文档库 最新最全的文档下载
当前位置:文档库 › 111高考物理专题复习精品:光学波粒二象性原子(学生版)111

111高考物理专题复习精品:光学波粒二象性原子(学生版)111

111高考物理专题复习精品:光学波粒二象性原子(学生版)111
111高考物理专题复习精品:光学波粒二象性原子(学生版)111

光学(附参考答案)

第一节 光的直线传播.光的反射

一、光源

1.定义:能够自行发光的物体.

2.特点:光源具有能量且能将其它形式的能量转化为光能,光在介质中传播就是能量的传播.

二、光的直线传播

1.光在同一种均匀介质中沿直线传播,各种频率的光在真空中传播速度:C =3×108m/s ;各种频率的光在介质中的传播速度均小于在真空中的传播速度,即 v

说明:①直线传播的前提条件是在同一种...介质,而且是均匀..

介质。否则,可能发生偏折。如从空气进入水中(不是同一种介质);“海市蜃楼”现象(介质不均匀)。

②同一种频率的光在不同介质中的传播速度是不同的。不同频率的光在同一种介质中传播速度一般也不同。在同一种介质中,频率越低的光其传播速度越大。根据爱因斯坦的相对论光速不可能超过C 。

③当障碍物或孔的尺寸和波长可以相比或者比波长小时,发生明显的衍射现象,光线可以偏离原来的传播方向。

2.小孔成像、影、日食、月食等都是光的直线传播 一.光的直线传播

例1.如图所示,在A 点有一个小球,紧靠小球的左方有一个点光源

S 。现将小球从A 点正对着竖直墙平抛出去,打到竖直墙之前,小球

在点光源照射下的影子在墙上的运动是

A.匀速直线运动

B.自由落体运动

C.变加速直线运动

D.匀减速直线运动

第二节 光的折射、全反射

一、光的折射

1.折射现象:光从一种介质进入另一种介质,传播方向发生改变的现象.

2.折射定律:折射光线、入射光线跟法线在同一平面内,折射光线、入射光线分居法线两侧,入射角的正弦跟折射角的正弦成正比. 3.在折射现象中光路是可逆的.

二、折射率

1.定义:光从真空射入某种介质,入射角的正弦跟折射角的正弦之比,叫做介质的折射率. 注意:光从真空射入介质.

2.公式:n=sini/sin γ0

sin 1C v c ='==λλ,折射率总大于1.即n >1. 3.各种色光性质比较:红光的n 最小,ν最小,在同种介质中(除真空外)v 最大,λ最大,从同种介质射向真空时全反射的临界角C 最大,以相同入射角在介质间发生折射时的偏折角最小(注意区分偏折角...和折射角...

)。 4.两种介质相比较,折射率较大的叫光密介质,折射率较小的叫光疏介质.

例2.一束光从空气射向折射率n=2的某种玻璃的表面,如图所示,i 表示入射角,则( )

A .无论入射角i 有多大,折射角r 都不会超过45

B .欲使折射角r =300,应以i =450的角度入射

C.当入射角i=arctan2时,反射光线与折射光线恰好互相垂直

D.以上结论都不正确

三、全反射

1.全反射现象:光照射到两种介质界面上时,光线全部被反射回原介质的现象.

2.全反射条件:光线从光密介质射向光疏介质,且入射角大于或等于临界角.

3.临界角公式:光线从某种介质射向真空(或空气)时的临界角为C,则sinC=1/n=v/c

例3.hm深处,向上观察水面,能看到的天穹和周围的景物都出现在水面上的一个圆形面积为S的区域内,关于圆面积S和深度h的关系正确的是()

A、S与水深h成正比

B、S与水深h成反比

C、S与水深h的平方成正比

D、S与水深h的平方成反比

例4.完全透明的水中某深处,放一点光源在水面上可见到一个圆形的透光平面,如果透光圆面的半径匀速增大,则光源正在()

A、加速上升

B、加速下沉

C、匀速上升

D、匀速下沉

四、棱镜与光的色散

1.棱镜对光的偏折作用

一般所说的棱镜都是用光密介质制作的。入射光线经三棱镜两次折

射后,射出方向与入射方向相比,向底边偏折。(若棱镜的折射率比棱镜

外介质小则结论相反。)

作图时尽量利用对称性(把棱镜中的光线画成与底边平行)。

由于各种色光的折射率不同,因此一束白光经三棱镜折射后发生色散现象,在光屏上形成七色光带(称光谱)(红光偏折最小,紫光偏折最大。)在同一介质中,七色光与下面几个物理量的对应关系如表所示。

例5.公园里灯光喷泉的水池中有处于同一深度若干彩灯,在晚上观察不同颜色彩灯的深度和水面上被照亮的面积,下列说法正确的是()

A.红灯看起来较浅,红灯照亮的水面面积较小

B.红灯看起来较深,红灯照亮的水面面积较小

C.红灯看起来较浅,红灯照亮的水面面积较大

D.红灯看起来较深,红灯照亮的水面面积较大

2.全反射棱镜

横截面是等腰直角三角形的棱镜叫全反射棱镜。选择适当的入

射点,可以使入射光线经过全反射棱镜的作用在射出后偏转90o

(右图1)或180o(右图2)。要特别注意两种用法中光线在哪个表面发生全反射。

例6.如图所示,自行车的尾灯采用了全反射棱镜的原理。它虽然本身不发光,但在夜间骑行时,从后面开来的汽车发出的强光照到尾灯后,会有较强的光被反射回去,使汽车司机注意到前面有自行车。尾灯的原理如图所示,下面说法中正确的是

A.汽车灯光应从左面射过来在尾灯的左表面发生全反射

B.汽车灯光应从左面射过来在尾灯的右表面发生全反射

C.汽车灯光应从右面射过来在尾灯的左表面发生全反射

D.汽车灯光应从右面射过来在尾灯的右表面发生全反射

3.玻璃砖所谓玻璃砖一般指横截面为矩形的棱柱。当光线从上表面入射,从下

表面射出时,其特点是:⑴射出光线和入射光线平行;⑵各种色光在第一次入

射后就发生色散;⑶射出光线的侧移和折射率、入射角、玻璃砖的厚度有关;

⑷可利用玻璃砖测定玻璃的折射率。

例7. 如图所示,两细束平行的单色光a 、b 射向同一块玻璃砖的上表面,最终

都从玻璃砖的下表面射出。已知玻璃对单色光a 的折射率较小,那么下列说法中正确的有

A.进入玻璃砖后两束光仍然是平行的

B.从玻璃砖下表面射出后,两束光不再平行

C.从玻璃砖下表面射出后,两束光之间的距离一定减小了

D.从玻璃砖下表面射出后,两束光之间的距离可能和射入前相同

4.光导纤维

全反射的一个重要应用就是用于光导纤维(简称光纤)。光纤有内、外两层材料,其中内层是光密介质,外层是光疏介质。光在光纤中传播时,每次射到内、外两层材料的界面,都要求入射角大于临界角,从而发生全反射。这样使从一个端面入射的光,经过多次全反射能够没有损失地全部从另一个端面射出。

例8. 如图所示,一条长度为L =5.0m 的光导纤维用折射率为n =2的材料制成。一细束激光由其左端的中心点以α= 45°的入射角射入光导纤

维内,经过一系列全反射后从右端射出。求:⑴该

激光在光导纤维中的速度v 是多大?⑵该激光在光

导纤维中传输所经历的时间是多少?

五、各光学元件对光路的控制特征

(1)光束经平面镜反射后,其会聚(或发散)的程度

将不发生改变。这正是反射定律中“反射角等于入射角”及平面镜的反射面是“平面”所共同决定的。

(2)光束射向三棱镜,经前、后表面两次折射后,其传播光路变化的特征是:向着底边偏折,

若光束由复色光组成,由于不同色光偏折的程度不同,将发生所谓的色散现象。

(3)光束射向前、后表面平行的透明玻璃砖,经前、后表面两次折射后,其传播光路变化的

特征是;传播方向不变,只产生一个侧移。

(4)光束射向透镜,经前、后表面两次折射后,其传播光路变化的特征是:凸透镜使光束会

聚,凹透镜使光束发散。

一. 用光的折射解释自然现象

现象一:星光闪烁与光折射

由于重力的影响,包围地球的大气密度随高度而变化;另外,由于气候的变化,大气层的各处又在时刻不断地变化着,这种大气的物理变化叫做大气的抖动.由于大气的抖动便引起了空气折射率的不断变化.我们观望某一星星时,星光穿过大气层进入眼睛,于是看到了星光.之后由于大气的抖动,使空气折射率发生变化,星光传播的路径便发生了改变,这时星光到达另一地点,我们站在原来的地方就看不见它的光了,便形成一次闪烁.大气的抖动是时刻不停的,并与气候密切相关.一般大气抖动明显地大气折射率而形成一次闪烁的时间间隔是1~4秒,所以,我们观望星空时,看到的星光是闪烁的了

现象二:

蓝天、红日与光散射

光在传播过程中,遇到两种均匀媒质的分界面时,会产生反射和折射现象.但当光在不

均匀媒介质中传播时,情况就不同了.由于一部分光线不能直线前进,就会向四面八方散射

开来,形成光的散射现象.地球周围由空气形成的大气层,就是这样一种不均匀媒质.因此,我们看到的天空的颜色,实际上是经大气层散射的光线的颜色.科学家的研究表明,大气对不同色光的散射作用不是“机会均等”的,波长短的光受一的散射最厉害.当太阳光受到大气分子散射时,波长较短的蓝光被散射得多一些.由于天空中布满了被散射的蓝光,地面上的人就看到天空呈现出蔚蓝色.空气越是纯净、干燥,这种蔚蓝色就越深、越艳.如果天空十分纯净,没有大气和其他微粒的散射作用,我们将看不到这种璀璨的蓝色.比如在2万米以上的高空,空气气体分子特别稀薄,散射作用已完全消失,天空也会变得暗淡.

同样道理,旭日初升或日落西山时,直接从太阳射来的光所穿过的大气层厚度,比正午时直接由太阳射击来的光所穿过的大气层厚度要厚得多.太阳光在大气层中传播的距离越长,被散射掉的短波长的蓝光就越多,长波长的红光的比例也显著增多.最后到达地面的太阳光,它的红色成分也相对增加,因此,才会出现满天红霞和血红夕阳.实际上,发光的太阳表面的颜色却始终没有变化.

现象三:光在大气中的折射

光在到达密度不同的两层大气的分界面时,会发生光的折射.气象学告诉我们,空气的密度的大小主要受气压和气温两个条件的影响.气压指得是单位面积空气柱的重量.大气层包围在地球表面,因此在大气层的低层气压较高,越向上气压越低.气压高则空气密度大,气压低则空气密度小.因此,正常情况下,总是贴近地面的空气密度最大,越向上空气密度越小.温度对空气密度的影响和气压则刚好相反.气温越高,空气的体积越膨胀,空气的密度越小;温度越低,空气收缩,则空气的密度变大.一般越接近地面温度越高(逆温层是个例外). 根据实测所得,在大多数情况下,温度的上下差别不是太大,而气压上下的差别却很显著,因此气压对空气密度的垂直分布所产生的影响远比气温的影响大,这就使得空气密度经常是越向上越小的(当然减小的情况并不是一成不变的).

由于地球上空气的密度随高度的变化,折射率随密度减小而正比例地减

小,因此光在大气中传播时,通过一层层密度不同的大气,在各层的分界

面处会发生折射,使光线不沿直线传播而是变弯曲,这样当太阳和其他星

体的光线进入大气以后,光线就会拐弯,这种现象称天文折射,这使在地

面观测得的天体视位置S'比实际位置S 高.

例9.假设地球表面不存在气层,那么人们观察到日出时刻与实际存在大气层的情况相比( )

A 、将提前

B 、将延后

C 、在某些地区将提前,在另一些地区将延后

D 、不变

二.光的色散问题的分析

例10.. 一束白光从顶角θ的三棱镜的一侧以较大的入射角i 射入棱

镜后,经棱镜折射在光屏P 上可得到彩色光带,如图47-A-9所示,

当入射角i 逐渐减小到零的过程中,假如屏上的彩色光带先后消失,

则( )

A 红光最先消失,紫光最后消失

B 紫光最先消失,红光最后消失

C 红光最先消失,黄光最后消失

D 红光最先消失,黄光最后消失

三、折射定律的应用

例11. 直角三棱镜的顶角α=15°, 棱镜材料的折射

率n =1.5,一细束单色光如图所示垂直于左侧面射入,

试用作图法求出该入射光第一次从棱镜中射出的光线。

例12.. 用相同玻璃制成厚度为d 的正方体A ,和半径亦为d 的半球体B ,分别放在报纸上,且让半球的凸面向上,从正上方(对B 是从最高点)竖直向下分别观察A 、B 中心处报纸上的文字,下面的观察记录正确的是 ( )

47图-A-9

A 看到A中的字比B中高 B.看到B中的字比A中高

C看到A、B中的字一样高 D 看到B中的字和没有放玻璃球时一样高

例13..如图47-B-4所示,两种同种玻璃制成的棱镜,顶角α1略大于α2,两束单色光A、B 分别垂直于三棱镜,从一个侧面射入后,从第二个侧面射出的两条折射光线与第二个侧面的夹角β1和β2且β1=β2,则下列说法正确的是()

A A光的频率比B光的高

B 在棱镜中A光的波长比B光的波长短

C在棱镜中A光的传播速度比B光的小

D 把两束光由水中射向空气中均可能发生全反射,但A光

的临界角比B大

2.全反射应用与棱镜

例14.如图所示,AB为一块透明的光学材料左侧的端面。建立直角坐标系如图,设该光学材料的折射率沿y轴正方向均匀减小。现有一束单色光a从原点O以某一入射角θ由空气射入该材料内部,则该光线在该材料内部可能的光路是下图中的哪一个

课后作业

1. 2010·全国卷Ⅱ·20频率不同的两束单色光1和2 以相同的入射角从同一点射入一厚玻璃板后,其光路如右图所示,下列说法正确的是

A.单色光1的波长小于单色光2的波长

B.在玻璃中单色光1的传播速度大于单色光2 的传播速度

C.单色光1通过玻璃板所需的时间小于单色光2通过玻璃板所需的时间

D.单色光1从玻璃到空气的全反射临界角小于单色光2从玻璃到空气的全反射临界角2.2010·北京·14对于红、黄、绿、蓝四种单色光,下列表述正确的是

A.在相同介质中,绿光的折射率最大

B.红光的频率最高

C.在相同介质中,蓝光的波长最短

D.黄光光子的能量最小

3.2010·新课标·33(1)如图,一个三棱镜的截面为等腰直角?ABC,

A

∠为直角.此截面所在平面内的光线沿平行于BC边的方向射到

AB边,进入棱镜后直接射到AC边上,并刚好能发生全反射.该棱

镜材料的折射率为_________.(填入正确选项前的字母)

A、

3

2

D

4. 06北京16.水的折射率为n,距水面深h处有一个点光源,岸上的人看到水面被该光源照亮的圆形区域的直径为( )

47

图-B-4

A.2 h tan(arc sin

n 1) B.2 h tan(arc sin n) C.2 h tan(arc cos n

1) D.2 h cot(arc cos n) 第三节 光的波动性

一、光的干涉

1.产生相干光源的方法(必须保证f 相同)。

⑴利用激光;⑵将一束光分为两束。

2.托马斯杨做的杨氏双缝干涉实验的定量分析

如图所示,缝屏间距L 远大于双缝间距d ,O 点与双缝S 1和S 2等

间距,则当双缝中发出光同时射到O 点附近的P

点时,两束光波的路程差为δ=r 2-r 1. 若光波长为λ,

上述条纹间距表达式提供了一种测量光波长的方法。

结论:由同一光源发出的光经两狭缝后形成两列光波叠加产生.当

这两列光波到达某点的路程差为波长的整数倍时,即δ=k λ,该处的

光互相加强,出现亮条纹;当到达某点的路程差为半波长奇数倍时,既δ=

)12(2-n λ,该点光互相消弱,出现暗条纹;条纹间距离与单色光波长成正比.λd

l x =?

∝λ

,所以用白光作双缝干涉实验时,屏的中央是白色亮纹,两边是彩色条纹,离中央白色亮纹最近的是紫色亮

纹。

双缝干涉形成的条纹间距 △x=d

L λ. 例14..在双缝干涉实验中,双缝到光屏上P 点的距离之差0.6μm ,若

分别用频率为f 1=5.01014Hz 和f 2= 7.51014Hz 的单色光垂直照射双缝,则 P

点出现明、暗条纹的情况是()

A .单色光f 1和f 2分别照射时,均出现明条纹

B .单色光f 1和f 2分别照射时,均出现暗条纹

c .单色光f 1照射时出现明条纹,单色光f 2照射时出现略条纹

D .单色光f 1照射时出现暗条纹,单色光f 2照射时出现明条纹

3.薄膜干涉:由薄膜前.后表面反射的两列光波叠加而成.劈形薄膜干涉可产生平行相间条纹,

两列反射波的路程差ΔT ,等于薄膜厚度d 的两倍,即ΔT=2d 。 由于膜上各处厚度不同,故各处两列反射波的路程差不等。 若:

ΔT=2d=nλ(n=1,2,…) 则出现明纹。

ΔT=2d=(2n-1)λ/2 (n=1,2,…) 则出现暗纹。

应注意:干涉条纹出现在被照射面。

例15..如图所示,一束白光从左侧射入肥皂薄膜,下列说法中正确的是( )

A . 人从右侧向左看,可看到彩色条纹.

B .人从左侧向右看,可看到彩色条纹

C.彩色条纹平行排列D.彩色条纹竖直排列

薄膜干涉应用(1)透镜增透膜:透镜增透膜的厚度应是透射光在薄膜中波长的1/4倍。使薄膜前后两面的反射光的光程差为波长的一半,(ΔT=2d=?λ,得d=?λ),故反射光叠加后减弱,从能量的角度分析E入=E反+E透+E吸。在介质膜吸收能量不变的前提下,若E反=0,则E透最大。增强透射光的强度。

(2)“用干涉法检查平面”:如

图所示,两板之间形成一层空气膜,

用单色光从上向下照射,如果被检测

平面是光滑的,得到的干涉图样必是

等间距的。

例16.劈尖干涉是一种薄膜干涉,其

装置如图(1)所示.将一块平板玻璃

放置在另一平板玻璃之上,在一端夹入两张纸片,从而在两玻璃表面之间形成一个劈形空气薄膜.当光垂直入射后,从上往下看到干涉条纹如图(2)所示.干涉条纹有如下特点:(1)任意一条明条纹或暗条纹所在位置下面的薄膜厚度相等;(2)任意相邻明条纹或暗条纹所对应的薄膜厚度差恒定.现若在图(1)装置中抽去一张纸片,则当光垂直入射到新的劈形空气薄膜

后,从上往下看到的干涉条纹

A.变疏

B.变密

C.不变

D.消失

【解析】由薄膜干涉的原理和特点可知,干涉条纹是由膜的上、下表面反射的光叠加干涉而形成的,某一明条纹或暗条纹的位置就由上、下表面反射光的路程差决定,且相邻明条纹或暗条纹对应的该路程差是恒定的,而该路程差又决定于条纹下对应膜的厚度差,即相邻明条纹或暗条纹下面对应的膜的厚度差也是恒定的.当抽去一纸片后,劈形空气膜的劈尖角——上、下表面所夹的角变小,相同的厚度差对应的水平间距离变大,所以相邻的明条纹或暗条纹间距变大,即条纹变疏.答案A正确.

例17.市场上有种灯具俗称“冷光灯”,用它照射物品时能使被照物品处产生的热效应大大降低,从而广泛地应用于博物馆,商店等处,这种灯降低热效应的原因之一是在灯泡后面放置的反光镜玻璃表面上镀了一层薄膜(例如氟化镁),这种膜能消除不镀膜时玻璃表面反射回来的热效应最显著的红外线。以λ表示此红外线的波长,则所镀薄膜的厚度最小应为:

A.λ/8

B.λ/4

C.λ/2

D.λ

4.光的波长、波速和频率的关系V=λf。光在不同介质中传播时,其频率f不变,其波长λ与光在介质中的波速V成正比.色光的颜色由频率决定,频率不变则色光的颜色也不变。

二、光的衍射。

1. 光在传播过程中,遇到障碍物或小孔(窄缝)时,它有离开直线路径绕道障碍物阴

影里去的现象。这种现象叫光的衍射。.包括:、圆孔衍射、圆板衍射及

2.泊松亮斑:当光照到不透光的极小圆板上时,在圆板的阴影中心出现的亮斑。当形成泊松亮斑时,圆板阴影的边缘是模糊的,在阴影外还有不等间距的明暗相间的圆环。

3.各种不同形状的障碍物都能使光发生衍射。

4.产生明显衍射的条件:障碍物或孔的尺寸可以跟光的波长相比或比光的波长小.

小结:光的干涉条纹和衍射条纹都是光波叠加的

结果,但存在明显的区别:

单色光的衍射条纹与干涉条纹都是明暗相

间分布,但衍射条纹中间亮纹最宽,两侧条纹逐渐变窄变暗,干涉条纹则是等间距,明暗亮度相同。 白光的衍射条纹与干涉条纹都是彩色的。

例18.某同学以线状白炽灯为光源,利用游标卡尺两脚间形成的狭缝观察光的衍射现象后,总结出以下几点,你认为正确的是

A.若狭缝与灯泡平行,衍射条纹与狭缝平行

B.若狭缝与灯泡垂直,衍射条纹与狭缝垂直

C.衍射条纹的疏密程度与狭缝的宽度有关

D.衍射条纹的间距与光的波长有关

例19.平行光通过小孔得到的衍射图样和泊松亮斑比较,下列说法中正确的有

A.在衍射图样的中心都是亮斑

B.泊松亮斑中心亮点周围的暗环较宽

C.小孔衍射的衍射图样的中心是暗斑,泊松亮斑图

样的中心是亮斑

D.小孔衍射的衍射图样中亮、暗条纹间的间距是均

匀的,泊松亮斑图样中亮、暗条纹间的间距是不均匀的

三.光的偏振

(1)自然光。太阳、电灯等普通光源直接发出的光,包含垂直于传播方向上沿一切方向振动的光,而且沿各

个方向振动的光波的强度都相同,这种光叫自然光。

(2)偏振光。自然光通过偏振片后,在垂直于传播方向的平面上,只沿一个特定的方向振动,叫偏振光。自然光射到两种介质的界面上,如果光的入射方向合适,使反射和折射光之间的夹角恰好是90°,这时,反射光和折射光就都是偏振光,且它们的偏振方向互相垂直。我们通常看到的绝大多数光都是偏振光。

(3)只有横波才有偏振现象。光的偏振也证明了光是一种波,而且是横波。各种电磁波中电场E 的方向、磁场B 的方向和电磁波的传播方向之间,两两互相垂直。

(4)光波的感光作用和生理作用主要是由电场强度E 引起的,因此将E 的振动称为光振动。 例20.如图所示,让太阳光或白炽灯光

通过偏振片P 和Q ,以光的传播方向为

轴旋转偏振片P 和Q ,可以看到透射光

的强度会发生变化,这是光的偏振现

象,这个实验表明:

A.光是电磁波

B.光是一种横波

C.光是一种纵波

D.光是概率波

例21.有关偏振和偏振光的下列说法中正确的有

A.只有电磁波才能发生偏振,机械波不能发生偏振

B.只有横波能发生偏振,纵波不能发生偏振

C.自然界不存在偏振光,自然光只有通过偏振片才能变为偏振光

D.除了从光源直接发出的光以外,我们通常看到的绝大部分光都是偏振光

四、光的电磁说. 光振动垂

直于纸面

光振动 在纸面

1、光的干涉与衍射充分地表明光是一种波,光的偏振现象又进一步表明光是横波。麦克斯韦对电磁理论的研究预言了电磁波的存在,并得到电磁波传播速度的理论值3.11×108

和当时测出的光速3.15×10m/s非常接近,在此基础上麦克斯韦提出了光在本质上是一种电磁波,这就是所谓的光的电磁说。赫兹用实验证实了电磁波的存在,并测出其波长与频率,进而得到电磁波的传播速度,用实验证实了光的电磁说。

2.电磁波按波长由大到小的顺序排列为:无线电波、红外线、可见光、紫外线、X射级、γ射线,除可见光外,相邻波段都有重叠。

3.无线电波是自由电子振荡产生的,红外线.可见光、紫外线是原子的外层电子受到激发后产生的,x射线是原子的内层电子受到激发后产生的,γ射线是原子核受到激发后产生的.

例22..关于电磁波,下列说法中哪些是正确的()

A.电磁波中最容易表现出干涉、衍射现象的是无线电波

B.红外线、可见光、紫外线是原子外层电子受激发后产生的

C.γ射线是原子内层电子受激发后产生的

D.红外线的波长比红光波长长,它的显著作用是热作用

五、光谱和光谱分析(可用光谱管和分光镜观察)

由色散形成的,按频率的顺序排列而成的彩色光带叫做光谱

1.发射光谱

(1)连续光谱:包含一切波长的光,由炽热的固体、液体及高压气体发光产生;

(2)明线光谱:又叫原子光谱,只含原子的特征谱线.由稀薄气体或金属蒸气发光产生。2.吸收光谱连续光通过某一物质被吸收一部分光后形成的光谱,能反映出原子的特征谱线.3.每种元素都有自己的特征谱线,根据不同的特征谱线可确定物质的化学组成,光谱分析既可用明线光谱,也可用吸收光谱.

波粒二象性知识点教学教材

波粒二象性知识点总结 一:黑体与黑体辐射 1.热辐射 (1)定义:我们周围的一切物体都在辐射电磁波,这种辐射与物体的温度有关,所以叫热辐射。 (2)特点:热辐射强度按波长的分布情况随物体的温度而有所不同。 2.黑体 (1)定义:在热辐射的同时,物体表面还会吸收和反射外界射来的电磁波。如果一些物体能够完全吸收投射到其表面的各种波长的电磁波而不发生反射,这种物 体就是绝对黑体,简称黑体。 (2)黑体辐射特点:黑体辐射电磁波的强度按波长的分布只与黑 体的温度有关。 注意:一般物体的热辐射除与温度有关外,还与材料的种类及 表面状况有关。 二:黑体辐射的实验规律 如图所示,随着温度的升高,一方面,各种波长的辐射强度都 有增加;另—方面,辐射强度的极大值向波长较短的方向移动。 三:能量子 1.能量子:带电微粒辐射或吸收能量时,只能是辐射或吸收某 个最小能量值的整数倍,这个不可再分的最小能量值E叫做能量子。 2.大小:E=hν。 其中ν是电磁波的频率,h称为普朗克常量,h=6.626x10—34J·s(—般h=6.63x10—34J·s)。四:拓展: 1、对热辐射的理解 (1).在任何温度下,任何物体都会发射电磁波,并且其辐射强度按波长的分布情况随物体的温度而有所不同,这是热辐射的一种特性。 在室温下,大多数物体辐射不可见的红外光;但当物体被加热到5000C左右时,开始发出暗红色的可见光。随着温度的不断上升,辉光逐渐亮起来,而且波长较短的辐射越来越 多,大约在1 5000C时变成明亮的白炽光。这说明同一物体在一定温度下所辐射的能量在不同光谱区域的分布是不均匀的,而且温度越高光谱中与能量最大的辐射相对应的频率也越高。(2).在一定温度下,不同物体所辐射的光谱成分有显著的不同。例如,将钢加热到约800℃时,就可观察到明亮的红色光,但在同一温度下,熔化的水晶却不辐射可见光。 (3)热辐射不需要高温,任何温度下物体都会发出一定的热辐射,只是温度低时辐射弱,温度高时辐射强。2、2.什么样的物体可以看做黑体 (1).黑体是一个理想化的物理模型。 (2).如图所示,如果在一个空腔壁上开—个很小的孔,那么射人 小孔的电磁波在空腔内表面会发生多次反射和吸收,最终不能从空腔 射出。这个空腔近似看成一个绝对黑体。 注意:黑体看上去不一定是黑色的,有些可看做黑体的物体由于 自身有较强的辐射,看起来还会很明亮。如炼钢炉口上的小孔。 3、普朗克能量量子化假说 (1).如图所示,假设与实验结果“令人满意地相符”, 图中小圆点表示实验值,曲线是根据普朗克公式作出的。 (2).能量子假说的意义 普朗克的能量子假说,使人类对微观世界的本质有了全 新的认识,对现代物理学的发展产生了革命性的影响。普朗 克常量h是自然界最基本的常量之一,它体现了微观世界的

光学 原子物理

光学原子物理 一、基本概念 (一)光的干涉 条件:频率相同, 振动方向相同,相位差恒定。 现象:两个相干光源发出的光在相遇的空间相互叠加时,形成明暗相间的条纹。1.双缝干涉相干光源的获取:采用“分光”的透射法。 当这两列光源到达某点的路程差: Δγ=kλ(k=0,1,2……)出现亮条纹 Δγ=(2k+1)λ/2 (k=0,1,2……)暗条纹 条纹间距Δx=(L/d) λ(明纹和暗纹间距) ·用单色光作光源,产生的干涉条纹是等间距; ·用白光作光源,产生彩色干涉条纹,中央为白色条纹; 2.薄膜干涉:相干光源的获取,采用“分光”的反射法 由薄膜的前后两个表面反射后产生的两列相干光波叠加形成的干涉现象: ·入射光为单色光,可形成明暗相间的干涉条纹 ·入射光是白光,可形成彩色干涉条纹。 3.光的干涉在技术上的应用 (1)用干涉法检查平面(等间距的平行线) (2)透镜和棱镜表面的增透膜,增透膜的厚度等于入射光在薄膜中波长的1/4 (二)光的衍射 光离开直线路径绕到障碍物阴影里的现象为称光的衍射现象。

*产生明显衍射条件:障碍物或孔的尺寸小于光波波长或和光波波长差不多。 *现象:(1)泊松亮斑(2)单缝衍射 ·单色光通过单缝时,形成中间宽且亮的条纹,两侧是明暗相间的条纹,且条纹宽度比中间窄; ·白光通过单缝时,形成中间宽的白色条纹,两侧是窄且暗的彩色条纹。 (三)光的电磁说 1.电磁波谱 a.将无线电波,红外线、可见光、紫外线、伦琴射线、γ射线按频率由小到大(或波长从长到短)的顺序排列起来,组成电磁波谱; b.·无线电波是LC振荡电路中自由电子周期性运动产生 ·红外线、可见光、紫外线是原子的外层电子受激发后产生; ·伦琴射线是原子的内层电子受到激发后产生; ·γ射线是原子核受到激发后产生。 2.光谱与光谱分析 光 谱 *由于每种元素都有自己的特征谱线,明线光谱或吸收光谱都含有这些特征谱线,故可根据明线光谱或吸收光谱分析,鉴别物质或确定它的化学组成。

2017_2018学年高中物理第二章波粒二象性第二节光子教学案粤教版

第二节 光 子 对应学生用书页码P24 1.1900年,德国物理学家普朗克在研究电磁波的辐射问题时,首次提出能量量子假说,认为物体热辐射所发出的电磁波的能量是不连续的,只能是hν的整数倍,hν称为一个能量量子,h 称为普朗克常量。 2.微观世界里,物理量的取值很多时候是不连续的,只能取一些分立的值,这种现象称为量子化现象。 3.爱因斯坦提出的光子假说认为,光的能量不是连续的,而是一份一份的,每一份叫做一个光子,其能量为ε=hν。 4.逸出功是指电子从金属表面逸出时克服引力所做的功,用W 表示。根据能量守恒定律,入射光子的能量hν等于出射光电子的最大初始动能与逸出功之和,即 h ν=1 2 mv 2max +W 。 5.根据光子假说对光电效应的解释,光电效应的条件是光子的能量ε=hν必须大于或至少等于逸出功W ,即ν=W h 就是光电效应的极限频率。 对应学生用书页码P24 对光子假说和光电效应方程的理解 1.(1)能量量子假说的内容: 物体热辐射所发出的电磁波的能量是不连续的,只能是hν的整数倍,hν称为一个能量量子,h 称为普朗克常量。 (2)能量量子假说的意义:

这个假说可以非常合理地解释某些电磁波的辐射和吸收的实验现象,而这些实验现象是传统电磁理论难以解释的。 2.对光子假说的理解 (1)光子假说的内容: ①光的能量不是连续的,而是一份一份的,每一份叫做一个光子。 ②每一个光子的能量为hν,其中h是普朗克常量,h=6.63×10-34J·s,ν是光的频率。 (2)光子假说的意义: ①利用光子假说,可以完美地解释光电效应的多种特征。 ②爱因斯坦把普朗克的能量量子化思想推广到辐射场的能量量子化,其光子概念是量子思想的一个质的飞跃。 3.对光电效应方程的理解 (1)光电效应方程表达式: hν = 1 2 mv2max+W或hν=E km+W 其中W称为逸出功,是电子从金属表面逸出时克服表面引力所做的功。 (2)光电效应方程的意义: 金属中电子吸收一个光子获得的能量是hν,这些能量一部分用于克服金属的逸出功,剩下的表现为逸出后电子的初动能E k,是能量守恒的体现。 (3)光电效应的E km-ν图像: 对于某一种金属,逸出功W一定,h又是一常量,根据光电效应方 程知:E km=hν-W,光电子的最大初动能E km与入射光的频率ν呈线性 关系,即E km-ν图像是一条直线(如图2-2-1所示)。 斜率是普朗克常量,截距是金属的极限频率ν0。 (1)光电效应方程中E km是指光电子的最大初动能,一般光电子离开金属时动能大小在0~E km范围内;公式中的W是指光电子逸出时消耗能量的最小值,对应从金属表面逸出的光电子。 (2)光电效应方程表明,光电子的最大初动能与入射光的频率成线性关系,与光强无关。 爱因斯坦因提出了光量子概念并成功地解释光电效应的规律而获得1921年诺贝尔物理学奖。某种金属逸出光电子的最大初动能E km与入射光频率ν的关系如图2-2-2所示,其中ν0为极限频率。从图中可以确定的是________。(填选项前的字母) 图2-2-1

5052高一物理光学原子物理测试题

《光学、原子物理》测试题 一、选择题 1、某介质的折射率为2,一束光从介质射向空气,入射角为60°,如图1所示的哪个光路图是正确的? 图1 2.如图2所示是光电管使用的原理图.当频率为v 0的可见光照射到阴极K上时,电流表中有电流通过,则() 图2 (A)若将滑动触头P移到A端时,电流表中一定没有电流通过 (B)若将滑动触头P逐渐由图示位置移向B端时,电流表示数一定增大 (C)若用紫外线照射阴极K时,电流表中一定有电流通过 (D)若用红外线照射阴极K时,电流表中一定有电流通过 3、物体从位于凸透镜前3f处逐渐沿主轴向透镜靠近到1.5f处的过程中,像和物体的距离将( ) (A)逐渐变小; (B)逐渐变大; (C)先逐渐增大后逐渐变小; (D)先逐渐变小后逐渐变大. 4.由中国提供永磁体的阿尔法磁谱仪如图3所示,它曾由 航天飞机携带升空,将来安装在阿尔法国际空间站中,主要使 命之一是探索宇宙中的反物质.所谓的反物质即质量与正粒子 相等,带电量与正粒子相等但相反,例如反质子即为,假 若使一束质子、反质子、α粒子和反α粒子组成的射线,通过 OO'进入匀强磁场B2而形成的4条径迹,则( ) 图3

(A)1、2是反粒子径迹 (B)3、4为反粒子径迹 (C)2为反α粒子径迹 (D)4为反α粒子径迹 5、某原子核A 先进行一次β衰变变成原子核B ,再进行一次α衰变变成原子核C ,则: (A)核C 的质子数比核A 的质子数少2 (B)核A 的质量数减核C 的质量数等于3 (C)核A 的中子数减核C 的中子数等于3 (D)核A 的中子数减核C 的中子数等于5 6、在玻尔的原子模型中,比较氢原子所处的量子数n =1及n =2的两个状态,若用E 表示氢原子的能量,r 表示氢原子核外电子的轨道半径,则: (A) E 2>E 1,r 2>r 1 (B) E 2>E 1,r 2r 1 (D) E 2

第十七章 波粒二象性 复习教案讲课教案

第十七章 波粒二象性 复习教案 17.1 能量量子化 知识与技能 (1)了解什么是热辐射及热辐射的特性,了解黑体与黑体辐射。 (2)了解黑体辐射的实验规律,了解黑体热辐射的强度与波长的关系。 (3)了解能量子的概念。 教学重点:能量子的概念 教学难点:黑体辐射的实验规律 教学过程: 1、黑体与黑体辐射 (1)热辐射现象 固体或液体,在任何温度下都在发射各种波长的电磁波,这种由于物体中的分子、原子受到激发而发射电磁波的现象称为热辐射。所辐射电磁波的特征与温度有关。 (2)黑体 概念:能全部吸收各种波长的电磁波而不发生反射的物体,称为绝对黑体,简称黑体。 2、黑体辐射的实验规律 黑体热辐射的强度与波长的关系:随着温度的升高,一方面,各种波长的辐射强度都有增加,另一方面,辐射强度的极大值向波长较短的方向移动。 提出1:怎样解释黑体辐射的实验规律呢? 在新的理论诞生之前,人们很自然地要依据热力学和电磁学规律来解释。德国物理学家维恩和英国物理学家瑞利分别提出了辐射强度按波长分布的理论公式。结果导致理论与实验规律不符,甚至得出了非常荒谬的结论,当时被称为“紫外灾难”。(瑞利--金斯线,) 3、能量子: 1900年,德国物理学家普朗克提出能量量子化假说:辐射黑体分子、原子的振动可看作谐振子,这些谐振子可以发射和吸收辐射能。但是这些谐振子只能处于某些分立的状态,在这些状态中,谐振子的能量并不象经典物理学所允许的可具有任意值。相应的能量是某一最小能量ε(称为能量子)的整数倍,即:ε, 1ε,2ε,3ε,... n ε,n 为正整数,称为量子数。对于频率为ν的谐振子最小能量为: 0 1 2 3 4 6 (μ e 实验结果

高中物理光学、原子物理知识要点

光学 一、光的折射 1.折射定律:2.光在介质中的光速: 3.光射向界面时,并不是全部光都发生折射,一定会有一部分光发生反射。 4.真空/空气的n等于1,其它介质的n都大于1。 5.真空/空气中光速恒定,为,不受光的颜色、参考系影响。光从真空/空气中进入介质中时速度一定变小。 6.光线比较时,偏折程度大(折射前后的两条光线方向偏差大)的光折射率n大。 二、光的全反射 1.全反射条件:光由光密(n大的)介质射向光疏(n小的)介质;入射角大于或等于临界角C,其求法为。 2.全反射产生原因:由光密(n大的)介质,以临界角C射向空气时,根据折射定律,空气中的sin角将等于1,即折射角为90°;若再增大入射角,“sin空气角”将大于1,即产生全反射。 3.全反射反映的是折射性质,折射倾向越强越容易全反射。即n越大,临界角C越小,越容易发生全反射。 4.全反射有关的现象与应用:水、玻璃中明亮的气泡;水中光源照亮水面某一范围;光导纤维(n大的内芯,n小的外套,光在内外层界面上全反射) 三、光的本质与色散 1.光的本质是电磁波,其真空中的波长、频率、光速满足(频率也可能用表示),来源于机械波中的公式。 2.光从一种介质进入另一种介质时,其频率不变,光速与波长同时变大或变小。 3.将混色光分为单色光的现象成为光的色散。不同颜色的光,其本质是频率不同,或真空中的波长不同。同时,不同颜色的光,其在同一介质中的折射率也不同。 4.色散的现象有:棱镜色散、彩虹。

5.红光和紫光的不同属性汇总如下: 频率f(或ν) 真空中里的 波长λ 折射率n 同一介质中 的光速 偏折程度临界角C 红光大大大紫光大大大 原因 n越大偏折 越厉害 发生全反射光子能量发生光电效应 双缝干涉时的 条纹间距Δx 发生明显衍 射 红光大容易紫光容易大容易 原因临界角越小 越容易发生 全反射 波长越大越 有可能发生 明显衍射 四、光的干涉 1.只有频率相同的两个光源才能发生干涉。 2.光的干涉原理(同波的干涉原理): 真空中某点到两相干光源的距离差即光程差Δs。 当时,即光程差等于半波长的奇数倍时,由于两光源对此点的作用总是步调相反,叠加后使此点振动减弱; 当时,即光程差等于波长的整数倍,半波长的偶数倍时,由于两光源对此点的作用总是步调一致,叠加后使此点振动加强。 3.杨氏双缝干涉:单色光源经过双缝形成相干光,在屏上形成明暗相间的等间距条纹。双缝间距离d、双缝到屏的距离L、光的波长λ、条纹间距Δx的关系为。 4.双缝干涉的条纹间距指的是两条相邻的明条纹中心的距离。其它条件相同时,光的波长越大,条纹间距越大,明、暗条纹本身也越粗。 5.若使用白光做双缝干涉实验,会得到彩色的条纹,中央明纹为白色。 6.薄膜干涉:光射向薄膜时,在膜的外、内表面各反射一次,两束反射光在外表面相遇发生干涉。若叠加后振动加强,则会使反射光增强,透射光减弱;若叠加后振动减弱,则会使反射光减弱,透射光增强。 7.薄膜干涉的现象与应用:彩色肥皂泡、彩色油膜;增透膜、增反膜、检查工件平整度。 五、光的衍射

人教版高中物理选修3-5第17章《光的波粒二象性》知识点总结

第十七章:波粒二象性 一、黑体辐射规律 1、黑体:只吸收外来电磁波而不反射的理想物体 2、黑体辐射的特点 黑体的辐射强度按波长分布只与温度有关,与物体的材料和表面形 状无关(一般物体的辐射强度按波长分布除与温度有关外,还与物 体的材料、表面形状有关); 3、黑体辐射规律: ① 随着温度的升高,任意波长的辐射强度都加强 ② 随着温度的升高,辐射强度的极大值向着波长减小的方向进行; 4、普朗克的量子说: 透过黑体辐射规律,普朗克认为:电磁皮的辐射和吸收,是不连续的,而是一份一份地进行的,每份叫一个能量子,能量为γεh =。爱因斯坦受其启发,提出了光子说:光的传播和吸收也是一份一份地进行的,每一份叫一个光子,其能量为νεh = 二、光电效应:说明了光具有粒子性,同时说明了光子具有能量 1、光电效应现象 紫外光照射锌板,锌板的电子获得足够的光子能量,挣脱金 属正离子引力,脱离锌板成为光电子;锌板因失去电子而带上 正电,于是与锌板相连的验电器也带上正电,金属箔张开。 2、实验原理电路图

3、规律: ① 存在饱和电流 饱和电流:在光电管两端加正向电压时,单位时间到达阳极A 的光 电子数增多,光电流越大;但当逸出的光电子全部到达阳极后,再 增加正向电压,光电流就达到最大饱和值,称为饱和电流。 ② 存在遏止电压 在光电管两端加反向电压时,单位时间内到达阳极A 的光电子数减少,光电流减小;当反射电压达到某一值U C 时,光电流减小为零,U C 就叫“遏止电压”。 ③ 存在截止频率 a 、 截止频率的定义:任何一种金属都有一个极限频率ν0,入射光的频率低于 “极限频率”ν0时,无论入射光多强,都不能发生光电效应,这个极限频率称为 截止频率。 b 、“逸出功”定义:电子从金属表面脱离金属所需克服金属正离子的引力所做的最小功。 要发生光电效应,入射光的能量(h ν)要大于 “逸出功(W )” 即: 00W hv = ④ 光电效应的“瞬时性”——因光电效应发生的时间,即为一个光子与一个电子能量交换 的时间,所以不管光强度如何,发生光电效应的时间极短,不超过10-9 s 。 4、爱因斯坦的光电效应方程: 光电子的最大初动能等于入射光光子的能量减逸出功 即:W h E K -=ν 可见“光电子的最大初动能”与入射光的强度无关,只与入射光频率有关,图象如下图

光学、原子物理知识总结

光学、原子物理知识总结

光学 一、光的折射: 1、折射定律:折射光线与入射光线、发现处在同一平面内,折射光线与入射光线分别位于法线的两侧。入射角的正弦与折射角的正弦成正比。 表达式:r i n sin sin = 2、折射现象中,光路可逆。 3、折射率: 物理意义:反应介质的光学特性,折射率大,说明光从真空射入到该介质时,偏折大。 (1)r i n sin sin = 为比值定义。由介质本身的光学性质和光的频率决定。 (2)v c n =,任何介质的折射率总大于1。 (3)r i n sin sin =中i 总是真空中光线与法线的夹角。 4、几个典型的折射光路 (1)平行玻璃砖的光路 两面平行的玻璃砖,出射光线和入射光线平行,且光线发生了侧移。 (2)球形玻璃砖的光路 (3)平行玻璃砖的光的侧移距离 如图所示,由题意可知,O 2A 为偏移距离Δx ,有:Δx =d cos r ·sin(i -r ) n =sin i sin r 若为同一单色光,即n 值相同.当i 增大时,r 也增大,但i 比r 增大得快, sin(i -r )>0且增大,d cos r >0且增大。 若入射角相同,则:Δx =d sin i (1-cos i n 2-sin 2i )即当n 增大,Δx 也增大 结论: (1)同种单色光的侧移距离随入射角的增大而增大 (2)不同种单色光的折射率大的侧移距离大 二、全反射 1、条件:① 光从光密介质射入光疏介质。 ② 入射角大于等于临界角。 2、临界角:n C 1 sin = ,C 为折射角为900时的入射角。 B A i 30° 120° r ′ O A E B C D O ′ 60° M

高中物理第二章波粒二象性第五节德布罗意波同步备课教学案粤教版选

第五节德布罗意波 [学习目标] 1.了解物质波的概念,知道实物粒子具有波粒二象性.2.了解电子衍射实验及对德布罗意波假说的证明.3.了解什么是电子云,知道物质波也是一种概率波.4.了解不确定性关系及对一些现象的解释. 一、德布罗波假说和电子衍射 [导学探究]德布罗意认为任何运动着的物体均具有波动性,可是我们观察运动着的汽车,并未感觉到它的波动性,你如何理解该问题? 答案波粒二象性是微观粒子的特殊规律,一切微观粒子都存在波动性,宏观物体(如汽车)也存在波动性,只是因为宏观物体质量大,动量大,波长短,难以观测. [知识梳理] 1.粒子的波动性 (1)任何运动着的物体,小到电子、质子,大到行星、太阳,都有一种波与它相对应,这种波叫物质波,又叫德布罗意波. (2)德布罗意波波长、频率的计算公式为λ=h p ,ν=εh . (3)我们之所以看不到宏观物体的波动性,是因为宏观物体的动量太大,德布罗意波长太小的缘故. 2.物质波的实验验证:电子衍射 (1)实验探究思路:干涉、衍射是波特有的现象,如果实物粒子具有波动性,则在一定条件下,也能够发生干涉或衍射现象.

(2)实验验证:1927年戴维孙和汤姆生分别利用晶体做了电子束衍射的实验,得到了电子的衍射图样,证实了电子的波动性. (3)说明 ①人们陆续证实了质子、中子以及原子、分子的波动性,对于这些粒子,德布罗意给出的 λ=h p 关系同样正确. ②物质波也是一种概率波. [即学即用]判断下列说法的正误. (1)一切宏观物体都伴随一种波,即物质波.(×) (2)湖面上的水波就是物质波.(×) (3)电子的衍射现象证实了实物粒子具有波动性.(√) 二、电子云 当原子处于稳定状态时,电子会形成一个稳定的概率分布,概率大的地方小圆点密一些,概率小的地方小圆点疏一些.这样的概率分布图称为电子云.这也说明,德布罗意波是一种概率波. 三、不确定性关系 1.定义:在经典物理学中,可以同时用质点的位置和动量精确描述它的运动,在微观物理学中,要同时测出微观粒子的位置和动量是不太可能的,这种关系叫不确定性关系. 2.表达式:Δx Δp ≥h 4π . 其中以Δx 表示微观粒子位置的不确定性,以Δp 表示微观粒子在x 方向上的动量的不确定性,h 是普朗克常量. 3.微观粒子运动的基本特征:不再遵守牛顿运动定律,不可能同时准确地知道粒子的位置和动量,不可能用“轨迹”来描述粒子的运动,微观粒子的运动状态只能通过概率做统计性的描述. [即学即用]判断下列说法的正误. (1)在电子衍射中,电子通过狭缝后运动的轨迹是确定的.(×) (2)宏观物体的动量和位置可准确测定.(√) (3)微观粒子的动量和位置不可同时准确测定.(√) 一、对德布罗意波的理解 德布罗意波也是概率波:对于电子和其他微观粒子,单个粒子的位置是不确定的,但在某点出现的概率的大小可以由波动的规律确定,而且对于大量粒子,这种概率分布导致确定的宏

11高考光学原子物理专题

一、原子的核式结构 卢瑟福根据α粒子散射实验观察到的实验现象推断出了原子的核式结构.α粒子散射实验的现象是:①绝大多数α粒子穿过金箔后基本上仍沿原来的方向前进;②极少数α粒子则发生了较大的偏转甚至返回.注意,核式结构并没有指出原子核的组成. 二、波尔原子模型 玻尔理论的主要内容: 1.“定态假设”:原子只能处于一系列不连续的能量状态中,在这些状态中,电子虽做变速运动,但并不向外辐射电磁波,这样的相对稳定的状态称为定态. 定态假设实际上只是给经典的电磁理论限制了适用范围:原子中的电子绕核转动处于定态时不受该理论的制约. 2.“跃迁假设”:电子绕核转动处于定态时不辐射电磁波,但电子在两个不同定态间发生跃迁时,却要辐射(吸收)电磁波(光子),其频率由两个定态的能量差值决定hν=E m -E n . 3.“能量量子化假设”和“轨道量子化假设”:由于能量状态的不连续,因此电子绕核转动的轨道半径也不能任意取值. 三、原子核的衰变及三种射线的性质 1.α衰变与β衰变方程 α衰变:X A Z →42Y A Z --+42He β衰变:X A Z →1Y A Z ++01e - 2.α和β衰变次数的确定方法 先由质量数确定α衰变的次数,再由核电荷数守恒确定β衰变的次数. 3.半衰期(T ):放射性元素的原子核有半数发生衰变所需的时间. 4.特征:只由核本身的因素所决定,而与原子所处的物理状态或化学状态无关. 5.规律:N =N 01()2 t T . 6.三种射线 射线 α射线 β射线 γ射线 物质微粒 氦核 42He 电子01e - 光子γ 带电情况 带正电(2e ) 带负电(-e ) 不带电 速度 约为110 c 接近c c 贯穿本领 小(空气中飞行几厘米) 中(穿透几毫米厚的铝板) 大(穿透几厘米厚的铅板) 电离作用 强 次 弱 四、核能 1.爱因斯坦质能方程:E =mc 2. 2.核能的计算 (1)若Δm 以千克为单位,则: ΔE =Δmc 2. (2)若Δm 以原子的质量单位u 为单位,则: ΔE =Δm ×931.5 MeV . 3.核能的获取途径 (1)重核裂变:例如 235 92U +10n →13654Xe +9038Sr +1010n (2)轻核聚变:例如 2 1H +31H →42He +10n 聚变的条件:物质应达到超高温(几百万度以上)状态,故聚变反应亦称热核反应. 二、考查衰变、裂变、聚变以及人工转变概念 ●例2 现有三个核反应: ①24 11Na →2412Mg +____; ②23592U +10n →14156Ba +9236Kr +____;③21H +31H →42He +____. 完成上述核反应方程,并判断下列说法正确的是( ) A .①是裂变,②是β衰变,③是聚变

第二章波粒二象性 第五节 德布罗意波 学案

第二章波粒二象性 第五节 德布罗意波 学案 〖学习目标〗 1、知道什么是德布罗意波,了解德布罗意波长与实物粒子的动量的关系; 2、知道实物粒子和光子一样具有波粒二象性; 3、了解不确定性关系. 〖学习难点〗对德布罗意波的理解 〖自主学习〗 一、德布罗意波假说及实验验证 1、德布罗意波 任何一个实物粒子都和一个 相对应,这种与实物粒子相联系的波称为德布罗意波,也 叫做 。 2、物质波的波长、频率关系式:λ= 和v= 3、实验验证:1927年带戴维孙和汤姆生分别利用晶体做了 的实验,得到了电子的 ,证实了电子的波动性。 二、不确定性关系 以△x 表示微观粒子位置的 ,以△p 表示微观粒子 的不确定性,那么△x △p ≥h/4π,式中h 式普朗克常量。 【重难点阐释】 一、说明:光的波粒二象性的联系 (1)、E=h ν 光子说不否定波动性 光具有能量动量,表明光具有粒子性。光又具有波长、频率,表明光具有波动性。且由E=h ν,光子说中E=h ν,ν是表示波的物理量,可见光子说不否定波动说。 (2)、光子的动量和光子能量的比较:p=λh 与ε=h ν P与ε是描述粒子性的,λ、ν是描述波动性的,h 则是连接粒子和波动的桥梁 波粒二象性对光子来讲是统一的。 二、德布罗意波(物质波) 德布罗意(due de Broglie, 1892-1960)提出:一切实物粒子都有具有波粒二象性。即每一个运动的粒子都与一个对应的波相联系。 能量为E 、动量为p 的粒子与频率为v 、波长为λ的波相联系,并遵从以下关系:E=mc 2=hv p=mv=λh 其中p :运动物体的动量 h :普朗克常量 1、德布罗意波 这种和实物粒子相联系的波称为德布罗意波(物质波或概率波),其波长λ称为德布罗意波长。 2、一切实物粒子都有波动性。 后来,大量实验都证实了:质子、中子和原子、分子等实物微观粒子都具有波动性,并都满足德布罗意关系。 一颗子弹、一个足球有没有波动性呢? 【例1】试估算一个中学生在跑百米时的德布罗意波的波长。 解:估计一个中学生的质量m ≈50kg ,百米跑时速度v ≈7m/s ,则 λ=p h =1.9×10-36m 计算结果表明,子弹的波长小到实验难以测量的程度,宏观物体的物质波波长非常小,所以很难表现出其波动性。

原子物理光学知识点.doc

重要概念和规律 1.原子核式结构学说(卢瑟福) 实验基础α粒子散射实验——用放射源发出的α粒子穿过金箔,发现绝大多数α粒子按原方向前进,少数α粒子发生较大的偏转。极少数发失大角度偏转。个别被弹回.基本内容在原子中心有一个带正电的核(半径约10-15~10-14m),集中了几乎全部原子质量、带负电的电子在核外绕核旋转(原子半径约10-10m)。困难问题按经典理论,电子绕核旋转将辐射电磁波,能量会逐渐减小,电子运行的轨道半径不断变小,大量原子发出的光谱应该是连续光谱。 2.玻尔理论(玻尔)实验基础氢光谱规律的研究。基本内容(三点假设)(1)原子只能处于一系列不连续的、稳定的能量状态(定态),其总能量En(包括动能和电势能)与基态总能量量的关系为En=E1/n2(n=1、2、3……)。(2)原子在两个定态之间跃迁时,将辐射(或吸收)一定频率时光子;光子的能量为hν=E初-E终。(3)电子绕核运行的可能轨道是不连续的。各可能轨道的半径rn=n2r1基态轨道半径r1。(n=1、2、3……)。困难问题无法解释复杂原子的光谱. 3. 放射现象(贝克勒尔) 三种射线(1)α射线氦原子核流。v≈c/10。贯穿本领很小。电离作用很强。 (2)β射线高速电子流。v≈c。贯穿本领强,电离作用弱。 (3)γ射线波长很短的电磁波。v=c。贯穿本领很强,电离作用很弱。 衰变规律遵循电量、质量(和能量)守恒。 α衰变、β衰变、γ衰变(γ衰变是伴随着α衰变或β衰变同时发生的)。 半衰期放射性元素的原子读有半数发生衰变所需要的时间。由核内部本身因素决定.跟原子所处的物理状态或化学状态无关.公式 4.原子核的组成 实验基础 (1)质子发现(1919年,卢瑟福) 147N + 24He → 817O + 11H (2)中子发现(1932年,查德威克) 49Be + He → 612C + 01n 基本内容原子核由质子和中子(统称核子)组成.原子核的质量数等于质子数与中子数之和.原子核的电荷数等于质子数。各核子间依靠强大的核力来集在核内。 5.放射性同位素质子数相同、中子数不同,具有放射性的原子。 实验基础用α粒子盖击铝核首先实现用人工方法得到放出性同位素磷(1934年,约里奥?

2020届高三高考物理复习知识点复习卷:光电效应波粒二象性

光电效应 波粒二象性 1.(多选)(2019·西安检测)关于物质的波粒二象性,下列说法中正确的是( ) A .不仅光子具有波粒二象性,一切运动的微粒都具有波粒二象性 B .运动的微观粒子与光子一样,当它们通过一个小孔时,都没有特定的运动轨道 C .波动性和粒子性,在宏观现象中是矛盾的、对立的,但在微观高速运动的现象中是统一的 D .实物的运动有特定的轨道,所以实物不具有波粒二象性 2.在光电效应实验中,用同一种单色光,先后照射锌和银的表面,都能发生光电效应。对于这两个过程,下列四个物理过程中,一定相同的是( ) A .遏止电压 B .饱和光电流 C .光电子的最大初动能 D .逸出功 3.(多选)物理学家做了一个有趣的实验:在双缝干涉实验中,在光屏处放上照相底片,若减小入射光的强度,使光子只能一个一个地通过狭缝。实验结果表明,如果曝光时间不太长,底片上只能出现一些如图甲所示不规则的点子;如果曝光时间够长,底片上就会出现如图丙所示规则的干涉条纹。对于这个实验结果的认识正确的是( ) 甲 乙 丙 A .单个光子的运动没有确定的轨道 B .曝光时间不长时,光的能量太小,底片上的条纹看不清楚,故出现不规则的点子 C .干涉条纹中明亮的部分是光子到达机会较多的地方 D .大量光子的行为表现为波动性 4.(多选)下列说法正确的是( ) A .光子不仅具有能量,也具有动量 B .光有时表现为波动性,有时表现为粒子性 C .运动的实物粒子也有波动性,波长与粒子动量的关系为λ=p h D .光波和物质波,本质上都是概率波 5.(多选)已知某金属发生光电效应的截止频率为νc ,则( ) A .当用频率为2νc 的单色光照射该金属时,一定能产生光电子 B .当用频率为2νc 的单色光照射该金属时,所产生的光电子的最大初动能为hνc C .当照射光的频率ν大于νc 时,若ν增大,则逸出功增大 D .当照射光的频率ν大于νc 时,若ν增大一倍,则光电子的最大初动能也增大一倍

第四节 光学、原子物理

第四节光学、原子物理 一、知识结构 (一)光学 1. 2. 3.掌握光的折射规律及其应用;了解全反射的条件及临界角的计算,理解棱镜的作用原 4.明确透镜的成像原理和成像规律,能熟练应用三条特殊光线的作用和物像的对应关系 5. 6.掌握光的电磁学说的内容;明确不同电磁波产生的机理和各种射线的特点和作用。理 7.掌握光电效应规律,理解光电效应四个实验的结论,了解光的波粒二象性的含义。 (二) 1. 2. 3.掌握α、β、γ 4. 例1 下列成像中,能满足物像位置互换(即在成像处换上物体,则在原物体处一定成像)的是( ) A.平面镜成像 B. C.置于空气中的玻璃凸透镜成实像 D.置于空气中的玻璃凸透镜成虚像 【解析】由光路可逆原理,本题的正确选项是C 例2 在“测定玻璃的折射率”实验中,已画好玻璃砖界面两直线aa′与bb′后,不小心误将玻璃砖向上稍平移了一点,如下图左所示,若其它操作正确,则测得的折射率将 ( ) A.变大 B.变小 C.不变 D. 【解析】要解决本题,一是需要对测折射率的原理有透彻的理解,二是要善于画光路图。 设P1、P2、P3、P4是正确操作所得到的四枚大头针的位置,画出光路图后可知,即使玻璃砖向上平移一些,如上图右所示,实际的入射角没有改变。实际的折射光线是O1O′1,而

现在误把O 2O ′2作为折射光线,由于O 1O ′1平行于O 2O ′2,所以折射角没有改变,因此折射率不变。 例3 如右图所示,折射率为n =2的液面上有一点光源S , 发出一条光线,垂直地射到水平放置于液体中且距液面高度为h 的平面镜M 的O 点上,当平面镜绕垂直于纸面的轴O 以角速度ω 逆时针方向匀速转动时,液面上的观察者跟踪观察,发现液面上 有一光斑掠过,且光斑到P (1) (2)光斑在P 【解析】光线垂直于液面入射,平面镜水平放置时反射光线沿原路返回,平面镜绕O 逆时针方向转动时经平面镜的反射,光开始逆时针转动,液面上的观察者能得到由液面折射出去的光线,则看到液面上的光斑,从P 处向左再也看不到光斑,说明从平面镜反射P 点的光线在液面产生全反射,根据在P 处产生全反射条件得: ?90sin sin θ=n 1=2 1 sin θ=2 2,θ=45° (1)因为θ=45°,PA =OA =h ,t =ω8π=ω 8π -V =ω 8πh =π h ω8 (2)光斑转到P 位置的速度是由光线的伸长速度和光线的绕O 转动的线速度合成的,光 斑在P 位置的线速度为22ωh v =v 线/cos45°=22ωh/cos45°=4ωh 。 例4 如右图为查德威克发现中子的实验示意图,其中 ①为 ,② ,核反应方程 为 【解析】有关原子物理的题目每年高考都有题,但以选 择题和填空题为主,要求我们复习时注意有关的理论提出都是依据实验结果的,因此要注意 每个理论的实验依据 答案:中子流 质子流 94Be+ 42He 126C+ 10n (一)

(完整版)波粒二象性知识点和练习

波粒二象性知识点和练习 一、光电效应现象 1、光电效应: 光电效应:物体在光(包括不可见光)的照射下发射电子的现象称为光电效应。 2、光电效应的研究结论: ①任何一种金属,都有一个极限频率,入射光的频率必须大于这个极限频率................,才能产生光电效应;低于这个频率的光不能产生光电效应。②光电子的最大初动能与入射光的强度无关..................,只随着入射光频率的增大..而增大.. 。注意:从金属出来的电子速度会有差异,这里说的是从金属表面直接飞出来的光电子。③入射光照到金属上时,光电子的发射几乎是瞬时的............ ,一般不超过10-9 s ;④当入射光的频率大于极限频率时,光电流的强度与入射光的强度成正比。 3、 光电效应的应用: 光电管:光电管的阴极表面敷有碱金属,对电子的束缚能力比较弱,在光的照射下容易发射电子,阴极发出的电子被阳极收集,在回路中形成电流,称为光电流。 注意:①光电管两极加上正向电压,可以增强光电流。②光电流的大小跟入射光的强度和正向电压有关,与入射光的频率无关。入射光的强度越大,光电流越大。③遏止电压U 0。回路中的 光电流随着反向电压的增加而减小,当反向电压U 0满足:02 max 2 1eU mv =,光电流将会减小到零, 所以遏止电压与入射光的频率有关。 4、波动理论无法解释的现象: ①不论入射光的频率多少,只要光强足够大,总可以使电子获得足够多的能量,从而产生光电效应,实际上如果光的频率小于金属的极限频率,无论光强多大,都不能产生光电效应。 ②光强越大,电子可获得更多的能量,光电子的最大初始动能应该由入射光的强度来决定,实际上光电子的最大初始动能与光强无关,与频率有关。 ③光强大时,电子能量积累的时间就短,光强小时,能量积累的时间就长,实际上无论光入射的强度怎样微弱,几乎在开始照射的一瞬间就产生了光电子. 二、光子说 1、普朗克常量 普郎克在研究电磁波辐射时,提出能量量子假说:物体热辐射所发出的电磁波的能量是不连续的,只能是hv 的整数倍,hv 称为一个能量量子。即能量是一份一份的。其中v 辐射频率,h 是一个常量,称为普朗克常量。 2、光子说 在空间中传播的光的能量不是连续的,而是一份一份的,每一份叫做一个光子,光子的能量ε跟光的频率ν成正比。hv =ε,其中:h 是普朗克常量,v 是光的频率。 三、光电效应方程 1、逸出功W 0: 电子脱离金属离子束缚,逸出金属表面克服离子引力做的功。 2、光电效应方程:如果入射光子的能量hv 大于逸出功W 0,那么有些光电子在脱离金属表面后还有剩余的动能——根据能量守恒定律,入射光子的能量hv 等于出射光子的最大初动能与逸出功之和,即 02 max 21W mv hv += 其中2max 2 1mv 是指出射光子的最大初动能。 3、 光电效应的解释:

最新光学原子物理

光学原子物理

智慧点亮人生——走过高三的体悟 学生在温馨、舒适、亲切、向上的环境中学习生活,力求让班级的每一名学生和教师在愉悦的环境中最大的释放自己的聪明才智;“如果学生生活在批评中,他便学会谴责;如果学生生活在敌视中,他便会好斗;如果学生生活在恐惧中,他便会忧心忡忡;如果学生生活在鼓励中,他便学会自信;如果学生生活在受欢迎的环境里,他便学会钟爱别人;如果学生生活在友谊中,他便会觉得生活在一个多么美好的世界里。”是我的教育理念. “赏识学生,严格管理”,是我的工作思路。在进行班级管理的过程中我思考什么样的师生关系是能最大发挥教育功效的,对合作型的师生关系我有深刻的体会;利用班会我和学生沟通,教师和学生的关系是合作关系,合作的前提是——互相欣赏;我在进行管理学生的过程中,一直挖掘学生的优点,但不回避缺点。例如,班级的刘勤谭在我接受班级时,他错误不断,并和老师有很大的抵触情绪。在和他进行过几次交流后,效果很不好;我经过思考后,在很多情况下,谈到刘勤谭,是个聪明的孩子,在班集体劳动中很积极;他发现老师是欣赏他的,在遇到问题时老师在对他严格管理时,他也能欣然接受,并做的很好,有时让老师很感动。我们工作的对象是人,是活生生的、富有个性的学生。作为班主任,要树立以人为本,以学生为本的思想,建立合作型的关系,引导学生做自己生命的主人,做社会的人。要以开放的心态和包容的气度正确对待那些具有鲜明个性的学生,要以博大的爱心和崇高的师德尊重、爱护、关心和引导学生。班主任的工作方式不仅诉诸于行为,而更多地诉诸情感与心理。 师生、生生间的真情是建设良好班级的前提条件。通过谈心与学生真情交流,共同探讨班级问题,一个人出了问题,其他同学都会伸出援手,帮助解决,班级的凝聚力增强了,成为真正的一家人;同学们有了主人翁意识,愿意为这个班付出. 学生到学校接受教育,这不仅仅指学习文化知识,还应该包括学习做人的道理,学习今后再学习、再发展的本领;学生是班级的主体,班级应是学生锻炼各种能力的舞台,而班主任则应是这舞台的顾问、向导。在班级管理方式上,我把班主任管理与学生自我管理有机结合起来,既充分发挥班主任的主导作用,又特别重视学生的主体能动性。在班级管理制度的建设上,坚持班主任把握方向的前提下,使学生逐步学会自我管理,成为班级管理的主人。为了将学生推向舞台,我与学生一起设定众多的岗位,例如,在进入高三后,班级根据需要设立“综合素质管理员”,根据大家的推荐和自我推荐,宋

《光、波粒二象性》复习

第十三章光第十七章波粒二象性 一、光的直线传播 1.光在同一种均匀介质中是沿直线传播的 前提条件是在同一种介质,而且是均匀介质。否则,可能发生偏折。如光从空气斜射入水中(不是同一种介质);“海市蜃楼”现象(介质不均匀)。 2.光速 光在真空中的转播速度为c=3.00×108m/s。 光在不同介质中的传播速度是不同的。根据爱因斯坦的相对论光速不可能超过c。 二、反射平面镜成像 1.像的特点:平面镜成的像是正立等大的虚像,像与物关于镜面为对称。 2.光路图作法:根据平面镜成像的特点,在作光路图时,可以先画像,后补光路图。 三、折射与全反射 1.折射定律 折射定律的各种表达形式:(θ1为入、折射角中的较大者。) 折射光路也是可逆的。 2.各种色光性质比较 可见光中,红光的折射率n最小,频率ν最小,在同种介质中(除真空外)传播速度v最大,波长λ最大,从同种介质射向真空时发生全反射的临界角C最大,以相同入射角在介质间发生折射时的偏折角最小(注意区分偏折角和折射角)。 3.边作图边计算: 有关光的折射和全反射,在解题时要把计算和作图有机地结合起来,根据数据计算反射角、折射角,算一步画一步,画一步在根据需要算一步。作图要依据计算结果,力求准确。 例1 直角三棱镜的顶角α=15°, 棱镜材料的折射率n=1.5,一细束单色光如图所示垂直于左侧面射入,试用作图法求出该入射光第一次从棱镜中射出的光线。 答: 4.光导纤维 全反射的一个重要应用就是用于光导纤维(简称光纤)。光纤有内、外两层材料,其中内层是光密介质,外层是光疏介质。光在光纤中传播时,每次射到内、外两层材料的界面,都要求入射角大于临界角,从而发生全反射。这样使从一个端面入射的光,经过多次全反射能够没有损失地全部从另一个端面射出。 例2如图所示,一条长度为L=5.0m的光导纤维用折射率为n=的材料制成。一细束激光由其左端的中心点以α= 45°的入射角射入光导纤维内,经过一系列全反射后从右端射出。求:⑴该激光在光导纤维中的速度v是多大? ⑵该激光在光导纤维中传输所经历的时间是多少? 2.12×108m/s , 2.7×10-8s 四、棱镜 1.棱镜对光的偏折作用 一般所说的棱镜都是用光密介质制作的。入射光线经三棱镜两次折射后,射出方向与入射方向相比,向底边偏折。(若棱镜的折射率比棱镜外介质小则结论相反。) 作图时尽量利用对称性(把棱镜中的光线画成与底边平行)。 例3. 如图所示,一细束红光和一细束蓝光平行射到同一个三棱镜上,经折射后交于光屏上的同一个点M,若用n1和n2分别表示三棱镜对红光和蓝光的折射率,下列说法中正确的是( B ) A.n1n2,a为红光,b为蓝光 D.n1>n2,a为蓝光,b为红光

相关文档
相关文档 最新文档