文档库 最新最全的文档下载
当前位置:文档库 › 圆周运动整理

圆周运动整理

圆周运动整理
圆周运动整理

三、匀速圆周运动的练习题

一、选择题

1.关于角速度和线速度,下列说法正确的是[]

A.半径一定,角速度与线速度成反比

B.半径一定,角速度与线速度成正比

C.线速度一定,角速度与半径成正比

D.角速度一定,线速度与半径成反比

2.下列关于甲乙两个做圆周运动的物体的有关说法正确的是[]

A.它们线速度相等,角速度一定相等

B.它们角速度相等,线速度一定也相等

C.它们周期相等,角速度一定也相等

D.它们周期相等,线速度一定也相等

3.时针、分针和秒针转动时,下列正确说法是[]

A.秒针的角速度是分针的60倍

B.分针的角速度是时针的60倍

C.秒针的角速度是时针的360倍

D.秒针的角速度是时针的86400倍

4.关于物体做匀速圆周运动的正确说法是[]

A.速度大小和方向都改变

B.速度的大小和方向都不变

C.速度的大小改变,方向不变

D.速度的大小不变,方向改变

5.物体做匀速圆周运动的条件是[]

A.物体有一定的初速度,且受到一个始终和初速度垂直的恒力作用

B.物体有一定的初速度,且受到一个大小不变,方向变化的力的作用

C.物体有一定的初速度,且受到一个方向始终指向圆心的力的作用

D.物体有一定的初速度,且受到一个大小不变方向始终跟速度垂直的力的作用

6.甲、乙两物体都做匀速圆周运动,其质量之比为1:2,转动半径之比为1:2,在相等时间里甲转过60°,乙转过45°,则它们所受外力的合力之比为[]

A.1:4

B.2:3

C.4:9

D.9:16

7.如图1所示,用细线吊着一个质量为m的小球,使小球在水平面内做圆锥摆运动,关于小球受力,正确的是[]

A.受重力、拉力、向心力

B.受重力、拉力

C.受重力

D.以上说法都不正确

8.冰面对溜冰运动员的最大摩擦力为运动员重力的k倍,在水平冰面上沿半径为R的圆周滑行的运动员,若依靠摩擦力充当向心力,其安全速度为[]

9.火车转弯做圆周运动,如果外轨和内轨一样高,火车能匀速通过弯道做圆周运动,下列说法中正确的是[]

A.火车通过弯道向心力的来源是外轨的水平弹力,所以外轨容易磨损

B.火车通过弯道向心力的来源是内轨的水平弹力,所以内轨容易磨损

C.火车通过弯道向心力的来源是火车的重力,所以内外轨道均不磨损

D.以上三种说法都是错误的

10.一圆筒绕其中心轴OO1匀速转动,筒内壁上紧挨着一个物体与筒一起运动相对筒无滑动,如图2所示,物体所受向心力是[]

A.物体的重力

B.筒壁对物体的静摩擦力

C.筒壁对物体的弹力

D.物体所受重力与弹力的合力

11.一圆盘可以绕其竖直轴在水平面内转动,圆盘半径为R,甲、乙两物体的质量分别为M与m(M>m),它们与圆盘之间的最大静摩擦力均为正压力的μ倍,两物体用一根长为l(l<R)的轻绳连在一起,如图3所示,若将甲物体放在转轴的位置上,甲、乙之间接线刚好沿半径方向拉直,要使两物体与转盘之间不发生相对滑动,则转盘旋转的角速度最大值不得超过[]

二、填空题

12、做匀速圆周运动的物体,当质量增大到2倍,周期减小到一半时,其向心力大小是原来的______倍,当质量不变,线速度大小不变,角速度大小增大到2倍时,其向心力大小是原来的______倍。

13、一物体在水平面内沿半径R=20 cm的圆形轨道做匀速圆周运动,线速度V=0.2m/s,那么,它的向心加速度为______m/S2,它的角速度为_______ rad/s,它的周期为______s。

14、线段OB=AB,A、B两球质量相等,它们绕O点在光滑的水平面上以相同的角速度转动时,如图4所示,两段线拉力之比T AB:T OB=______。

15.如图5所示,A、B两轮半径之比为1:3,两轮边缘挤压在一起,在两轮转动中,接触点不存在打滑的现象,则两轮边缘的线速度大小之比等于______。两轮的转数之比等于______,A轮半径中点与B轮边缘的角速度大小之比等于______。

三、计算题

16、如图6所示,一质量为0.5kg的小球,用0.4m长的细线拴住在竖直面内作圆周运

动,求:

(1)当小球在圆上最高点速度为4m/s时,细线的拉力是多少?

拉力是多少?(g=10m/s2)

17、如图7所示,飞机在半径为R的竖直平面内翻斤斗,已知飞行员质量为m,飞机飞至最高点时,对座位压力为N,此时飞机的速度多大?

18、如图8所示,MN为水平放置的光滑圆盘,半径为1.0m,其中心O处有一个小孔,穿过小孔的细绳两端各系一小球A和B,A、B两球的质量相等。圆盘上的小球A作匀速圆周运动。

问(1)当A球的轨道半径为0.20m时,它的角速度是多大才能维持B球静止?

(2)若将前一问求得的角速度减半,怎样做才能使A作圆周运动时B球仍能保持静止?

匀速圆周运动练习题的答案

一、选择题 1.B 2.A 3.A 4.D 5.D 6.C7.B 8.B 9.A 10.C 11.D

二、填空题 12. 8、2 13.。0.2、1、2π 14. 2∶3 15.1∶1、3∶1、3∶1

三、计算题 16.15N 、

45N 17. 18.(1)7rad/s 、 (2)将A 球圆运动的轨道半径

增大到0.8m

运动学专题训练(匀变速直线运动、平抛、圆周运动)

运动的分类:

一、变速直线运动:

三个基本公式: 1、at v v t +=0

2、2

021

at t v s +=

3、

as v v t 22

02=- 两个重要推论: 4、2

aT s =?

5、202v v v v t t +==;(

2220

2/t s v v v +=) 四个关于v 0=0的匀加速直线运动的推论(要求会推导):

初速度为零的匀变速直线运动,设T 为相等的时间间隔,则有: 6、T 末、2T 末、3T 末……的瞬时速度之比为: v 1:v 2:v 3:……v n =1:2:3:……:n

7、T 内、2T 内、3T 内……的位移之比为: s 1:s 2:s 3: ……:s n =1:4:9:……:n 2

8、第一个T 内、第二个T 内、第三个T 内……的位移之比为:

s Ⅰ:s Ⅱ:s Ⅲ:……:s N =1:3:5: ……:(2N-1)

9、初速度为零的匀变速直线运动,设s 为相等的位移间隔,则有:

第一个s 、第二个s 、第三个s ……所用的时间t Ⅰ、t Ⅱ、t Ⅲ ……t N 之比为:

t Ⅰ:t Ⅱ:t Ⅲ :……:t N =1:()()

:23:12--…)1n n (--

自由落体的相关公式推导:(令v 0=0,a=g )

竖直上抛运动相关公式推导:

上升过程是匀减速直线运动,下落过程是匀加速直线运动。全过程是初速度为v 0、加速度为-g 的匀减速直线运动。

1、适用全过程的公式: 2

021

gt t v s -= gt v v t -=0 as v v t 22

02

=- (s 、v t 的正、负号的理解)

2、上升最大高度:

g 2v

H 2

o

= 3、上升的时间:

g v t o =

4、上升、下落经过同一位置时的加速度相同,而速度等值反向

5、上升、下落经过同一段位移的时间相等。 从抛出到落回原位置的时间:g v 2o

例1、一个物体从H 高处自由落下,经过最后196m 所用的时间是4s ,求物体下落H 高度所用的总时间T 和高度H 是多少?取g=9.8m/s 2,空气阻力不计.

分析:根据题意画出小球的运动示意图(图1)其中t=4s , h=196m. 解:方法1:根据自由落体公式

式(1)减去式(2),得

方法2:利用匀变速运动平均速度的性质由题意得最后4s内的平均速度为

因为在匀变速运动中,某段时间中的平均速度等于中点时刻的速度,所以下落至最后2s时的瞬时速度为

由速度公式得下落至最后2s的时间

方法3:利用v-t图象

画出这个物体自由下落的v—t图,如图2所示.开始下落后经时间(T—t)和T后的速度分别为g(T—t)、gT。图线的AB段与t轴间的面积表示在时间t内下落的高度h。由

二、平抛运动:

(1)定义:v0水平,只受重力作用的运动

性质:加速度为g的匀变速曲线运动

(2)特点:水平方向不受外力,做匀速直线运动;

在竖直方向上物体的初速度为0,且只受到重力作用,物体做自由落体运动。 既然平抛运动可分解为水平方向的匀速直线运动和竖直方向的自由落体运动,我们就可以分别算出平抛物体在任一时刻t 的位置坐标x 和y 以及任一时刻t 的水平分速度v x 和竖直分速度v y

(3)规律

2

2

y

x v v v +=

方向 :=θtan o x

y

v gt

v v =

合位移大小:s=2

2y x + 方向:αtan =t v g x y o ?=2

③由①②中的tan θ、tan α关系得tan θ=2 tan α

④时间由y=221gt

得t=x y 2(由下落的高度y 决定)

⑤竖直方向为v o =0的匀变速运动,匀变速直线运动的一切规律在竖直方向上都成立。

例2、如下图所示,以9.8m/s 的水平初速度v 0抛出的物体,飞行一段时间后,垂直地撞在倾角为θ=30°的斜面上,则物体完成这段飞行的时间为多少?

解:v x =v 0① v y =gt ②

例、如图所示,从倾角为θ的斜面上的A 点,以水平速度v 0抛出一个小球,不计空气阻力,它落到斜面上B 点时所用的时间为( )

解析:设小球从抛出至落到斜面上的时间为t,在这段时间内球的水平位移和竖直位移

分别为x=v0t,

如图所示.由几何关系知

所以小球的运动时间

答案:B

说明:上面是从常规的分运动方法去研究斜面上的平抛运动,还可以变换一个角度去研究。

如图所示,把初速度v0、重力加速度g都分解成沿着斜面和垂直斜面的两个分量。在垂直斜面方向上,小球做的是以v0y为初速、g y为加速度的竖直上抛运动。小球“上、下”一个来回的时间等于它从抛出至落到斜面上的运动时间,于是立即可得

采用这种观点,还很容易算出小球在斜面上抛出后,运动过程中离斜面的最大距离,从抛出到离斜面最大距离的时间、斜面上的射程等问题,有兴趣的同学请自行研究。

三、匀速圆周运动

(1)描述匀速圆周运动快慢的物理量

①线速度:大小v=t s

;单位 : m/s

②角速度:大小ω=t φ

; 单位:rad/s

③周期T:运动一周的时间 单位:s

④ 频率f=T 1

:每秒钟转过的圈数 单位:Hz

(2)v 、ω、T 、 f 之间的关系:

(3)向心力:大小 2

222

)2()2(f mr T mr r v m mr F ππ

ω====

(4)向心加速度:大小 2

222

)2()2(f r T r r v r a ππ

ω====

(5)匀速圆周运动的性质:v 的大小不变而方向时刻在变化;a 的大小不变而方向时刻

也在变,是变加速曲线运动。

例4、用细绳拴着质量为m 的小球,使小球在竖直平面内做圆周运动,则下列说法中,正确的是( )

A. 小球过最高点时,绳子中张力可以为零

B. 小球过最高点时的最小速度为零

C. 小球刚好能过最高点时的速度是gR

D. 小球过最高点时,绳子对小球的作用力可以与球所受的重力方向相反 解析:像该题中的小球、沿竖直圆环内侧做圆周运动的物体等没有支承物的物体做圆周运动,通过最高点时有下列几种情况:

(1)mg mv /R v 2当=,即=时,物体的重力恰好提供向心力,向心Rg 加速度恰好等于重力

加速度,物体恰能过最高点继续沿圆周运动.这是能通过最高点的临界条件;

(2)mg mv /R v 2当>,即<时,物体不能通过最高点而偏离圆周Rg 轨道,做抛体运动;

(3)m g m v /R v m g 2当<,即>时,物体能通过最高点,这时有Rg +F =mv 2/R ,其中F 为绳子的拉力或环对物体的压力.而值得一提的是:细绳对由它拴住的、做匀速圆周运动的物体只可能产生拉力,而不可能产生支撑力,因而小球过最高点时,细绳对小球的作用力不会与重力方向相反。

所以,正确选项为A 、C 。 点拨:这是一道竖直平面内的变速率圆周运动问题。当小球经过圆周最高点或最低点时,其重力和绳子拉力的合力提供向心力;当小球经过圆周的其它位置时,其重力和绳子拉力的沿半径方向的分力(法向分力)提供向心力。

【问题讨论】:

1、该题中,把拴小球的绳子换成细杆,则问题讨论的结果就大相径庭了.有支承物的小球在竖直平面内做圆周运动,过最高点时:

(1) v (2) v (3) v 当 = 时,支承物对小球既没 有拉力,也没有支撑力 ;

当 > 时,支承物对小球有指 向圆心的拉力作用; 当 < 时,支撑物对小球有背 离圆心的支撑力作用; Rg Rg Rg

(4)当v =0时,支承物对小球的支撑力等于小球的重力mg ,这是有支承物的物体在竖直平面内做圆周运动,能经过最高点的临界条件 2、竖直面内的圆周运动:

竖直面内圆周运动最高点处的受力特点及分类: 物体做圆周运动的速率时刻在改变,物体在最高点处的速率最小,在最低点处的速率最大。物体在最低点处向心力向上,而重力向下,所以弹力必然向上且大于重力;而在最高点处,向心力向下,重力也向下,所以弹力的方向就不能确定了,要分三种情况进行讨论。

1)绳与圆筒内部

弹力只可能向下,如绳拉球。这种情况下有

mg

R mv mg F ≥=+2

即gR v ≥,否则不能通过最高点。

2)杆与圆管

弹力既可能向上又可能向下,如管内转(或杆连球、环穿珠)。这种情况下,速度大小v 可以取任意值。但可以进一步讨论:①当gR v >

时物体受到的弹力必然是向下的;当

gR v <时物体受到的弹力必然是向上的;当gR v =时物体受到的弹力恰好为零。②当弹

力大小F mg 时,向心力只有一解:F +mg ;当弹力F =mg 时,向心力等于零。

3)汽车过拱桥

弹力只可能向上,如车过桥。在这种情况下有:gR v mg R

mv F mg ≤∴≤=-,2

否则车将离开桥面,做平抛运动。

例5、如图所示,一飞机在竖直平面内做匀速率特技飞行。已知飞行员得质量为m ,飞机

速度

gR

v>,试A、B、C、D四个位置受力情况.

分析:该题应首先从A、B、C、D四点的位置、状态及所需向心力情况入手,再根据牛顿运动定律分析各点受力情况.分析的难点在于B点和D点。

解:以飞行员为研究对象.在A点受力情况如图所示,其中F N表示座椅对飞行员的支持力。依牛顿运动定律

力不足以提供所需向心力,飞行员有离心趋势,故由椅子提供向下的压力P,如图(B)所示。

在C点(此时飞行员头向下,椅子在其上方)受力情况如图(C)所示,其中T表示安全带对飞行员向上的拉力.并有

在D点,情况与B点相近,飞行员重力不足以提供所需向心力,有离心趋势.故将由安全带提供向下的压力Q,如图(D)所示.

小结:(1)物体的匀速圆周运动状态不是平衡状态。它所需要的向心力应恰好由物体所受的合外力来提供,由受力分析入手,正确使用动力学求解,是分析这类问题的主要方法。

(2)“离心”与“向心”现象的出现,是由于提供的合外力与某状态下所需的向心力之间出现矛盾,当“供”大于“需”时,将出现“向心”。例:如果当水流星在竖直面最高点

的速度

gR

v<

时,水将落下。当“供”小于“需”时,物体将远离圆心被甩出,例如甩

干机就是这个道理。

练习题

1、下列说法中正确的是()

A. 物体运动的速度越大,加速度也一定越大

B. 物体的加速度越大,它的速度一定越大

C. 加速度就是“加出来的速度”

D. 加速度反映速度变化的快慢,与速度无关

2、一辆载重卡车,在丘陵地上以不变的速率行驶,地形如图所示.由于轮胎已旧,途中爆了胎,你认为在图中A 、B 、C 、D 四处中,爆胎的可能性最大的一处是( )

3、如图所示,在电动机距转轴O 为r 处固定一个质量为m 的铁块.启动后,铁块以角速度ω绕轴匀速转动,电动机对地面的最大压力与最小压力之差为

A. m (g +ω2r )

B. m (g +2ω2

r ) C. 2m (g +ω2r ) D. 2mr ω2

4、气球上系一重物,以4m/s 的速度匀速上升,当离地9m 时绳断了,求重物的落地时间t =?(g =10m/s 2)

5、竖直上抛物体的初速度是42米/秒,物体上升的最大高度是多少?上升到最大高度用多长时间?由最大高度落回原地的速度是多大?用了多长时间?

6、一辆沿平直路面行驶的汽车,速度为36km/h.刹车后获得加速度的大小是4m/s 2,求: (1)刹车后3s 末的速度;

(2)从开始刹车至停止,滑行一半距离时的速度.

7、如图所示,用细绳一端系着的质量为M =0.6kg 的物体A 静止在水平转盘上,细绳另一端通过转盘中心的光滑小孔O 吊着质量为m =0.3kg 的小球B ,A 的重心到O 点的距离为0.2m 。若A 与转盘间的最大静摩擦力为f =2N ,为使小球B 保持静止,求转盘绕中心O 旋转的角速度ω的取值范围.(取g =10m/s 2)

参考答案

1、D

2、B

3、D

4、重物落地时间t =t 上+t 返+t 下=1.8s

5、s =90m t 1=4.3s v=42m/s t 2=4.3s

6、v=0,v B =7.05m/s

7、2.9 rad/s 5.6≤≤ωrad/s

第1 讲 曲线运动 平抛运动

1.

图4-1-15

物理实验小组利用如图4-1-15所示装置测量物体平抛运动的初速度.他们经多次实验和计算后发现:在地面上沿抛出的速度方向水平放置一把刻度尺,让悬挂在抛出点处的重锤线的投影落在刻度尺的零刻度线上,则利用小球在刻度尺上的落点位置,就可直观地得到小球做平抛运动的初速度.如图四位同学在刻度尺旁边分别制作了速度标尺(图中P点为重锤所指位置),可能正确的是()

解析:由于高度一定,平抛运动的时间t=2h

g一定,水平速度v=

x

t,即v与x成正

比,在刻度线上速度分布均匀,A正确.

答案:A

2.

图4-1-16

如图4-1-16为一个做匀变速曲线运动的质点的轨迹示意图,已知在B点的速度与加速度相互垂直,则下列说法中正确的是()

A.D点的速率比C点的速率大

B.A点的加速度与速度的夹角小于90°

C.A点的加速度比D点的加速度大

D.从A到D加速度与速度的夹角先增大后减小

解析:质点做匀变速曲线运动,合力的大小方向均不变,加速度不变,故C错误;由B 点速度与加速度相互垂直可知,合力方向与B点切线垂直且向下,故质点由C到D过程,合力做正功,速率增大,A正确.A点的加速度方向与过A的切线也即速度方向夹角大于90°,B错误,从A到D加速度与速度的夹角一直变小,D错误.

答案:A

3.

图4-1-17

(2010·北京西城区抽样)随着人们生活水平的提高,高尔夫球将逐渐成为普通人的休闲娱乐.如图4-1-17所示,某人从高出水平地面h的坡上水平击出一个质量为m的高尔夫球.由于恒定的水平风力的作用,高尔夫球竖直地落入距击球点水平距离为L的A 穴.则()

A.球被击出后做平抛运动

B.该球从被击出到落入A穴所用的时间为2h g

C.球被击出时的初速度大小为L 2g h

D .球被击出后受到的水平风力的大小为mgh /L 解析:由于受到恒定的水平风力的作用,球被击出后在水平方向做匀减速运动,A 错误;

由h =1

2

gt 2得球从被击出到落入A 穴所用的时间为t = 2h g ,B 正确;由题述高尔夫球

竖直地落入A 穴可知球水平末速度为零,由L =v 0t /2得球被击出时的初速度大小为v 0

=L 2g

h

,C 正确;由v 0=at 得球水平方向加速度大小a =gL /h ,球被击出后受到的

水平风力的大小为F =ma =mgL /h ,D 错误. 答案:BC 4.

图4-1-18

如图4-1-18所示,在斜面顶端a 处以速度v a 水平抛出一小球,经过时间t a 恰好落在斜面底端P 处;今在P 点正上方与a 等高的b 处以速度v b 水平抛出另一小球,经过时间t b 恰好落在斜面的中点处.若不计空气阻力,下列关系式正确的是( ) A .v a =v b B .v a =2v b C .t a =t b D .t a =2t b

解析:做平抛运动的物体运动时间由竖直方向的高度决定t = 2h

g ,a 物体下落的高

度是b 的2倍,有t a =2t b ,D 正确;水平方向的距离由高度和初速度决定x =v 0 2h

g ,由题意得a 的水平位移是b 的2倍,可知v a =2v b ,B 正确. 答案:BD 5.

图4-1-19

甲、乙两船在同一条河流中同时开始渡河,河宽为H ,河水流速为v 0,划船速度均为v ,

出发时两船相距为2

3

3H ,甲、乙两船船头均与河岸成60°角,如图4-1-19所示,已

知乙船恰好能垂直到达对岸A 点,则下列判断正确的是( ) A .甲、乙两船到达对岸的时间不同 B .v =2v 0

C .两船可能在未到达对岸前相遇

D .甲船也在A 点靠岸

解析:渡河时间均为H

v sin 60°

,乙能垂直于河岸渡河,对乙船,由v cos 60°=v 0,可得v

=2v 0,甲船在该时间内沿水流方向的位移为(v cos 60°+v 0)H v sin 60°=2

3

3H 刚好到A

点.综上所述,A 、C 错误,B 、D 正确. 答案:BD 6.

图4-1-20

如图4-1-20所示,在距地面高为H =45 m 处,有一小球A 以初速度v 0=10 m/s 水平

抛出,与此同时,在A的正下方有一物块B也以相同的初速度v0同方向滑出,B与地面间的动摩擦因数为μ=0.5,A、B均可看做质点,空气阻力不计,重力加速度g取10 m/s2,求:

(1)A球从抛出到落地的时间和这段时间内的水平位移;

(2)A球落地时,A、B之间的距离.

解析:(1)根据H=1

2gt

2得t=3 s,由x=v

t得x=30 m.

(2)对于B球,根据F合=ma,F合=μmg,可得加速度大小a=5 m/s2.判断得在A落地

之前B已经停止运动,x A=x=30 m,由v20=2ax B x B=10 m,则Δx=x A-x B=20 m 答案:(1)3 s30 m(2)20 m

1.一个物体在相互垂直的恒力F1和F2作用下,由静止开始运动,经过一段时间后,突然撤去F2,则物体的运动情况将是()

A.物体做匀变速曲线运动B.物体做变加速曲线运动

C.物体做匀速直线运动D.物体沿F1的方向做匀加速直线运动

解析:物体在相互垂直的恒力F1和F2的作用下,由静止开始做匀加速直线运动,其速度方向与F合的方向一致,经过一段时间后,撤去F2,F1与v不在同一直线上,故物体

必做曲线运动;由于F1恒定,由a=F1

m,a也恒定,故应为匀变速曲线运动,选项A正

确.

答案:A

2.

图4-1-21

一小船在河中xOy平面内运动的轨迹如图4-1-21所示,下列判断正确的是() A.若小船在x方向始终匀速,则y方向先加速后减速

B.若小船在x方向始终匀速,则y方向先减速后加速

C.若小船在y方向始终匀速,则x方向先减速后加速

D.若小船在y方向始终匀速,则x方向先加速后减速

解析:小船运动轨迹上各点的切线方向为小船的合速度方向,若小船在x方向始终匀速,由合速度方向的变化可知,小船在y方向的速度先减小再增加.故A错误,B正确;若小船在y方向始终匀速,由合速度方向的变化可知,小船在x方向的速度先增加后减小,故C错误,D正确.

答案:BD

3.

图4-1-22

平抛运动可以分解为水平和竖直方向的两个直线运动,在同一坐标系中作出这两个分运动的v-t图线,如图4-1-22所示.若平抛运动的时间大于2t1,下列说法中正确的是

( )

A .图线2表示竖直分运动的v -t 图线

B .t 1时刻的速度方向与初速度方向夹角为30°

C .t 1时间内的竖直位移与水平位移之比为1∶2

D .2t 1时刻的速度方向与初速度方向夹角为60°

解析:平抛运动在竖直方向做自由落体运动,其竖直方向速度v 2=gt ,选项A 正确;t 1时刻水平速度与竖直速度相等,v 1=gt 1,合速度方向与初速度方向夹角为45°,选项B

错;t 1时间内的水平位移x =v 1t 1,竖直位移y =12gt 21=12v 1t 1=1

2

x ,选项C 正确;2t 1时刻竖直速度v 2′=2gt 1,tan α=v 2′/v 1=2,合速度方向与初速度方向夹角为α=arctan 2>60°,选项D 错. 答案:AC 4.

图4-1-23

如图4-1-23所示,在竖直放置的半圆形容器的中心O 点分别以水平初速度v 1、v 2抛出两个小球(可视为质点),最终它们分别落在圆弧上的A 点和B 点,已知OA 与OB 互

相垂直,且OA 与竖直方向成α角,则两小球初速度之比v 1

v 2

为( )

A .tan α

B .cos α

C .tan αtan α

D .cos αcos α

解析:两小球被抛出后都做平抛运动,设容器半径为R ,两小球运动时间分别为t A 、t B ,

对A 球:R sin α=v A t A ,R cos α=12at 2A ;对B 球:R cos α=v B t B ,R sin α=1

2at 2B

,解四式可

得:v 1

v 2

=tan αtan α,C 项正确.

答案:C 5.“5·12”汶川大地震,牵动了全国人民的心.一架装载救灾物资的直升飞机,以10 m/s

的速度水平飞行,在距地面180 m 的高度处,欲将救灾物资准确投放至地面目标,若不计空气阻力,g 取10 m/s 2,则( ) A .物资投出后经过6 s 到达地面目标 B .物资投出后经过18 s 到达地面目标

C .应在距地面目标水平距离60 m 处投出物资

D .应在距地面目标水平距离180 m 处投出物资 解析:本题考查平抛运动的规律.物资投出后做平抛运动,其落地所用时间由高度决定,

t = 2h

g =6 s ,A 项正确,B 项错误;抛出后至落地的水平位移为x =v t =60 m ,C 项正确,D 项错误. 答案:AC 6.

图4-1-24

在一个光滑水平面内建立平面直角坐标系xOy ,质量为1 k g 的物体原来静止在坐标原点

O (0,0),从t =0时刻起受到如图4-1-24所示随时间变化的外力作用,F y 表示沿y 轴方向的外力,F x 表示沿x 轴方向的外力,下列说法中正确的是( ) A .前2 s 内物体沿x 轴做匀加速直线运动

B .后2 s 内物体继续做匀加速直线运动,但加速度沿y 轴方向

C .4 s 末物体坐标为(4 m,4 m)

D .4 s 末物体坐标为(12 m,4 m)

解析:前2 s 内物体只受x 轴方向的作用力,故沿x 轴做匀加速直线运动,A 正确;其

加速度为a x =2 m/s 2,位移为x 1=1

2

a x t 2=4 m .后2 s 内物体沿x 轴方向做匀速直线运动,

位移为x 1=8 m ,沿y 轴方向做匀加速直线运动,加速度为a y =2 m/s 2,位移为y =1

2

a y t 2

=4 m ,故4 s 末物体坐标为(12 m,4 m),D 正确. 答案:AD 7.

图4-1-25

(2010·开封期末)如图4-1-25所示,取稍长的细杆,其一端固定一枚铁钉,另一端用羽毛做一个尾翼,做成A 、B 两只飞镖,将一软木板挂在竖直墙壁上,作为镖靶.在离墙壁一定距离的同一处,将它们水平掷出,不计空气阻力,两只飞镖插在靶上的状态如图4-1-25所示(侧视图).则下列说法中正确的是( ) A .A 镖掷出时的初速度比B 镖掷出时的初速度大 B .B 镖插入靶时的末速度比A 镖插入靶时的末速度大 C .B 镖的运动时间比A 镖的运动时间长 D .A 镖的质量一定比B 镖的质量大

解析:平抛运动可以分为水平方向的匀速直线运动和竖直方向的自由落体运动.即x =

v 0t ,y =1

2

gt 2.题目中两飞镖在同一处水平抛出,飞镖B 在竖直方向下落的距离大,说明

飞镖B 在空中运动的时间长.又因为两飞镖抛出时距墙壁的水平距离相同,所以飞镖B 的水平速度小.所以选项A 、C 正确;两飞镖的质量大小不能确定,所以选项D 错误;飞镖B 的水平速度比飞镖A 小,但飞镖B 的竖直速度比飞镖A 大,而末速度指的是水平速度和竖直速度的合速度.因此不能确定两飞镖的末速度,所以选项B 错误. 答案:AC 8.

图4-1-26

如图4-1-26所示,高为h =1.25 m 的平台上,覆盖一层薄冰,现有一质量为60 k g 的滑雪爱好者,以一定的初速度v 向平台边缘滑去,着地时的速度方向与水平地面的夹角为45°(取重力加速度g =10 m/s 2).由此可知正确的是( ) A .滑雪者离开平台边缘时的速度大小是5.0 m/s B .滑雪者着地点到平台边缘的水平距离是2.5 m C .滑雪者在空中运动的时间为0.5 s D .滑雪者着地的速度大小为5 2 m/s

解析:滑雪者平抛运动的时间t=2h

g=0.5 s,落地时的竖直速度v y=gt=5.0 m/s,

因着地速度与水平方向的夹角为45°,由v cos 45°=v0,v sin 45°=v y,可得滑雪者离开平台的水平速度v0=5.0 m/s,着地的速度大小为v=5 2 m/s,平抛过程的水平距离为x=v0t=2.5 m,故A、B、C、D均正确.

答案:ABCD

9.

图4-1-27

乒乓球在我国有广泛的群众基础,并有“国球”的美誉,中国乒乓球的水平也处于世界领先地位.现讨论乒乓球发球问题,已知球台长L、网高h,假设乒乓球反弹前后水平分速度不变,竖直分速度大小不变、方向相反,且不考虑乒乓球的旋转和空气阻力.若球在球台边缘O点正上方某高度处以一定的速度被水平发出(如图4-1-27所示),球恰好在最高点时越过球网,则根据以上信息可以求出()

A.发球的初速度大小B.发球时的高度

C.球从发出到第一次落在球台上的时间D.球从发出到对方运动员接住的时间

解析:由运动对称性可知,发球位臵距球台的高度等于网高h,发球点到球第一次落在

台上P1点的水平距离为L/4,根据平抛运动的规律h=1

2gt

2,L

4=v0t,由此两式可求出发

球时的速度v0和球从发出到第一次落在台上的时间t,所以A、B、C项均正确;但由于不知道对方运动员在何处接住球,故无法求出总时间,D项错误.

答案:ABC

10.

图4-1-28

(2010·西安质检)质量为0.2 k g的物体,其速度在x、y方向的分量v x、v y与时间t的关系如图4-1-28所示,已知x、y方向相互垂直,则()

A.0~4 s内物体做曲线运动

B.0~6 s内物体一直做曲线运动

C.0~4 s内物体的位移为12 m

D.4~6 s内物体的位移为2 5 m

答案:AD

11.

图4-1-29

如图4-1-29所示,一小球从平台上水平抛出,恰好落在临近平台的一倾角为α=53°的光滑斜面顶端,并刚好沿光滑斜面下滑,已知斜面顶端与平台的高度差h=0.8 m,g =10 m/s2,sin 53°=0.8,cos 53°=0.6,则

(1)小球水平抛出的初速度v0是多大?

(2)斜面顶端与平台边缘的水平距离s是多少?

(3)若斜面顶端高H=20.8 m,则小球离开平台后经多长时间t到达斜面底端?

解析:(1)由题意可知:小球落到斜面上并沿斜面下滑,说明此时小球速度方向与斜面平行,否则小球会弹起,所以v y =v 0tan 53°,v 2y =2gh ,则v y =4 m/s ,v 0=3 m/s. (2)由v y =gt 1得t 1=0.4 s ,x =v 0t 1=3×0.4 m =1.2 m. (3)小球沿斜面做匀加速直线运动的加速度a =g sin 53°,初速度v =5 m/s.则 H sin 53°=v t 2+12at 22,解得t 2=2 s .(或t 2

=-13

4 s 不合题意舍去) 所以t =t 1+t 2=2.4 s.

答案:(1)3 m/s (2)1.2 m (3)2.4 s 12.

图4-1-30

如图4-1-30所示,在距地面80 m 高的水平面上做匀加速直线运动的飞机上每隔1 s 依次放下a 、b 、c 三物体,抛出点a 、b 与b 、c 间距分别为45 m 和55 m ,分别落在水平地面上的A 、B 、C 处.求: (1)飞机飞行的加速度;

(2)刚放下b 物体时飞机的速度大小; (3)b 、c 两物体落地点BC 间距离.

解析:(1)飞机水平方向上,由a 经b 到c 做匀加速直线运动,由Δx =aT 2得,a =Δx

T

2=

bc -ab

T

2=10 m/s 2. (2)因位臵b 对应a 到c 过程的中间时刻,故有v b =ab +bc

2T =50 m/s.

(3)设物体落地时间为t ,由h =1

2gt 2得:t = 2h g =4 s ,BC 间距离为:BC =bc +v c t -v b t ,

又v c -v b =aT ,得:BC =bc +aTt =95 m. 答案:(1)10 m/s 2 (2)50 m/s (3)95 m

圆周运动

n f T

πππω222=== r rf T r

v ωππ===22

1、固定在同一根转轴上的转动物体,其角速度大小、周期、转速相等(共轴转动);用皮带传动、铰链转动、齿轮咬合都满足边缘线速度大小相等;

2、匀速圆周运动实例分析: ⑴火车转弯情况:外轨略高于内轨,使得所受重力和支持力的合力提供向心力,以减少火车轮缘对外轨的压力. ①当火车行使速率v 等于v 规定时,F 合=F 向心,内、外轨道对轮缘都没有侧压力. ②当火车行使速率v 大于v 规定时,F 合<F 向心,外轨道对轮缘都有侧压力. ③当火车行使速率v 小于v 规定时,F 合>F 向心,内轨道对轮缘都有侧压力. ⑵没有支承物的物体(如水流星)在竖直平面内做圆周运动过最高点情况:

①当

2

R v

m

mg =,即Rg v =,水恰能过最高点不洒出,这就是水能过最高点的临界条件;

②当2

R v m mg ,即Rg v

,水不能过最高点而洒出;

③当

2

R

v m

mg ,即Rg v

,水能过最高点不洒出,这时水的重力和杯对水的压力提供向心力.

圆周运动测试练习

1.关于匀速圆周运动的下述说法中正确的是 ( ) A.角速度不变 B.转速不变 C.是变速运动 D.是变加速曲线运动 2.甲、乙两个物体都做匀速圆周运动,其质量之比为1∶2,转动半径之比为1∶2,在相同时间里甲转过60°角,乙转过45°角。则它们的向心力之比为( ) A .1∶4 B .2∶3 C .4∶9 D .9∶16 3.如图所示,为一皮带传动装置,右轮半径为r ,a 为它边缘上一点;左侧是一轮轴,大轮半径为4r ,小轮半径为2r ,b 点在小轮上,到小轮中心的距离为r 。c 点和d 点分别位于小轮和大轮的边缘上。若传动过程中皮带不打滑,则 ( ) ①a 点和b 点的线速度大小相等 ②a 点和b 点的角速度大小相等 ③a 点和c 点的线速度大小相等 ④a 点和d 点的向心加速度大小相等 A.①③ B. ②③ C. ③④ D.②④ 4、机械手表中的秒针和分针都可以看作匀速转动,分针和秒针从重合至第二重合,中间经历的时间为:( ) A .1min B. 6059min C. 5960min D. 60 61 min 5.游客乘坐过山车,在圆弧轨道最低点处获得的向心加速度达到20m/s 2 ,g 取10m/s 2 ,那么此位置座椅对游客的作用力相当于游客重力的( ) A .1倍 B .2倍 C .3倍 D .4倍 6.如图所示,内壁光滑的圆锥筒的轴线垂直于水平面,圆锥筒固定不动,两个质量相同的小球A 和B 紧贴着内壁分别在图中所示的水平面内做匀速圆周运动,则 A .球A 的角速度一定大于球B 的角速度 B .球A 的线速度一定大于球B 的线速度 C .球A 的运动周期一定小于球B 的运动周期 D .球A 对筒壁的压力一定大于球B 对筒壁的压力 7.如图所示,把一小球放在玻璃漏斗中,晃动漏斗,可使小 球沿光滑的漏斗壁在某一水 平面内做匀速圆周运动,当稍加用力使小球运动速度增大时如果小球仍然保持匀速圆周运动,则小球的: 6题

圆周运动与平抛运动相结合的专题练习题(无答案)

1、质量为m的滑块从半径为R的半球形碗的边缘滑向碗底,过碗底时速度为v,若滑块与碗间的动摩擦因数为口,则在过碗底时滑块受到摩擦力的大小为( ) v2v2V2 A.(! mg B.(i m— C .口m(g+ ) D .口m(——g) R R R 2、质量为m的小球在竖直平面内的圆形轨道的内侧运动,经过最高点而不脱离轨道的 临界速度为v ,当小球以2v的速度经过最高点时,对轨道的压力大小是() A. 0 B . mg C . 3mg D . 5mg 3、质量为m的小球在竖直平面内的圆形轨道内侧运动,经过最高点时恰好不脱离轨道的临界速度为v o,则: (1)当小球以2v o的速度经过轨道最高点时,对轨道的压力为多少? (2)当小球以后吩的速度经过轨道最低点时.轨道对小球的弾力为事少? 4、如图所示,长度为L=1.0m的绳,系一小球在竖直面内做圆周运 动, 小球半径不计,小球在通过最低点的速度大小为v=20m/s,试求: (1)小球在最低点所受绳的拉力(2)小球在最低的向心加速度 小球的质量为M=5kg 1 5、如图所示,位于竖直平面上的丄圆弧轨道光滑,半径为R, OB沿竖直 4 方向,上端A距地面高度为H,质量为m的小球从A点由静止释放,到达 B点时的速度为,2gR,最后落在地面上C点处,不计空气阻力,求: (1) 小球刚运动到B点时的加速度为多大,对轨道的压力多大; (2) 小球落地点C与B点水平距离为多少。 6、质量为m的小球被一根细线系于O点,线长为L,悬点O距地面的高度为2L, 当小球被拉到与O点在同一水平面上的A点时由静止释放,球做圆周运动至最低 点B时,线恰好断裂,球落在地面上的C点,C点距悬点0的水平距离为S (不计 空气阻力).求: (1)小球从A点运动到B点时的速度大小; (2)悬线能承受的最大拉力; 7、如图,AB为竖直半圆轨道的竖直直径,轨道半径R=10m ,轨道A端与水平面 相切.光滑木块从水平面上以一定初速度滑上轨道,若木块经B点时,对轨道的 压力恰好为零,g取10m/s 2,求: (1)小球经B点时的速度大小;(2)小球落地点到A点的距离. 时,对管壁上部的压力为3mg , b通过最高点A时,对管壁下部的压力为 0.75mg ,求: (1) a球在最高点速度. (2) b球在最高点速度. (3) a、b两球落地点间的距离

匀速圆周运动专题

A 从动轮做顺时针转动 B.从动轮做逆时针转动 匀速圆周运动专题 从现行高中知识体系来看,匀速圆周运动上承牛顿运动定律,下接万有引力,因此在高一物理中占 据极其重要的地位,同时学好这一章还将为高二的带电粒子在磁场中的运动及高三复习中解决圆周运动 的综合问题打下良好的基础。 (一)基础知识 1. 匀速圆周运动的基本概念和公式 (1) 线速度大小,方向沿圆周的切线方向,时刻变化; (2) 角速度,恒定不变量; (3)周期与频率; (4) 向心力,总指向圆心,时刻变化,向心加速度 ,方向与向心力相同; (5) 线速度与角速度的关系为 ,、、、的关系为。所以在、、中若一个量确定,其余两个量 也就确定了, 而还和有关。 2. 质点做匀速圆周运动的条件 (1) 具有一定的速度; (2) 受到的合力(向心力)大小不变且方向始终与速度方向垂直。合力(向心力)与速度始终在一个确 定不变的平面内且一定指向圆心。 3. 匀速圆周运动的动力学特征 (1) 始终受合外力作用, 且合外力提供向心力, 其大小不变,始终指向圆心,因合力始终与速度垂直, 所以合力不做功. (2) 匀速圆周运动的动力学方程 根据题意,可以选择相关的运动学量如 v ,3, T , f 列出动力学方程;,,, 熟练掌握这些方程,会给解题带来方便. 4. 变速圆周运动的动力学特征 (1)受合外力作用,但合力并不总是指向圆心, 且合力的大小也是可以变化的, 故合力可对物体做功, 物体的速率也在变化. (2)合外力的分力(在某些位置上也可以是合外力 )提供向心力. 例题1?在图1中所示为一皮带传动装置,右轮的半径为 r , a 是它边缘上的一点,左侧是一轮轴,大轮 的半径为4r ,小轮的半径为2r 。b 点在小轮上,到小轮中心的距离为 的边缘上。若在传动过程中,皮带不打滑。则( ) A . a 点与b 点的线速度大小相等 B . a 点与b 点的角速度大小相等 C . a 点与c 点的线速度大小相等 D. a 点与d 点的向心加速度大小相等 说明:在分析传动装置的各物理量时,要抓住等量和不等量之间 如同轴各点的角速度相等,而线速度与半径成正比;通过皮带传 虑皮带打滑的前提下)或是齿轮传动,皮带上或与皮带连接的两轮边缘的各点及 齿轮上的各点线速度大小相等、角速度与半径成反比。 练习 1.如图所示的皮带转动装置,左边是主动轮,右边是一个轮轴, ,。假设在传动过 程中皮带不打滑,则皮带轮边缘上的 A 、B C 三点的角速度之比是 ___________ ;线 r 。 c 点和d 点分别于小轮和大轮 的关系。 动(不考 a r 4r d - 'Jr 图1

山东省枣庄市第八中学圆周运动同步单元检测(Word版 含答案)

一、第六章 圆周运动易错题培优(难) 1.如图,质量为m 的物块,沿着半径为R 的半球形金属壳内壁滑下,半球形金属壳竖直放置,开口向上,滑到最低点时速度大小为v ,若物体与球壳之间的摩擦因数为μ,则物体在最低点时,下列说法正确的是( ) A .滑块对轨道的压力为2 v mg m R + B .受到的摩擦力为2 v m R μ C .受到的摩擦力为μmg D .受到的合力方向斜向左上方 【答案】AD 【解析】 【分析】 【详解】 A .根据牛顿第二定律 2 N v F mg m R -= 根据牛顿第三定律可知对轨道的压力大小 2 N N v F F mg m R '==+ A 正确; BC .物块受到的摩擦力 2 N ()v f F mg m R μμ==+ BC 错误; D .水平方向合力向左,竖直方向合力向上,因此物块受到的合力方向斜向左上方,D 正确。 故选AD 。 2.如图所示,一个边长满足3:4:5的斜面体沿半径方向固定在一水平转盘上,一木块静止在斜面上,斜面和木块之间的动摩擦系数μ=0.5。若木块能保持在离转盘中心的水平距离为40cm 处相对转盘不动,g =10m/s 2,则转盘转动角速度ω的可能值为(设最大静摩擦力等于滑动摩擦力)( )

A .1rad/s B .3rad/s C .4rad/s D .9rad/s 【答案】BC 【解析】 【分析】 【详解】 根据题意可知,斜面体的倾角满足 3 tan 0.54 θμ= >= 即重力沿斜面的分力大于滑动摩擦力,所以角速度为零时,木块不能静止在斜面上;当转动的角速度较小时,木块所受的摩擦力沿斜面向上,当木块恰要向下滑动时 11cos sin N f mg θθ+= 2111sin cos N f m r θθω-= 又因为滑动摩擦力满足 11f N μ= 联立解得 1522 rad/s 11 ω= 当转动角速度变大,木块恰要向上滑动时 22cos sin N f mg θθ=+ 2 222sin cos N f m r θθω+= 又因为滑动摩擦力满足 22f N μ= 联立解得 252rad/s ω= 综上所述,圆盘转动的角速度满足 522 rad/s 2rad/s 52rad/s 7rad/s 11 ω≈≤≤≈ 故AD 错误,BC 正确。 故选BC 。 3.如图所示,两个啮合的齿轮,其中小齿轮半径为10cm ,大齿轮半径为20cm ,大齿轮中

圆周运动与平抛运动相结合的专题练习题(无答案)

1、质量为m 的滑块从半径为R 的半球形碗的边缘滑向碗底,过碗底时速度为v ,若滑块与碗间的动摩擦因数为μ,则在过碗底时滑块受到摩擦力的大小为( ) A .μmg B .μm R v 2 C .μm(g +R v 2) D .μm(R v 2 -g) 2、质量为m 的小球在竖直平面内的圆形轨道的内侧运动,经过最高点而不脱离轨道的临界速度为v ,当小球以2v 的速度经过最高点时,对轨道的压力大小是( ) A .0 B .mg C .3mg D .5mg 3、质量为m 的小球在竖直平面内的圆形轨道内侧运动,经过最高点时恰好不脱离轨道的临界速度为v 0,则: (1)当小球以2v 0的速度经过轨道最高点时,对轨道的压力为多少 4、如图所示,长度为L=的绳,系一小球在竖直面内做圆周运动,小球的质量为M=5kg ,小球半径不计,小球在通过最低点的速度大小为v =20m/s,试求: (1)小球在最低点所受绳的拉力 (2)小球在最低的向心加速度 5、如图所示,位于竖直平面上的4 1圆弧轨道光滑,半径为R ,OB 沿竖直方向,上端A 距地面高度为H ,质量为m 的小球从A 点由静止释放,到 达B 点时的速度为gR 2,最后落在地面上C 点处,不计空气阻力,求: (1)小球刚运动到B 点时的加速度为多大,对轨道的压力多大; (2)小球落地点C 与B 点水平距离为多少。 6、质量为m 的小球被一根细线系于O 点,线长为L ,悬点O 距地 面的高度为2L ,当小球被拉到与O 点在同一水平面上的A 点时由 静止释放,球做圆周运动至最低点B 时,线恰好断裂,球落在地 面上的C 点,C 点距悬点O 的水平距离为S (不计空气阻力).求:

《圆周运动》同步练习5

《圆周运动》同步练习 知识点一匀速圆周运动的概念 1 .匀速圆周运动属于 速度a 大小不变,方向时刻指向圆心. 答案 D 2. 以下关于匀速圆周运动的说法中正确的是 ( ). A. 匀速圆周运动是匀速运动 B. 匀速圆周运动是变速运动 C. 匀速圆周运动的线速度不变 D .匀速圆周运动的角速度不变 解析 匀速圆周运动速度的方向时刻改变,是一种变速运动, A 错、B 正确、C 错.匀速圆周运动中角速度不变,D 正确. 答案 BD 3. 关于做匀速圆周运动的物体,下列说法错误的是 ( ). A. 相等的时间里通过的路程相等 B. 相等的时间里通过的弧长相等 C. 相等的时间里发生的位移相等 D .相等的时间里转过的角度相等 解析匀速圆周运动是在相等的时间内转过的弧长相等的圆周运动,弧长即路 程,但不等于位移大小.弧长相等,所对应的角度也相等.故 A 、B 、D 正确,C 错误,应选C. A .匀速运动 B .匀加速运动 C.加速度不变的曲线运动 D .变加速曲线运动 解析 匀速圆周运动的速率不变, 但速度方向时刻改变,为变加速曲线运动,加 ().

答案 C 知识点二传动装置中物理量间的关系 4.如图2- 1-9所示为一种早期的自行车,这种不带链条传动的自行

解析 两个小球固定在同一根杆的两端一起转动,它们的角速度相等. 设轴心O 到小球A 的距离为X ,因两小球固定在同一转动杆的两端,故两小球做圆 V V A V B V A I 周运动的角速度相同,半径分别为x 、I — X.根据3=「有X =| — X,解得X= VA + V B , 正确选项为B. 答案 B 6. 如图2— 1-11所示,汽车在公路上行驶一般不打滑,轮子转一周,汽车向前行驶 的 距离等于车轮的周长.某国产轿车的车轮半径约为 30 cm,当该型号的轿车在 高速公路上行驶时,驾驶员面前速率计的指针指在 “ 120km/h”上,可估算出该 车轮的转速约为 (). 车前轮的直径很大,这样的设计在当时主要是为了 ( )? A ?提高速度 C.骑行方便 B ?提高稳定性 D ?减小阻力 图 2— 1 — 9 解析 在骑车人脚蹬车轮转速一定的情况下, 据公式 V =3知,轮子 半径越大,车轮边缘的线速度越大,车行驶得也就越快,故 A 选项正确. 答案 A 5.如图2- 1— 10所示,两个小球固定在一根长为I 的杆的两端,绕 杆上的O 点做圆周运动.当小球A 的速度为VA 时,小球B 的速度 为VB ,则轴心O 到小球A 的距离是 ( ). JL o 图 2— 1— 10 A. VA (VA + V B )I I B ?VA + VB C. (V A +V B ) I V A D. (VA + VB ) V B 图 2 — 1—

(完整word版)圆周运动单元测试

新人教版高中物理必修二同步试题 第五章曲线运动 圆周运动、向心加速度、向心力 单元测试题 【试题评价】 一、选择题 1.质量相同的两个小球,分别用L和2L的细绳悬挂在天花板上。分别拉起小球使线伸直呈水平状态,然后轻轻释放,当小球到达最低位置时:() A.两球运动的线速度相等 B.两球运动的角速度相等 C.两球的向心加速度相等 D.细绳对两球的拉力相等 2.对于做匀速圆周运动的质点,下列说法正确的是:() A.根据公式a=V2/r,可知其向心加速度a与半径r成反比 B.根据公式a=ω2r,可知其向心加速度a与半径r成正比 C.根据公式ω=V/r,可知其角速度ω与半径r成反比 D.根据公式ω=2πn,可知其角速度ω与转数n成正比 3、下列说法正确的是:() A. 做匀速圆周运动的物体处于平衡状态 B. 做匀速圆周运动的物体所受的合外力是恒力 C. 做匀速圆周运动的物体的速度恒定 D. 做匀速圆周运动的物体的加速度大小恒定 4.物体做圆周运动时,关于向心力的说法中欠准确的是: ( ) ①向心力是产生向心加速度的力②向心力是物体受到的合外力③向心力的作用是改变物体速度的方向④物体做匀速圆周运动时,受到的向心力是恒力 A.① B.①③ C.③ D.②④ 5.做圆周运动的两个物体M和N,它们所受的向心力F与轨道半径置间的关系如图1—4所示,其中N的图线为双曲线的一个分支,则由图象可知: ( ) A.物体M、N的线速度均不变 B.物体M、N的角速度均不变 C.物体M的角速度不变,N的线速度大小不变 D.物体N的角速度不变,M的线速度大小不变 6.长度为L=0.50 m的轻质细杆OA,A端有一质量为m=3.0 k g的小 球,如图5-19所示,小球以O点为圆心,在竖直平面内做圆周运动, 通过最高点时,小球的速率是v=2.0 m/s, g取10 m/s2,则细杆此时受到:( ) A.6.0 N拉力 B.6.0 N压力

高考专题复习:圆周运动(精选.)

圆周运动 1.物体做匀速圆周运动的条件: 匀速圆周运动的运动条件:做匀速圆周运动的物体所受合外力大小不变,方向总是和速度方向垂直并指向圆心。 2.描述圆周运动的运动学物理量 (1)圆周运动的运动学物理量有线速度v 、角速度ω、周期T 、转速n 、向心加速度a 等。它们之间的关系大多是用半径r 联系在一起的。如:T r r v πω2= ?=,2 2224T r r r v a πω===。要注意转速n 的单位为r/min ,它与周期的关系为n T 60=。 (2)向心加速度的表达式中,对匀速圆周运动和非匀速圆周运动均适用的公式有: ωωv r r v a ===22 ,公式中的线速度v 和角速度ω均为瞬时值。只适用于匀速圆周运动 的公式有:2 24T r a π= ,因为周期T 和转速n 没有瞬时值。 例题1.在图3-1中所示为一皮带传动装置,右轮的半径为r ,a 是它边缘上的一点,左侧是一轮轴,大轮的半径为4r ,小轮的半径为2r 。 b 点在小轮上,到小轮中心的距离为r 。 c 点和 d 点分别于小轮和大轮的边缘上。若在传动过程中,皮带不打滑。则( ) A .a 点与b 点的线速度大小相等 B .a 点与b 点的角速度大小相等 C .a 点与c 点的线速度大小相等 D .a 点与d 点的向心加速度大小相等 练习 1.如图3-4所示的皮带转动装置,左边是主动轮,右边是一个轮轴,2:1:=c A R R ,3:2:=B A R R 。假设在传动过程中皮带不打滑,则皮带轮边缘上的A 、B 、C 三点的角速度之比是 ;线速度之比是 ;向心加速度之比是 。 2.图示为某一皮带传动装置。主动轮的半径为r 1,从动轮的半径为r 2。已知主动轮做顺时针转动,转速为n ,转动过程中皮带不打 图3-1 4r 2r r r a b c d 图3-4

圆周运动测试题

必修2第二章圆周运动测试题 班级 姓名 _ _____________ 总分 _____________ 本题共12小题,每小题6分,共72分。在每小题给出的四个选项中,有的小题只有 一个正确选项,有的小题可能不止一个正确选项,全部选对的得6分,选对但不全的得 分,有错选或不答的得 0分。 1.关于匀速圆周运动的下述说法中正确的是 A. 角速度不变 B. 线速度不变 下列说法中,正确的是( ) 物体在恒力作用下不可能作曲线运动 物体在变力作用下不可能作直线运动 C. ( 是匀速运动 D. ) 是变速运动 2 . A. C. 3 . .物体在恒力作用下不可能作圆周运动 .物体在变力作用下不可能作曲线运动 如图1所示,内壁光滑的圆锥筒的轴线垂直于水平面,圆锥筒固定不动,两个质量相同 的小球A 和B 紧贴着内壁分别在图中所示的水平面内做匀速圆周运动,则( 球A 的角速度一定大于球 B 的角速度 球A 的线速度一定大于球 B 的线速度 球A 的运动周期一定小于球 B 的运动周期 球A 对筒壁的压力一定大于球 B 对筒壁的压力 A. B. C. D. 图1 4.正常走动的钟表,其时针和分针都在做匀速转动. 下列关系中正确的有( A. 时针和分针角速度相同 B. 分针角速度是时针角速度的12倍 C. 时针和分针的周期相同 D .分针的周期的时针周期的12倍 5 .有两人坐在椅子上休息, 他们分别在中国的大连和广州, 关于他们具有的线速度和角速 度相比较( ) A .在广州的人线速度大,在大连的人角速度大. B. 在大连的人线速度大,在广州的人角速度大. C. 两处人的线速度和角速度一样大 D .两处人的角速度一样大,在广州处人的线速度比在大连处人的线速度大 6.小球m 用长为L 的悬线固定在 0点,在0点正下方L/2处有一个光滑钉子 C ,如图2所 示,今把小球拉到悬线成水平后无初速度地释放, A .小球的速度突然增大 B. 小球的角速度突然增大 C .小球的向心加速度突然增大 D .悬线的拉力突然增大 当悬线成竖直状态且与钉子相碰时 ( ) 7 .用材料和粗细相同、 长短不同的两段绳子, 各栓一个质量相同的小球在光滑水平面上做 匀速圆周运动,那么 ( ) A .两个球以相同的线速度运动时,长绳易断 B.两个球以相同的角速度运动时,长绳易断 C .两个球以相同的周期运动时,长绳易断 D .无论如何,长绳易断

曲线运动、平抛运动、圆周运动练习题

《曲线运动》练习题 一选择题 1. 关于运动的合成的说法中,正确的是() A.合运动的位移等于分运动位移的矢量和 B.合运动的时间等于分运动的时间之和 C.合运动的速度一定大于其中一个分运动的速度 D.合运动的速度方向与合运动的位移方向相同 2. 物体在几个力的作用下处于平衡状态,若撤去其中某一个力而其余力的性质(大小、方向、作用点)不变,物体的运动情况可能是() A.静止 B.匀加速直线运动 C.匀速直线运动 D.匀速圆周运动 3.某质点做曲线运动时() A.在某一点的速度方向是该点曲线的切线方向 B.在任意时间,位移的大小总是大于路程 C.在某段时间里质点受到的合外力可能为零 D.速度的方向与合外力的方向必不在同一直线上 5.一个质点在恒力F作用下,在xOy平面从O点运动到A点的轨迹如图所示,且在A点的速度方向与x轴平行,则恒力F的方向不可能() A.沿x轴正方向 B.沿x轴负方向 C.沿y轴正方向 D.沿y轴负方向 6在光滑水平面上有一质量为2kg的物体,受几个共点力作用做匀速直线运动。现突然将与速度反方向的2N力水平旋转90o,则关于物体运动情况的叙述正确的是() A. 物体做速度大小不变的曲线运动 B. 物体做加速度为在2m/s2的匀变速曲线运动 C. 物体做速度越来越大的曲线运动 D. 物体做非匀变速曲线运动,其速度越来越大 7. 做曲线运动的物体,在运动过程中一定变化的物理量是() A.速度 B.加速度 C.速率 D.合外力 9 关于曲线运动,下面说确的是() A. 物体运动状态改变着,它一定做曲线运动 B. 物体做曲线运动,它的运动状态一定在改变 C. 物体做曲线运动时,它的加速度的方向始终和速度的方向一致 D. 物体做曲线运动时,它的加速度的方向始终和所受到的合外力方向一致 10 物体受到几个力的作用而处于平衡状态,若再对物体施加一个恒力,则物体可能做() A. 静止或匀速直线运动 B. 匀变速直线运动 C. 曲线运动 D. 匀变速曲线运动 14.关于物体的运动,下列说法中正确的是() A. 物体做曲线运动时,它所受的合力一定不为零 B. 做曲线运动的物体,有可能处于平衡状态 C. 做曲线运动的物体,速度方向一定时刻改变 D. 做曲线运动的物体,所受的合外力的方向有可能与速度方向在一条直线上 17.加速度不变的运动( ) A.可能是直线运动B.可能是曲线运动C.可能是匀速圆周运动D.一定是匀变速运动 18.如图所示,蜡块可以在竖直玻璃管的水中匀速上升,若在蜡块从A点开始匀速上升的同时,玻璃管从AB位置水 A.直线P B.曲线Q C.曲线R D.三条轨迹都有可能

高一物理下,圆周运动复习知识点全面总结

匀速圆周运动专题 从现行高中知识体系来看,匀速圆周运动上承牛顿运动定律,下接万有引力,因此在高一物理中占据极其重要的地位,同时学好这一章还将为高二的带电粒子在磁场中的运动及高三复习中解决圆周运动的综合问题打下良好的基础。 (一)基础知识 1. 匀速圆周运动的基本概念和公式 (1)线速度大小,方向沿圆周的切线方向,时刻变化; (2)角速度,恒定不变量;(3)周期与频率; (4)向心力,总指向圆心,时刻变化,向心加速度,方向与向心力相同; (5)线速度与角速度的关系为,、、、的关系为。所以在、、中若一个量确定,其余两个量也就确定了,而还和有关。 2. 质点做匀速圆周运动的条件 (1)具有一定的速度; (2)受到的合力(向心力)大小不变且方向始终与速度方向垂直。合力(向心力)与速度始终在一个确定不变的平面内且一定指向圆心。 3. 向心力有关说明 向心力是一种效果力。任何一个力或者几个力的合力,或者某一个力的某个分力,只要其效果是使物体做圆周运动的,都可以认为是向心力。做匀速圆周运动的物体,向心力就是物体所受的合力,总是指向圆心;做变速圆周运动的物体,向心力只是物体所受合外力在沿着半径方向上的一个分力,合外力的另一个分力沿着圆周的切线,使速度大小改变,所以向心力不一定是物体所受的合外力。 (二)解决圆周运动问题的步骤 1. 确定研究对象; 2. 确定圆心、半径、向心加速度方向; 3. 进行受力分析,将各力分解到沿半径方向和垂直于半径方向; 4. 根据向心力公式,列牛顿第二定律方程求解。基本规律:径向合外力提供向心力 (三)常见问题及处理要点 1. 皮带传动问题 例1:如图1所示,为一皮带传动装置,右轮的半径为r,a是它边缘上的一点,左侧是一轮轴,大轮的半径为4r,小轮的半径为2r,b点在小轮上,到小轮中心的距离为r,c点和d点分别位于小轮和大轮的边缘上,若在传动过程中,皮带不打滑,则() A. a点与b点的线速度大小相等 B. a点与b点的角速度大小相等 C. a点与c点的线速度大小相等 D. a点与d点的向心加速度大小相等

圆周运动测试题

圆周运动测试题 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT

必修2第二章圆周运动测试题 班级 ____ 姓名 ___ 总分____________ 一、 本题共12小题,每小题6分,共72分。在每小题给出的四个选项中,有的小题 只有一个正确选项,有的小题可能不止一个正确选项,全部选对的得6分,选对但不 全的得3分,有错选或不答的得0分。 1.关于匀速圆周运动的下述说法中正确的是 ( ) A.角速度不变 B.线速度不变 C.是匀速运动 D.是变速运动 2.下列说法中,正确的是( ) A .物体在恒力作用下不可能作曲线运动 B .物体在恒力作用下不可能作圆周运 动 C .物体在变力作用下不可能作直线运动 D .物体在变力作用下不可能作曲线运 动 3.如图1所示,内壁光滑的圆锥筒的轴线垂直于水平面,圆锥筒固定不动, 两个质量相同的小球A 和B 紧贴着内壁分别在图中所示的水平面内做匀速圆周 运动,则( ) A .球A 的角速度一定大于球 B 的角速度 B .球A 的线速度一定大于球B 的线速度 C .球A 的运动周期一定小于球B 的运动周期 D .球A 对筒壁的压力一定大于球B 对筒壁的压力 4.正常走动的钟表,其时针和分针都在做匀速转动.下列关系中正确的有( ) A .时针和分针角速度相同 图1

B.分针角速度是时针角速度的12倍 C.时针和分针的周期相同 D.分针的周期的时针周期的12倍 5.有两人坐在椅子上休息,他们分别在中国的大连和广州,关于他们具有的线速度和角速度相比较() A.在广州的人线速度大,在大连的人角速度大. B.在大连的人线速度大,在广州的人角速度大. C.两处人的线速度和角速度一样大 D.两处人的角速度一样大,在广州处人的线速度比在大连处人的线速度大 6.小球m用长为L的悬线固定在O点,在O点正下方L/2处有一个光滑钉子C,如图2所示,今把小球拉到悬线成水平后无初速度地释放,当悬线成竖直状态且与钉子相碰时() A.小球的速度突然增大 B.小球的角速度突然增大 C.小球的向心加速度突然增大 D.悬线的拉力突然增大 图 7.用材料和粗细相同、长短不同的两段绳子,各栓一个质量相同的小球在光滑水平面上做匀速圆周运动,那么() A.两个球以相同的线速度运动时,长绳易断 B.两个球以相同的角速度运动时,长绳易断 C.两个球以相同的周期运动时,长绳易断 D.无论如何,长绳易断

平抛与圆周运动综合

平抛与圆周运动综合 【方法归纳】所谓平抛与圆周运动综合是指物体先做圆周运动后做平抛运动或先做平抛运动后做竖直面内的圆周运动。解答此类题的策略是:根据物体的运动过程,分别利用平抛运动的规律和圆周运动的规律列方程解得。 例34.(2010重庆理综)晓明站在水平地面上,手握不可伸长的轻绳一端,绳的另一端系有质量为m 的小球,甩动手腕,使球在竖直平面内做圆周运动,当 球某次运动到最低点时,绳突然断掉。球飞离水平距离d 后 落地,如图9所示,已知握绳的手离地面高度为d ,手与球 之间的绳长为3d/4,重力加速度为g ,忽略手的运动半径和 空气阻力。 (1) 求绳断时球的速度大小v 1,和球落地时的速度大小 v 2。 (2) 问绳能承受的最大拉力多大? (3) 改变绳长,使球重复上述运动。若绳仍在球运动到最低点时断掉,要使球抛出的水平距离最大,绳长应为多少?最大水平距离为多少? 【解析】(1)设绳断后球飞行时间为t ,由平抛运动规律,有 竖直方向 41d=2 1gt 2 水平方向d=v 1t , 联立解得v 1=gd 2。 由机械能守恒定律,有 21mv 22=2 1mv 12+mg (d -3d /4) 解得v 2=gd 25。 (2) 设绳能承受的拉力大小为T ,这也是球受到绳的最大拉力。 球做圆周运动的半径为R =3d/4 对小球运动到最低点,由牛顿第二定律和向心力公式有T-mg=m v 12/R , 联立解得T=3 11mg 。 (3) 设绳长为L ,绳断时球的速度大小为v 3,绳承受的最大拉力不变,有 T-mg=m v 32/L

解得v 3=L g 3 8。 绳断后球做平抛运动,竖直位移为d-L ,水平位移为x ,飞行时间为t 1,根据 平抛运动规律有d-L =2 1gt 12,x = v 3 t 1 联立解得x =4()3 L d L -. 当L=d /2时,x 有极大值,最大水平距离为x max = 332d . 【点评】此题将竖直面内的圆周运动和平抛运动有机结合,涉及的知识点由平抛运动规律、牛顿运动定律、机械能守恒定律、极值问题等,考查综合运用知识能力。 衍生题1.如图所示,一质量为M =5.0kg 的平板车静止在光滑水平地面上,平板车的上表面距离地面高h =0.8m ,其右侧足够远处有一固定障碍物A 。另一质量为m =2.0kg 可视为质点的滑块,以v 0=8m/s 的水平初速度从左端滑上平板车,同时对平板车施加一水平向右、大小为5N 的恒力F 。当滑块运动到平板车的最右端时,两者恰好相对静止。此时车去恒力F 。当平板车碰到障碍物A 时立即停止运动,滑块水平飞离平板车后,恰能无碰撞地沿圆弧切线从B 点切入光滑竖直圆弧轨道,并沿轨道下滑。已知滑块与平板车间的动摩擦因数μ=0.5,圆弧半径为R =1.0m ,圆弧所对的圆心角∠BOD =θ=106°,取g =10m/s 2,sin53°=0.8,cos53°=0.6,求: (1)平板车的长度。 (2)障碍物A 与圆弧左端B 的水平距离。 (3)滑块运动圆弧轨道最低点C 时对轨道压力的大小。

(完整word版)高考专题复习:圆周运动

1、如图所示,在倾角α=30°的光滑斜 面上,有一根长为L =0.8 m 的细绳,一端固定在O 点,另一端系一质量为m =0.2 kg 的小球,小球沿斜面做圆周运动.若要小球能通过最高点A ,则小球在最低点B 的最小速度是 ( ) A .2 m/s B .210 m/s C .2 5 m/ s D .2 2 m/s 3、如图所示,质量m=0.1kg 的小球在细绳的拉力作用下在竖直面内做半径为r=0.2m 的 圆周运动,已知小球在最高点的速率为v =2m/s ,g 取10m/s 2,试求: (1)小球在最高点时的细绳的拉力T 1=? (2)小球在最低点时的细绳的拉力T 2=? 1、半径为m R 5.0=的管状轨道,有一质量为kg m 0.3=的小球在管状轨道内部做圆周运动,通过最高点时小球的速率是s m /2,2 /10s m g =,则( ) A. 外轨道受到N 24的压力 B. 外轨道受到N 6的压力 C. 内轨道受到N 24的压力 D. 内轨道受到N 6的压力 2、如图所示,轻杆的一端有一个小球,另一端有光滑的固定轴O,现给球一初速度,使球和杆一起绕O 轴在竖直面内转动,不计空气阻力,用F 表示球到达最高点时杆对小球的作用力,则F ( ) A.一定是拉力 B.一定是推力 C.一定等于零 D.可能是拉力,可能是推力,也可能等于零 2、如图所示,小球A 质量为m ,固定在轻细直杆L 的一端,并随杆一起绕杆的另一端O 点在竖直平面内做圆周运动。如果小球经过最高位置时,杆对球的作用力为拉力,拉力大小等于球的重力。求:(1)球的速度大小。 (2)当小球经过最低点时速度为gL 6,杆对球的作用力大小和球的向心加速度大小。 1、图所示的圆锥摆中,小球的质量m=50g ,绳长为1m ,小球做匀速运动的半径r=0.2m ,求: (1)绳对小球的拉力大小。 (2)小球运动的周期T 。 4.(2009·广东高考)如图所示,一个竖直放置的圆锥筒可绕其中心轴OO ′转动,筒内壁粗糙,筒口半径和筒高分别为R 和H ,筒内壁A 点的高度为筒高的一半.内壁上有一质量为m 的小物块.求: (1)当筒不转动时,物块静止在筒壁A 点受到的摩擦力和支持力的大小; (2)当物块在A 点随筒做匀速转动,且其所受到的摩擦力为零时,筒转动的角速度. 5、有一种叫“飞椅”的游乐项目,示意图如图所示,长为L 的钢绳一端系着座椅,另一端固定在半径为r 的水平转盘边缘.转盘可绕穿过其中心的竖直轴转动.当转盘以角速度ω匀速转动时,钢绳与转轴在同一竖直平面内,与竖直方向的夹角为θ.不计钢绳的重力,求转盘转动的角速度ω与夹角θ的关系.

匀速圆周运动的多解问题专题辅导不分版本

匀速圆周运动的多解问题 匀速圆周运动的多解问题常涉及两个物体的两种不同的运动,其一做匀速圆周运动,另一个物体做其他形式的运动。因此,依据等时性建立等式求解待求量是解答此类问题的基本思路。特别需要提醒同学们注意的是,因匀速圆周运动具有周期性,使得前一个周期中发生的事件在后一个周期中同样可能发生,这就要求我们在表达做匀速圆周运动物体的运动时间时,必须把各种可能都考虑进去,以下几例运算结果中的自然数“n ”正是这一考虑的数学外化。 例1:如图1所示,直径为d 的圆筒绕中心轴做匀速圆周运动,枪口发射的子弹速度为v ,并沿直径匀速穿过圆筒。若子弹穿出后在圆筒上只留下一个弹孔,则圆筒运动的角速度为多少 解析:子弹穿过圆筒后作匀速直线运动,当它再次到达圆筒壁时,若原来的弹孔也恰好运动到此处,则圆筒上只留下一个弹孔。在子弹运动位移为d 的时间内,圆筒转过的角度为2n ππ+,其中n =0123,,,…,即 d v n =+2ππω 解得角速度为:ωππ= +=20123n d v n (),,,… 例2:质点P 以O 为圆心做半径为R 的匀速圆周运动,如图2所示,周期为T 。当P 经过图中D 点时,有一质量为m 的另一质点Q 受到力F 的作用从静止开始作匀加速直线运动。为使P 、Q 两质点在某时刻的速度相同,则F 的大小应满足什么条件 解析:速度相同包括大小相等和方向相同。由质点P 的旋转情况可知,只有当P 运动到圆周上的C 点时P 、Q 速度方向才相同。即质点P 应转过()n + 34周(n =0123,,,…),经历的时间 t n T n =+=()()()3 401231,,,… 质点P 的速度v R T = 22π() 在同样的时间内,质点Q 做匀加速直线运动,速度应达到v ,由牛顿第二定律及速度公式得 v =F m t ()3 联立以上三式,解得:F mR n T n = +=84301232π()(),,,… 例3:如图3所示,在同一竖直面内A 物体从a 点做半径为R 的匀速圆周运动,同时B 物体从圆心O 处自由落下,

《圆周运动》单元测试试题

《圆周运动》单元试题

————————————————————————————————作者:————————————————————————————————日期: 2

高一物理《圆周运动》单元测试题 (全卷共100分) 一、单项选择题:本大题共20小题,每小题3分,共60分。在每小题列出的四个选项中,只 有一项符合题目要求。 1. 下列哪些物体的运动不可以 ...看作是圆周运动() A. 汽车在圆拱桥顶上运动 B. 投出的篮球在空中的运动 C. 电子绕原子核高速旋转 D. 风扇转动时叶片上的任一点 2. 下列说法正确的是() A. 匀速圆周运动是一种匀速运动 B. 匀速圆周运动是一种匀变速运动 C. 匀速圆周运动是一种变加速运动 D. 匀速圆周运动是一种平衡状态 3. 在匀速圆周运动中,下列物理量中变化的是( ) A.角速度B.线速度C.周期D.频率 4. 关于匀速圆周运动的角速度与线速度,下列说法中不正确 ...的是() A. 半径一定时,角速度与线速度成正比 B. 半径一定时,角速度与线速度成反比 C. 线速度一定时,角速度与半径成反比 D. 角速度一定时,线速度与半径成正比 5. 如图所示,细杆上固定两个小球a和b,杆绕O点做匀速转动, 下列说法正确的是() A. a、b两球角速度相等 B. a、b两球线速度相等 C. a球的线速度比b球的大 D. a球的角速度比b球的大 6. 下列关于做匀速圆周运动的物体所受的向心力的说法中,正确的是() A. 物体除其他的力外还要受到一个向心力的作用 B. 向心力是一个恒力 C. 物体所受的合外力提供向心力 D. 向心力的大小一直在变化 7. 关于向心力,以下说法正确的是() A. 向心力是物体所受重力、弹力、摩擦力以外的一种新力 B. 向心力就是做圆周运动的物体所受的合外力 C. 向心力是线速度方向变化的原因 D. 只要物体受到向心力的作用,物体就会做匀速圆周运动 8. 如图所示,在匀速转动的圆筒内壁上紧靠着一个物体一起转动, 物体所受向心力由以下哪个力来提供() A. 重力 B. 弹力 C. 静摩擦力 D. 滑动摩擦力 9. 如图所示,用细线吊着一个质量为m的小球,使小球在水平面内做圆 锥摆运动,关于这个小球的受力情况,下列说法中正确的是() A. 受重力、拉力、向心力 B. 受重力、拉力 C. 只受重力 3

匀速圆周运动的多解问题 专题辅导 不分版本

匀速圆周运动的多解问题 郭建 白头然 匀速圆周运动的多解问题常涉及两个物体的两种不同的运动,其一做匀速圆周运动,另一个物体做其他形式的运动。因此,依据等时性建立等式求解待求量是解答此类问题的基本思路。特别需要提醒同学们注意的是,因匀速圆周运动具有周期性,使得前一个周期中发生的事件在后一个周期中同样可能发生,这就要求我们在表达做匀速圆周运动物体的运动时间时,必须把各种可能都考虑进去,以下几例运算结果中的自然数“n ”正是这一考虑的数学外化。 例1:如图1所示,直径为d 的圆筒绕中心轴做匀速圆周运动,枪口发射的子弹速度为v ,并沿直径匀速穿过圆筒。若子弹穿出后在圆筒上只留下一个弹孔,则圆筒运动的角速度为多少? 解析:子弹穿过圆筒后作匀速直线运动,当它再次到达圆筒壁时,若原来的弹孔也恰好运动到此处,则圆筒上只留下一个弹孔。在子弹运动位移为d 的时间内,圆筒转过的角度为2n ππ+,其中n =0123,,,…,即 d v n =+2ππω 解得角速度为:ωππ= +=20123n d v n (),,,… 例2:质点P 以O 为圆心做半径为R 的匀速圆周运动,如图2所示,周期为T 。当P 经过图中D 点时,有一质量为m 的另一质点Q 受到力F 的作用从静止开始作匀加速直线运动。为使P 、Q 两质点在某时刻的速度相同,则F 的大小应满足什么条件? 解析:速度相同包括大小相等和方向相同。由质点P 的旋转情况可知,只有当P 运动到圆周上的C 点时P 、Q 速度方向才相同。即质点P 应转过()n +34周(n =0123,,,…),经历的时间 t n T n =+=()()()3401231,,,… 质点P 的速度v R T = 22π() 在同样的时间内,质点Q 做匀加速直线运动,速度应达到v ,由牛顿第二定律及速度公式得 v =F m t ()3 联立以上三式,解得:F mR n T n = +=84301232π()(),,,…

(推荐)高一物理必修2圆周运动测试题

高一物理必修2圆周运动测试题 第Ⅰ卷(选择题) 一.选择题 (请将你认为正确的答案代号填在Ⅱ卷的答题栏中,本题共12小题) 1. 冰面对滑冰运动员的最大摩擦力为其重力的k 倍,在水平冰面上沿半径为R 的圆周滑行的运动员,若仅依靠摩擦力来提供向心力而不冲出圆形滑道,其运动的速度应满足 A.v kRg ≥ B.v kRg ≤ C.2v kRg ≤ D./2v kRg ≤ 2. 高速行驶的竞赛汽车依靠摩擦力转弯是有困难的,所以竞赛场地的弯道处做成斜坡,如果弯道半径为r ,斜坡和水平面成角,则汽车完全不依靠摩擦力转弯时的速度大小为. A.gr sin B.gr cos C.αtan gr D.αcot gr 3. 如图所示,ab 、cd 是竖直平面内两根固定的光滑细杆,a 、b 、c 、d 位于同一圆周上,b 点为圆周的最低点,c 点为圆周的最高点,若每根杆上都套着一个小滑环(图中未画出),将两滑杆同时从a 、c 处由静止释放,用t 1、t 2分别表示滑环从a 到b 、c 到d 所用的时间,则 A.t 1=t 2 B.t 1>t 2 C.t 1

高中物理实验:圆周运动

高中物理实验:圆周运动 实验仪器:自行车 教师操作:让学生观察自行车后轮、齿轮、脚踏板转动现象。 实验结论:皮带、齿轮传动——线速度相同;同轴转动——角速度相同。 向心力 实验仪器:向心力实验器(J2131)、弹簧测力计、停表、游标卡尺 向心力实验器: 指针较长,圆柱体的少量位移经过杠杆的放大,使显示更为明显。但指针有质量,同时,转动时会做离心运动,所以制造时加了指针配量,使指针系统成静平衡。再通过适当选择摆杆的质量维持指针系统的动平衡。因而实验时无需考虑指针的质量和它可能做离心运动的影响。 转动轴由立柱上的钢珠支撑,转动轴下部有定位锥套。实验前调整配重的位置时应将定位锥套退下,调整后将套重新推向上。 构造 游标卡尺是工业上常用的测量长度的仪器,它由尺身及能在尺身上滑动的游标组成。若从背面看,游标是一个整体。游标与尺身之间有一弹簧片(图中未能画出),利用弹簧片的弹力使游标与尺身靠紧。游标上部有一紧固螺钉,可将游标固定在尺身上的任意位置。尺

身和游标都有量爪,利用内测量爪可以测量槽的宽度和管的内径,利用外测量爪可以测量零件的厚度和管的外径。 深度尺与游标尺连在一起,可以测槽和筒的深度。 尺身和游标尺上面都有刻度。以准确到0.1毫米的游标卡尺为例,尺身上的最小分度是1毫米,游标尺上有10个小的等分刻度,总长9毫米,每一分度为0.9毫米,比主尺上的最小分度相差0.1毫米。量爪并拢时尺身和游标的零刻度线对齐,它们的第一条刻度线相差0.1毫米,第二条刻度线相差0.2毫米,……,第10条刻度线相差1毫米,即游标的第10条刻度线恰好与主尺的9毫米刻度线对齐。 使用 用软布将量爪擦干净,使其并拢,查看游标和主尺身的零刻度线是否对齐。如果对齐就可以进行测量:如没有对齐则要记取零误差:游标的零刻度线在尺身零刻度线右侧的叫正零误差,在尺身零刻度线左侧的叫负零误差(这件规定方法与数轴的规定一致,原点以右为正,原点以左为负)。 测量时,右手拿住尺身,大拇指移动游标,左手拿待测外径(或内径)的物体,使待测物位于外测量爪之间,当与量爪紧紧相贴时,即可读数 读数 读数时首先以游标零刻度线为准在尺身上读取毫米整数,即以毫米为单位的整数部分。然后看游标上第几条刻度线与尺身的刻度线对齐,如第6条刻度线与尺身刻度线对齐,则小数部分即为0.6毫米

相关文档
相关文档 最新文档