiO2,在自然界中存在三种晶体结构。金红石型、锐钛矿型和板钛矿型,其中金红石型和锐钛矿型。TiO2 矿型光催化活性最佳 二氧化钛的用途极为广泛,目前已经用于化工、环保、医药卫生、电子工业等领域。纳米二氧化钛具有良好的紫外线吸收能力,且具有很好的光催化作用,因而可以用做织物的抗紫外和抗菌的整理剂。 纳米二氧化钛制备原理如下: Ti(OC4H9)4+2H2O → TiO2+4C4H9OH 可分为两个独立的反应,即:Ti(OC4H9)4+xH2O →Ti(OC4H9)4-xOHx+xC4H9OH Ti(OC4H9)4-xOHx+Ti(OC4H9)4 → (OC4H9)4-xTiOxTi(OC4H9)4-x+x C4H9OH ,当x=4时水解完全,反应为可逆反应,因此在反应过程中保持足够量的水保证醇盐水解完全。 三、主要仪器与药品 1、仪器 60ml250ml100ml量 筒电子分 析天平, pH试纸。

2、试剂 钛酸丁酯(化学纯); 二乙醇胺、十二胺(化学纯); 氨水(稀释至30)、无水乙醇(分析纯),去离子水。 四、操作步骤 在盛有0.5g表面活性剂十二胺的烧杯中加入20ml二次蒸馏水, 在磁力搅拌下使之充分溶解(可以适当加热), 然后加入氨水调节pH值至10。迅速加入钛酸丁酯溶液(Ti(OC4H9)4使Ti4+的浓度为0.25mol/L,M=340.36), 搅拌30min,生成胶状沉淀。将杯中沉淀物放入水热反应器(内衬聚四氟乙烯的不锈钢高压锅)内, 置于烘箱中,120℃加热4h,取出水热反应器自然冷却至室温。取出生成物,分别用二次蒸馏水和无水乙醇洗涤, 洗至中性。在80℃下干燥,得到二氧化钛纳米晶体,称重,计算产率。 方法二: 称取5g钛酸四丁酯(CH3CH2O)4Ti)加入到装有1.0ml二乙醇胺的干燥的小烧杯中(100ml或50ml),加20ml 四丁酯溶解后,继续搅拌1h,形成无色透明溶胶。将溶胶转移到水热反应器(内衬聚四氟乙烯的不锈钢高压锅)内,置于烘箱中,180℃加热4h,取出水热反应器自然冷却至室温。取出生成物,分别用二次蒸馏水和无水乙醇洗涤,洗至中性。在80℃下干燥,得到二氧化钛纳米晶体称重,计算产率。

相关文档