文档库 最新最全的文档下载
当前位置:文档库 › 阻变随机存储器(RRAM)综述(自己整理)

阻变随机存储器(RRAM)综述(自己整理)

目录

引言 (1)

1 RRAM技术回顾 (1)

2 RRAM工作机制及原理探究 (4)

2.1 RRAM基本结构 (4)

2.2 RRAM器件参数 (6)

2.3 RRAM的阻变行为分类 (7)

2.4 阻变机制分类 (9)

2.4.1电化学金属化记忆效应 (11)

2.4.2价态变化记忆效应 (15)

2.4.3热化学记忆效应 (19)

2.4.4静电/电子记忆效应 (23)

2.4.5相变存储记忆效应 (24)

2.4.6磁阻记忆效应 (26)

2.4.7铁电隧穿效应 (28)

2.5 RRAM与忆阻器 (30)

3 RRAM研究现状与前景展望 (33)

参考文献 (36)

阻变随机存储器(RRAM)

引言:

阻变随机存储器(RRAM)是一种基于阻值变化来记录存储数据信息的非易失性存储器(NVM)器件。近年来,NVM器件由于其高密度、高速度和低功耗的特点,在存储器的发展当中占据着越来越重要的地位。硅基flash存储器作为传统的NVM器件,已被广泛投入到可移动存储器的应用当中。但是,工作寿命、读写速度的不足,写操作中的高电压及尺寸无法继续缩小等瓶颈已经从多方面限制了flash存储器的进一步发展。作为替代,多种新兴器件作为下一代NVM器件得到了业界广泛的关注[1、2],这其中包括铁电随机存储器(FeRAM)[3]、磁性随机存储器(MRAM)[4]、相变随机存储器(PRAM)[5]等。然而,FeRAM及MRAM 在尺寸进一步缩小方面都存在着困难。在这样的情况下,RRAM器件因其具有相当可观的微缩化前景,在近些年已引起了广泛的研发热潮。本文将着眼于RRAM 的发展历史、工作原理、研究现状及应用前景入手,对RRAM进行广泛而概括性地介绍。

1 RRAM技术回顾

虽然RRAM于近几年成为存储器技术研究的热点,但事实上对阻变现象的研究工作在很久之前便已开展起来。1962年,T. W. Hickmott通过研究Al/SiO/Au、Al/Al2O3/Au、Ta/Ta2O5/Au、Zr/ZrO2/Au以及Ti/TiO2/Au等结构的电流电压特性曲线,首次展示了这种基于金属-介质层-金属(MIM)三明治结构在偏压变化时发生的阻

变现象[6]。如图1所示,Hickmott着重研究了基于Al2O3介质层的阻变现象,通

过将阻变现象与空间电荷限制电流理论、介质层击穿理论、氧空洞迁移理论等进行结合,尝试解释了金属氧化物介质层阻变现象的机理。虽然在这篇文献报道中,最大的开关电流比只有30:1,但本次报道开创了对阻变机理研究的先河,为之后的RRAM技术研发奠定了基础。

图1. T. W. Hickmott报道的基于Al/Al2O3/Au结构的电流-电压曲线,其中氧化层的厚度为300?,阻变发生在5V左右,开关电流比约10:1[6]

Hickmott对阻变现象的首次报道立刻引发了广泛的兴趣,之后在十九世纪60年代到80年代涌现了大量的研究工作,对阻变的机理展开了广泛的研究。除了最广泛报道的金属氧化物,基于金属硫化物[7]、无定形硅[8]、导电聚合物[9]、异质结构[10]等新材料作为介质层的结构也表现出了阻变性质。这些研究工作也很快被总结归纳[11、12]。早期的研究工作主要是对于阻变的本质和机理进行探究,

以及对阻变机理应用于RRAM技术的展望。但此时半导体产业对新型NVM器件的研究尚未引起广泛重视,并且在对阻变现象的解释过程中遇到了很多困难,没有办法达成广泛的共识,故而在80年代末期,对阻变的研究一度趋于平淡。90年代末期,摩尔定律的发展规律开始受到物理瓶颈的限制,传统硅器件的微缩化日益趋近于极限,新结构与新材料成为研究者日益关注的热点。与此同时,研究者开始发现阻变器件极为优异的微缩化潜力及其作为NVM器件具有可观的应用前景[13],因而引发了对基于阻变原理的RRAM器件的广泛研究。

如图2所示,近十年来,由于RRAM技术的巨大潜力,业界对非易失性RRAM 的研究工作呈逐年递增趋势[14]。日益趋于深入而繁多的研究报告,一方面体现着RRAM日益引起人们的重视,而另一方面,则体现着其机理至今仍存在的不确定性,仍需要大量的研究讨论。尽管自从对阻变现象的初次报道以来,阻变器件结构一直沿用着简单的金属-介质层-金属(MIM)结构,且对于所有材料的介质层,其电流-电压特性所表现的阻变现象几乎一致,但是对于不同的介质层材料,其阻变现象的解释却各有分歧。总体而言,基于导电细丝和基于界面态的两种阻

图2. 由Web of Science统计的每年关于阻变(resistive switching)词条发表的文章数[14]。

变解释理论已被大多数研究者接受,尤以导电细丝理论最被广泛接纳。由于基于细丝导电的器件将不依赖于器件的面积,于是材料的多样性配以细丝导电理论,愈加拓宽了RRAM技术的应用前景。截至今日,研究较为成熟的RRAM介质层材料主要包括:二元过渡金属氧化物(TMO),如NiO[15,16]、TiO2[17]、ZnO[18];固态电解质,如Ag2S[19]、GeSe[20];钙钛矿结构化合物[21,22];氮化物[23];非晶硅[24];以及有机介质材料[25]。RRAM的研究应用还有广阔的空间值得人们去研究探寻,还有许多困难与挑战亟待人们去积极面对。近几年,国内外研究者陆续开始对RRAM研究的现状进行综述总结[26-29],为进一步的探究工作打下了基础。由于RRAM研究仍处于共识与争论并存、理论尚未统一的研究阶段,本文旨在总结目前部分较为成熟的工作以及较为公认的理论,并且对RRAM的应用前景作出合理的评价。

2 RRAM工作机制及原理探究

2.1 RRAM基本结构

存储器的排布一般是以矩形阵列形式的,矩阵的行和列分别称为字线和位线,而由外围连线控制着字线和位线,从而可以对每个单元进行读和写操作。对于RRAM而言,其存储器矩阵可以设计为无源矩阵和有源矩阵两种。无源矩阵单元相对而言设计比较简单,如图3(a)所示,字线与位线在矩阵的每一个节点通过一个阻变元件以及一个非线性元件相连。非线性元件的作用是使阻变元件得到合适的分压,从而避免阻变元件处于低阻态时,存储单元读写信息的丢失。非线性元件一般选择二极管或者其他有确定非线性度的元件。然而,采用无源矩阵会使相邻单元间不可避免地存在干扰。为了避免不同单元之间信号串扰的影响,

RRAM

图3. RRAM存储器矩阵的单元电路图。图(a)为无源电路,图(b)为有源电路。

矩阵也可以采用有源单元设计,如图3(b)所示。由晶体管来控制阻变元件的读写与擦除信号可以良好隔离相邻单元的干扰,也与CMOS工艺更加兼容。但这样的单元设计无疑会使存储器电路更加复杂,而晶体管也需要占据额外的器件面积。

RRAM中的阻变元件一般采用简单的类似电容的金属-介质层-金属(MIM)结构,由两层金属电极包夹着一层介质材料构成。金属电极材料的选择可以是传统的金属单质,如Au、Pt、Cu、Al等,而介质层材料主要包括二元过渡金属氧化物、钙钛矿型化合物等,这在后文将会更加详细地讨论。由于对RRAM器件的研究主要集中在对电极材料以及介质层材料的研究方面,故而往往采用如图4所示的简单结构,采用传统的硅、氧化硅或者玻璃等衬底,通过依次叠合的底电极、介质层、顶电极完成器件的制备,然后于顶电极与底电极之间加入可编程电压信号来测试阻变器件的性能,这样的简单结构被大多数研究者所采纳。而简单的制备过

程和器件结构也是RRAM被认为具有良好的应用前景的原因之一。

图4. 应用于RRAM器件研究的MIM结构。通过在顶电极和底电极之间施加电压信号来研究RRAM器件的工作情况。

2.2 RRAM器件参数

基于以往对DRAM、SRAM、Flash等存储器器件较为成熟的研究经验,RRAM 器件的参数可以如下归纳总结并加以展望[28]:

1.写(Write)操作参数V wr,t wr

V wr为写入数据所需电压。与现代CMOS电路相兼容,RRAM的V wr的大小一般在几百mV至几V之间,这相对于传统需要很高写入电压的Flash器件来说有较大优势。t wr为写入数据时间所需时间。传统器件中,DRAM、SRAM和Flash的t wr分别为100ns、10ns和10us数量级。为了与传统器件相比显示出优势,RRAM 的t wr期望可以达到100ns数量级甚至更小。

2.读(Read)操作参数V rd,I rd,t rd

V rd为读取数据所需电压。为了避免读操作对阻变元件产生影响,RRAM的V rd值需要明显小于V wr。而由于器件原理限制,V rd亦不能低于V wr的1/10。I rd为读操作所需电流。为了使读取信号能够准确快速地被外围电路的小信号放大器所识别,RRAM的I rd不能低于1uA。t rd为读操作所需时间。RRAM的t rd需要与t wr 同等数量级甚至更小。

3.开关电阻比值R OFF/R ON

R OFF和R ON分别为器件处于关态与开态时的元件阻值。尽管在MRAM中,大小仅为1.2~1.3的R OFF/R ON亦可以被应用,对RRAM的R OFF/R ON一般要求至少达到10以上,以减小外围放大器的负担,简化放大电路。

4.器件寿命

器件寿命指器件能够正常维持工作状态的周期数目。一般而言,NVM器件的工作寿命希望达到1012周期。因此,RRAM的器件寿命期望可以达到同等甚至更长久。

5.保持时间t ret

t ret指存储器件长久保存数据信息的时间。对RRAM而言,数据一般需要保持10年甚至更久,而这过程中也需要考虑温度以及持续的读操作电压信号的影响。

以上介绍了RRAM的几个主要性能参数。各个参数之间看似相互独立,但事实上各项之间却有着相互制约的关系,比如V rd与V wr的比值事实上被t ret和t rd所限制[28]。故而寻求高密度、低功耗的理想RRAM器件,需要从各个性能参数的角度共同考虑,寻求最佳的平衡点。

2.3 RRAM的阻变行为分类

RRAM的阻变行为主要体现在其电流-电压曲线上。根据大量研究经验表明,基于不同材料的RRAM器件,其器件特性是有很多细节上的差别的,不过粗略地按照电流-电压曲线来区分,RRAM的阻变行为可以分为单极型(Unipolar)和双极型(Bipolar)两大类。这主要是由阻变行为出现时施加的电压极性及大小所区分的。而具体引起阻变行为的本质原因并没有非常确凿的定论,我们会在随后的章节中对其进行介绍、分析和讨论。

典型的单极型RRAM阻变行为的电流-电压曲线如图5(a)所示,阻变行为并不依赖于施加电压的极性,而表现出单极型阻变行为的RRAM器件也往往是上下电极对称的MIM结构。一般地,由于单极型循环阻变IV曲线不依赖于极性,故而我们只关注正向扫描周期。如图5(a)所示,假设初始RRAM器件位于开态,则当电压达到复位电压时,复位过程发生,器件迅速变为高阻态,即关态。此时继续正向扫描或者从零电压重新开始扫描,器件都会继续维持在关态,直到器件达到了置位电压,器件会由关态变为开态重新导通。以上循环过程可以不停重复直至RRAM器件失效。在单极型阻变行为的置位过程中,电流大小必须由限制电流(compliance current)值cc加以控制,否则将会导致器件发生不可恢复的击穿。而复位过程发生的电压低于置位电压,而复位过程时的临界电流要高于限制电流值cc。

图5. 典型的(a)单极型和(b)双极型阻变行为示意图。cc是为了防止器件击穿而设置的限制电流(compliance current)。单极型阻变行为并不依赖于施加电压极性,而双极型阻变行为的置位和复位过程会分别在施加不同极性的电压时产生。

典型的双极型RRAM阻变行为的电流-电压曲线如图5(b)所示,阻变行为的置位与复位过程分别在不同极性的偏压下发生。根据以往研究的资料,虽然这样的阻变行为一般由非对称的MIM结构所表现,但事实上,很多对称结构的MIM结构器件亦表现出了双极型的特性[30,31],对这种现象的一个较为合理的解释为:一般RRAM器件需要一个初始化的“形成”过程来建立后续重复性的阻变行为,而这个“形成”过程所加的电压极性也一定程度上决定了后续的阻变行为。如图5(b)所示,为了防止器件在置位过程中突然产生的高额电流击穿器件,双极型RRAM的置位过程同样需要一个限制电流cc的保护。

除了典型的单极型和双极型,如果某RRAM器件可以在这两种类型的阻变行为之间进行转化,这样的阻变行为被称为无极型(Nonpolar)[32,33]。事实上,对RRAM进行阻变行为的分类只是基于电流-电压曲线的表现,而由于电极材料和介质材料的不同,即使是同种类型的阻变行为仍可能反映了几种截然不同的阻变机制,因此,仅从阻变行为并无法对RRAM进行更加深入的了解,在后文中即将

介绍RRAM更加本质性的阻变机制。

2.4阻变机制分类

由图6所示,根据R. Waser的归纳总结[28],有相当多的物理机制可以造成非易失性的阻变现象,包括纳米机械记忆效应、分子阻变效应、静电/电子记忆效应、电化学金属化记忆效应、价变记忆效应、热化学记忆效应、相变记忆效应、词组记忆效应以及铁电隧穿效应等。尽管这些情形都是电致激发的阻变现象,其原理彼此相比却有相当大的不同。当然,阻变机制的分类并不是固定的,根据分类判据的不同,RRAM的阻变机制也可分为细丝导电理论与界面阻变理论;由电极决定的阻变与由介质层决定的阻变;单极型与双极型阻变;基于氧化还原反应与其他物理化学反应的阻变等。本节内容将采用图6中所示的详细分类,按照理论的流行程度介绍除纳米机械记忆效应和分子阻变效应之外的其他七种常见阻变机制,力求较为全面地概括现阶段解释阻变机制的各种工作,给读者以全面的认识。

图6. R. Waser提出的阻变机制分类方法,列出九种较为常见的阻变记忆效应,且对九种机制进行了简单地划分[28]。其中静电/电子记忆效应和电化学金属化记忆效应是由电极材料所决定的,价变记忆效应、热化学记忆效应、相变记忆效应是由介质层材料所决定的。基于静电/电子记忆效应、电化学金属化记忆效应和价变记忆效应的RRAM阻变行为一般表现为双极型,基于热化学记忆效应和相变记忆效应的RRAM一般表现为单极型。另外,电化学金属化记忆效应、价变记忆效应和热化学记忆效应是基于氧化还原反应的。[28]

2.4.1 电化学金属化记忆效应

电化学金属化(Electrochemical Metallization)效应可简写为ECM效应,也被称作导通桥联(Conductive Bridging)效应或者可编程金属化(Programmable Metallization Cell)效应。作为RRAM器件,单个ECM单元也是由简单的MIM结构构成,其中一个金属电极为电化学活性金属材料,如Ag、Cu或者Ni,另外一

个金属电极为惰性金属电极,如Pt、Ir、W或者Au,中间的介质层为固体电解质

材料,可以允许金属离子在介质层中迁移。

基于C. Schindler et.al在[34]中的研究报道,图7为一个典型的ECM单元工作原理示意图。在初始情况下,ECM单元处于如图7(D)所示的关断状态。当活性阳

图7. 由C. Schindler报道的Ag-GeSe-Pt结构阻变机制示意图。该结构表现出明显的基于ECM效应的阻变行为。A)置位过程B)开态C)复位过程D)关态的原理示意图分别如图所示。

可以看到ECM单元的开启与关断是基于Ag+离子在固态电解质层中的沉积与溶解,导致导电细丝的形成与破坏[34]

极,如本例中的Ag电极,施加正电压,会有Ag+离子开始沿着电场方向在电解质内向惰性阴极方向迁移。当Ag+离子接触到惰性阴极时得到电子被还原,于是沉积在惰性电极表面。一旦开始有Ag颗粒沉积于阴极表面,电解质内的电场分布发生变化,Ag沉积处的高电场会导致更多Ag+离子迁移至此并被还原,于是逐渐形成一条由阴极通向阳极的细丝,如图7(A)所示,在导电细丝完整形成的瞬间为置位过程,此时ECM单元的阻态迅速由高阻变为低阻。最终,电流由细丝流过,

ECM单元达到开启状态,如图7(B)所示。而此时当Ag电极加反向电压,会导致导通细丝的溶解破坏,即复位过程,如图7(C)所示,此时ECM单元的阻态迅速由低阻变为高阻。最终器件达到关断状态,如图7(D)所示。由于附图仅是示意图,在实际情况中导通细丝在关断状态下并不一定完全消失,更多的研究工作认为ECM单元在复位过程之后仍有残留的导电细丝存在,这也解释了为何ECM单元初始化所需的“形成”电压要高于之后工作中置位所需的电压。如图8(a)所示,对于ECM单元而言,第一周期形成导电细丝需要更高的电压,相比而言后续周期的置位电压较小且保持稳定[35]。而图8(b)所示,导电细丝的形成电压是依赖于介质层厚度的,由其与介质层厚度的线性相关关系可以推测,导电细丝的形成是一个由介质层内电场所决定的过程:金属离子在足够的电场下由阳极迁移至阴极,并沉积形成导电细丝。而后续周期的置位电压并不依赖于介质层厚度,说明细丝在复位过程的溶解程度基本为一个固定值,这不随着样品的介质层厚度而改变,故而再次置位恢复导电细丝时所需的电场亦为固定值。而这样的研究现象不禁引出一个问题:当介质层足够薄时,后续的置位电压是否就会开始随样品厚度而改变?这样ECM单元的工作电压也会随介质减薄而减小,从而降低了功耗。这个假设还需要进一步的工作去证实。

图8. a)细丝形成周期(初始化周期)的细丝形成电压与后续周期的置位电压比较。b)细丝形成电压与只为电压的薄膜厚度依赖情况。其中V SET为置位电压,V SET,form为初始化周期的细丝形成电压。[35]

由以上的分析可见,在开启状态时ECM单元的导通是通过迁移的阳极离子沉积形成导电细丝,进而通过细丝完成导电过程,这样的导电细丝理论也被实验所证实。如图9所示,ECM单元的导电细丝早在上世纪七十年代就已经在许多实验工作中所观测[36],这也成为RRAM器件细丝理论最早的判据。事实上,由于RRAM导通状态所基于的导电细丝直径仅为几nm甚至更小,根据实验观测,一般而言,基于细丝导电的RRAM器件,其开态电流大小是不依赖于电极面积的,这也使得RRAM的微缩化具有相当可观的前景,成为新一代NVM器件竞争中的黑马。

为了提高基于ECM效应的RRAM器件性能,一种可行的方法是通过向固体电解质层内溶入可迁移的金属离子来实现,最广泛采用的便是Cu离子和Ag离子。具体的溶解过程可通过金属离子在固体电解质内的光致或者热致扩散来实现,而固体电解质一般为硫化物、硒化物、碲化物此类氧族化合物。这应用了金属离子在此类化合物中的高迁移率以及由介质层非晶结构造成的低激活能。不过,当化合物内溶解掺入的金属离子浓度较高,就会产生额外的化合反应。比如,在GeSe

阵列中掺入2at%以下的Ag,几乎所有的Ag会以离子形态在GeSe中迁移,但在

图9. a)GeSe阵列中掺Ag的示意图。在GeSe阵列构成的固体电解质中掺入较多原子数百分比的Ag金属将会形成Ag2Se导电颗粒。b)基于Ag2Se颗粒和Ag粒子所构成的导电细丝示意图。[37]

加入更多如40at%的Ag时,Ag离子会与Se反应生成20at%的5~8nm直径的Ag2Se 粒子[37]。事实上,如图9所示,虽然Ag2Se粒子为导电晶体,且仍分散分布在GeSe阵列中,于是此时该系统仍然维持ECM的特征,只是现在由Ag离子在Ag2Se 粒子之间搭建导通细丝而非在整个介质层内形成导电细丝,于是可以减小初始细丝形成以及后续置位过程需要的电压和细丝建立时间。而在这种情况下,在Ag 电极表面增加一层GeO2扩散阻挡层可以有效地抑制细丝未建立时的漏电大小。因此,在固体电解质中掺入合适浓度的易迁移金属离子可以有效地提高ECM单元的工作性能。

需要注意的是,并不是所有以Ag、Cu等为电极的RRAM器件都是基于ECM 工作原理。事实上,过去一度认为Cu/Cu-tetracyanoquinodimethane(TCNQ)/Al结构的阻变现象是源于Cu离子迁移造成的ECM效应,直到后续工作证明该结构的阻变特性是由于Al电极表面的薄层氧化层所致[38]。因此,对于以Ag、Cu金属

为电极的RRAM器件的需要格外注意,具体的阻变机制需要更多实验去验证。

2.4.2 价态变化记忆效应

价态变化记忆效应(Valence Change Memory Effect)可以简写成VCM效应。与ECM效应不同,VCM效应并不需要一个活性电极与一个惰性电极的搭配,而是首要依赖于所选的介质层材料。大部分具有VCM效应的RRAM单元采用金属氧化物作为介质层,如钙钛矿型化合物,而一般介质层内存在着大量的氧的空位,这使得氧离子在偏压的作用下会产生迁移运动,习惯上通过氧空位的迁移来描述。而与此同时介质层内的金属阳离子一般相当稳定,这就使得氧空位在阴极附近的积累使得该区域的金属阳离子易于发生价态的改变,进而导致电阻特性的变化。因而把这种效应成为VCM效应。接下来我们以基于钛酸锶(SrTiO3)的VCM 单元为例介绍这种阻变机制。

SrTiO3一般可分相互连结的TiO2和SrO子晶格,而TiO2与SrTiO3的电学特性最为相关。在转移金属氧化物中,晶格失配是一个普遍现象。没有固定的化学计量比也导致此类介质层中存在着混合的金属价态。TiO2和SrTiO3中的Ti离子就很容易被氧空位或者其他金属阳离子等浅施主还原成Ti粒子,于是TiO2和SrTiO3都表现出n型导电特性,也就是电子导电特性。就SrTiO3而言,其内部阳离子在1400K温度以下很难发生电致迁移运动,而氧离子的迁移则容易的多。因而SrTiO3内的电致迁移运动一般以氧空位来描述,而每个氧空位可以看做是可以提供两个价电子的施主。SrTiO3这类钙钛矿型的化合物并没有确定的化学计量比,其内部的氧空位浓度可以通过在T exch阈值温度之上、在一定气压的O2气氛当中退火来调节。具体方程式如下所示[28]:

(1)

其中和分别指的氧离子和氧空位。而T exch指的是这样的阈值温度:在该温度之上,氧空位浓度可以随外界气氛中的氧分压而改变;而在此温度之下,氧空位浓度基本为恒定值。

当SrTiO3内氧空位的浓度很低时,该结构可以看作是化学计量配比合适的晶体,内部包含极为少量的点缺陷。而一旦氧空位浓度增加,各个氧空位的排布倾向于相互连接积累组成线缺陷[39],如图10所示。这样的线缺陷便形成了短程的通路,为整个阻变通路的形成创造了条件,氧离子沿着缺陷形成的路径得以快速地迁移。

接下来,借助SrTiO3为例详细讲解基于VCM效应的阻变过程。作为RRAM器件,VCM单元也是基于MIM结构。由于介质层内缺陷的存在,为氧空位的迁移创造了条件。当在VCM单元的电极之间加以偏压,便会引起氧空位在介质层内的迁移。如图11(a)所示,当偏压比较低时,氧离子的迁移比较弱,并不能显著引起介质层内氧空位的浓度改变,此时氧空位的扩散和迁移仍可维持一个准平衡的状态。不过,当偏压上升,如图11(b)所示,介质层内氧空位的浓度分布则会

图10. SrTiO3晶格的HRTEM图像和示意图。着重突出了晶格中的线缺陷。[39]

发生相当显著的变化,大量氧空位在偏压驱使下聚集于阴极附近,而阳极附近则呈现氧空位耗尽的情形[40]。但此时,阳极氧离子的移动并没有结束,据报道表明[41],此时阳极的氧离子会失电子并产生O2气泡,与此同时,阴极的金属氧离子则被还原,价态发生改变,从而改变阴极附近介质层的导电性。一般地,阴极附近的区域由高阻态趋向于低阻态,这相当于阴极的范围扩散到介质层的阴极附

近区域,这一块区域被称作“实际阴极区”。于是随着偏压升高,氧空位向阴极

迁移,实际阴极区的范围逐渐扩大,最终接近阳极,使VCM单元整体变为低阻

图12.a)VCM单元阻变原理示意图。b)基于VCM效应的电流-电压曲线。该曲线基于Pt/STO-Nb/STO结构。[42]

图13. 基于Nb掺杂的SrTiO3介质层的VCM单元其开启电流和关断电流对面积的依赖。[28]

态,如图12(a)所示。基于VCM效应的电流-电压曲线如图12(b)所示。由于VCM 行为主要由氧空位在偏压下的迁移导致,因此该效应表现出明显的双极型特性,置位和复位过程分别发生于反向和正向偏压的情况下。

实验四 静态随机存储器实验

实验四静态随机存储器实验 一.实验目的 掌握静态随机存储器RAM工作特性及数据的读写方法。 二.实验设备 TDN—CM++计算机组成原理教学实验系统一台,排线若干。 三.实验内容 1.实验原理 实验所用的半导体静态存储器电路原理如图所示,实验中的静态存储器一片6116 (2K﹡8)构成,其数据线接至数据总线,地址线由地址锁存器(74LS273)给出。 地址灯AD0—AD7与地址线相连,显示地址线内容。数据开关经一三态门(74LS245)连至数据总线,分时给出地址和数据。 因地址寄存器为8位,接入6116的地址A7—A0,而高三位A8—A10接地,所以 其实际容量为256字节。6116有三个控制线:CE(片选线)OE(读线)WE(写 线)。当片选有效(CE=0)时,OE=0时进行读操作,WE=0时进行写操作。本实 验中将OE常接地,在此情况下,当CE=0 WE=0时进行读操作,其写时间与T3 脉冲宽度一致。 实验时将T3脉冲接至实验板上时序电路模块的TS3相应插孔中,其脉冲宽度可调,其它电平控制信号由“SWITCH UNIT”单元的二进制开关模拟,其中SW—B为 低电平有效,LDAR为高电平有效。 2.实验步骤 (1)在时序电路模块中有两个二进制开关“STOP”和“STEP”,将“STOP” 开关置为“RUN”状态,将“STEP”开关置为“STEP”状态。 (2)按“图4 存储器实验连线图”连接实验线路,仔细查向无误后接通电源。 由于存储器模块内部的连线已经接好,因此只需完成电路的形成、控制信 号模拟开关、时钟脉冲信号T3与存储模块的外部连接。 (3)给存储器的00 01 02 03 04地址单元中分别写入数据11 12 13 14 15,具体操作步骤如下:(以向00号单元写入11为例)

静态随机存储器实验

实 验 项 目 静态随机存储器实验实验时间2015-11-14 实 验 目 的 掌握静态随机存储器RAM 工作特性及数据的读写方法。 实 验 设 备 PC机一台,TD-CMA实验系统一套 实验原理 实验所用的静态存储器由一片6116(2K×8bit)构成(位于MEM 单元),如图2-1-1 SRAM 6116引脚图所示。6116 有三个控制线:CS(片选线)、OE(读线)、WE(写线),其功能如表2-1-1 所示,当片选有效(CS=0)时,OE=0 时进行读操作,WE=0 时进行写操作,本实验将CS 常接地。 图2-1-1 SRAM 6116引脚图 由于存储器(MEM)最终是要挂接到CPU上,所以其还需要一个读写控制逻辑,使得CPU 能控制MEM的读写,实验中的读写控制逻辑如图2-1-2所示,由于T3的参与,可以保证MEM的写脉宽与T3一致,T3由时序单元的TS3给出(时序单元的介绍见附录2)。IOM用来选择是对I/O 还是对MEM进行读写操作,RD=1时为读,WR=1时为写。

实 验 原 理 图2-1-2 读写控制逻辑 实验原理图如图2-1-3所示,存储器数据线接至数据总线,数据总线上接有8个LED灯显示D7…D0的内容。地址线接至地址总线,地址总线上接有8个LED灯显示A7…A0的内容,地址由地址锁存器(74LS273,位于PC&AR单元)给出。数据开关(位于IN单元)经一个三态门(74LS245)连至数据总线,分时给出地址和数据。地址寄存器为8位,接入6116的地址A7…A0,6116的高三位地址A10…A8接地,所以其实际容量为256字节。 图2-1-3 存储器实验原理图 实验箱中所有单元的时序都连接至时序与操作台单元,CLR都连接至CON单元的CLR按钮。 实验时T3由时序单元给出,其余信号由CON单元的二进制开关模拟给出,其中IOM应为低(即MEM操作),RD、WR高有效,MR和MW低有效,LDAR高有效。

阻变存储器概述

阻变存储器概述 阻变存储器(Resistive Random Access Memory, RRAM)是一种基于非电荷存储机制的新型存储技术。RRAM的上下电极之间是能够发生电阻转变的阻变层材料。在外加偏压的作用下,器件的电阻会在高低阻态之间发生转换从而实现“0”和“1”的存储。在二进制存储中,一般将低阻态代表“1”,高阻态代表“0”。器件从高阻变化为低阻的过程称为Set,从低阻变为高阻的过程称为Reset。Set 过程中,一般需要限制通过器件的最大电流,以避免器件完全损坏。虽然阻变存储器的研究自2000年后才兴起,但薄膜的阻变现象早在1967年就由英国Standard Telecommunication Laboratories的J. G. Simmons等人发现[1]。1971年,美国加州大学伯克利分校的华裔教授Leon Chua就在理论上预言了除了电阻、电容、电感之外的第四种基本器件——忆阻器(Memristor)的存在[2]。在2008年的Nature杂志上,惠普公司报道已成功制备出忆阻器原型器件并提出了相应的物理模型。他们模拟了(a)有动态负微分现象的电阻器件、(b)无动态负微分现象的电阻器件、(c)存在非线性离子运动的电阻器件三种不同器件的工作机制:(a)中当所加正电压到达最大值时,器件还未完全发生电阻转变,在正电压逐渐减小的过程中器件继续发生电阻转变(电阻减小),因此观察到了明显的负微分电阻现象;在(b)中所加正向电压到达最大值之前,器件已经完全发生电阻转变,之后在未加负偏压之前器件电阻一直保持不变,因此没有负微分电阻现象;在(c)器件中,离子运动是非线性的,其到达上下电极两种边界条件是突变的,因此其一般只有两种状态(OFF和ON态)。阻变存储器RRAM可以归为忆阻器(c)类器件中的一员。 2.1 阻变存储器的材料体系 2.1.1 固态电解质材料 固态电解质体系中包含两个要素:一是固态电解质层,二是可在固态电解质层中发生氧化还原反应的金属。基于这类体系的RRAM器件被称为PMC (programmable metallization cell)或CBRAM(Conductive Bridging RAM)[5],其特征是两个电极一边是惰性金属如Pt,另一边是易于发生氧化还原反应的活泼金属如Cu和Ag。两电极中间是固态电解质层,金属离子可以在固态电解质中移动。当Cu或Ag等活泼金属作为阳极时,这些易氧化的金属原子失去电子成为金

静态随机存储器实验实验报告

**大学 实验(实训)报告 实验名称运算器、存储器所属课程计算机组成与结构所在系计算机科学与技术班级 学号 姓名 指导老师 实验日期

**大学实验(实训)报告 实验静态随机存储器实验 2.1. 实验目的 掌握静态随机存储器RAM工作特性及数据的读写方法。 2.2. 实验内容 给存储器的00H、01H、02H、03H、04H 地址单元中分别写入数据 11H、12H、13H、14H、15H,再依次读出数据。 2.3. 实验设备 TDN-CM++计算机组成原理教学实验系统一台,排线若干。 2.4. 实验原理 实验所用的静态存储器由一片6116(2K×8bit)构成(位于MEM单元),如图2-1所示。6116有三个控制线:CS(片选线)、OE(读线)、WE(写线),其功能如下图,当片选有效(CS=0)时,OE=0时进行读操作,WE=0时进行写操作,本实验将CS常接地。 图2-1 SRAM 6116 引脚图 由于存储器最终挂接到CPU上,所以还需要一个读写控制逻辑,使得CPU能控制MEM 的读写,实验中的读写控制逻辑如图2-2所示,由于T3的参与,可以保证MEM的写脉宽与T3一致,T3由时序单元的TS3给出。IOM用来选择是对 I/O还是对MEM进行读写操作,RD=1时为读,WR=1时为写。

实验原理如图2-3所示,存储器数据线接至数据总线,数据总线上接有8个LED 灯显示D7…D0 的内容。地址线接至地址总线,地址总线上接有8个LED 灯显示A7…A0的内容,地址由地址锁存器给出。数据开关经一个三态门连至数据总线,分时给出地址和数据。地址寄存器为8位,接入6116的地址A7…A0,6116的高三位地址A10…A8接地,所以其实际容量为256字节。 实验箱中所有单元的时序都连接至时序与操作台单元,CLR 都连接至CON 单元的CLR 按钮。实验时T3由时序单元给出,其余信号由CON 单元的二进制开关模拟给出,其中IOM 应为低(即MEM 操作),RD 、WR 高有效,MR 和MW 低有效,LDAR 高有效。 2.5.实验步骤 MR MW D7 —————D0D7 —————D0 A7 —————A0 OE CS T3 IOM RD WE 读写译码 RD WR 74LS27374LS245IN 单元 AD7 | || AD0 LDAR IOR IN_B A10 —A8————— ————— ——————————----—————6116

阻变存储器可靠性的研究

龙源期刊网 https://www.wendangku.net/doc/d515269242.html, 阻变存储器可靠性的研究 作者:沈冬云 来源:《科学与财富》2017年第21期 摘要:随着我国现代化建设的不断发展,各种存储器设备在工业生产与民用消费中得到了广泛应用。我国在集成电路制造领域不断进步的过程中,以浮栅结构为基础的FLASH存储器在物理尺寸上已经达到物理极限,如何对储存器进行进一步的开发已经成为相关机械十分重要的研究课题之一。 中阻变存储器以结合简单、高速度、低功耗等方面的特点得到了广泛的关注。然而,中阻变存储器在技术与应用上还没有十分成熟,在可靠性方面也没十分充分的保证。本文对阻变存储器在可靠性方面的问题进行了详细的阐述与分析,并根据具体的问题提出了相关的解决方法,希望可以起到参考作用。 关键词:问题分析;可靠性国;阻变存储器 阻变存储器属于三明治结构器件的一种,内部结构中的电极材料对于器件的性能也有一定的影响。对于阻变存储器的研究目前主要集中在电极材料与功能层材料上。 一、器件的工艺制备 本次实验研究所采用的器件结构为1T1R,通常情况下,晶体管能够起到限流与形状两方面的作用,阻变存储器结构为Pt/Ti/HfOx/Cu结构,其中Cu是阻变存储器的下电极,在CMP 工艺处理下,该部件能够起到电极的作用。功能层FfOx,离子束或ALD蒸发生长。Ti/Pt为上电极,粘附层为Ti层,能够使功能层与Pt的粘附性得到提,上电极Ti/Pt与功能层HfOx,厚度分别为70nm与6nm。具体工艺流程如下。 (一)硅片清洗 以硅片为衬底,阻态越高越好,去掉硅片表面所附着的有机物,具体操作方法为通过双氧水与浓硫酸对硅片进行冲洗,再对氢氟酸溶液进行稀释处理,将自然氧化层去除掉,再用气氛将水分吹干。 (二)SiO2层的生长 SiO2能够对硅片起到决绝作用,在对硅片清洗干净后将其置于热氧化炉,经过4-5小时的干法氧化后,SiO2会得到生长,可以达到200nm的厚度; (三)ZrO2或HfO2原子层或原子层沉积或离子束溅射

阻变随机存储器(RRAM)综述(自己整理)

目录 引言 (1) 1 RRAM技术回顾 (1) 2 RRAM工作机制及原理探究 (4) 2.1 RRAM基本结构 (4) 2.2 RRAM器件参数 (6) 2.3 RRAM的阻变行为分类 (7) 2.4 阻变机制分类 (9) 2.4.1电化学金属化记忆效应 (11) 2.4.2价态变化记忆效应 (15) 2.4.3热化学记忆效应 (19) 2.4.4静电/电子记忆效应 (23) 2.4.5相变存储记忆效应 (24) 2.4.6磁阻记忆效应 (26) 2.4.7铁电隧穿效应 (28) 2.5 RRAM与忆阻器 (30) 3 RRAM研究现状与前景展望 (33) 参考文献 (36)

阻变随机存储器(RRAM) 引言: 阻变随机存储器(RRAM)是一种基于阻值变化来记录存储数据信息的非易失性存储器(NVM)器件。近年来,NVM器件由于其高密度、高速度和低功耗的特点,在存储器的发展当中占据着越来越重要的地位。硅基flash存储器作为传统的NVM器件,已被广泛投入到可移动存储器的应用当中。但是,工作寿命、读写速度的不足,写操作中的高电压及尺寸无法继续缩小等瓶颈已经从多方面限制了flash存储器的进一步发展。作为替代,多种新兴器件作为下一代NVM器件得到了业界广泛的关注[1、2],这其中包括铁电随机存储器(FeRAM)[3]、磁性随机存储器(MRAM)[4]、相变随机存储器(PRAM)[5]等。然而,FeRAM及MRAM 在尺寸进一步缩小方面都存在着困难。在这样的情况下,RRAM器件因其具有相当可观的微缩化前景,在近些年已引起了广泛的研发热潮。本文将着眼于RRAM 的发展历史、工作原理、研究现状及应用前景入手,对RRAM进行广泛而概括性地介绍。 1 RRAM技术回顾 虽然RRAM于近几年成为存储器技术研究的热点,但事实上对阻变现象的研究工作在很久之前便已开展起来。1962年,T. W. Hickmott通过研究Al/SiO/Au、Al/Al2O3/Au、Ta/Ta2O5/Au、Zr/ZrO2/Au以及Ti/TiO2/Au等结构的电流电压特性曲线,首次展示了这种基于金属-介质层-金属(MIM)三明治结构在偏压变化时发生的阻 变现象[6]。如图1所示,Hickmott着重研究了基于Al2O3介质层的阻变现象,通

计算机组成原理实验静态随机存储器

实验二SRAM 静态随机存储器实验 存储器是计算机各种信息存储与交换的中心。在程序执行过程中,所要执行的指令是从存储器中获取,运算器所需要的操作数是通过程序中的访问存储器指令从存储器中得到,运算结果在程序执行完之前又必须全部写到存储器中,各种输入输出设备也直接与存储器交换数据。把程序和数据存储在存储器中,是冯·诺依曼型计算机的基本特征,也是计算机能够自动、连续快速工作的基础。 一、实验目的 掌握静态随机存储器RAM工作特性及数据的读写方法。 二、实验设备 PC机一台,TD-CMA实验系统一套。 三、实验原理 实验所用的静态存储器由一片6116(2K×8bit)构成(位于MEM单元),如图2-1所示。6116有三个控制线:CS(片选线)、OE(读线)、WE(写线),其功能如表2-1所示,当片选有效(CS=0)时,OE=0时进行读操作,WE=0时进行写操作,本实验将CS常接地。 图2-1 SRAM 6116引脚图 由于存储器(MEM)最终是要挂接到CPU上,所以其还需要一个读写控制逻辑,使得CPU能控制MEM 的读写,实验中的读写控制逻辑如图2-2所示,由于T3的参与,可以保证MEM的写脉宽与T3一致,T3由时序单元的TS3给出。IOM用来选择是对I/O还是对MEM进行读写操作,RD=1时为读,WR=1时为写。 表2-1 SRAM 6116功能表 CS WE OE功能 1 0 0 0× 1 × 1 不选择 读 写 写

XMRD XMWR XIOW XIOR RD T3WR 图2-2 读写控制逻辑 实验原理图如图2-3所示,存储器数据线接至数据总线,数据总线上接有8个LED 灯显示D7…D0的内容。地址线接至地址总线,地址总线上接有8个LED 灯显示A7…A0的内容,地址由地址锁存器(74LS273,位于PC&AR 单元)给出。数据开关(位于IN 单元)经一个三态门(74LS245)连至数据总线,分时给出地址和数据。地址寄存器为8位,接入6116的地址A7…A0,6116的高三位地址A10…A8接地,所以其实际容量为256字节。 RD WR 图2-3 存储器实验原理图 实验箱中所有单元的时序都连接至时序与操作台单元,CLR 都连接至CON 单元的CLR 按钮。实验时T3由时序单元给出,其余信号由CON 单元的二进制开关模拟给出,其中IOM 应为低(即MEM 操作),RD 、WR 高有效,MR 和MW 低有效,LDAR 高有效。

存储器的工作原理

存储器的工作原理 1、存储器构造 存储器就是用来存放数据的地方。它是利用电平的高低来存放数据的,也就是说,它存放的实际上是电平的高、低,而不是我们所习惯认为的1234这样的数字,这样,我们的一个谜团就解开了,计算机也没什么神秘的吗。 图2

图3 让我们看图2。这是一个存储器的示意图:一个存储器就像一个个的小抽屉,一个小抽屉里有八个小格子,每个小格子就是用来存放“电荷”的,电荷通过与它相连的电线传进来或释放掉,至于电荷在小格子里是怎样存的,就不用我们操心了,你可以把电线想象成水管,小格子里的电荷就像是水,那就好理解了。存储器中的每个小抽屉就是一个放数据的地方,我们称之为一个“单元”。 有了这么一个构造,我们就可以开始存放数据了,想要放进一个数据12,也就是00001100,我们只要把第二号和第三号小格子里存满电荷,而其它小格子里的电荷给放掉就行了(看图3)。可是问题出来了,看图2,一个存储器有好多单元,线是并联的,在放入电荷的时候,会将电荷放入所有的单元中,而释放电荷的时候,会把每个单元中的电荷都放掉,这样的话,不管存储器有多少个单元,都只能放同一个数,这当然不是我们所希望的,因此,要在结构上稍作变化,看图2,在每个单元上有个控制线,我想要把数据放进哪个单元,就

给一个信号这个单元的控制线,这个控制线就把开关打开,这样电荷就可以自由流动了,而其它单元控制线上没有信号,所以开关不打开,不会受到影响,这样,只要控制不同单元的控制线,就可以向各单元写入不同的数据了,同样,如果要某个单元中取数据,也只要打开相应的控制开关就行了。 2、存储器译码 那么,我们怎样来控制各个单元的控制线呢?这个还不简单,把每个单元的控制线都引到集成电路的外面不就行了吗?事情可没那么简单,一片27512存储器中有65536个单元,把每根线都引出来,这个集成电路就得有6万多个脚?不行,怎么办?要想法减少线的数量。我们有一种方法称这为译码,简单介绍一下:一根线可以代表2种状态,2根线可以代表4种状态,3根线可以代表几种,256种状态又需要几根线代表?8种,8根线,所以65536种状态我们只需要16根线就可以代表了。 3、存储器的选片及总线的概念 至此,译码的问题解决了,让我们再来关注另外一个问题。送入每个单元的八根线是用从什么地方来的呢?它就是从计算机上接过来的,一般地,这八根线除了接一个存储器之外,还要接其它的器件,如图4所示。这样问题就出来了,这八根线既然不是存储器和计算机之间专用的,如果总是将某个单元接在这八根线上,就不好了,比如这个存储器单元中的数值是0FFH另一个存储器的单元是00H,那么

计算机组成原理静态随机存储器实验

实验报告 一、实验名称 静态随机储存器实验 二、实验目的 掌握静态随机储存器RAM的工作特性和数据的读写方法 三、实验设备 TDN-CM++计算机组成原理教学实验系统一套,导线若干。 四、实验原理 实验所用的半导体静态存储器电路原理如图1所示,实验中的静态存储器由一片6116(2K×8)构成,其数据线接至数据总线,地址线由地址锁存器(74LS273)给出。地址灯ADO~AD7与地址线相连,显示地址线内容。数据开关经三态门(74LS245)连至数据总线,分时给出地址和数据。 因地址寄存器为8位,接入6116的地址A7--AO,而高三位A8—A1O接地,所以其实际容量为256字节。6116有三个控制线:CE(片选线)、0E(读线)、WE(写线)。当片选有效(CE=O)时,OE=O时进行读操作,WE=0时进行写操作。本实 验中将0E常接地,因此6116的引脚信号WE=1时进行读操作,WE=0时进行写操作。 在此情况下,要对存储器进行读操作,必须设置控制端CE=O、WE=O,同时有T3脉冲到来,要对存储器进行写操作,必须设置控制端CE=O、WE=1,同时有T3脉冲到来,其读写时间与T3脉冲宽度一致。 实验时将T3脉冲接至实验板上时序电路模块的TS3相应插孔中,其脉冲宽度可调,其它电平控制信号由“SWITCH UNIT”单元的二进制开关模拟,其中SW-B为低电平有效,LDAR为高电平有效。

图1 存储器实验原理图 五、实验内容 1. 向存储器中指定的地址单元输入数据,地址先输入AR寄存器,在地址灯 上显示;再将数据送入总线后,存到指定的存储单元,数据在数据显示灯和数码 显示管显示。 2. 从存储器中指定的地址单元读出数据, 地址先输入AR寄存器,在地址灯 显示; 读出的数据送入总线, 通过数据显示灯和数码显示管显示。 六、实验步骤 (1)将时序电路模块中的Φ和H23排针相连。 将时序电路模块中的二进制开关“STOP”设置为“RUN”状态、将“STEP”设置为"STEP"状态。 注意:关于stop和step的说明: 将“STOP”开关置为“Run"状态、“STEP”开关置为“EXEC”状态时,按动微动开关START,则T3输出为连续的方波信号,此时调节电位器W1,用示波器观察,使T3输出实验要求的脉冲信号。当“STOP”开关置为“RUN”状态、“STEP”开关置为"STEP"状态时,每按动一次微动开关START,则T3输出一个单脉冲,其脉冲宽度与连续方式相同。

有机浮栅存储器的工作原理

有机浮栅存储器的工作原理 1.1 有机场效应晶体管(OFET)的基本结构和工作原理 1.1.1 有机场效应晶体管的基本结构 有机场效应晶体管的具有很多的优点:材料来源广、可以大量生产和能够实现低成本、可与柔性衬底兼容。应用前景十分广泛,如有机集成电路、存储器件、柔性显示屏等。自20世纪80年代有机场效应晶体管诞生,有机场效应晶体管得到迅速发展,到目前为止,一些有机场效应晶体管已经得到实用化的程度,在载流子迁移率、开关电流比方面已经可与非晶硅相媲美。 有机场效应晶体管按照源漏极和有机半导体的相对位置有两种结构(图2-1)底接触和顶接触,按照沟道中起传输作用的载流子的种类的不同,可以分为两种:n沟道场效应晶体管和p沟道场效应晶体管[8,9]。 图2-1 两种OFET结构:顶接触(左) 底接触(右) 1.1.2 有机场效应晶体管的工作原理 有机场效应晶体管的工作原理与无机场效应晶体管的工作原理类似。下面通过对一个顶接触的p-沟的OFET进行分析,如图2-2所示:

图2-2 有机场效应管的原理示意图 我们在栅极上施加一个相对于源极的负偏压时(源极是接地的),栅极表面出现负电荷,相应的在沟道表面感应出正电荷。当增大栅极电压时,在沟道表面形成积累层并进而形成含有可动载流子-空穴-的薄层,源漏之间的电流主要是由空穴贡献,这是与无机场效应晶体管最大的不同,通过控制栅极电压来改变沟道中空穴的数量,进而控制漏极电流[10]。 由于我们使用的是有机材料作为有源区,我们在引用传统的EEPROM的模型时必须要进行修改。在本文中,我们考虑了Pool-Frenkel效应[11],在半导体和绝缘层接触面的电荷,接触势垒,陷阱效应,采用修正以后的漂移-扩散模型(DDM)[12],借助TCAD求解泊松方程和连续性方程(2-1),(2-2),(2-3)[13],来模拟有机场效应晶体管的电学特性。 其中为静电势,为有机材料的介电常数,G为产生率, 和分别为捕获的电子和空穴的密度,和分别为电子和空穴的 电流密度。R是电子和空穴的复合率。[14,15],

阻变随机存储器(RRAM)综述(自己汇总整编)

.- 目录 引言 (1) 1 RRAM技术回顾 (1) 2 RRAM工作机制及原理探究 (4) 2.1 RRAM基本结构 (4) 2.2 RRAM器件参数 (6) 2.3 RRAM的阻变行为分类 (7) 2.4 阻变机制分类 (9) 2.4.1电化学金属化记忆效应 (11) 2.4.2价态变化记忆效应 (15) 2.4.3热化学记忆效应 (19) 2.4.4静电/电子记忆效应 (23) 2.4.5相变存储记忆效应 (24) 2.4.6磁阻记忆效应 (26) 2.4.7铁电隧穿效应 (28) 2.5 RRAM与忆阻器 (30) 3 RRAM研究现状与前景展望 (33) 参考文献 (36)

阻变随机存储器(RRAM) 引言: 阻变随机存储器(RRAM)是一种基于阻值变化来记录存储数据信息的非易失性存储器(NVM)器件。近年来,NVM器件由于其高密度、高速度和低功耗的特点,在存储器的发展当中占据着越来越重要的地位。硅基flash存储器作为传统的NVM器件,已被广泛投入到可移动存储器的应用当中。但是,工作寿命、读写速度的不足,写操作中的高电压及尺寸无法继续缩小等瓶颈已经从多方面限制了flash存储器的进一步发展。作为替代,多种新兴器件作为下一代NVM器件得到了业界广泛的关注[1、2],这其中包括铁电随机存储器(FeRAM)[3]、磁性随机存储器(MRAM)[4]、相变随机存储器(PRAM)[5]等。然而,FeRAM及MRAM 在尺寸进一步缩小方面都存在着困难。在这样的情况下,RRAM器件因其具有相当可观的微缩化前景,在近些年已引起了广泛的研发热潮。本文将着眼于RRAM 的发展历史、工作原理、研究现状及应用前景入手,对RRAM进行广泛而概括性地介绍。 1 RRAM技术回顾 虽然RRAM于近几年成为存储器技术研究的热点,但事实上对阻变现象的研究工作在很久之前便已开展起来。1962年,T. W. Hickmott通过研究Al/SiO/Au、Al/Al2O3/Au、Ta/Ta2O5/Au、Zr/ZrO2/Au以及Ti/TiO2/Au等结构的电流电压特性曲线,首次展示了这种基于金属-介质层-金属(MIM)三明治结构在偏压变化时发生的阻 变现象[6]。如图1所示,Hickmott着重研究了基于Al2O3介质层的阻变现象,通

阻变存储器单元结构及集成

阻变存储器单元结构及集成 1.1 交叉阵列中的串扰 图1. 1.1 交叉阵列结构集成中的串扰现象 阻变存储器被认为是很有潜力的下一代存储器的候选者。它具有电阻转变速度快、功耗低、存储密度高和良好的可缩小性特点。由于具有最小的单元面积4F2,交叉阵列结构被认为是存储器最经济的集成方式。但是,目前所报道的阻变存储器的低阻态I-V特性曲线几乎是线性且对称的(类似于电阻特性),在一个最简单的2×2交叉阵列结构中,如果有一个存储器单元处于高阻态而其他三个单元处于低阻态,在读取该高阻态的存储单元状态时电流将沿着三个处于低阻态的存储器单元形成一条漏电通道,如图1. 1.1所示,这就是串扰。当阵列m×n(m, n>2)变得很大时,所述漏电通道将增多,漏电流增大从而导致误读。目前解决误读最有效的方法就是在每个存储单元上集成一个晶体管或者二极管构成有源结构和无源结构。 1.1.1 有源结构 在有源结构单元中,使用一个晶体管和阻变存储器串联来形成one transistor one resistor(1T1R)。如图1.1.1所示,在1T1R结构中,晶体管起到选通和隔的作用。当对阻变存储器单元操作时,晶体管导通,这样就选择了所需操作的单元;而其他阻变存储器单元的晶体管关闭,这样能够避免对周围单元产生串扰和误操作,起到隔离的作用。1T1R结构中器件的最小面积取决于选择晶体管的大小,最小单元面积为6F2。2002年Zhuang等人首次采用0.5 μm CMOS工艺制备了基于1T1R结构的64位的RRAM阵列。1T1R结构集成时是将晶体管在前端工艺完成,而RRAM存储器件则在后端工艺完成,由于RRAM存储器在后端工艺完成,所以必须考虑热预算,工艺温度不可过高。 图1.1.1 1T1R 结构阻变存储器单元示意图 1.1.2 无源交叉阵列结构 相比于有源结构单元,由于具有最小的单元面积4F2,无源的交叉阵列结构被认为是存储器最经济的集成方式。在交叉阵列结构中,通过相互垂直的上下电

实验二:SRAM 静态随机存储器实验

《计算机组成原理》 实验报告 实验二:SRAM 静态随机存储器实验 学院: 专业: 班级学号: 学生姓名: 实验日期: 指导老师: 成绩评定: 计算机学院计算机组成原理实验室

实验二 一、实验名称:SRAM 静态随机存储器实验 二、实验目的: 掌握静态随机存储器RAM工作特性及数据的读写方法。 三、实验内容: 1、向存储器中指定的地址单元输入数据,地址先输入AR寄存器,在地址灯上显示;再将数据送入总线后,存到指定的存储单元,数据在数据显示灯显示。 2、从存储器中指定的地址单元读出数据, 地址先输入AR寄存器,在地址灯显示; 读出的数据送入总线, 通过数据显示灯显示。 四、实验设备: PC机一台,TD-CMA实验系统一套。 五、实验步骤: 1、关闭实验系统电源,按图2-4 连接实验电路,并检查无误,图中将用户需要连接的信号用圆圈标明。 2、将时序与操作台单元的开关KK1、KK3 置为运行档、开关KK2 置为…单步?档。 3、将CON 单元的IOR 开关置为1(使IN 单元无输出),打开电源开关,如果听到有…嘀?报警声,说明有总线竞争现象,应立即关闭电源,重新检查接线,直到错误排除。

图2-4 4、给存储器的00H、01H、02H、03H、04H 地址单元中分别写入数据11H、12H、13H、14H、15H。 由前面的存储器实验原理图(图2-1-3)可以看出,由于数据和地址由同一个数据开关给出,因此数据和地址要分时写入,先写地址,具体操作步骤为:先关掉存储器的读写(WR=0,RD=0),数据开关输出地址(IOR=0),然后打开地址寄存器门控信号(LDAR=1),按动ST 产生T3 脉冲,即将地址打入到AR 中。再写数据,具体操作步骤为:先关掉存储器的读写(WR=0,RD=0)和地址寄存器门控信号(LDAR=0),数据开关输出要写入的数据,

2.1 静态随机存储器实验

2.1 静态随机存储器实验 2.1.1 实验目的 掌握静态随机存储器RAM工作特性及数据的读写方法。 2.1.2 实验设备 PC机一台,TD-CMA实验系统一套。 2.1.3 实验原理 实验原理图如图2-1-3所示,存储器数据线接至数据总线,数据总线上接有8个LED 灯显示D7…D0的内容。地址线接至地址总线,地址总线上接有8个LED灯显示A7…A0的内容,地址由地址锁存器(74LS273,位于PC&AR单元)给出。数据开关(位于IN单元)经一个三态门(74LS245)连至数据总线,分时给出地址和数据。地址寄存器为8位,接入6116的地址A7…A0,6116的高三位地址A10…A8接地,所以其实际容量为256字节。 RD WR 图2-1-3 存储器实验原理图 实验箱中所有单元的时序都连接至时序与操作台单元,CLR都连接至CON单元的CLR 按钮。实验时T3由时序单元给出,其余信号由CON单元的二进制开关模拟给出,其中IOM 应为低(即MEM操作),RD、WR高有效,MR和MW低有效,LDAR高有效。 2.1.4 实验步骤 (1) 关闭实验系统电源,按图2-1-4连接实验电路,并检查无误,图中将用户需要连接的信号用圆圈标明。 (2) 将时序与操作台单元的开关KK1、KK3置为运行档、开关KK2置为‘单步’档(时序单元的介绍见附录二)。 (3) 将CON单元的IOR开关置为1(使IN单元无输出),打开电源开关,如果听到有

‘嘀’报警声,说明有总线竞争现象,应立即关闭电源,重新检查接线,直到错误排除。 图2-1-4 实验接线图 (4) 给存储器的00H、01H、02H、03H、04H地址单元中分别写入数据11H、12H、13H、14H、15H。由前面的存储器实验原理图(图2-1-3)可以看出,由于数据和地址由同一个数据开关给出,因此数据和地址要分时写入,先写地址,具体操作步骤为:先关掉存储器的读写(WR=0,RD=0),数据开关输出地址(IOR=0),然后打开地址寄存器门控信号(LDAR=1),按动ST产生T3脉冲,即将地址打入到AR中。再写数据,具体操作步骤为:先关掉存储器的读写(WR=0,RD=0)和地址寄存器门控信号(LDAR=0),数据开关输出要写入的数据,打开输入三态门(IOR=0),然后使存储器处于写状态(WR=1,RD=0,IOM=0),按动ST产生T3脉冲,即将数据打入到存储器中。写存储器的流程如图2-1-5所示(以向00地址单元写入11H为例): WR = 0 RD = 0 IOM = 0 IOR = 0 LDAR = 0 WR = 0 RD = 0 IOM = 0 IOR = 0 LDAR = 1 T3= WR = 0 RD = 0 IOM = 0 IOR = 0 LDAR = 0 WR = 1 RD = 0 IOM = 0 IOR = 0 LDAR = 0 T3= 图2-1-5 写存储器流程图 (5) 依次读出第00、01、02、03、04号单元中的内容,观察上述各单元中的内容是否与前面写入的一致。同写操作类似,也要先给出地址,然后进行读,地址的给出和前面一样,而在进行读操作时,应先关闭IN单元的输出(IOR=1),然后使存储器处于读状态(WR=0,RD=1,IOM=0),此时数据总线上的数即为从存储器当前地址中读出的数据内容。读存储器的流程如图2-1-6所示(以从00地址单元读出11H为例):

静态随机存储器

湖南师范大学职业技术学院(工学院)实验数据报告单 实验课程:计算机组成原理 实验题目:静态随机存储器实验 实验日期: 2012年 5 月 26 日 一.实验目的 掌握静态随机存储器RAM工作特性及数据的读写方法。 二.实验内容 ○1了解静态存储器的工作原理,理解RAM工作特性。 ○2实现存储器存入数据 ○3实现存储器读出数据 三.实验原理 实验所用的静态存储器由一片 6116(2K×8bit)构成(位于MEM 单元),如图2-1-1 所示。6116 有三个控制线:CS(片选线)、OE(读线)、WE(写线),其功能如表2-1-1 所示,当片选有效(CS=0)时,OE=0 时进行读操作,WE=0 时进行写操作,本实验将CS 常接地。 图1 SRAM 6116引脚图 由于存储器(MEM)最终是要挂接到CPU 上,所以其还需要一个读写控制逻辑,使得CPU 能控制MEM 的读写,实验中的读写控制逻辑如图2-1-2 所示,由于T2 的参与,可以保证MEM 的写脉宽与T2 一致,T2 由时序单元的TS2 给出(时序单元的介绍见附录2)。IOM 用来选择是对I/O 还是对MEM 进行读写操作,RD=1 时为读,WR=1 时为写。

图2 图写控制逻辑 实验原理图如图 2-1-3 所示,存储器数据线接至数据总线,数据总线上接有8 个LED 灯显示D7…D0 的内容。地址线接至地址总线,地址总线上接有8 个LED 灯显示A7…A0 的内容,地址由地址锁存器(74LS273,位于PC&AR 单元)给出。数据开关(位于IN 单元)经一个三 态门(74LS245)连至数据总线,分时给出地址和数据。地址寄存器为8 位,接入6116 的地址A7…A0,6116 的高三位地址A10…A8 接地,所以其实际容量为256 字节。 图3 存储器实验原理图 实验箱中所有单元的T1、T2 都连接至MC 单元的T1、T2,CLR 都连接至CON 单元的CLR 按钮。实验时T2 由时序单元给出,其余信号由CON 单元的二进制开关模拟给出,其中IOM 应 为低(即MEM 操作),RD、WR 高有效,MR 和MW 低有效,LDAR 高有效。

存储程序工作原理

一、存储程序工作原理 二、计算机的三个基本能力:一是采用二进制,二是能够存储程序,三是能够自动地执行程序。 三、计算机是利用“存储器”(内存)来存放所要执行的程序的,而称之为CPU的部件可以依次从存储器中取出程序中的每一条指令,并加以分析和执行,直至完成全部指令任务为止。 四、总线(Bus):是微型计算机中用于连接CPU、存储、输入/输出接口等部件的一组信号线和控制电路,是系统内各种部件之间共享的一组公共数据传输线路。 五、回收站:硬盘的部分存储区域 六、文件:新建打开保存另存为页面设置打印 七、编辑:撤消重复复制粘贴查找替换 八、格式:字体段落分栏文字方向背景 九、表格:绘制表格插入表格合并单元格绘制斜线表头表格属性 十、计算机网络是指通过通信设备将地理位置分散、具有独立功能的多个计算机连接起来,按照协议进行数据通信,以实现资源共享和信息传递的系统。 十一、计算机网络的物理组成:计算机传输介质连接设备 十二、网络连接设备:网络适配器集线器交换机中继器网桥路由器网关调制解调器 十三、国标字符集有6763个常用汉字 十四、由三部分组成: 十五、字母、数字和各种符号,共687个 十六、一级常用汉字,共3755个,按汉语拼音排列 十七、二级常用汉字,共3008个,按偏旁部首排列 十八、基本思想:先把编制的程序存储起来,再用程序来控制计算机的运行. 十九、“存储程序”工作原理:在计算机中设置存储器,将二进制编码表示的计算步骤与数据一起存放在存储器中,机器一经启动,就能按照程序指定的逻辑顺序依次取出存储内容进行译码和处理,自动完成由程序所描述的处理工作 二十、计算机网络的概念:概念:计算机网络是通信技术与计算机技术相结合的产物,是以资源共享为主要目的、以通信媒体互连起来的计算机的集合二十一、计算机:服务器、客户机和同位体。 二十二、传输介质:计算机与通信设备之间、以及通信设备之间都通过传输介质互连,具体有双绞线、同轴电缆、光纤、电话线、微波信道、卫星信道等。 二十三、通信设备:其作用是为计算机转发数据,具体有交换机、集线器、路由器、调制解调器等。 二十四、中国教育科研网(CERNET )中国公用信息网(ChinaNET )中国科学技术网(CSTNET )中国金桥信息网(CHINAGBN) 1.阐述系统软件和应用软件的分类和作用。 系统软件:操作系统、程序设计语言、语言处理程序、诊断程序、数据库管理系统。 应用软件:用于科学计算方面的数学计算软件包、统计软件包;文字处理软件包;图像处理软件包;各种财务管理、税务管理、工业控制等行业软件。

嵌入式存储器发展现状

嵌入式存储器发展现状 北京芯技佳易微电子科技有限公司 薛霆 李红 摘要:文章中简要介绍了嵌入式存储器技术发展历程,详细地介绍了基于标准工艺上嵌入式存储器的技术 关键词:IP SOC 存储器eDRAM OTP MTP 嵌入式闪存 1T-SRAM 2T-SRAM Abstract: Paper reviews historic development of embedded memory technologies. A few of embedded memory technologies based on standard process is introduced in more details. Keywords: IP SOC Memory eDRAM OTP MTP eFlash 1T-SRAM 2T-SRAM 1、引言 嵌入式存储器不同于片外存储器,它是集成在片内与系统中各个逻辑、混合信号等IP共同组成单一芯片的基本组成部分。嵌入式存储器包括嵌入式静态存储器,动态存储器和各种非挥发性存储器。几乎今天每一个SOC芯片中都含有或多或少多种嵌入式存储器的应用。 图1 嵌入式存储器的分类 嵌入式存储器大体分为两类,一类是挥发性存储器,另一类是非挥发性存储器,挥发性存储器包括速度快,功耗低,简单的SRAM和高密度的DRAM;而非挥发性存储器在实际使用中有更多种类,常用的包括OTP,ROM和EEPROM 及越来越普及的eFlash技术。非挥发性存储器主要用于存储器掉电不丢失的固定数据和程式。 嵌入式存储器和分立式存储器重要不同之处在于嵌入式存储器往往受限于应用IC的本身工艺特性条件,而分立式存储器件主要是围绕存储器器件进行优化工 图1-嵌入式存储器的分类

阻变存储器概述

阻变存储器概述 阻变存储器(RRAM)是利用脉冲电压对存储单元进行写入和消除,进而导致记忆单元电阻改变,这就是电脉冲诱使阻变效应。 2.1 电阻转换现象 利用一些薄膜材料在电激励条件下薄膜电阻在不同电阻状态(高阻态(HR S)、低阻态(LRS))之间的相互转换来实现数据存储。根据电阻转换所需外加电压极性的不同,RRAM器件的电阻转变特性可以分为两种切换模式:单极转换和双极转换。从HRS到LRS的转换被称为“SET”过程。相反,从LRS到H RS的转换被称为“RESET”过程。单极转换是指器件在高低组态之间转变时外加电压极性相同。如果器件能在任意极性的电压实现高低阻态的转变,它被称作为无极性转换。双极开关的切换方向取决于所施加的电压的极性。 图2.2.1 (a)RRAM基本结构示意图和RRAM转换特性,(b)单极性转换,(c) 双极性转换 对于单极转换必须设置限制电流,对于双极转换,不一定需要设置限定电流的大小。施加在RRAM上的电压可以是脉冲电压或扫描电压,实际应用中利用扫描电压改变记忆单元电阻是不行的。除了使用直流电压改变阻态,还可以用电脉冲诱导电阻转变(EPIR)效应实现记忆单元阻值转换。利用改变脉冲电压的极性完成高低阻态的转变,如图1.2.2所示。

图2.2.2 脉冲诱使电阻转换的可重复现象 2.2 RRAM器件的阻变机制 到目前为止,电阻转换的真正机制还未确定,机制的不明确严重影响阻变存储器的应用步伐[6]。阻变效应属于材料的体效应还是氧化物与电极间的界面效应是需要解决的重大难点。目前,对于电阻转换现象的解释,研究人员提出了下面几种模型,主要有:导电细丝模型,界面接触势垒模型,缺陷能级模型。 2.2.1 导电细丝模型 导电细丝(CF,conducting filament)机制是一种局域化的效果,仅在介质薄膜的局部发生电阻的转变。从目前报道来看,固态电解液和大多数金属氧化物RRAM的电阻转变都与局部导电细丝的形成与断裂有关[7]。 图2.2.1 导电细丝模型 导电细丝主要原理:电路导通时,薄膜内部会形成传导路径,使通过电流变大,这时薄膜器件处于开启状态(ON state);当导电通道断裂后,薄膜电流变小,这时薄膜器件处于关闭状态(OFF state)。图2.2.1为C.C Lin et al.人提出的导电细丝模型。(a)处于ON state,(b)、(c)、(d)都处于OFF state。

RAM-ROM-EEPROM存储器工作原理

RAM-ROM-EEPROM存储器工作原理

一.基本工作原理 1、存储器构造 存储器就是用来存放数据的地方。它是利用电平的高低来存放数据的,也就是说,它存放的实际上是电平的高、低,而不是我们所习惯认为的1234这样的数字,这样,我们的一个谜团就解开了,计算机也没什么神秘的吗。 图1 图2 让我们看图1。这是一个存储器的示意图:

一个存储器就像一个个的小抽屉,一个小抽屉里有八个小格子,每个小格子就是用来存放“电荷”的,电荷通过与它相连的电线传进来或释放掉,至于电荷在小格子里是怎样存的,就不用我们操心了,你可以把电线想象成水管,小格子里的电荷就像是水,那就好理解了。存储器中的每个小抽屉就是一个放数据的地方,我们称之为一个“单元”。 有了这么一个构造,我们就可以开始存放数据了,想要放进一个数据12,也就是00001100,我们只要把第二号和第三号小格子里存满电荷,而其它小格子里的电荷给放掉就行了(看图2)。可是问题出来了,看图1,一个存储器有好多单元,线是并联的,在放入电荷的时候,会将电荷放入所有的单元中,而释放电荷的时候,会把每个单元中的电荷都放掉,这样的话,不管存储器有多少个单元,都只能放同一个数,这当然不是我们所希望的,因此,要在结构上稍作变化,看图1,在每个单元上有个控制线,我想要把数据放进哪个单元,就给一个信号这个单元的控制线,这个控制线就把开关打开,这样电荷就可以自由流动了,而其它单元控制线上没有信号,所

以开关不打开,不会受到影响,这样,只要控制不同单元的控制线,就可以向各单元写入不同的数据了,同样,如果要某个单元中取数据,也只要打开相应的控制开关就行了。 2、存储器译码 那么,我们怎样来控制各个单元的控制线呢?这个还不简单,把每个单元的控制线都引到集成电路的外面不就行了吗?事情可没那么简单,一片27512存储器中有65536个单元,把每根线都引出来,这个集成电路就得有6万多个脚?不行,怎么办?要想法减少线的数量。我们有一种方法称这为译码,简单介绍一下:一根线可以代表2种状态,2根线可以代表4种状态,3根线可以代表几种,256种状态又需要几根线代表?8种,8根线,所以65536种状态我们只需要16根线就可以代表了。 3、存储器的选片及总线的概念 至此,译码的问题解决了,让我们再来关注另外一个问题。送入每个单元的八根线是用从什么地方来的呢?它就是从计算机上接过来的,一般地,这八根线除了接一个存储器之外,还要接其它的器件。这样问题就出来了,这八根线既然

相关文档